Chemistry 112 Midterm January 30, 2006

Size: px
Start display at page:

Download "Chemistry 112 Midterm January 30, 2006"

Transcription

1 1. (35 points) The reaction of A and B to form products is thought to go according to the following mechanism: A + 2B 2C + D k -1 2C 2C 2C + M k 2 k 3 k 4 G H J + M (a) (5) Identify the products in this reaction. (b) (5) Identify any catalyst(s) in this reaction. Explain why any species you identify as such are catalysts. (c) (12) Derive a rate law for formation of H, assuming that the steady state approximation can be applied to intermediate(s) in the above mechanism. (d) (7) Are there conditions that the rate law you derived in part (c) would be third order overall? If so, what are they? (e) (6) Are there conditions under which the rate law you obtained in part (c) would be 2nd order overall? If so, what are they? Solution: (a) D, G, H and J are products in this reaction (b) M; it is both consumed and regenerated in stoichiometric amounts in the reaction corresponding to k 4. (c) First, we write the rate law for formation of H as d[h]/dt = k 3 [C] 2. Next, we write the steady state rate law for formation of C: d[c]/dt = 2 [A][B] 2 2k -1 [C] 2 [D] 2(k 2 )[C] 2 2k 4 [C] 2 [M] 0 Then, solving for [C] 2, we obtain [C] 2 = [A][B] 2 /{k -1 )} Substituting this quantity into the equation for formation of H, we find the required rate law to be: d[h]/dt = k 3 [A][B] 2 /{k -1 )} (d) If k -1 [M] << (k 2 ), then d[h]/dt = k 3 [A][B] 2 /(k 2 ); this rate law is third order overall. (e) If k -1 [D] >> {k 4 )}, then the rate law becomes d[h]/dt = k 3 [A][B] 2 /k -1 [D] = k [A][B] 2 /[D] (where k = k 3 /k -1 ). This rate law has an overall order of 2. Similarly, if k 4 [M]>> (k 2 ) + k -1 [D], the rate law will have an overall order of 2.

2 2. (25) (a) Consider the reaction A + 2B P. In one study, the initial concentrations of A and B were set at 1 M and 3 M respectively. After 10 min, the concentration of A was found to be 0.2 M. What will be the concentration of B after 20 min if: (a) (7) The reaction is zero order in both A and B and zero order overall? (b) (7) The reaction is 1 st order in A, zero order in B and 1 st order overall? (c) (7) The reaction is 2 nd order in A, zero order in B and 2 nd order overall? (d) (4) The reaction is 1 st order in A, 1 st order in B and 2 nd order overall? Solutions: (a) Since the reaction is zero order in both A and B, the rate law is (1/1)d[A]/dt = -(1/2)d[B]dt = k. The integrated rate law for A is [A] = [A] 0 kt. From the data given, we can write the expression 0.2M = 1M k(10 min). Thus, k = 0.08 M/min. After 20 min, we can write [A] = 1M (0.08M/min)(20 min) = 1M 1.6M = -0.6M. Since A and B both stop reacting when [A] = 0, the total amount of A consumed is 1M. Therefore, the concentration of B consumed will be 2M. The concentration of B after 20 min of reaction will thus be 1M. (b) For the first order process, ln A = ln [A] 0 kt. Thus, we can write ln (0.2) = ln (1) k(10) or, taking natural logs, = 0 k(10min). Therefore, k = min -1. At 20 min reaction time, we can write ln [A] = 0 20 min(0.161 min -1 ) = or [A] = 0.04M. Thus 0.96M of A has been consumed. This implies that 1.92M of B has been consumed. Thus the final concentration of B is 1.08M. (c) For the second order reaction that is also second order in A and zero order in B, we can write 1/[A] = 1/[A] 0 kt. Substituting in numerical values, we obtain 1/0.2M = 1/1M + k(10 min). Solving for k, we obtain a value of 0.4 M -1 min -1. After 20 min, the resulting value of A will be 1/[A] = 1/1M + (0.4 M -1 min -1 )20 min = 9 M -1. Thus [A] = 0.111M and we have consumed 0.889M of A. Therefore, we will have consumed 1.778M of B and the final concentration of B will be 1.222M. (d) For the case where the reaction is 1 st order in A, 1 st order in B and 2 nd order overall, we can write ln ([A]/[B]) = ln ([A] 0 /[B] 0 ) + {b[a] 0 a[b] 0 }kt. After the reaction has proceeded for 10 min, we will lose 0.8M of A and 1.6M of B. This leaves [A] = 0.2M and [B] = 1.4M. Thus, we can write ln ((0.2)/(1.4)) = ln((1)/(3)) + {2(1) 1(3)}k(10 min). Solving for k, we obtain a value of M - 1 min -1. Substituting this value of k, along with 20 min for the time of reaction, leads to a value of ln ([A]/[B]) = or [A]/[B] = or [A] = [B]. From the stoichiometry, we know that at any particular time ([A] 0 [A]) = ([B] 0 [B]); for our specific case, this becomes ([A] [B] = ([B] 0 [B]). Substituting in values for the various concentrations of A and B, we find that [B] = (3-[B]) = 1.5 [B]. This equation becomes 0.444[B] = or [B] = 1.14M after 20 min. The concentration of A present after 20 min reaction will be M.

3 3. (25 points) The problems below refer to the graphs on the following page. A. (8 points) The kinetic data taken for the reaction A B is shown in Graph 3A. (1) What is the half-life of this reaction when the initial concentration of A is 0.15 M? (2) If the initial concentration of A is 5 M, what time will be required for the concentration of A to become 0 M? B. (10 points) The kinetic data taken for the reaction C D is shown in Graph 3B. (1) What is the half-life for this reaction when the initial concentration of C is 3 M? (2) What time would be required for the concentration of C to become 0 M if the initial concentration is 3 M? (3) What was the initial concentration of C when the reaction was run under the conditions shown on the graph? C. (7 points) The kinetic data taken for the reaction E F is shown in Graph 3C. (1) What is the half-life for this reaction when the initial concentration of E is 0.02 M? (2) What was the initial concentration of E when the reaction was run under the conditions shown on the graph? DO NOT OBTAIN YOUR ANSWERS BY MAKING EXTRAPOLATIONS FROM THE VARIOUS GRAPHS. ALL ANSWERS ARE TO BE CALCULATED FROM THE DATA CONTAINED WITHIN THE GRAPHS. ZERO CREDIT WILL BE GIVEN FOR ANSWERS THAT DO NOT FOLLOW THIS RULE! A. (1) From the graph, we see that the reaction is zero order (plotting [A] vs. t gives a straight line with equation [A] = [A] 0 kt). Using the points on the graph at 30 min and 10 min, we find m = ( )/(30 10) = M min-1. Since k = -m, the rate constant k has a value of 0.02 M min -1. For zero order processes, t 1/2 = [A] 0 /2k. For [A] 0 = 0.15 M, t 1/2 = 3.75 min. (2) Using [A] = [A] 0 kt, we can write 0 = 5 M 0.02(t) or t = 250 min. B. (1) The graph indicates that the experimental data obey first order kinetics, for which ln [C] = ln [C] 0 kt. Using the points on the graph at 30 min and 10 min, we can evaluate the slope as ((- ) 0.3)/(30 10 min) = -0.8/20 = min -1. Since k = -m, the value of k is 0.04 min -1. The half-life of a 1 st order reaction is independent on initial concentration and is given by t 1/2 = 0.693/k = 17.3 min. (2) For first order processes, there is no defined time at which the concentration of C will become exactly zero. Note that the natural log of 0 is undefined. The value of [C] can only approach zero with increasing time. (3) To calculate [C] 0, we need to pick a concentration on the graph, along with its corresponding time. Picking 10 min, with a corresponding value of ln [C] = 0.3, we can write 0.3 = ln [C] min -1 (10 min). Solving for ln[c] 0, we get a value of 0.7. Taking the antilog, we obtain [C] = 2.01 M. C. (1) Since a plot of 1/[E] vs. time gives a linear plot, we can state that the reaction is second order in E and that the equation of the straight line fitting the data is 1/[E] = 1/[E] 0 + kt. Picking time points at 10 min and 50 min, the slope of the line in the graph can be calculated as ( )/(50 10) = 16/40 = 0.04 M -1 min -1 = k. For 2 nd order process, 2 nd order in a single component, t 1/2 = 1/k[E] 0. Thus t 1/2 = 1/(0.04 M -1 min -1 )(0.02 M) = 1250 min. (2) Using a time and concentration corresponding to a time of 10 min, along with the k determined above, we can write [0.9] = 1/[E] 0 + (0.04 M -1 min -1 )(10 min). Evaluating, we find 1/[E] 0 = or [E] 0 = 2M.

4 [A] Problem 3A Graph [A] Problem 3B Graph 0 ln [C] - -1 ln [C] Problem 3C Graph 1/[E] /[E]

5 4. (15 points) Answer the following: (a) (5) The half -life of a first order reaction X Y is observed to be 200 minutes at 27 C and 100 minutes at 37 C. At what temperature would the half-life be 30 minutes? To solve this problem, use the relation ln(k 2 /) = (E a /R)(T 2 -T 1 /T 1 T 2 ). We can evaluate the rate constants at the two temperatures by using the formula k = 0.693/t 1/2. Using the half-lives given at the two temperatures, we find that k at 27 C = 300 K = min and k at 310 K = Substituting these values into the above relationship, and using R = J/K mol, we find E a = kj. For a reaction that has a half-life of 30 min, the corresponding k will be 0.693/30 min = min -1. Substituting this value into the above equation with the and using the data for 300 K, we obtain ln ((0.0231)/ )) = (53580/8.314){T 2-300)/300T 2 }. Carrying out multiplications and divisions, we obtain 1.89 = 6436T x 10 6 )/300T 2 or 567T 2 = 6436T x 10 6 or 5869.T 2 = x Solving, we find T 2 = 329 K. (b) (5) The reaction W Z has a rate constant of 0,69 min -1 at 400 K in a reaction that has an activation energy of 53.6 kj. What is the value of the pre-exponential factor A for this reaction? We can write k 400 = Ae /8.314(400) = 0.69 min -1 = Ae = A(9.98 x 10-8 ) or A = 6.91 x 10 6 min -1. (c) (5) The unimolecular reaction F G has an energy of reaction (ΔU) of 5 kj and an activation energy E a of 25 kj. What is the activation energy of the reaction G F? To solve this problem, we can draw the diagram below, which depicts the relationship between E a for the process F G, E a for the process G H and ΔU. In particular, we see that E(F G) = E(G F) + ΔU. Thus, we obtain the E a for G F to be E(F G) - ΔU or E(G F) = (25 5) kj = 20 kj. t.s. E(F G) F E(G F) G ΔU

where a + b = 2 (this is the general case) These all come from the fact that this is an overall second order reaction.

where a + b = 2 (this is the general case) These all come from the fact that this is an overall second order reaction. Chapter 7 Problems Page of 6 //007 7. Hydrolysis of ethyl acetate is as follows: EtAc + OH - Ac - + EtOH. At 5 ºC, the disappearance of OH - is used to determine the extent of the reaction, leading to

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Chapter 12 Table of Contents 12.1 Reaction Rates 12.2 Rate Laws: An Introduction 12.3 Determining the Form of the Rate Law 12.4 The Integrated Rate Law 12.5 Reaction Mechanisms

More information

Lecture 15. Unimolecular reactions

Lecture 15. Unimolecular reactions Lecture 15 Unimolecular reactions How do they occur? Look at the following reaction. Sir Cyril Hinshelwood 1897-1967, Nobel 1956 Cyclo-C 3 H 6 CH 3 -CH=CH 2, the rate = k[cyclo-c 3 H 6 ] These are unimolecular

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Section 12.1 Reaction Rates Reaction Rate Change in concentration of a reactant or product per unit time. Rate = concentration of A at time t t 2 1 2 1 concentration of A at

More information

or more general example: aa + bb cc + dd r = -1/a da/dt = -1/b db/dt = 1/c dc/dt = 1/d dd/dt

or more general example: aa + bb cc + dd r = -1/a da/dt = -1/b db/dt = 1/c dc/dt = 1/d dd/dt Chem 344--Physical Chemistry for Biochemists II --F'12 I. Introduction see syllabus II. Experimental Chemical kinetics (Atkins, Ch.6) How fast is reaction? Rate of formation of product or loss of reactant

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section

More information

let: rate constant at sea level be ks and that on mountain be km ks/km = 100 ( 3mins as opposed to 300 mins)

let: rate constant at sea level be ks and that on mountain be km ks/km = 100 ( 3mins as opposed to 300 mins) homework solution : "egg question" let: rate constant at sea level be ks and that on mountain be km ks/km = 100 ( 3mins as opposed to 300 mins) ln ks/km = Ea x 10 / 373 x 363 x 8.314 x 10-3 4.605 = 10Ea/1125.7

More information

Chemical Kinetics Ch t ap 1 er

Chemical Kinetics Ch t ap 1 er Chemical Kinetics Chapter 13 1 Chemical Kinetics Thermodynamics does a reaction take place? Kinetics how fast does a reaction proceed? Reaction rate is the change in the concentration of a reactant or

More information

Downloaded from

Downloaded from Question 4.1: For the reaction R P, the concentration of a reactant changes from 0.03 M to 0.02 M in 25 minutes. Calculate the average rate of reaction using units of time both in minutes and seconds.

More information

LN 8 IDLE MIND SOLUTIONS 1 T x 10 4

LN 8 IDLE MIND SOLUTIONS 1 T x 10 4 LN 8 IDLE MIND SOLUTIONS. k Ae RT k 2 3k Ae RT 2 3 ln 3 R T T 2 e R T T 2 R x ln 3 293 33 4.9 x 0 4 4.9 kjmole 2. (a) k Ae RT.7 x 0 4 xe 2.5x05 8.3x0 23 28.8 s (b) Requires knowledge of k 600 : k 600.7

More information

AP CHEMISTRY CHAPTER 12 KINETICS

AP CHEMISTRY CHAPTER 12 KINETICS AP CHEMISTRY CHAPTER 12 KINETICS Thermodynamics tells us if a reaction can occur. Kinetics tells us how quickly the reaction occurs. Some reactions that are thermodynamically feasible are kinetically so

More information

Lecture 12. Complications and how to solve them

Lecture 12. Complications and how to solve them Lecture 12 Complications and how to solve them 1. Pseudo Order An expression for second order reaction 2A Products Can be written as, -da/dt = k [A] 2 And the integration, 1/A 2 da = kdt 1/A t 1/A o =

More information

Ch 13 Rates of Reaction (Chemical Kinetics)

Ch 13 Rates of Reaction (Chemical Kinetics) Ch 13 Rates of Reaction (Chemical Kinetics) Reaction Rates and Kinetics - The reaction rate is how fast reactants are converted to products. - Chemical kinetics is the study of reaction rates. Kinetics

More information

CHEMISTRY - CLUTCH CH.13 - CHEMICAL KINETICS.

CHEMISTRY - CLUTCH CH.13 - CHEMICAL KINETICS. !! www.clutchprep.com CONCEPT: RATES OF CHEMICAL REACTIONS is the study of reaction rates, and tells us the change in concentrations of reactants or products over a period of time. Although a chemical

More information

Chemical Kinetics. Rate = [B] t. Rate = [A] t. Chapter 12. Reaction Rates 01. Reaction Rates 02. Reaction Rates 03

Chemical Kinetics. Rate = [B] t. Rate = [A] t. Chapter 12. Reaction Rates 01. Reaction Rates 02. Reaction Rates 03 Chapter Chemical Kinetics Reaction Rates 0 Reaction Rate: The change in the concentration of a reactant or a product with time (M/s). Reactant Products aa bb Rate = [A] t Rate = [B] t Reaction Rates 0

More information

The Rate Expression. The rate, velocity, or speed of a reaction

The Rate Expression. The rate, velocity, or speed of a reaction The Rate Expression The rate, velocity, or speed of a reaction Reaction rate is the change in the concentration of a reactant or a product with time. A B rate = - da rate = db da = decrease in concentration

More information

Exam I Solutions Chem 6, 9 Section, Spring 2002

Exam I Solutions Chem 6, 9 Section, Spring 2002 1. (a) Two researchers at the University of Nebraska recently published a paper on the rate of the disappearance of World Wide Web links, a phenomenon called link rot. They asked the question, If I place

More information

Log I is plotted vs time in Figure below and slope obtained is 0.72 x 10 4 s -1.

Log I is plotted vs time in Figure below and slope obtained is 0.72 x 10 4 s -1. Assignment 4 Chemical Kinetics 1. A reaction is 50% complete in 10 minutes. It is allowed to proceed another 5 minutes. How much of the reaction would be complete at the end of these 15 minutes if the

More information

Chemical Kinetics. Chapter 13. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chemical Kinetics. Chapter 13. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Chapter 13 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Thermodynamics does a reaction take place? Kinetics how fast does

More information

Chemical Kinetics -- Chapter 14

Chemical Kinetics -- Chapter 14 Chemical Kinetics -- Chapter 14 1. Factors that Affect Reaction Rate (a) Nature of the reactants: molecular structure, bond polarity, physical state, etc. heterogeneous reaction: homogeneous reaction:

More information

UNIT 4 CHEMICAL KINETICS

UNIT 4 CHEMICAL KINETICS Concentration Ankit Gupta Classes UNIT 4 CHEMICAL KINETICS MARK QUESTIONS Q.. In the reaction A B, if the concentration of A is plotted against time, the nature of the curve obtained will be as shown.

More information

Physical Chemistry Chapter 6 Chemical Kinetics

Physical Chemistry Chapter 6 Chemical Kinetics Physical Chemistry Chapter 6 Chemical Kinetics by Azizul Helmi Sofian Faculty of Chemical & Natural Resources Engineering azizulh@ump.edu.my Chapter Description Aims To define rate laws accordingly To

More information

Advanced Physical Chemistry CHAPTER 18 ELEMENTARY CHEMICAL KINETICS

Advanced Physical Chemistry CHAPTER 18 ELEMENTARY CHEMICAL KINETICS Experimental Kinetics and Gas Phase Reactions Advanced Physical Chemistry CHAPTER 18 ELEMENTARY CHEMICAL KINETICS Professor Angelo R. Rossi http://homepages.uconn.edu/rossi Department of Chemistry, Room

More information

3: Chemical Kinetics Name: HW 6: Review for Unit Test KEY Class: Date: A Products

3: Chemical Kinetics Name: HW 6: Review for Unit Test KEY Class: Date: A Products 3: Chemical Kinetics Name: HW 6: Review for Unit Test KEY Class: Date: Page 1 of 9 AP Multiple Choice Review Questions 1 16 1. The reaction rate is defined as the change in concentration of a reactant

More information

Kinetics. Consider an irreversible unimolecular reaction k. -d[a]/dt = k[a] Can also describe in terms of appearance of B.

Kinetics. Consider an irreversible unimolecular reaction k. -d[a]/dt = k[a] Can also describe in terms of appearance of B. Kinetic data gives insight into reaction mechanisms kinetic analysis will describe a relationship between concentrations of all chemical species before the rate determining step in a given reaction and

More information

Unit - 4 CHEMICAL KINETICS VSA QUESTIONS (1 - MARK QUESTIONS) (aq) as product for the reaction : 5 Br (aq) + Br(aq) + 6H + (aq) 3 Br 2

Unit - 4 CHEMICAL KINETICS VSA QUESTIONS (1 - MARK QUESTIONS) (aq) as product for the reaction : 5 Br (aq) + Br(aq) + 6H + (aq) 3 Br 2 Unit - 4 CHEMICAL KINETICS VSA QUESTIONS (1 - MARK QUESTIONS) 1. Define the term rate of reaction. 2. Mention the units of rate of reaction. 3. Express the rate of reaction in terms of Br (aq) as reactant

More information

CHM 5423 Atmospheric Chemistry Notes on kinetics (Chapter 4)

CHM 5423 Atmospheric Chemistry Notes on kinetics (Chapter 4) CHM 5423 Atmospheric Chemistry Notes on kinetics (Chapter 4) Introduction A mechanism is one or a series of elementary reactions that convert reactants into products or otherwise model the chemistry of

More information

Yes. Yes. Yes. Experimental data: the concentration of a reactant or product measured as a function of time. Graph of conc. vs.

Yes. Yes. Yes. Experimental data: the concentration of a reactant or product measured as a function of time. Graph of conc. vs. Experimental data: the concentration of a reactant or product measured as a function of time Graph of conc. vs. time Is graph a straigh t line? No Graph of ln[conc.] vs. time Yes System is zero order Is

More information

Chapter 11: CHEMICAL KINETICS

Chapter 11: CHEMICAL KINETICS Chapter : CHEMICAL KINETICS Study of the rate of a chemical reaction. Reaction Rate (fast or slow?) Igniting gasoline? Making of oil? Iron rusting? We know about speed (miles/hr). Speed Rate = changes

More information

elementary steps have reaction order like stoichiometry Unimolecular: A k 1 P 1 st order -d[a]/dt = k 1 [A] --> ln [A]/[A 0 ] = -k 1 t

elementary steps have reaction order like stoichiometry Unimolecular: A k 1 P 1 st order -d[a]/dt = k 1 [A] --> ln [A]/[A 0 ] = -k 1 t B. Mechanism 009 rearrange -- Engel Ch 5.4,0,8 Series of elementary steps (uni-, bimolecular) that when combined give overall reaction and observed rate law elementary steps have reaction order lie stoichiometry

More information

Chapter Chemical Kinetics

Chapter Chemical Kinetics CHM 51 Chapter 13.5-13.7 Chemical Kinetics Graphical Determination of the Rate Law for A Product Plots of [A] versus time, ln[a] versus time, and 1/[A] versus time allow determination of whether a reaction

More information

Homework 07. Kinetics

Homework 07. Kinetics HW07 - Kine!cs Started: Mar at 10:56am Quiz Instruc!ons Homework 07 Kinetics Question 1 Consider the reaction: O (g) 3O (g) rate = k[o ] [O ] 3 3 What is the overall order of the reaction and the order

More information

REACTION KINETICS. Catalysts substances that increase the rates of chemical reactions without being used up. e.g. enzymes.

REACTION KINETICS. Catalysts substances that increase the rates of chemical reactions without being used up. e.g. enzymes. REACTION KINETICS Study of reaction rates Why? Rates of chemical reactions are primarily controlled by 5 factors: the chemical nature of the reactants 2 the ability of the reactants to come in contact

More information

CHEMISTRY NOTES CHEMICAL KINETICS

CHEMISTRY NOTES CHEMICAL KINETICS CHEMICAL KINETICS Rate of chemical reactions The rate of a reaction tells us how fast the reaction occurs. Let us consider a simple reaction. A + B C + D As the reaction proceeds, the concentration of

More information

11/2/ and the not so familiar. Chemical kinetics is the study of how fast reactions take place.

11/2/ and the not so familiar. Chemical kinetics is the study of how fast reactions take place. Familiar Kinetics...and the not so familiar Reaction Rates Chemical kinetics is the study of how fast reactions take place. Some happen almost instantaneously, while others can take millions of years.

More information

Rate Properties of an Iodide Oxidation Reaction

Rate Properties of an Iodide Oxidation Reaction Rate Properties of an Iodide Oxidation Reaction GOAL AND OVERVIEW The rate law for the reduction reaction of peroxodisulfate (PODS) by iodide: S 2 O8 2 (aq) + 2 I (aq) I 2 (aq) + 2 SO4 2 (aq) will be determined.

More information

Chemical Kinetics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chemical Kinetics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Thermodynamics does a reaction take place? Kinetics how fast does a reaction

More information

AP CHEMISTRY NOTES 7-1 KINETICS AND RATE LAW AN INTRODUCTION

AP CHEMISTRY NOTES 7-1 KINETICS AND RATE LAW AN INTRODUCTION AP CHEMISTRY NOTES 7-1 KINETICS AND RATE LAW AN INTRODUCTION CHEMICAL KINETICS the study of rates of chemical reactions and the mechanisms by which they occur FACTORS WHICH AFFECT REACTION RATES 1. Nature

More information

Chapter 13 - Chemical Kinetics II. Integrated Rate Laws Reaction Rates and Temperature

Chapter 13 - Chemical Kinetics II. Integrated Rate Laws Reaction Rates and Temperature Chapter 13 - Chemical Kinetics II Integrated Rate Laws Reaction Rates and Temperature Reaction Order - Graphical Picture A ->Products Integrated Rate Laws Zero Order Reactions Rate = k[a] 0 = k (constant

More information

14-2 Whether a reaction should proceed (thermodynamics) and how fast (kinetics) it should proceed.

14-2 Whether a reaction should proceed (thermodynamics) and how fast (kinetics) it should proceed. 1-2 Whether a reaction should proceed (thermodynamics) and how fast (kinetics) it should proceed. 1-6 The rate of the reaction will slow down as time goes by since the rate is dependent upon the concentration

More information

2/23/2018. Familiar Kinetics. ...and the not so familiar. Chemical kinetics is the study of how fast reactions take place.

2/23/2018. Familiar Kinetics. ...and the not so familiar. Chemical kinetics is the study of how fast reactions take place. CHEMICAL KINETICS & REACTION MECHANISMS Readings, Examples & Problems Petrucci, et al., th ed. Chapter 20 Petrucci, et al., 0 th ed. Chapter 4 Familiar Kinetics...and the not so familiar Reaction Rates

More information

Δx Δt. Any average rate can be determined between measurements at 2 points in time.

Δx Δt. Any average rate can be determined between measurements at 2 points in time. Chapter 13 Chemical Kinetics Some reaction are faster than others! Chem 210 Jasperse Ch. 13 Handouts 1 Three factors (in addition to the nature of the reacting chemicals themselves ) 1. Concentrations

More information

CHAPTER 12 CHEMICAL KINETICS

CHAPTER 12 CHEMICAL KINETICS 5/9/202 CHAPTER 2 CHEMICAL KINETICS CHM52 GCC Kinetics Some chemical reactions occur almost instantaneously, while others are very slow. Chemical Kinetics - study of factors that affect how fast a reaction

More information

Chapter: Chemical Kinetics

Chapter: Chemical Kinetics Chapter: Chemical Kinetics Rate of Chemical Reaction Question 1 Nitrogen pentaoxide decomposes according to equation: This first order reaction was allowed to proceed at 40 o C and the data below were

More information

X + Ω --> Φ (1) 5X + 3Ω --> 2Φ (3) d[φ]/dt = -d(2/5)[x]/dt = -d(2/3)[ω]/dt (4)

X + Ω --> Φ (1) 5X + 3Ω --> 2Φ (3) d[φ]/dt = -d(2/5)[x]/dt = -d(2/3)[ω]/dt (4) CHEMICAL KINETICS OVERVIEW Reaction rates are seldom related to thermodynamic functions of state of reactants and products. What determines the rate are the properties of the reactants and the intermediate

More information

Chemistry 1B, Fall 2012 Lecture 23

Chemistry 1B, Fall 2012 Lecture 23 Chemistry 1B Fall 01 [more] Chemical Kinetics 1 kinetics and mechanism of reaction NO (g) + CO(g) ô NO(g) + CO (g) at T< 500K if the reaction was a collision between a NO molecule and a CO molecule one

More information

[ A] 2. [ A] 2 = 2k dt. [ A] o

[ A] 2. [ A] 2 = 2k dt. [ A] o Chemistry 360 Dr Jean M Standard Problem Set 3 Solutions The reaction 2A P follows second-order kinetics The rate constant for the reaction is k350 0 4 Lmol s Determine the time required for the concentration

More information

LINEARIZATION OF GRAPHS

LINEARIZATION OF GRAPHS LINEARIZATION OF GRAPHS Question 1 (**) The table below shows eperimental data connecting two variables and y. 1 2 3 4 5 y 12.0 14.4 17.3 20.7 27.0 It is assumed that and y are related by an equation of

More information

Kinetics - Chapter 14. reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place.

Kinetics - Chapter 14. reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place. The study of. Kinetics - Chapter 14 reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place. Factors that Affect Rx Rates 1. The more readily

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics 4//004 Chapter 4 Chemical Kinetics 4- Rates of Chemical Reactions 4- Reaction Rates and Concentrations 4-3 The Dependence of Concentrations on Time 4-4 Reaction Mechanisms 4-5 Reaction Mechanism and Rate

More information

Chapter 12 - Chemical Kinetics

Chapter 12 - Chemical Kinetics Chapter 1 - Chemical Kinetics 1.1 Reaction Rates A. Chemical kinetics 1. Study of the speed with which reactants are converted to products B. Reaction Rate 1. The change in concentration of a reactant

More information

CHEMISTRY. Chapter 14 Chemical Kinetics

CHEMISTRY. Chapter 14 Chemical Kinetics CHEMISTRY The Central Science 8 th Edition Chapter 14 Kozet YAPSAKLI kinetics is the study of how rapidly chemical reactions occur. rate at which a chemical process occurs. Reaction rates depends on The

More information

General Chemistry I Concepts

General Chemistry I Concepts Chemical Kinetics Chemical Kinetics The Rate of a Reaction (14.1) The Rate Law (14.2) Relation Between Reactant Concentration and Time (14.3) Activation Energy and Temperature Dependence of Rate Constants

More information

Reaction Rate. Rate = Conc. of A at t 2 -Conc. of A at t 1. t 2 -t 1. Rate = Δ[A] Δt

Reaction Rate. Rate = Conc. of A at t 2 -Conc. of A at t 1. t 2 -t 1. Rate = Δ[A] Δt Kinetics The study of reaction rates. Spontaneous reactions are reactions that will happen - but we can t tell how fast. Diamond will spontaneously turn to graphite eventually. Reaction mechanism- the

More information

Name: UNIT 5 KINETICS NOTES PACEKT #: KINETICS NOTES PART C

Name: UNIT 5 KINETICS NOTES PACEKT #: KINETICS NOTES PART C KINETICS NOTES PART C IV) Section 14.4 The Change of Concentration with Time A) Integrated Rate Law: shows how the concentration of the reactant(s) varies with time 1) [A]0 is the initial concentration

More information

Chemistry 1B Fall 2016

Chemistry 1B Fall 2016 Chemistry 1B Fall 2016 Topic 23 [more] Chemical Kinetics 1 goals for topic 23 kinetics and mechanism of chemical reaction energy profile and reaction coordinate activation energy and temperature dependence

More information

Understanding Organic Reactions

Understanding Organic Reactions Understanding Organic Reactions Energy Diagrams For the general reaction: The energy diagram would be shown as: Understanding Organic Reactions Energy Diagrams Energy Diagrams Understanding Organic Reactions

More information

AP * Chemistry. Kinetics: Integrated Rate Law & Determining Ea. René McCormick

AP * Chemistry. Kinetics: Integrated Rate Law & Determining Ea. René McCormick AP * Chemistry Kinetics: Integrated Rate Law & Determining Ea René McCormick *AP is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this

More information

Calculations In Chemistry

Calculations In Chemistry Calculations In Chemistry Module 27 Kinetics: Rate Laws Module 27 Kinetics: Rate Laws...773 Lesson 27A: Kinetics Fundamentals...771 Lesson 27B: Rate Laws...778 Lesson 27C: Integrated Rate Law --Zero Order...787

More information

AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics

AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics A. Chemical Kinetics - chemistry of reaction rates 1. Reaction Rates a. Reaction rate- the change in concentration

More information

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics Reaction rated are fractions of a second for fireworks to explode. Reaction Rates takes years for a metal

More information

on-line kinetics 3!!! Chemistry 1B Fall 2013

on-line kinetics 3!!! Chemistry 1B Fall 2013 on-line kinetics 3!!! Chemistry 1B Fall 2013 1 on-line kinetics 3!!! Chemistry 1B Fall 2013 Mechanism of a chemical reaction Elementary reactions Activation energy and reaction coordinate diagram 2 Chemistry

More information

Chemical Kinetics. What Influences Kinetics?

Chemical Kinetics. What Influences Kinetics? Chemical Kinetics Predictions of likelihood for a reaction to occur have been based on difference in energy between products and reactants: Thermodynamics only compares reactants to products, says nothing

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Chapter 14. Chemical Kinetics Common Student Misconceptions It is possible for mathematics to get in the way of some students understanding of the chemistry of this chapter. Students often assume that

More information

Chemical Kinetics. System LENGTH: VOLUME MASS Temperature. 1 gal = 4 qt. 1 qt = in 3. 1 L = qt. 1 qt = L

Chemical Kinetics. System LENGTH: VOLUME MASS Temperature. 1 gal = 4 qt. 1 qt = in 3. 1 L = qt. 1 qt = L Chemical Kinetics Practice Exam Chemical Kinetics Name (last) (First) Read all questions before you start. Show all work and explain your answers to receive full credit. Report all numerical answers to

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics 7/10/003 Chapter 14 Chemical Kinetics 14-1 Rates of Chemical Reactions 14- Reaction Rates and Concentrations 14-3 The Dependence of Concentrations on Time 14-4 Reaction Mechanisms 14-5 Reaction Mechanism

More information

By monitoring concentration of a reactant or product over time.

By monitoring concentration of a reactant or product over time. Kinetic Worksheet 1. How is the rate of a chemical reaction measured? By monitoring concentration of a reactant or product over time. 2. Write out a generic rate law for the reaction 2A + B 2 --> 4C. Rate

More information

Lecture 19: Introduction to Kinetics First a CH 302 Kinetics Study Guide (Memorize these first three pages, they are all the background you need)

Lecture 19: Introduction to Kinetics First a CH 302 Kinetics Study Guide (Memorize these first three pages, they are all the background you need) Lecture 19: Introduction to Kinetics First a CH 302 Kinetics Study Guide (Memorize these first three pages, they are all the background you need) Reaction Rate: The most important issue in kinetics is

More information

Chemical Kinetics. Reaction Mechanisms

Chemical Kinetics. Reaction Mechanisms Chemical Kinetics Kinetics is a study of the rate at which a chemical reaction occurs. The study of kinetics may be done in steps: Determination of reaction mechanism Prediction of rate law Measurement

More information

Chemistry 1B, Fall 2016 Topic 23

Chemistry 1B, Fall 2016 Topic 23 Chemistry 1B Fall 016 [more] Chemical Kinetics 1 goals for topic 3 kinetics and mechanism of chemical reaction energy profile and reaction coordinate activation energy and temperature dependence of rate

More information

Chemical Kinetics. What quantities do we study regarding chemical reactions? 15 Chemical Kinetics

Chemical Kinetics. What quantities do we study regarding chemical reactions? 15 Chemical Kinetics Chemical Kinetics Chemical kinetics: the study of reaction rate, a quantity conditions affecting it, the molecular events during a chemical reaction (mechanism), and presence of other components (catalysis).

More information

Name AP CHEM / / Chapter 12 Outline Chemical Kinetics

Name AP CHEM / / Chapter 12 Outline Chemical Kinetics Name AP CHEM / / Chapter 12 Outline Chemical Kinetics The area of chemistry that deals with the rate at which reactions occur is called chemical kinetics. One of the goals of chemical kinetics is to understand

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Factors that Affect Reaction rates Reaction Rates Concentration and Rate The Change of Concentration with Time Temperature and Rate Reactions Mechanisms Catalysis Chemical

More information

CH302 Unit7 Day 8 Activity Unit 7 Readiness Assessment Activity

CH302 Unit7 Day 8 Activity Unit 7 Readiness Assessment Activity CH302 Unit7 Day 8 Activity Unit 7 Readiness Assessment Activity Spring 2013 VandenBout/LaBrake Name: KEY UT EID: Please work in small groups and be prepared to answer via clicker. Discussion Point I: Thinking

More information

Chem 401 Unit 1 (Kinetics & Thermo) Review

Chem 401 Unit 1 (Kinetics & Thermo) Review KINETICS 1. For the equation 2 H 2(g) + O 2(g) 2 H 2 O (g) How is the rate of formation of H 2 O mathematically related to the rate of disappearance of O 2? 2. Determine the relative reaction rates of

More information

Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions

Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions 14.1 Focusing on Reaction Rate 14.2 Expressing the Reaction Rate 14.3 The Rate Law and Its Components 14.4 Integrated Rate Laws: Concentration

More information

Chemistry 112 Final Exam, Part II February 16, 2005

Chemistry 112 Final Exam, Part II February 16, 2005 Name KEY. (35 points) Consider the reaction A + B + C + D + E + F Æ P, which has a rate law of the following form: d[p]/dt = k[a]a[b]b[c]c[d]d[e]e[f]f The data sets given or displayed below were obtained

More information

Ch 13 Chemical Kinetics. Modified by Dr. Cheng-Yu Lai

Ch 13 Chemical Kinetics. Modified by Dr. Cheng-Yu Lai Ch 13 Chemical Kinetics Modified by Dr. Cheng-Yu Lai Outline 1. Meaning of reaction rate 2. Reaction rate and concentration 3. Writing a Rate Law 4. Reactant concentration and time 5. Reaction rate and

More information

CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS

CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS This chapter deals with reaction rates, or how fast chemical reactions occur. Reaction rates vary greatly some are very

More information

21-Jan-2018 Chemsheets A Page 1

21-Jan-2018 Chemsheets A Page 1 www.chemsheets.co.uk 21-Jan-2018 Chemsheets A2 1001 Page 1 SECTION 1 Recap of AS Kinetics What is reaction rate? The rate of a chemical reaction is a measure of how fast a reaction takes place. It is defined

More information

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates KINETICS Kinetics Study of the speed or rate of a reaction under various conditions Thermodynamically favorable reactions DO NOT mean fast reactions Some reactions take fraction of a second (explosion)

More information

Chapter 13 Lecture Lecture Presentation. Chapter 13. Chemical Kinetics. Sherril Soman Grand Valley State University Pearson Education, Inc.

Chapter 13 Lecture Lecture Presentation. Chapter 13. Chemical Kinetics. Sherril Soman Grand Valley State University Pearson Education, Inc. Chapter 13 Lecture Lecture Presentation Chapter 13 Chemical Kinetics Sherril Soman Grand Valley State University Ectotherms Lizards, and other cold-blooded creatures, are ectotherms animals whose body

More information

, but bursts into flames in pure oxygen.

, but bursts into flames in pure oxygen. Chemical Kinetics Chemical kinetics is concerned with the speeds, or rates of chemical reactions Chemical kinetics is a subject of broad importance. How quickly a medicine can work The balance of ozone

More information

How can we use the Arrhenius equation?

How can we use the Arrhenius equation? How can we use the Arrhenius equation? k = Ae Ea RT Lab H 3 CNC(g) H 3 CCN(g) 1. Experiment to determine rate law 2. Experiment to determine Ea Temperature (K) k (s -1 ) 1/T ln k 462.9 2.52E-05 0.00216-10.589

More information

concentrations (molarity) rate constant, (k), depends on size, speed, kind of molecule, temperature, etc.

concentrations (molarity) rate constant, (k), depends on size, speed, kind of molecule, temperature, etc. #73 Notes Unit 9: Kinetics and Equilibrium Ch. Kinetics and Equilibriums I. Reaction Rates NO 2(g) + CO (g) NO (g) + CO 2(g) Rate is defined in terms of the rate of disappearance of one of the reactants,

More information

Ch part 2.notebook. November 30, Ch 12 Kinetics Notes part 2

Ch part 2.notebook. November 30, Ch 12 Kinetics Notes part 2 Ch 12 Kinetics Notes part 2 IV. The Effect of Temperature on Reaction Rate Revisited A. According to the kinetic molecular theory of gases, the average kinetic energy of a collection of gas molecules is

More information

Chem 401 Unit 1 (Kinetics & Thermo) Review

Chem 401 Unit 1 (Kinetics & Thermo) Review KINETICS 1. For the equation 2 H 2(g) + O 2(g) 2 H 2 O (g) How is the rate of formation of H 2 O mathematically related to the rate of disappearance of O 2? 1 Δ [H2O] Δ[O 2] = 2 Δt Δt 2. Determine the

More information

EXPERIMENT 1 REACTION RATE, RATE LAW, AND ACTIVATION ENERGY THE IODINE CLOCK REACTION

EXPERIMENT 1 REACTION RATE, RATE LAW, AND ACTIVATION ENERGY THE IODINE CLOCK REACTION PURPOSE: To determine the Rate Law and the Activation Energy for a reaction from experimental data. PRINCIPLES: The Rate Law is a mathematical expression that predicts the rate of a reaction from the concentration

More information

Reaction Mechanisms. Chemical Kinetics. Reaction Mechanisms. Reaction Mechanisms. Reaction Mechanisms. Reaction Mechanisms

Reaction Mechanisms. Chemical Kinetics. Reaction Mechanisms. Reaction Mechanisms. Reaction Mechanisms. Reaction Mechanisms Chemical Kinetics Kinetics is a study of the rate at which a chemical reaction occurs. The study of kinetics may be done in steps: Determination of reaction mechanism Prediction of rate law Measurement

More information

Chapter 14: Chemical Kinetics

Chapter 14: Chemical Kinetics C h e m i c a l K i n e t i c s P a g e 1 Chapter 14: Chemical Kinetics Homework: Read Chapter 14 Work out sample/practice exercises in the sections, Check for the MasteringChemistry.com assignment and

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 14.1 Factors that Affect Reaction Rates 14.2 Reaction Rates 14.3 Concentration and Rate Laws 14.4 The Change of Concentration with Time 14.5 Temperature and Rate 14.6 Reaction Mechanisms 14.7

More information

Name TA Name Lab Section # ALL work must be shown to receive full credit. Due at the beginning of lecture on monday, October 8, 2001.

Name TA Name Lab Section # ALL work must be shown to receive full credit. Due at the beginning of lecture on monday, October 8, 2001. hem 55 Problem Set #5 Fall 200 Name TA Name Lab Section # ALL work must be shown to receive full credit. Due at the beginning of lecture on monday, October 8, 200. PS5.. The following data was collected

More information

Calculating Rates of Substances. Rates of Substances. Ch. 12: Kinetics 12/14/2017. Creative Commons License

Calculating Rates of Substances. Rates of Substances. Ch. 12: Kinetics 12/14/2017. Creative Commons License Ch. 2: Kinetics An agama lizard basks in the sun. As its body warms, the chemical reactions of its metabolism speed up. Chemistry: OpenStax Creative Commons License Images and tables in this file have

More information

1 The nuclear binding energy is the amount of energy consumed during. 2 An unstable isotope of Ga-73 undergoes radioactive decay to Ga-73

1 The nuclear binding energy is the amount of energy consumed during. 2 An unstable isotope of Ga-73 undergoes radioactive decay to Ga-73 version: master Exam 3 - REVIEW This exam should have 27 questions. The point values are given with each question. Bubble in your answer choices on the bubblehseet provided. Your score is based on what

More information

It must be determined from experimental data, which is presented in table form.

It must be determined from experimental data, which is presented in table form. Unit 10 Kinetics The rate law for a reaction describes the dependence of the initial rate of a reaction on the concentrations of its reactants. It includes the Arrhenius constant, k, which takes into account

More information

Brown et al, Chemistry, 2nd ed (AUS), Ch. 12:

Brown et al, Chemistry, 2nd ed (AUS), Ch. 12: Kinetics: Contents Brown et al, Chemistry, 2 nd ed (AUS), Ch. 12: Why kinetics? What is kinetics? Factors that Affect Reaction Rates Reaction Rates Concentration and Reaction Rate The Change of Concentration

More information

What we learn from Chap. 15

What we learn from Chap. 15 Chemical Kinetics Chapter 15 What we learn from Chap. 15 15. The focus of this chapter is the rates and mechanisms of chemical reactions. The applications center around pesticides, beginning with the opening

More information

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions:

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: Chemical Kinetics Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: reactant concentration temperature action of catalysts surface

More information

Chemistry 112 Final Exam, Part II February 12, 1999 NAME

Chemistry 112 Final Exam, Part II February 12, 1999 NAME NAME UNIVERSITY OF CALIFORNIA School of Pharmacy Chemistry 2, Final Examination Part II: Open Book Directions: Work the following four problems; note that they are equally weighted in point value. You

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Chapter 14. Chemical Kinetics 14.1 Factors that Affect Reaction Rates The speed at which a chemical reaction occurs is the reaction rate. Chemical kinetics is the study of how fast chemical reactions occur.

More information