Pattern Recognition 2015 Neural Networks (2)

Size: px
Start display at page:

Download "Pattern Recognition 2015 Neural Networks (2)"

Transcription

1 Pttern Reognition 2015 Nerl Networks (2) Ad Feelders Universiteit Utreht Ad Feelders ( Universiteit Utreht ) Pttern Reognition 1 / 37

2 Error k-propgtion How to ompte the weights in nerl network? Evlte derivtives of the error fntion with respet to the weights. Apply grdient sed optimiztion lgorithm to find the weight vles t lol minimm of the error fntion. Most simple grdient sed optimiztion lgorithm: grdient desent. Bk-propgtion is ompttionlly effiient lgorithm for evlting derivtives of the error fntion in mlti-lyered nerl network. Ad Feelders ( Universiteit Utreht ) Pttern Reognition 2 / 37

3 Generl k-propgtion Consider n ritrry feed-forwrd topology, ritrry differentile tivtion fntion h, nd ritrry differentile error fntion E. Weighted inpt of neron j j = i: i j w ji z i Otpt / Non-liner tivtion fntion of neron j: z j = h( j ) Error fntion (sm over ll ptterns n): E = n E n Define for eh neron j the lol error δ j : δ j E n j Ad Feelders ( Universiteit Utreht ) Pttern Reognition 3 / 37

4 Generl network topology: nottion k... w kj j = i:i j w ji z i j z j = h( j ) w ji i z i... Ad Feelders ( Universiteit Utreht ) Pttern Reognition 4 / 37

5 Generl Bk-Propgtion (ontined) We wnt to evlte the error grdient: E n = E n j (hin rle: E n depends on w ji only throgh j ) w ji j w ji = δ j j w ji = δ j z i (δ j En j ) ( j w ji = z i ) We hve ese j w ji = z i, j = i: i j w ji z i. Ad Feelders ( Universiteit Utreht ) Pttern Reognition 5 / 37

6 Generl Bk-Propgtion (ontined) Only remins to ompte δ j for eh neron. We onsider otpt nerons nd hidden nerons seprtely. Otpt neron: δ k E n k = E n h( k ) h( k ) k (E n only depends on k throgh h( k )) = h ( k ) E n y k (h ( k ) h( k) k ; h( k ) y k ) This is how fr we n go withot mking speifi hoies for the tivtion fntion nd error fntion. Ad Feelders ( Universiteit Utreht ) Pttern Reognition 6 / 37

7 Generl Bk-Propgtion (ontined) Hidden neron: δ j E n = E n h( j ) j h( j ) j = h ( j ) E n (h ( j ) h( j ) z j ; h( j ) z j ) j = h ( j ) E n k (hin rle) k z j k: j k = h ( j ) k: j k = h ( j ) k: j k E n k w kj w kj δ k ( k z j = w kj ) ( En k δ k ; 5.56) Sine the forml for δ j only ontins terms in lter lyers, the lol errors n e llted from otpt to inpt on the network. Hene the term k-propgtion. Ad Feelders ( Universiteit Utreht ) Pttern Reognition 7 / 37

8 Illstrtion of hin rle E n = f( 5, 6, 7 ) E n 5 E n 6 E n z 4 7 z 4 z 4 = w 74 z 4 z 4 z 4 4 E n z 4 = E n 5 5 z 4 + E n 6 6 z 4 + E n 7 7 z 4 Ad Feelders ( Universiteit Utreht ) Pttern Reognition 8 / 37

9 Error Bk-Propgtion proedre 1 Forwrd propgtion of inpt vles: tivtions of ll nerons 2 Compte δ k for eh otpt neron k 3 Bkwrd propgtion: ompte δ j for eh hidden neron j 4 Compte derivtive for eh weight w ji E n w ji = δ j z i Ad Feelders ( Universiteit Utreht ) Pttern Reognition 9 / 37

10 Bk-Propgtion for speifi se Consider two-lyer network with logisti hidden nerons nd liner otpt nerons: ( M D ) y k = w k0 + w kj σ w ji x i j=1 i=0 with the sm-of-sqres error fntion: E n = 1 2 K (y k t k ) 2 k=1 Ad Feelders ( Universiteit Utreht ) Pttern Reognition 10 / 37

11 Bk-Propgtion for speifi se (ontined) Lol error t the otpt nerons: sine h( k ) = k (liner otpt) nd δ k = h ( k ) E n y k = y k t k, 1 2 (y k t k ) 2 y k = y k t k Lol error t hidden nerons: K K δ j = σ ( j ) w kj δ k = z j (1 z j ) w kj δ k k=1 k=1 Ad Feelders ( Universiteit Utreht ) Pttern Reognition 11 / 37

12 Derivtive of logisti tivtion fntion σ() = e 1 + e = (1 + e ) 1 σ () = d (1 + e ) 1 d = (1 + e ) 2 e e = (1 + e ) 2 1 = 1 + e e 1 + e = σ()(1 σ()) Ad Feelders ( Universiteit Utreht ) Pttern Reognition 12 / 37

13 Logisti density (red) nd mltive density (le) f(z) nd F(z) z Ad Feelders ( Universiteit Utreht ) Pttern Reognition 13 / 37

14 Bk-Propgtion for speifi se (ontined) First-lyer derivtives: Seond-lyer derivtives: E n w ji = δ j x i E n w kj = δ k z j Ad Feelders ( Universiteit Utreht ) Pttern Reognition 14 / 37

15 Error Bk-Propgtion proedre: speifi se 1 Apply inpt vetor x, forwrd propgte tivtions throgh network 2 Compte δ k for eh otpt neron k : δ k = y k t k 3 Bkwrd propgte δ k s to ompte δ j for eh hidden neron j: δ j = z j (1 z j ) K k=1 w kjδ k 4 Compte derivtive En w ji = δ j z i for eh weight w ji : 1 First-lyer derivtives: E n = δ j x i w ji 2 Seond-lyer derivtives: E n w kj = δ k z j Ad Feelders ( Universiteit Utreht ) Pttern Reognition 15 / 37

16 Exmple Bk-Propgtion with skip-lyer onnetions x x x y Otpt neron: liner; hidden neron: logisti Trining pttern: (x 1, x 2 ) = (2, 3), t = 0 Skip-lyer onnetions! Ad Feelders ( Universiteit Utreht ) Pttern Reognition 16 / 37

17 Forwrd propgtion: ompte predited trget To ompte the predited trget vle, we strt t the inpt lyer nd work towrd the otpt lyer: 3 = w 30 + w 31 x 1 + w 32 x 2 = = z 3 = 1 + e = 1 = e = w 40 + w 41 x 1 + w 42 x 2 + w 43 z 3 = = 1.07 y = z 4 = 4 = 1.07 Ad Feelders ( Universiteit Utreht ) Pttern Reognition 17 / 37

18 Bkwrd propgtion To ompte the lol errors we strt t the otpt lyer, nd work towrd the inpt lyer: δ 4 = y t = = 1.07 δ 3 = z 3 (1 z 3 )w 43 δ 4 = 0.67(1 0.67)( 0.2)1.07 = 0.05 (otpt nit) (hidden nit) Ad Feelders ( Universiteit Utreht ) Pttern Reognition 18 / 37

19 Error derivtives E n w 40 = δ 4 1 = 1.07 E n w 41 = δ 4 z 1 = = 2.14 E n w 42 = δ 4 z 2 = = 3.21 E n w 30 = δ 3 1 = 0.05 E n w 31 = δ 3 z 1 = = 0.10 E n w 32 = δ 3 z 2 = = 0.15 E n w 43 = δ 4 z 3 = = 0.72 Ad Feelders ( Universiteit Utreht ) Pttern Reognition 19 / 37

20 Weight Updte With lerning rte η = 0.1, we hve nd w (τ+1) 42 = w (τ) 42 η E n w 42 = = 0.02 w (τ+1) 43 = w (τ) 43 η E n w 43 = = 0.27 Other weight pdtes re ompted nlogosly. Ad Feelders ( Universiteit Utreht ) Pttern Reognition 20 / 37

21 Error fntion for inry lsses Cross-entropy error fntion: E(w) = N t n ln y n + (1 t n ) ln(1 y n ) n=1 with y n = y(x n, w). We only onsider single pttern, so E n = t ln y (1 t) ln(1 y), where for simpliity we hve dropped the ssript n on the right-hnd side. Ad Feelders ( Universiteit Utreht ) Pttern Reognition 21 / 37

22 Lol error Lol error for logisti otpt with entropy error: δ o = σ ( o ) E y = y(1 y) E y Left to determine E y [ t ln y (1 t) ln(1 y)] = y = 1 t 1 y t y Ad Feelders ( Universiteit Utreht ) Pttern Reognition 22 / 37

23 Lol error (ontined) Therefore y(1 y) E y [ 1 t = y(1 y) 1 y t ] y = (1 t)y t(1 y) = y t Finlly, we onlde tht δ o = y t for logisti otpt nits nd entropy error fntion. Ad Feelders ( Universiteit Utreht ) Pttern Reognition 23 / 37

24 Mltinomil logisti regression Let t {1,..., K} (where K is the nmer of lsses). The mltinomil logisti regression ssmption is p(t = k x) = exp(w k x) K j=1 exp(w j x) (4.104 nd 4.105) where we now hve weight vetor w k for eh lss. Ad Feelders ( Universiteit Utreht ) Pttern Reognition 24 / 37

25 Non-inry lsses in nerl networks Rther thn tking liner fntions k = wk x we n generlize this model to k (x, w): p(t = k x) = exp( k (x, w)) K j=1 exp( j(x, w)) In prtilr, the k n e tivtions proded y nerl network. Ad Feelders ( Universiteit Utreht ) Pttern Reognition 25 / 37

26 Softmx tivtion fntion Implementtion in nerl network. Crete K otpt nits: y 1 y 2 y K K With Let (1-of-K oding) y k = t j = exp( k ) K j=1 exp( j) { 1 if t = j 0 otherwise Ad Feelders ( Universiteit Utreht ) Pttern Reognition 26 / 37

27 Error fntion for non-inry lsses Negtive log-likelihood E(w) = N n=1 k=1 For single oservtion (pttern) we hve (proof omitted) K t kn ln y k (x n, w) (5.24) δ k = E n k = y k t k Ad Feelders ( Universiteit Utreht ) Pttern Reognition 27 / 37

28 Reglriztion: weight dey Pnish lrge weights y tking Ẽ(w) = E(w) + λ w 2 ij (5.112) to otin smooth fit (nd therey void overfitting). Also my help optimiztion: less lol minim nd fster onvergene. Ad Feelders ( Universiteit Utreht ) Pttern Reognition 28 / 37

29 Exmple: Cshing s Syndrome Hypertensive disorder ssoited with over-seretion of ortisol y the drenl glnd. The oservtions re rinry exretion rtes of two steroid metolites. The Cshings dt frme (in lirry MASS) hs 27 rows nd 3 olmns: Tetrhydroortisone: rinry exretion rte (mg/24hr). Pregnnetriol: rinry exretion rte (mg/24hr). Type: nderlying type of syndrome (denom) (ilterl hyperplsi) (rinom) for nknown (not sed in fitting models) Ad Feelders ( Universiteit Utreht ) Pttern Reognition 29 / 37

30 Cshing s Syndrome: Mltinomil Logit Tetrhydroortisone Pregnnetriol Ad Feelders ( Universiteit Utreht ) Pttern Reognition 30 / 37

31 Cshing s Syndrome: NN1 (λ = 0.001) Tetrhydroortisone Pregnnetriol Ad Feelders ( Universiteit Utreht ) Pttern Reognition 31 / 37

32 How to in R > lirry(nnet) > lirry(mass) > sh <- log(s.mtrix(cshings[,-3])) > tp <- ftor(cshings$type[1:21]) > tp [1] Levels: > tpi <- lss.ind(tp) > tpi[(1,10,20),] [1,] [2,] [3,] > set.seed(54321) > sh.nnet1 <- nnet(sh[1:21,], tpi, skip=t, softmx=t, size=2, dey=0.001, mxit=1000) Ad Feelders ( Universiteit Utreht ) Pttern Reognition 32 / 37

33 How to in R # weights: 21 initil vle iter 10 vle iter 20 vle iter 30 vle iter 40 vle iter 50 vle iter 60 vle iter 70 vle iter 80 vle iter 90 vle iter 100 vle iter 110 vle iter 120 vle iter 130 vle iter 140 vle iter 150 vle finl vle onverged Ad Feelders ( Universiteit Utreht ) Pttern Reognition 33 / 37

34 Cshing s Syndrome: NN2 (λ = 0.001) Tetrhydroortisone Pregnnetriol Ad Feelders ( Universiteit Utreht ) Pttern Reognition 34 / 37

35 Cshing s Syndrome: NN3 (λ = 0) Tetrhydroortisone Pregnnetriol Ad Feelders ( Universiteit Utreht ) Pttern Reognition 35 / 37

36 Model Seletion: Forensi Glss Mesrements (refrtive index nd weight perent of oxides of N, Mg, Al, Si, K, C, B, nd Fe) on 214 frgments of glss. Glss types 1 Window flot glss (70) 2 Window non-flot glss (76) 3 Vehile window glss (17) 4 Continers (13) 5 Tlewre (9) 6 Vehile hedlmps (29) Ad Feelders ( Universiteit Utreht ) Pttern Reognition 36 / 37

37 Model Seletion: Forensi Glss Use 10-fold ross vlidtion to selet nmer of hidden nits nd λ. Use 10 different sets of strt weights for eh CV-rn nd verge posterior proilities of fitted networks. (tle displys error rtes) # hidden nits λ Ad Feelders ( Universiteit Utreht ) Pttern Reognition 37 / 37

STA 414/2104 Mar 11, Notes

STA 414/2104 Mar 11, Notes STA 414/2104 Mr 11, 2010 1 / 12 Notes Tke-home Midterm: Mrh 16 Mrh 25 One qestion from Kernels nd Ensemles y M. Zh Clssifition nd regression trees 9.2 Ensemle methods nd rndom forests Zh + 15.1-3 k-mens

More information

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4. Mth 5 Tutoril Week 1 - Jnury 1 1 Nme Setion Tutoril Worksheet 1. Find ll solutions to the liner system by following the given steps x + y + z = x + y + z = 4. y + z = Step 1. Write down the rgumented mtrix

More information

ChE 548 Final Exam Spring, 2004

ChE 548 Final Exam Spring, 2004 . Keffer, eprtment of Chemil Engineering, University of ennessee ChE 58 Finl Em Spring, Problem. Consider single-omponent, inompressible flid moving down n ninslted fnnel. erive the energy blne for this

More information

CS 573 Automata Theory and Formal Languages

CS 573 Automata Theory and Formal Languages Non-determinism Automt Theory nd Forml Lnguges Professor Leslie Lnder Leture # 3 Septemer 6, 2 To hieve our gol, we need the onept of Non-deterministi Finite Automton with -moves (NFA) An NFA is tuple

More information

1B40 Practical Skills

1B40 Practical Skills B40 Prcticl Skills Comining uncertinties from severl quntities error propgtion We usully encounter situtions where the result of n experiment is given in terms of two (or more) quntities. We then need

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

Lecture 1 - Introduction and Basic Facts about PDEs

Lecture 1 - Introduction and Basic Facts about PDEs * 18.15 - Introdution to PDEs, Fll 004 Prof. Gigliol Stffilni Leture 1 - Introdution nd Bsi Fts bout PDEs The Content of the Course Definition of Prtil Differentil Eqution (PDE) Liner PDEs VVVVVVVVVVVVVVVVVVVV

More information

adjacent side sec 5 hypotenuse Evaluate the six trigonometric functions of the angle.

adjacent side sec 5 hypotenuse Evaluate the six trigonometric functions of the angle. A Trigonometric Fnctions (pp 8 ) Rtios of the sides of right tringle re sed to define the si trigonometric fnctions These trigonometric fnctions, in trn, re sed to help find nknown side lengths nd ngle

More information

Linear Algebra Introduction

Linear Algebra Introduction Introdution Wht is Liner Alger out? Liner Alger is rnh of mthemtis whih emerged yers k nd ws one of the pioneer rnhes of mthemtis Though, initilly it strted with solving of the simple liner eqution x +

More information

Lecture Notes No. 10

Lecture Notes No. 10 2.6 System Identifition, Estimtion, nd Lerning Leture otes o. Mrh 3, 26 6 Model Struture of Liner ime Invrint Systems 6. Model Struture In representing dynmil system, the first step is to find n pproprite

More information

Math 2260 Written HW #8 Solutions

Math 2260 Written HW #8 Solutions Mth 60 Written HW #8 Soltions. Sppose nd b re two fied positive nmbers. Find the re enclosed by the ellipse + y b =. [Hint: yo might wnt to find the re of the hlf of the ellipse bove the -is nd then doble

More information

Hybrid Control and Switched Systems. Lecture #2 How to describe a hybrid system? Formal models for hybrid system

Hybrid Control and Switched Systems. Lecture #2 How to describe a hybrid system? Formal models for hybrid system Hyrid Control nd Switched Systems Lecture #2 How to descrie hyrid system? Forml models for hyrid system João P. Hespnh University of Cliforni t Snt Brr Summry. Forml models for hyrid systems: Finite utomt

More information

Learning Partially Observable Markov Models from First Passage Times

Learning Partially Observable Markov Models from First Passage Times Lerning Prtilly Oservle Mrkov s from First Pssge s Jérôme Cllut nd Pierre Dupont Europen Conferene on Mhine Lerning (ECML) 8 Septemer 7 Outline. FPT in models nd sequenes. Prtilly Oservle Mrkov s (POMMs).

More information

Algorithms & Data Structures Homework 8 HS 18 Exercise Class (Room & TA): Submitted by: Peer Feedback by: Points:

Algorithms & Data Structures Homework 8 HS 18 Exercise Class (Room & TA): Submitted by: Peer Feedback by: Points: Eidgenössishe Tehnishe Hohshule Zürih Eole polytehnique fédérle de Zurih Politenio federle di Zurigo Federl Institute of Tehnology t Zurih Deprtement of Computer Siene. Novemer 0 Mrkus Püshel, Dvid Steurer

More information

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation 1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

More information

MAT 403 NOTES 4. f + f =

MAT 403 NOTES 4. f + f = MAT 403 NOTES 4 1. Fundmentl Theorem o Clulus We will proo more generl version o the FTC thn the textook. But just like the textook, we strt with the ollowing proposition. Let R[, ] e the set o Riemnn

More information

System Validation (IN4387) November 2, 2012, 14:00-17:00

System Validation (IN4387) November 2, 2012, 14:00-17:00 System Vlidtion (IN4387) Novemer 2, 2012, 14:00-17:00 Importnt Notes. The exmintion omprises 5 question in 4 pges. Give omplete explntion nd do not onfine yourself to giving the finl nswer. Good luk! Exerise

More information

1 Linear Least Squares

1 Linear Least Squares Lest Squres Pge 1 1 Liner Lest Squres I will try to be consistent in nottion, with n being the number of dt points, nd m < n being the number of prmeters in model function. We re interested in solving

More information

Minimal DFA. minimal DFA for L starting from any other

Minimal DFA. minimal DFA for L starting from any other Miniml DFA Among the mny DFAs ccepting the sme regulr lnguge L, there is exctly one (up to renming of sttes) which hs the smllest possile numer of sttes. Moreover, it is possile to otin tht miniml DFA

More information

The Dirichlet Problem in a Two Dimensional Rectangle. Section 13.5

The Dirichlet Problem in a Two Dimensional Rectangle. Section 13.5 The Dirichlet Prolem in Two Dimensionl Rectngle Section 13.5 1 Dirichlet Prolem in Rectngle In these notes we will pply the method of seprtion of vriles to otin solutions to elliptic prolems in rectngle

More information

Engr354: Digital Logic Circuits

Engr354: Digital Logic Circuits Engr354: Digitl Logi Ciruits Chpter 4: Logi Optimiztion Curtis Nelson Logi Optimiztion In hpter 4 you will lern out: Synthesis of logi funtions; Anlysis of logi iruits; Tehniques for deriving minimum-ost

More information

Line Integrals and Entire Functions

Line Integrals and Entire Functions Line Integrls nd Entire Funtions Defining n Integrl for omplex Vlued Funtions In the following setions, our min gol is to show tht every entire funtion n be represented s n everywhere onvergent power series

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

5: The Definite Integral

5: The Definite Integral 5: The Definite Integrl 5.: Estimting with Finite Sums Consider moving oject its velocity (meters per second) t ny time (seconds) is given y v t = t+. Cn we use this informtion to determine the distnce

More information

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying Vitli covers 1 Definition. A Vitli cover of set E R is set V of closed intervls with positive length so tht, for every δ > 0 nd every x E, there is some I V with λ(i ) < δ nd x I. 2 Lemm (Vitli covering)

More information

Lecture 3. Introduction digital logic. Notes. Notes. Notes. Representations. February Bern University of Applied Sciences.

Lecture 3. Introduction digital logic. Notes. Notes. Notes. Representations. February Bern University of Applied Sciences. Lecture 3 Ferury 6 ern University of pplied ciences ev. f57fc 3. We hve seen tht circuit cn hve multiple (n) inputs, e.g.,, C, We hve lso seen tht circuit cn hve multiple (m) outputs, e.g. X, Y,, ; or

More information

Solutions to Assignment 1

Solutions to Assignment 1 MTHE 237 Fll 2015 Solutions to Assignment 1 Problem 1 Find the order of the differentil eqution: t d3 y dt 3 +t2 y = os(t. Is the differentil eqution liner? Is the eqution homogeneous? b Repet the bove

More information

Linear Systems with Constant Coefficients

Linear Systems with Constant Coefficients Liner Systems with Constnt Coefficients 4-3-05 Here is system of n differentil equtions in n unknowns: x x + + n x n, x x + + n x n, x n n x + + nn x n This is constnt coefficient liner homogeneous system

More information

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable INTEGRATION NOTE: These notes re supposed to supplement Chpter 4 of the online textbook. 1 Integrls of Complex Vlued funtions of REAL vrible If I is n intervl in R (for exmple I = [, b] or I = (, b)) nd

More information

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions. Rel Vribles, Fll 2014 Problem set 5 Solution suggestions Exerise 1. Let f be bsolutely ontinuous on [, b] Show tht nd T b (f) P b (f) f (x) dx [f ] +. Conlude tht if f is in AC then it is the differene

More information

Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6.1 INTRO to LAPLACE TRANSFORMS Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

Prefix-Free Regular-Expression Matching

Prefix-Free Regular-Expression Matching Prefix-Free Regulr-Expression Mthing Yo-Su Hn, Yjun Wng nd Derik Wood Deprtment of Computer Siene HKUST Prefix-Free Regulr-Expression Mthing p.1/15 Pttern Mthing Given pttern P nd text T, find ll sustrings

More information

Nondeterministic Automata vs Deterministic Automata

Nondeterministic Automata vs Deterministic Automata Nondeterministi Automt vs Deterministi Automt We lerned tht NFA is onvenient model for showing the reltionships mong regulr grmmrs, FA, nd regulr expressions, nd designing them. However, we know tht n

More information

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs Isomorphism of Grphs Definition The simple grphs G 1 = (V 1, E 1 ) n G = (V, E ) re isomorphi if there is ijetion (n oneto-one n onto funtion) f from V 1 to V with the property tht n re jent in G 1 if

More information

Review Exercises for Chapter 4

Review Exercises for Chapter 4 _R.qd // : PM Pge CHAPTER Integrtion Review Eercises for Chpter In Eercises nd, use the grph of to sketch grph of f. To print n enlrged cop of the grph, go to the wesite www.mthgrphs.com... In Eercises

More information

CS 330 Formal Methods and Models Dana Richards, George Mason University, Spring 2016 Quiz Solutions

CS 330 Formal Methods and Models Dana Richards, George Mason University, Spring 2016 Quiz Solutions CS 330 Forml Methods nd Models Dn Richrds, George Mson University, Spring 2016 Quiz Solutions Quiz 1, Propositionl Logic Dte: Ferury 9 1. (4pts) ((p q) (q r)) (p r), prove tutology using truth tles. p

More information

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution Tehnishe Universität Münhen Winter term 29/ I7 Prof. J. Esprz / J. Křetínský / M. Luttenerger. Ferur 2 Solution Automt nd Forml Lnguges Homework 2 Due 5..29. Exerise 2. Let A e the following finite utomton:

More information

spring from 1 cm to 2 cm is given by

spring from 1 cm to 2 cm is given by Problem [8 pts] Tre or Flse. Give brief explntion or exmple to jstify yor nswer. ) [ pts] Given solid generted by revolving region bot the line x, if we re sing the shell method to compte its volme, then

More information

Green s Theorem. (2x e y ) da. (2x e y ) dx dy. x 2 xe y. (1 e y ) dy. y=1. = y e y. y=0. = 2 e

Green s Theorem. (2x e y ) da. (2x e y ) dx dy. x 2 xe y. (1 e y ) dy. y=1. = y e y. y=0. = 2 e Green s Theorem. Let be the boundry of the unit squre, y, oriented ounterlokwise, nd let F be the vetor field F, y e y +, 2 y. Find F d r. Solution. Let s write P, y e y + nd Q, y 2 y, so tht F P, Q. Let

More information

CS 2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014

CS 2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014 S 224 DIGITAL LOGI & STATE MAHINE DESIGN SPRING 214 DUE : Mrh 27, 214 HOMEWORK III READ : Relte portions of hpters VII n VIII ASSIGNMENT : There re three questions. Solve ll homework n exm prolems s shown

More information

Bayesian Networks: Approximate Inference

Bayesian Networks: Approximate Inference pproches to inference yesin Networks: pproximte Inference xct inference Vrillimintion Join tree lgorithm pproximte inference Simplify the structure of the network to mkxct inferencfficient (vritionl methods,

More information

Chapter 4 State-Space Planning

Chapter 4 State-Space Planning Leture slides for Automted Plnning: Theory nd Prtie Chpter 4 Stte-Spe Plnning Dn S. Nu CMSC 722, AI Plnning University of Mrylnd, Spring 2008 1 Motivtion Nerly ll plnning proedures re serh proedures Different

More information

Logic Synthesis and Verification

Logic Synthesis and Verification Logi Synthesis nd Verifition SOPs nd Inompletely Speified Funtions Jie-Hong Rolnd Jing 江介宏 Deprtment of Eletril Engineering Ntionl Tiwn University Fll 2010 Reding: Logi Synthesis in Nutshell Setion 2 most

More information

Linear Inequalities. Work Sheet 1

Linear Inequalities. Work Sheet 1 Work Sheet 1 Liner Inequlities Rent--Hep, cr rentl compny,chrges $ 15 per week plus $ 0.0 per mile to rent one of their crs. Suppose you re limited y how much money you cn spend for the week : You cn spend

More information

1 Online Learning and Regret Minimization

1 Online Learning and Regret Minimization 2.997 Decision-Mking in Lrge-Scle Systems My 10 MIT, Spring 2004 Hndout #29 Lecture Note 24 1 Online Lerning nd Regret Minimiztion In this lecture, we consider the problem of sequentil decision mking in

More information

Lecture 6: Coding theory

Lecture 6: Coding theory Leture 6: Coing theory Biology 429 Crl Bergstrom Ferury 4, 2008 Soures: This leture loosely follows Cover n Thoms Chpter 5 n Yeung Chpter 3. As usul, some of the text n equtions re tken iretly from those

More information

Section 6: Area, Volume, and Average Value

Section 6: Area, Volume, and Average Value Chpter The Integrl Applied Clculus Section 6: Are, Volume, nd Averge Vlue Are We hve lredy used integrls to find the re etween the grph of function nd the horizontl xis. Integrls cn lso e used to find

More information

2. Topic: Summation of Series (Mathematical Induction) When n = 1, L.H.S. = S 1 = u 1 = 3 R.H.S. = 1 (1)(1+1)(4+5) = 3

2. Topic: Summation of Series (Mathematical Induction) When n = 1, L.H.S. = S 1 = u 1 = 3 R.H.S. = 1 (1)(1+1)(4+5) = 3 GCE A Level Otober/November 008 Suggested Solutions Mthemtis H (970/0) version. MATHEMATICS (H) Pper Suggested Solutions. Topi: Definite Integrls From the digrm: Are A = y dx = x Are B = x dy = y dy dx

More information

16z z q. q( B) Max{2 z z z z B} r z r z r z r z B. John Riley 19 October Econ 401A: Microeconomic Theory. Homework 2 Answers

16z z q. q( B) Max{2 z z z z B} r z r z r z r z B. John Riley 19 October Econ 401A: Microeconomic Theory. Homework 2 Answers John Riley 9 Otober 6 Eon 4A: Miroeonomi Theory Homework Answers Constnt returns to sle prodution funtion () If (,, q) S then 6 q () 4 We need to show tht (,, q) S 6( ) ( ) ( q) q [ q ] 4 4 4 4 4 4 Appeling

More information

Lecture 6. Notes. Notes. Notes. Representations Z A B and A B R. BTE Electronics Fundamentals August Bern University of Applied Sciences

Lecture 6. Notes. Notes. Notes. Representations Z A B and A B R. BTE Electronics Fundamentals August Bern University of Applied Sciences Lecture 6 epresenttions epresenttions TE52 - Electronics Fundmentls ugust 24 ern University of pplied ciences ev. c2d5c88 6. Integers () sign-nd-mgnitude representtion The set of integers contins the Nturl

More information

Section 4: Integration ECO4112F 2011

Section 4: Integration ECO4112F 2011 Reding: Ching Chpter Section : Integrtion ECOF Note: These notes do not fully cover the mteril in Ching, ut re ment to supplement your reding in Ching. Thus fr the optimistion you hve covered hs een sttic

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Orgniztion of Progrmming Lnguges Finite Automt 2 CMSC 330 1 Types of Finite Automt Deterministic Finite Automt (DFA) Exctly one sequence of steps for ech string All exmples so fr Nondeterministic

More information

The Algebra (al-jabr) of Matrices

The Algebra (al-jabr) of Matrices Section : Mtri lgebr nd Clculus Wshkewicz College of Engineering he lgebr (l-jbr) of Mtrices lgebr s brnch of mthemtics is much broder thn elementry lgebr ll of us studied in our high school dys. In sense

More information

Solution for Assignment 1 : Intro to Probability and Statistics, PAC learning

Solution for Assignment 1 : Intro to Probability and Statistics, PAC learning Solution for Assignment 1 : Intro to Probbility nd Sttistics, PAC lerning 10-701/15-781: Mchine Lerning (Fll 004) Due: Sept. 30th 004, Thursdy, Strt of clss Question 1. Bsic Probbility ( 18 pts) 1.1 (

More information

CS 360 Exam 2 Fall 2014 Name

CS 360 Exam 2 Fall 2014 Name CS 360 Exm 2 Fll 2014 Nme 1. The lsses shown elow efine singly-linke list n stk. Write three ifferent O(n)-time versions of the reverse_print metho s speifie elow. Eh version of the metho shoul output

More information

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS The University of ottinghm SCHOOL OF COMPUTR SCIC A LVL 2 MODUL, SPRIG SMSTR 2015 2016 MACHIS AD THIR LAGUAGS ASWRS Time llowed TWO hours Cndidtes my omplete the front over of their nswer ook nd sign their

More information

Arrow s Impossibility Theorem

Arrow s Impossibility Theorem Rep Fun Gme Properties Arrow s Theorem Arrow s Impossiility Theorem Leture 12 Arrow s Impossiility Theorem Leture 12, Slide 1 Rep Fun Gme Properties Arrow s Theorem Leture Overview 1 Rep 2 Fun Gme 3 Properties

More information

y1 y2 DEMUX a b x1 x2 x3 x4 NETWORK s1 s2 z1 z2

y1 y2 DEMUX a b x1 x2 x3 x4 NETWORK s1 s2 z1 z2 BOOLEAN METHODS Giovnni De Miheli Stnford University Boolen methods Exploit Boolen properties. { Don't re onditions. Minimiztion of the lol funtions. Slower lgorithms, etter qulity results. Externl don't

More information

Metodologie di progetto HW Technology Mapping. Last update: 19/03/09

Metodologie di progetto HW Technology Mapping. Last update: 19/03/09 Metodologie di progetto HW Tehnology Mpping Lst updte: 19/03/09 Tehnology Mpping 2 Tehnology Mpping Exmple: t 1 = + b; t 2 = d + e; t 3 = b + d; t 4 = t 1 t 2 + fg; t 5 = t 4 h + t 2 t 3 ; F = t 5 ; t

More information

Finite Automata-cont d

Finite Automata-cont d Automt Theory nd Forml Lnguges Professor Leslie Lnder Lecture # 6 Finite Automt-cont d The Pumping Lemm WEB SITE: http://ingwe.inghmton.edu/ ~lnder/cs573.html Septemer 18, 2000 Exmple 1 Consider L = {ww

More information

Alpha Algorithm: A Process Discovery Algorithm

Alpha Algorithm: A Process Discovery Algorithm Proess Mining: Dt Siene in Ation Alph Algorithm: A Proess Disovery Algorithm prof.dr.ir. Wil vn der Alst www.proessmining.org Proess disovery = Ply-In Ply-In event log proess model Ply-Out Reply proess

More information

Instructions. An 8.5 x 11 Cheat Sheet may also be used as an aid for this test. MUST be original handwriting.

Instructions. An 8.5 x 11 Cheat Sheet may also be used as an aid for this test. MUST be original handwriting. ID: B CSE 2021 Computer Orgniztion Midterm Test (Fll 2009) Instrutions This is losed ook, 80 minutes exm. The MIPS referene sheet my e used s n id for this test. An 8.5 x 11 Chet Sheet my lso e used s

More information

Matrix Algebra. Matrix Addition, Scalar Multiplication and Transposition. Linear Algebra I 24

Matrix Algebra. Matrix Addition, Scalar Multiplication and Transposition. Linear Algebra I 24 Mtrix lger Mtrix ddition, Sclr Multipliction nd rnsposition Mtrix lger Section.. Mtrix ddition, Sclr Multipliction nd rnsposition rectngulr rry of numers is clled mtrix ( the plurl is mtrices ) nd the

More information

Unit 4. Combinational Circuits

Unit 4. Combinational Circuits Unit 4. Comintionl Ciruits Digitl Eletroni Ciruits (Ciruitos Eletrónios Digitles) E.T.S.I. Informáti Universidd de Sevill 5/10/2012 Jorge Jun 2010, 2011, 2012 You re free to opy, distriute

More information

Ling 3701H / Psych 3371H: Lecture Notes 9 Hierarchic Sequential Prediction

Ling 3701H / Psych 3371H: Lecture Notes 9 Hierarchic Sequential Prediction Ling 3701H / Psyh 3371H: Leture Notes 9 Hierrhi Sequentil Predition Contents 9.1 Complex events.................................... 1 9.2 Reognition of omplex events using event frgments................

More information

Vasil Khalidov & Miles Hansard. C.M. Bishop s PRML: Chapter 5; Neural Networks

Vasil Khalidov & Miles Hansard. C.M. Bishop s PRML: Chapter 5; Neural Networks C.M. Bishop s PRML: Chapter 5; Neural Networks Introduction The aim is, as before, to find useful decompositions of the target variable; t(x) = y(x, w) + ɛ(x) (3.7) t(x n ) and x n are the observations,

More information

Kinematic Waves. These are waves which result from the conservation equation. t + I = 0. (2)

Kinematic Waves. These are waves which result from the conservation equation. t + I = 0. (2) Introduction Kinemtic Wves These re wves which result from the conservtion eqution E t + I = 0 (1) where E represents sclr density field nd I, its outer flux. The one-dimensionl form of (1) is E t + I

More information

ODE: Existence and Uniqueness of a Solution

ODE: Existence and Uniqueness of a Solution Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

More information

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then. pril 8, 2017 Mth 9 Geometry Solving vetor prolems Prolem Prove tht if vetors nd stisfy, then Solution 1 onsider the vetor ddition prllelogrm shown in the Figure Sine its digonls hve equl length,, the prllelogrm

More information

, g. Exercise 1. Generator polynomials of a convolutional code, given in binary form, are g. Solution 1.

, g. Exercise 1. Generator polynomials of a convolutional code, given in binary form, are g. Solution 1. Exerise Genertor polynomils of onvolutionl ode, given in binry form, re g, g j g. ) Sketh the enoding iruit. b) Sketh the stte digrm. ) Find the trnsfer funtion T. d) Wht is the minimum free distne of

More information

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. NFA for (a b)*abb.

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. NFA for (a b)*abb. CMSC 330: Orgniztion of Progrmming Lnguges Finite Automt 2 Types of Finite Automt Deterministic Finite Automt () Exctly one sequence of steps for ech string All exmples so fr Nondeterministic Finite Automt

More information

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. Comparing DFAs and NFAs (cont.) Finite Automata 2

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. Comparing DFAs and NFAs (cont.) Finite Automata 2 CMSC 330: Orgniztion of Progrmming Lnguges Finite Automt 2 Types of Finite Automt Deterministic Finite Automt () Exctly one sequence of steps for ech string All exmples so fr Nondeterministic Finite Automt

More information

CHAPTER 1 Regular Languages. Contents

CHAPTER 1 Regular Languages. Contents Finite Automt (FA or DFA) CHAPTE 1 egulr Lnguges Contents definitions, exmples, designing, regulr opertions Non-deterministic Finite Automt (NFA) definitions, euivlence of NFAs nd DFAs, closure under regulr

More information

f ) AVERAGE RATE OF CHANGE p. 87 DEFINITION OF DERIVATIVE p. 99

f ) AVERAGE RATE OF CHANGE p. 87 DEFINITION OF DERIVATIVE p. 99 AVERAGE RATE OF CHANGE p. 87 The verge rte of chnge of fnction over n intervl is the mont of chnge ivie by the length of the intervl. DEFINITION OF DERIVATIVE p. 99 f ( h) f () f () lim h0 h Averge rte

More information

Assignment 1 Automata, Languages, and Computability. 1 Finite State Automata and Regular Languages

Assignment 1 Automata, Languages, and Computability. 1 Finite State Automata and Regular Languages Deprtment of Computer Science, Austrlin Ntionl University COMP2600 Forml Methods for Softwre Engineering Semester 2, 206 Assignment Automt, Lnguges, nd Computility Smple Solutions Finite Stte Automt nd

More information

More Properties of the Riemann Integral

More Properties of the Riemann Integral More Properties of the Riemnn Integrl Jmes K. Peterson Deprtment of Biologil Sienes nd Deprtment of Mthemtil Sienes Clemson University Februry 15, 2018 Outline More Riemnn Integrl Properties The Fundmentl

More information

Overview of Calculus I

Overview of Calculus I Overview of Clculus I Prof. Jim Swift Northern Arizon University There re three key concepts in clculus: The limit, the derivtive, nd the integrl. You need to understnd the definitions of these three things,

More information

BİL 354 Veritabanı Sistemleri. Relational Algebra (İlişkisel Cebir)

BİL 354 Veritabanı Sistemleri. Relational Algebra (İlişkisel Cebir) BİL 354 Veritnı Sistemleri Reltionl lger (İlişkisel Ceir) Reltionl Queries Query lnguges: llow mnipultion nd retrievl of dt from dtse. Reltionl model supports simple, powerful QLs: Strong forml foundtion

More information

FABER Formal Languages, Automata and Models of Computation

FABER Formal Languages, Automata and Models of Computation DVA337 FABER Forml Lnguges, Automt nd Models of Computtion Lecture 5 chool of Innovtion, Design nd Engineering Mälrdlen University 2015 1 Recp of lecture 4 y definition suset construction DFA NFA stte

More information

University of Sioux Falls. MAT204/205 Calculus I/II

University of Sioux Falls. MAT204/205 Calculus I/II University of Sioux Flls MAT204/205 Clulus I/II Conepts ddressed: Clulus Textook: Thoms Clulus, 11 th ed., Weir, Hss, Giordno 1. Use stndrd differentition nd integrtion tehniques. Differentition tehniques

More information

f (x)dx = f(b) f(a). a b f (x)dx is the limit of sums

f (x)dx = f(b) f(a). a b f (x)dx is the limit of sums Green s Theorem If f is funtion of one vrible x with derivtive f x) or df dx to the Fundmentl Theorem of lulus, nd [, b] is given intervl then, ording This is not trivil result, onsidering tht b b f x)dx

More information

Chapters 4 & 5 Integrals & Applications

Chapters 4 & 5 Integrals & Applications Contents Chpters 4 & 5 Integrls & Applictions Motivtion to Chpters 4 & 5 2 Chpter 4 3 Ares nd Distnces 3. VIDEO - Ares Under Functions............................................ 3.2 VIDEO - Applictions

More information

First compression (0-6.3 GPa) First decompression ( GPa) Second compression ( GPa) Second decompression (35.

First compression (0-6.3 GPa) First decompression ( GPa) Second compression ( GPa) Second decompression (35. 0.9 First ompression (0-6.3 GP) First deompression (6.3-2.7 GP) Seond ompression (2.7-35.5 GP) Seond deompression (35.5-0 GP) V/V 0 0.7 0.5 0 5 10 15 20 25 30 35 P (GP) Supplementry Figure 1 Compression

More information

Hyers-Ulam stability of Pielou logistic difference equation

Hyers-Ulam stability of Pielou logistic difference equation vilble online t wwwisr-publitionsom/jns J Nonliner Si ppl, 0 (207, 35 322 Reserh rtile Journl Homepge: wwwtjnsom - wwwisr-publitionsom/jns Hyers-Ulm stbility of Pielou logisti differene eqution Soon-Mo

More information

ANALYSIS AND MODELLING OF RAINFALL EVENTS

ANALYSIS AND MODELLING OF RAINFALL EVENTS Proeedings of the 14 th Interntionl Conferene on Environmentl Siene nd Tehnology Athens, Greee, 3-5 Septemer 215 ANALYSIS AND MODELLING OF RAINFALL EVENTS IOANNIDIS K., KARAGRIGORIOU A. nd LEKKAS D.F.

More information

State variable feedback

State variable feedback State variable feedbak We have previosly disssed systems desribed by the linear state-spae eqations Ax B y Cx n m with xt () R the internal state, t () R the ontrol inpt, and yt () R the measred otpt.

More information

Part 4. Integration (with Proofs)

Part 4. Integration (with Proofs) Prt 4. Integrtion (with Proofs) 4.1 Definition Definition A prtition P of [, b] is finite set of points {x 0, x 1,..., x n } with = x 0 < x 1

More information

Global alignment. Genome Rearrangements Finding preserved genes. Lecture 18

Global alignment. Genome Rearrangements Finding preserved genes. Lecture 18 Computt onl Biology Leture 18 Genome Rerrngements Finding preserved genes We hve seen before how to rerrnge genome to obtin nother one bsed on: Reversls Knowledge of preserved bloks (or genes) Now we re

More information

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1. 1 [(y ) 2 + yy + y 2 ] dx,

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1. 1 [(y ) 2 + yy + y 2 ] dx, MATH3403: Green s Funtions, Integrl Equtions nd the Clulus of Vritions 1 Exmples 5 Qu.1 Show tht the extreml funtion of the funtionl I[y] = 1 0 [(y ) + yy + y ] dx, where y(0) = 0 nd y(1) = 1, is y(x)

More information

A STUDY OF Q-CONTIGUOUS FUNCTION RELATIONS

A STUDY OF Q-CONTIGUOUS FUNCTION RELATIONS Commun. Koren Mth. So. 31 016, No. 1, pp. 65 94 http://dx.doi.org/10.4134/ckms.016.31.1.065 A STUDY OF Q-CONTIGUOUS FUNCTION RELATIONS Hrsh Vrdhn Hrsh, Yong Sup Kim, Medht Ahmed Rkh, nd Arjun Kumr Rthie

More information

Quadratic Forms. Quadratic Forms

Quadratic Forms. Quadratic Forms Qudrtic Forms Recll the Simon & Blume excerpt from n erlier lecture which sid tht the min tsk of clculus is to pproximte nonliner functions with liner functions. It s ctully more ccurte to sy tht we pproximte

More information

MATH 144: Business Calculus Final Review

MATH 144: Business Calculus Final Review MATH 144: Business Clculus Finl Review 1 Skills 1. Clculte severl limits. 2. Find verticl nd horizontl symptotes for given rtionl function. 3. Clculte derivtive by definition. 4. Clculte severl derivtives

More information

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that Arc Length of Curves in Three Dimensionl Spce If the vector function r(t) f(t) i + g(t) j + h(t) k trces out the curve C s t vries, we cn mesure distnces long C using formul nerly identicl to one tht we

More information

Waveguides Free Space. Modal Excitation. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware

Waveguides Free Space. Modal Excitation. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware Modl Excittion Dniel S. Weile Deprtment of Electricl nd Computer Engineering University of Delwre ELEG 648 Modl Excittion in Crtesin Coordintes Outline 1 Aperture Excittion Current Excittion Outline 1

More information

CMPSCI 250: Introduction to Computation. Lecture #31: What DFA s Can and Can t Do David Mix Barrington 9 April 2014

CMPSCI 250: Introduction to Computation. Lecture #31: What DFA s Can and Can t Do David Mix Barrington 9 April 2014 CMPSCI 250: Introduction to Computtion Lecture #31: Wht DFA s Cn nd Cn t Do Dvid Mix Brrington 9 April 2014 Wht DFA s Cn nd Cn t Do Deterministic Finite Automt Forml Definition of DFA s Exmples of DFA

More information

Interpreting Integrals and the Fundamental Theorem

Interpreting Integrals and the Fundamental Theorem Interpreting Integrls nd the Fundmentl Theorem Tody, we go further in interpreting the mening of the definite integrl. Using Units to Aid Interprettion We lredy know tht if f(t) is the rte of chnge of

More information

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers. Mehryar Mohri Courant Institute and Google Research

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers. Mehryar Mohri Courant Institute and Google Research Speech Recognition Lecture 2: Finite Automt nd Finite-Stte Trnsducers Mehryr Mohri Cournt Institute nd Google Reserch mohri@cims.nyu.com Preliminries Finite lphet Σ, empty string. Set of ll strings over

More information

ECON 331 Lecture Notes: Ch 4 and Ch 5

ECON 331 Lecture Notes: Ch 4 and Ch 5 Mtrix Algebr ECON 33 Lecture Notes: Ch 4 nd Ch 5. Gives us shorthnd wy of writing lrge system of equtions.. Allows us to test for the existnce of solutions to simultneous systems. 3. Allows us to solve

More information

Arrow s Impossibility Theorem

Arrow s Impossibility Theorem Rep Voting Prdoxes Properties Arrow s Theorem Arrow s Impossiility Theorem Leture 12 Arrow s Impossiility Theorem Leture 12, Slide 1 Rep Voting Prdoxes Properties Arrow s Theorem Leture Overview 1 Rep

More information