Beyond the Born Approximation

Size: px
Start display at page:

Download "Beyond the Born Approximation"

Transcription

1 Beyond the Born Approximation Measuring the Two Photon Exchange Correction in Hall D Robert Paul Bennett Old Dominion University D. Adikaram, D. Rimal, P. Khetharpal, B. Raue, L. Weinstein Hall D PWG Newport News, VA October 22, 2012 Robert Paul Bennett Beyond the Born Approximation 1

2 Start with some conclusions Large discrepancy in G p E measurements that grows with Q2 Resolvable by considering σ(e + p)/σ(e p) CLAS eg5 experiment Produced simultaneous e + /e ( 100 pa each) Continuous beam energy distribution (Brem. beam) Wide Q 2 and angle (ε) coverage Control over systematics Extensive beam profiling Simultaneous e + /e measurements Reversed magnets to remove acceptance and beam asymmetries Initial Hall B results consistent with e + /e ratio needed to resolve G p E discrepancy. This experiment can be done much better in Hall D! Discrepancy grows with Q 2 Can select high energy photons in Hall D Tagger is in separate building Install chicane magnet in Hall D alcove (install hermetic shielding wall) Robert Paul Bennett Beyond the Born Approximation 2

3 Purpose of presenting today Show you some preliminary results from the Hall B experiment Let you know that we are interested in doing Hall B-like TPE experiment in Hall D Why we think Hall D can do it better. Who else is interested? Are there any show stoppers? Robert Paul Bennett Beyond the Born Approximation 3

4 1 Physics Motivation 2 TPE 3 Experiment 4 Analysis overview 5 Results 6 Hall D Robert Paul Bennett Beyond the Born Approximation 4

5 The Proton Formfactor Puzzle Rosenbluth Separation: (SLAC, MIT BATES, JLab et al.) ( ) [ ] dσ ε(1 + τ) σ r = = τg 2 M dω σ + ɛg2 E mott [ ε = 1 + 2(1 + τ) tan 2 ] 1 Q 2 θ e/2 τ = 4M 2 Separate G E and G M contributions at a particular Q 2 using different beam energies and scattered electron angles G M measurement dominates at high Q 2, G E is suppressed Polarization Transfer: (Hall A & C) G E G M = P t (E e + E e ) tan θe P l 2M 2 Longitudinal polarized electrons incident on proton target Measure transverse and longitudinal polarization of recoiled proton Robert Paul Bennett Beyond the Born Approximation 5

6 The Proton Formfactor Puzzle Rosenbluth Separation: (SLAC, MIT BATES, JLab et al.) ( ) [ ] dσ ε(1 + τ) σ r = = τg 2 M dω σ + ɛg2 E mott [ ε = 1 + 2(1 + τ) tan 2 ] 1 Q 2 θ e/2 τ = 4M 2 Separate G E and G M contributions at a particular Q 2 using different beam energies and scattered electron angles G M measurement dominates at high Q 2, G E is suppressed Polarization Transfer: (Hall A & C) G E G M = P t (E e + E e ) tan θe P l 2M 2 Longitudinal polarized electrons incident on proton target Measure transverse and longitudinal polarization of recoiled proton Robert Paul Bennett Beyond the Born Approximation 6

7 Beyond the Born Approximation Use G M from Rosenbluth Separation and G E from Polarization Transfer To account for the difference we need a ε dependent correction to the cross section on the order of a few percent Robert Paul Bennett Beyond the Born Approximation 7

8 TPE Contribution The general 1 γ and 2 γ exchange amplitudes A = e2 Q 2 ū(k )γ µ u(k) 1 : ū(p ) [G M γ µ P F µ 2 M 2 : ū(p ) ] u(p) [ GM γ µ F P µ 2 M + F ] γkp µ 3 M 2 u(p) Modified G E and G M New ε dependent term The general 1 γ and 2 γ exchange cross section 1 : dσ [ εg 2 dω E + ] τg2 M [ 2 : dσ ε G 2 dω E + τ G ] 2 M [ ( + 2ε τ G M + G ) ] E GM Y 2γ ( ) Y 2γ Re F3 G M Guichon and Vanderhaeghen, PRL 91 (03) Robert Paul Bennett Beyond the Born Approximation 8

9 Positrons to the rescue! The Born amplitude changes sign as the the charge of the incident beam. The leading TPE terms of the elastic scattering cross section are sensitive to the lepton charge The elastic e ± p e ± p scattering contribution: σ(e ± ) A born + ± A 2γ 2 σ(e ± ) A born (α) 2 ± 2A born (α)re(a 2γ ) The ratio of the cross sections isolates the TPE correction term R = σ(e+ ) σ(e ) = 1 2δ 2γ δ 2γ = 2Re(A 2γ) A born We can calculate this very well (QED) Theoretical calculation of the diagram is hard : Need to integrate over all baryon states The e p/e + p ratio measures the real part of the TPE contribution Robert Paul Bennett Beyond the Born Approximation 9

10 Phenomenology Robert Paul Bennett Beyond the Born Approximation 10

11 Making Positrons at CLAS Primary electron beam: 5.5 GeV and na Radiator: 0.9% of primary electrons radiate high energy photons Tagger magnet: Transport electrons tagger dump Converter: 9% of photons are converted to electron/positron pairs Chicane: separate the lepton beams Remaining photons are stopped at the photon blocker e + and e beams are then recombined and continue to the target Target: liquid hydrogen: length = 18cm (30 cm) & diameter = 6cm (6 cm) Detector: CLAS (DC, TOF) Robert Paul Bennett Beyond the Born Approximation 11

12 Making Positrons at CLAS Primary electron beam: 5.5 GeV and 100 na Radiator: 0.9% of primary electrons radiate high energy photons Tagger magnet: Transport electrons tagger dump Converter: 9% of photons are converted to electron/positron pairs Chicane: separate the lepton beams Remaining photons are stopped at the photon blocker e + and e beams are then recombined and continue to the target Target: liquid hydrogen: length = 18cm (30 cm) & diameter = 6cm (6 cm) Detector: CLAS (DC, TOF) Robert Paul Bennett Beyond the Born Approximation 12

13 Making Positrons at CLAS Primary electron beam: 5.5 GeV and 100 na Radiator: 0.9% of primary electrons radiate high energy photons Tagger magnet: Transport electrons tagger dump Converter: 9% of photons are converted to electron/positron pairs Chicane: separate the lepton beams Remaining photons are stopped at the photon blocker e + and e beams are then recombined and continue to the target Target: liquid hydrogen: length = 18cm (30 cm) & diameter = 6cm (6 cm) Detector: CLAS (DC, TOF) Robert Paul Bennett Beyond the Born Approximation 13

14 Making Positrons at CLAS Primary electron beam: 5.5 GeV and 100 na Radiator: 0.9% of primary electrons radiate high energy photons Tagger magnet: Transport electrons tagger dump Converter: 9% of photons are converted to electron/positron pairs Chicane: separate the lepton beams Remaining photons are stopped at the photon blocker e + and e beams are then recombined and continue to the target Target: liquid hydrogen: length = 18cm (30 cm) & diameter = 6cm (6 cm) Detector: CLAS (DC, TOF) Robert Paul Bennett Beyond the Born Approximation 14

15 Making Positrons at CLAS Primary electron beam: 5.5 GeV and 100 na Radiator: 0.9% of primary electrons radiate high energy photons Tagger magnet: Transport electrons tagger dump Converter: 9% of photons are converted to electron/positron pairs Chicane: separate the lepton beams Remaining photons are stopped at the photon blocker e + and e beams are then recombined and continue to the target Target: liquid hydrogen: length = 18cm (30 cm) & diameter = 6cm (6 cm) Detector: CLAS (DC, TOF) Robert Paul Bennett Beyond the Born Approximation 15

16 Making Positrons at CLAS Primary electron beam: 5.5 GeV and 100 na Radiator: 0.9% of primary electrons radiate high energy photons Tagger magnet: Transport electrons tagger dump Converter: 9% of photons are converted to electron/positron pairs Chicane: separate the lepton beams Remaining photons are stopped at the photon blocker e + and e beams are then recombined and continue to the target Target: liquid hydrogen: length = 18cm (30 cm) & diameter = 6cm (6 cm) Detector: CLAS (DC, TOF) Robert Paul Bennett Beyond the Born Approximation 16

17 Beam Line Modification for TPE Extensive GEANT simulations of detector backgrounds. Confirmed simulation with test run data A lot of shielding added on tagger, tagger dump and chicane. Improved luminosity by a factor 100 Robert Paul Bennett Beyond the Born Approximation 17

18 Beam Line Modification for TPE Robert Paul Bennett Beyond the Born Approximation 18

19 Outline Physics Motivation TPE Experiment Analysis overview Results Hall D Beam Profiling TPE Calorimeter Measure beam energy vs position during low luminosity run 30 module Shashlik (Pb/Scint) calorimeter Located directly downstream of CLAS on the Fiber Monitors forward carriage 16x16 Sparse fiber monitor continually monitoring beam profile before the target 64x64 Dense fiber monitor mounted on TPE Calorimeter face for beam profiling during low luminosity runs Bicron fibers spaced 5 mm (1mm) apart glued to a Hamamatsu PMT Beam size 15 mm radius Robert Paul Bennett Beyond the Born Approximation 19

20 Systematic Beam Checks Flipped chicane polarity about once a week Check for geometric alignment of e /e + on target Varied steering magnet currents and measured individual beam positions at sparse fiber monitor Reproducible crossing for all chicane flips Robert Paul Bennett Beyond the Born Approximation 20

21 Triggering, Cuts and Corrections 1 Trigger on particle in forward 45 0 and anything in opposite sector 2 Target vertex cut ( 45 cm V z 15 cm) 3 Momentum Corrections 4 Proton energy loss corrections 5 Fiducial Cuts 6 Swimming Acceptance matching ++ and + events Robert Paul Bennett Beyond the Born Approximation 21

22 Non-Standard PID & Elastic Event Selection 1 Select ++ and + track pairs 2 Coplanarity cut (φ proton φ lepton ) 3 Reconstructed Beam Energy: [ ] 1 E 1 = M P tan(θ e/2) tan(θ P ) 1.0 E 2 = P e cos(θ e) + P p cos(θ P ) E Beam = E 1 E 2 4 Scattered lepton Energy: E e = Emeasured e Ee (θ e, θ p) 5 Proton Momentum: P (p) = P p Pe sin(θe) sin(θ p) (1) Robert Paul Bennett Beyond the Born Approximation 22

23 Q 2 vs ε (TPE II ) Robert Paul Bennett Preliminary Beyond the Born Approximation 23

24 Q 2 vs ε (TPE II ) Robert Paul Bennett Preliminary Beyond the Born Approximation 24

25 Ratios 1 Apply fiducial cuts to select regions where both e and e + can both be detected Robert Paul Bennett Beyond the Born Approximation 25

26 Ratios 1 Apply fiducial cuts to select regions where both e and e + can both be detected 2 Measure Elastic Scattering Ratio : Proton acceptance cancels in the ratio R = Y (e+ P ) Y (e P ) Robert Paul Bennett Beyond the Born Approximation 25

27 Ratios 1 Apply fiducial cuts to select regions where both e and e + can both be detected 2 Measure Elastic Scattering Ratio : Proton acceptance cancels in the ratio R = Y (e+ P ) Y (e P ) 3 Flip torus polarity : Lepton acceptance cancels in double ratio [ ] + [ ] Ye R 2 = +P Ye+ P Y e P Y e P Robert Paul Bennett Beyond the Born Approximation 25

28 Ratios 1 Apply fiducial cuts to select regions where both e and e + can both be detected 2 Measure Elastic Scattering Ratio : Proton acceptance cancels in the ratio R = Y (e+ P ) Y (e P ) 3 Flip torus polarity : Lepton acceptance cancels in double ratio [ ] + [ ] Ye R 2 = +P Ye+ P Y e P Y e P 4 Flip chicane polarity: Beam asymmetries cancel in quadruple ratio R 4 = R 2 + R 2 Robert Paul Bennett Beyond the Born Approximation 25

29 Preliminary Results Binning 75% of total data set Robert Paul Bennett Beyond the Born Approximation 26

30 Comparison to World Data Q 2 > 1 Robert Paul Bennett Beyond the Born Approximation 27

31 Hall D Floorplan Robert Paul Bennett Beyond the Born Approximation 28

32 Advantages of Hall D TPE 1 12(9) GeV upgrade will provide much larger phase space The G P E discrepancy grows with Q2 ( factor of 3 at Q 2 = 6GeV ) 2 Hall D can select high energy photon beam 3 Photon beam is created in a separate building Tracking efficiency suffered from high background rates Limited our ability to push beam luminosity 4 There looks to be room to install the chicane in the alcove Lots of shielding wall off the alcove 5 Symmetric tracking of positively and negatively charged particles 6 Other programs interested in e + beam can piggy-back (e.g. DVCS) Robert Paul Bennett Beyond the Born Approximation 29

33 Outstanding Hall D TPE Questions 1 Is the aperture at the target is wide enough. The tertiary beam we produced in Hall B was 5cm wide. The start counter might be in the way Can the start counter be removed and reinstalled without causing too much pain to Hall D? 2 Can the Hall-D solenoid magnetic field be reversed easily and in a repeatable way? Unexpected detector asymmetries can cancel 3 Radiator thickness? We used a 0.9% radiator in Hall B Can we go thicker in Hall D? 4 What kind of dose can the tagger detectors handle? We calculated that we would deposit several mega-rad on the Hall B taggers, so we removed the plastic scintilators. 5 What p, θ and φ resolution can we acheive for e + /e? We will have to rely on over constrained kinematics to reconstruct the beam energy, since we would using brem beam 6 Any show stoppers I missed? Robert Paul Bennett Beyond the Born Approximation 30

34 Thank you Robert Paul Bennett Beyond the Born Approximation 31

35 Thank you Robert Paul Bennett Beyond the Born Approximation 31

36 Beam Asymmetry Robert Paul Bennett Beyond the Born Approximation 32

37 Magnet Cycle Dependence Robert Paul Bennett Beyond the Born Approximation 33

38 Comarison of Kinematic Coverage Robert Paul Bennett Beyond the Born Approximation 34

39 E Beam vs E e E and E e are correlated, so we cut on the sum ( E+) and difference ( E ) Robert Paul Bennett Beyond the Born Approximation 35

40 Kinematic Cuts No cuts Apply other 3 kinematic cuts Robert Paul Bennett Beyond the Born Approximation 36

41 E : ε Dependence Robert Paul Bennett Beyond the Born Approximation 37

42 E +: ε Dependence Robert Paul Bennett Beyond the Born Approximation 38

43 P p : ε Dependence Robert Paul Bennett Beyond the Born Approximation 39

44 Personnel 1 Spokes Persons Larry Weinstein, Brian Raue, Will Brooks, John Arrington, Andrei Afanasev & Kyungseon Joo 2 Post Docs Puneet Khetarpal Mauri Ungaro Robert Bennett 3 Graduate Students Dasuni Adikaram Dipak Rimal Cristian Peña Hashir Rashad Robert Paul Bennett Beyond the Born Approximation 40

Two Photon Exchange (TPE) and the Proton Form Factor Problem

Two Photon Exchange (TPE) and the Proton Form Factor Problem Two Photon Exchange (TPE) and the Proton Form Factor Problem Larry Weinstein Old Dominion University With Dasuni Adikaram, Dipak Rimal, Robert Bennett, Puneet Khetarpal, Mauri Ungaro, Brian Raue, Will

More information

Proton Form Factor Puzzle and the CLAS Two-Photon Exchange Experiment

Proton Form Factor Puzzle and the CLAS Two-Photon Exchange Experiment Proton Form Factor Puzzle and the CLAS Two-Photon Exchange Experiment Dipak Rimal Florida International University April 15, 2014 University of Virginia Nuclear Physics Seminar, 2014 TPE in CLAS D. Rimal

More information

Positron-proton to electron-proton elastic cross section ratios from CLAS: Systematic uncertainties and Implications of the results

Positron-proton to electron-proton elastic cross section ratios from CLAS: Systematic uncertainties and Implications of the results Positron-proton to electron-proton elastic cross section ratios from CLAS: Systematic uncertainties and Implications of the results Dasuni Adikaram Old Dominion University Dipak Rimal, Larry Weinstein,

More information

DIRECT MEASUREMENTS OF TWO PHOTON EXCHANGE ON LEPTON-PROTON ELASTIC SCATTERING USING SIMULTANEOUS ELECTRON-POSITRON BEAMS IN CLAS

DIRECT MEASUREMENTS OF TWO PHOTON EXCHANGE ON LEPTON-PROTON ELASTIC SCATTERING USING SIMULTANEOUS ELECTRON-POSITRON BEAMS IN CLAS DIRECT MEASUREMENTS OF TWO PHOTON EXCHANGE ON LEPTON-PROTON ELASTIC SCATTERING USING SIMULTANEOUS ELECTRON-POSITRON BEAMS IN CLAS by Dasuni Kalhari Adikaram B.S. in physics, September 2006, University

More information

Two-Photon-Exchange Effects in Nucleon EM Form Factors

Two-Photon-Exchange Effects in Nucleon EM Form Factors Two-Photon-Exchange Effects in Nucleon EM Form Factors Introduction Radiative Corrections TPE Extraction TPE Calculations Future Experiments Summary Kees de Jager Jefferson Lab MAMI & Beyond March 3 -

More information

PoS(INPC2016)259. Latest Results from The Olympus Experiment. Axel Schmidt Massachusetts Institute of Technology

PoS(INPC2016)259. Latest Results from The Olympus Experiment. Axel Schmidt Massachusetts Institute of Technology Massachusetts Institute of Technology E-mail: schmidta@mit.edu The two experimental techniques for determining the proton s elastic form factors unpolarized cross section measurements and polarization

More information

Time-like Compton Scattering with transversely polarized target

Time-like Compton Scattering with transversely polarized target Time-like Compton Scattering with transversely polarized target Vardan Tadevosyan AANSL (YerPhI) Foundation Arthur Mkrtchyan CUA Outline Physics case and motivation Experimental setup Simulation results

More information

Time-like Compton Scattering with transversely polarized target

Time-like Compton Scattering with transversely polarized target Time-like Compton Scattering with transversely polarized target Vardan Tadevosyan AANSL (YerPhI) Foundation JLab 1/19/2017 Outline Physics case and motivation Experimental setup Simulation results Latest

More information

Threshold photoproduction of J/y with the GlueX experiment. Lubomir Pentchev Jefferson Lab for the GlueX collaboration

Threshold photoproduction of J/y with the GlueX experiment. Lubomir Pentchev Jefferson Lab for the GlueX collaboration Threshold photoproduction of J/y with the GlueX experiment Lubomir Pentchev Jefferson Lab for the GlueX collaboration 7 th Workshop of the APS Topical Group on Hadron Physics, Washington, DC February 1-3

More information

Study of the Neutron Detection Efficiency of the CLAS12 Detector. Keegan Sherman

Study of the Neutron Detection Efficiency of the CLAS12 Detector. Keegan Sherman Study of the Neutron Detection Efficiency of the CLAS12 Detector Keegan Sherman March 23, 2016 Contents 1 Abstract 2 2 Introduction 2 2.1 Jefferson Lab and CLAS12................................ 2 2.1.1

More information

arxiv: v2 [nucl-ex] 23 Jan 2010

arxiv: v2 [nucl-ex] 23 Jan 2010 Precision Measurements of the Proton Elastic Form Factor Ratio D. W. Higinbotham arxiv:1001.3341v2 [nucl-ex] 23 Jan 2010 Jefferson Lab, Newport News, VA 23606, USA Abstract. New high precision polarization

More information

Searching for at Jefferson Lab. Holly Szumila-Vance On behalf of the HPS, APEX, DarkLight, and BDX 2017 JLab User s Group Meeting 20 June 2017

Searching for at Jefferson Lab. Holly Szumila-Vance On behalf of the HPS, APEX, DarkLight, and BDX 2017 JLab User s Group Meeting 20 June 2017 Searching for at Jefferson Lab Holly Szumila-Vance On behalf of the HPS, APEX, DarkLight, and BDX 2017 JLab User s Group Meeting 20 June 2017 Overview: Motivation Dark photon searches: APEX (Hall A) HPS

More information

The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters

The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters M.Battaglieri, M.Anghinolfi, P.Corvisiero, A.Longhi, M.Ripani, M.Taiuti Istituto Nazionale di Fisica

More information

The Electromagnetic Form Factors of the Nucleon

The Electromagnetic Form Factors of the Nucleon The Electromagnetic Form Factors of the Nucleon Introduction Proton Form Factors Neutron Form Factors Summary September 28, 2006 R. Alarcon @ MIT Symposium e i k r Form factor in quantum mechanics Elastic

More information

A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak

A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak Buddhini P. Waidyawansa For the Qweak Collaboration JLab Users Group Meeting June

More information

Simulation Results for CLAS12 From gemc

Simulation Results for CLAS12 From gemc CLAS12 Software Workshop - May 25, 20 p. 1/2 Simulation Results for CLAS12 From gemc G.P.Gilfoyle, M.Ungaro et al. CLAS12 Software Group Outline: 1. gemc Overview 2. Neutron efficiency in first TOF panel.

More information

E Update: Measurement of Two-Photon Exchange in Unpolarized Elastic Electron-Proton Scattering

E Update: Measurement of Two-Photon Exchange in Unpolarized Elastic Electron-Proton Scattering E05-017 Update: Measurement of Two-Photon Exchange in Unpolarized Elastic Electron-Proton Scattering Part of the ROSEN07 Collaboration P. Solvignon, M. Johnson, J. Arrington, R. E. Segel, et al Rosenbluth

More information

Measuring Form Factors and Structure Functions With CLAS

Measuring Form Factors and Structure Functions With CLAS Measuring Form Factors and Structure Functions With CLAS Jerry Gilfoyle for the CLAS Collaboration Physics Department, University of Richmond, Virginia Outline: 1. Jefferson Lab and the CLAS Detector..

More information

Studying Nuclear Structure

Studying Nuclear Structure Microscope for the Studying Nuclear Structure with s School of Physics Seoul National University November 15, 2004 Outline s Microscope for the s Smaller, smaller Quest for basic building blocks of the

More information

Status of the PRad Experiment (E )

Status of the PRad Experiment (E ) Status of the PRad Experiment (E12-11-106) NC A&T State University for the PRad collaboration Outline PRad Physics goals ep-scattering and the proton radius PRad experiment experimental setup development

More information

Proton Radius Puzzle and the PRad Experiment at JLab

Proton Radius Puzzle and the PRad Experiment at JLab Proton Radius Puzzle and the PRad Experiment at JLab NC A&T State University, NC USA for the PRad collaboration Spokespersons:, H. Gao, M. Khandaker, D. Dutta Outline The Proton Radius Puzzle Recent status

More information

OLYMPUS GEM LUMINOSITY MONITORS ÖZGÜR ATES HAMPTON UNIVERSITY

OLYMPUS GEM LUMINOSITY MONITORS ÖZGÜR ATES HAMPTON UNIVERSITY OLYMPUS GEM LUMINOSITY MONITORS ÖZGÜR ATES HAMPTON UNIVERSITY 8 December 2011-DESY STUDENT TALK SERIES CONTENTS Two Photon Exchange in Elastic ep Scattering Principle of OLYMPUS Experiment Control of Systematics

More information

Two photon exchange: theoretical issues

Two photon exchange: theoretical issues Two photon exchange: theoretical issues Peter Blunden University of Manitoba International Workshop on Positrons at JLAB March 25-27, 2009 Proton G E /G M Ratio Rosenbluth (Longitudinal-Transverse) Separation

More information

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives Deeply Virtual Compton Scattering off 4 He: New results and future perspectives M. Hattawy (On behalf of the CLAS collaboration) Next generation nuclear physics with JLab12 and EIC 10-13 February 2016,

More information

Neutrons in a Spin: Nucleon Structure at Jefferson Lab

Neutrons in a Spin: Nucleon Structure at Jefferson Lab Neutrons in a Spin: Nucleon Structure at Jefferson Lab Daria Sokhan University of Glasgow, UK on behalf of the CLAS Collaboration IoP Nuclear Physics Group Conference, York 8 th April 2013 Nucleon structure

More information

Plans to measure J/ψ photoproduction on the proton with CLAS12

Plans to measure J/ψ photoproduction on the proton with CLAS12 Plans to measure J/ψ photoproduction on the proton with CLAS12 Pawel Nadel-Turonski Jefferson Lab Nuclear Photoproduction with GlueX, April 28-29, 2016, JLab Outline Introduction J/ψ on the proton in CLAS12

More information

Form Factors with Electrons and Positrons

Form Factors with Electrons and Positrons HUGS2013, JLab, May 28 June 14, 2013 Form Factors with Electrons and Positrons Part 2: Proton form factor measurements Michael Kohl Hampton University, Hampton, VA 23668 Jefferson Laboratory, Newport News,

More information

The low Q 2 chicane and Compton polarimeter at the JLab EIC

The low Q 2 chicane and Compton polarimeter at the JLab EIC EPJ Web of Conferences 112, 01007 (2016) DOI: 10.1051/ epjconf/ 201611201007 C Owned by the authors, published by EDP Sciences, 2016 The low Q 2 chicane and Compton polarimeter at the JLab EIC, Alexandre

More information

Nucleon Form Factors. Vina Punjabi Norfolk State University JLab Users Group Meeting June 4-6, 2012 Jefferson Lab, Newport News, VA

Nucleon Form Factors. Vina Punjabi Norfolk State University JLab Users Group Meeting June 4-6, 2012 Jefferson Lab, Newport News, VA Nucleon Form Factors Vina Punjabi Norfolk State University 2012 JLab Users Group Meeting June 4-6, 2012 Jefferson Lab, Newport News, VA Outline Nucleon Form Factors (FF) two methods to obtain G E and G

More information

Experimental Aspects of Deep-Inelastic Scattering. Kinematics, Techniques and Detectors

Experimental Aspects of Deep-Inelastic Scattering. Kinematics, Techniques and Detectors 1 Experimental Aspects of Deep-Inelastic Scattering Kinematics, Techniques and Detectors 2 Outline DIS Structure Function Measurements DIS Kinematics DIS Collider Detectors DIS process description Dirac

More information

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives Deeply Virtual Compton Scattering off 4 He: New results and future perspectives M. Hattawy (On behalf of the CLAS collaboration) 2016 JLab Users Group Workshop and Annual Meeting June 20-22, Jefferson

More information

Two-photon physics. Marc Vanderhaeghen College of William & Mary / JLab. Hall-C Summer Workshop, JLab, August 19-20, 2004

Two-photon physics. Marc Vanderhaeghen College of William & Mary / JLab. Hall-C Summer Workshop, JLab, August 19-20, 2004 Two-photon physics Marc Vanderhaeghen College of William & Mary / JLab Hall-C Summer Workshop, JLab, August 19-20, 2004 Outline Introduction : Rosenbluth vs polarization measurements of G E and G M of

More information

Double and Single Target Asymmetries of Pion Electroproduction from JLab/CLAS EG4 Experiment

Double and Single Target Asymmetries of Pion Electroproduction from JLab/CLAS EG4 Experiment Double and Single Target Asymmetries of Pion Electroproduction from JLab/CLAS EG4 Experiment Xiaochao Zheng University of Virginia April 22, 2009 The JLab/CLAS EG4 experiment overview EG4 exclusive channel

More information

Partonic Structure of Light Nuclei

Partonic Structure of Light Nuclei Partonic Structure of Light Nuclei M. Hattawy - Physics motivations - Recent results from CLAS - Proposed measurements with CLAS12 INT 17-3, Thursday, August 31st 2017 EMC Effect EMC effect: the modification

More information

Hunting for Quarks. G n M Co-conspirators: Jerry Gilfoyle for the CLAS Collaboration University of Richmond

Hunting for Quarks. G n M Co-conspirators: Jerry Gilfoyle for the CLAS Collaboration University of Richmond Hunting for Quarks Jerry Gilfoyle for the CLAS Collaboration University of Richmond JLab Mission What we know and don t know. The Neutron Magnetic Form Factor Experiments with CLAS More JLab Highlights

More information

The Luminosity Monitor

The Luminosity Monitor OLYMPUS Technical Review, DESY, September 15, 2009 The Luminosity Monitor Michael Kohl Hampton University, Hampton, VA 23668 Jefferson Laboratory, Newport News, VA 23606 Proposed Experiment Electrons/positrons

More information

Hall B Physics Program and Upgrade Plan

Hall B Physics Program and Upgrade Plan Hall B Physics Program and Upgrade Plan presented by Volker Burkert and Sebastian Kuhn Outline: Introduction Deeply Virtual Exclusive Processes and GPDs Structure Functions & Semi-Inclusive Processes Equipment

More information

Full-Acceptance Detector Integration at MEIC

Full-Acceptance Detector Integration at MEIC Full-Acceptance Detector Integration at MEIC Vasiliy Morozov for MEIC Study Group Electron Ion Collider Users Meeting, Stony Brook University June 27, 2014 Lattice design of geometrically-matched collider

More information

Neutron Structure Function from BoNuS

Neutron Structure Function from BoNuS Neutron Structure Function from BoNuS Stephen BültmannB Old Dominion University for the CLAS Collaboration The Structure of the Neutron at Large x The BoNuS Experiment in 005 First Results from the BoNuS

More information

DESY Summer Students Program 2008: Exclusive π + Production in Deep Inelastic Scattering

DESY Summer Students Program 2008: Exclusive π + Production in Deep Inelastic Scattering DESY Summer Students Program 8: Exclusive π + Production in Deep Inelastic Scattering Falk Töppel date: September 6, 8 Supervisors: Rebecca Lamb, Andreas Mussgiller II CONTENTS Contents Abstract Introduction.

More information

Inelastic scattering

Inelastic scattering Inelastic scattering When the scattering is not elastic (new particles are produced) the energy and direction of the scattered electron are independent variables, unlike the elastic scattering situation.

More information

LNS. Tagging the EMC effect in d(e, e N) reactions using the BAND and LAD detectors at JLab12. Axel Schmidt MIT. July 5, 2017

LNS. Tagging the EMC effect in d(e, e N) reactions using the BAND and LAD detectors at JLab12. Axel Schmidt MIT. July 5, 2017 Tagging the EMC effect in d(e, e N) reactions using the BAND and LAD detectors at JLab12 Axel Schmidt MIT July 5, 2017 LNS Laboratory for Nuclear Science 1 The EMC effect still puzzles. 1.2 2σ C 12σ d

More information

E (GMp) Precision Measurement of the Proton Elastic Cross Section at High Q 2. Thir Gautam Hampton University

E (GMp) Precision Measurement of the Proton Elastic Cross Section at High Q 2. Thir Gautam Hampton University E12-07-108 (GMp) Precision Measurement of the Proton Elastic Cross Section at High Q 2 Thir Gautam Hampton University On behalf of the GMp Collaboration Hall A Collaboration Meeting January 18, 2017 GMp

More information

G13 Update. CLAS collaboration meeting

G13 Update. CLAS collaboration meeting G13 Update CLAS collaboration meeting Newport News VA June 12 2009 Danny Martinez G13 The experiment ran between October 2006 and June 2007 Liquid Deuterium target g13a: Circularly polarized photons g13b:

More information

Beam Asymmetry measurement in Pion Photoproduction on the neutron using CLAS

Beam Asymmetry measurement in Pion Photoproduction on the neutron using CLAS Beam Asymmetry measurement in Pion Photoproduction on the neutron using CLAS University of Glasgow, UK on behalf of the CLAS Collaboration MENU2013, Rome, Italy 1st October 2013 Meson Photoproduction Meson

More information

Simulation for Proton Charge Radius (PRad) Experiment at Jefferson Lab1 Li Ye Mississippi State University For the PRad Collaboration The Proton Charg

Simulation for Proton Charge Radius (PRad) Experiment at Jefferson Lab1 Li Ye Mississippi State University For the PRad Collaboration The Proton Charg Simulation for Proton Charge Radius (PRad) Experiment at Jefferson Lab1 Li Ye Mississippi State University For the PRad Collaboration The Proton Charge Radius Puzzle refers to 7 σ discrepancy between the

More information

A Measurement of the Induced polarization of electro-produced Λ(1116) with CLAS

A Measurement of the Induced polarization of electro-produced Λ(1116) with CLAS A Measurement of the Induced polarization of electro-produced Λ(1116) with CLAS Marianna Gabrielyan Florida International University HUGS 2008 Why study electromagnetic production of kaons? Formalism.

More information

Probing Generalized Parton Distributions in Exclusive Processes with CLAS

Probing Generalized Parton Distributions in Exclusive Processes with CLAS Probing Generalized Parton Distributions in Exclusive Processes with CLAS Volker D. Burkert Jefferson Lab The nucleon: from structure to dynamics First GPD related results in DVCS and DVMP Experimental

More information

GMp Experiment (E ): An update

GMp Experiment (E ): An update GMp Experiment (E12-07-108): An update Kalyan Allada MIT Hall A/C Summer Meeting, Jefferson Lab 17th July 2015 Motivation Accurately measure e-p elastic cross section in kinematics similar to other JLab

More information

M.Battaglieri Istituto Nazionale di Fisica Nucleare Genova - Italy. A Forward Photon Tagging Facility for CLAS12

M.Battaglieri Istituto Nazionale di Fisica Nucleare Genova - Italy. A Forward Photon Tagging Facility for CLAS12 A Forward Photon Tagging Facility for CLAS12 M.Battaglieri Istituto Nazionale di Fisica Nucleare Genova - Italy 1) From CEBAF at 6 GeV 2) From CEBAF at 6 GeV to CEBAF at 12 GeV add Hall D (and beam line)

More information

POLARIMETRY FOR A STORAGE-RING ELECTRIC-DIPOLE-MOMENT MEASUREMENT MARIA ŻUREK FOR THE JEDI COLLABORATION

POLARIMETRY FOR A STORAGE-RING ELECTRIC-DIPOLE-MOMENT MEASUREMENT MARIA ŻUREK FOR THE JEDI COLLABORATION POLARIMETRY FOR A STORAGE-RING ELECTRIC-DIPOLE-MOMENT MEASUREMENT 8 JUNE 2018 MARIA ŻUREK FOR THE JEDI COLLABORATION MOTIVATION Barion Asymmetry Problem Barion Asymmetry Observation Standard Cosmological

More information

Deep Exclusive π " Production with transversely polarized He3 using SoLID

Deep Exclusive π  Production with transversely polarized He3 using SoLID Deep Exclusive π " Production with transversely polarized He3 using SoLID A run-group proposal with E12-10-006 Zhihong Ye, ANL On behalf of Co-Spokespeople: Garth Huber (contact), Zafar Ahmed, from Univ.

More information

Deuteron from CLAS/EG1B Data. Spin Structure Functions of the OUTLINE. Nevzat Guler (for the CLAS Collaboration) Old Dominion University

Deuteron from CLAS/EG1B Data. Spin Structure Functions of the OUTLINE. Nevzat Guler (for the CLAS Collaboration) Old Dominion University Spin Structure Functions of the Deuteron from CLAS/EGB Data Nevzat Guler (for the CLAS Collaboration) Old Dominion University OULINE Formalism Experimental setup Data analysis Results and Conclusion Motivation

More information

Target single- and double-spin asymmetries in DVCS off a longitudinal polarised hydrogen target at HERMES

Target single- and double-spin asymmetries in DVCS off a longitudinal polarised hydrogen target at HERMES Target single- and double-spin asymmetries in DVCS off a longitudinal polarised hydrogen target at HERMES David Mahon On behalf of the HERMES Collaboration DIS 2010 - Florence, Italy Overview Mahon DIS

More information

CLAS12 at Jefferson Lab

CLAS12 at Jefferson Lab CLAS12 at Jefferson Lab Daria Sokhan University of Glasgow, UK IPPP/NuSTEC Topical Meeting on Neutrino-Nucleus Scattering IPPP, Durham, UK 19 April 2017 Jefferson Lab 6 GeV era Jefferson Lab CEBAF: Continuous

More information

Two Photon Exchange in Inclusive and Semi Inclusive DIS

Two Photon Exchange in Inclusive and Semi Inclusive DIS Two Photon Exchange in Inclusive and Semi Inclusive DIS Marc Schlegel Theory Center, Jefferson Lab In collaboration with Christian Weiss, Andrei Afanasev, Andreas Metz Two Photon Exchange in elastic scattering

More information

Wide-Angle Compton Scattering up to 10 GeV

Wide-Angle Compton Scattering up to 10 GeV γp -> γp Wide-Angle Compton Scattering up to 10 GeV B. Wojtsekhowski Outline WACS physics WACS method and results Next WACS measurements Proposed measurements with NPD/HMS JLab, January 24, 2013 WACS in

More information

Experimental Overview Generalized Parton Distributions (GPDs)

Experimental Overview Generalized Parton Distributions (GPDs) Experimental Overview Generalized Parton Distributions (GPDs) Latifa Elouadrhiri Jefferson Lab Lattice Hadron Physics July 31 August 3, 2006 Outline Generalized Parton Distributions - a unifying framework

More information

2. Hadronic Form Factors

2. Hadronic Form Factors PHYS 6610: Graduate Nuclear and Particle Physics I H. W. Grießhammer INS Institute for Nuclear Studies The George Washington University Institute for Nuclear Studies Spring 2018 II. Phenomena 2. Hadronic

More information

Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton

Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton Yuqing Mao Ph.D. Defense November 10, 2014 Dept. of Physics and Astronomy, USC Supported in part

More information

NA62: Ultra-Rare Kaon Decays

NA62: Ultra-Rare Kaon Decays NA62: Ultra-Rare Kaon Decays Phil Rubin George Mason University For the NA62 Collaboration November 10, 2011 The primary goal of the experiment is to reconstruct more than 100 K + π + ν ν events, over

More information

Measurement of the Polarization Observables. Spectrometer. I s and I c for γp p π + π using the CLAS. Charles Hanretty.

Measurement of the Polarization Observables. Spectrometer. I s and I c for γp p π + π using the CLAS. Charles Hanretty. Measurement of the I s and I c for γp p π + π using the CLAS Spectrometer Charles Hanretty Florida State University, Tallahassee, FL October 3, 2 Charles Hanretty (FSU) Measurement of I s and I c for γp

More information

Nucleon Electromagnetic Form Factors: Introduction and Overview

Nucleon Electromagnetic Form Factors: Introduction and Overview Nucleon Electromagnetic Form Factors: Introduction and Overview Diego Bettoni Istituto Nazionale di Fisica Nucleare, Ferrara Scattering and Annihilation Electromagnetic Processes Trento, 18- February 013

More information

Charged Particle Identification in GLUEX

Charged Particle Identification in GLUEX Outline E.Chudakov JLab GLUEX PID 1 Charged Particle Identification in GLUEX E.Chudakov for GLUEX Collaboration JLab GLUEX PID Review, March 2008 http://www.jlab.org/~gen/gluex/talk_pid_rev.pdf Outline

More information

The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production

The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production Garth Huber SoLID Collaboration, Jefferson Lab, May 15, 2015. Complementarity of Different Reactions Deep

More information

Proton charge radius extracted from unpolarized electron scattering

Proton charge radius extracted from unpolarized electron scattering Proton charge radius extracted from unpolarized electron scattering John Arrington Argonne National Laboratory Fundamental Constants 2015, Eltville, Germany, 2 Feb Graphic by Joshua Rubin, ANL Outline

More information

Nucleon Form Factors Measured with BLAST. John Calarco - University of New Hampshire

Nucleon Form Factors Measured with BLAST. John Calarco - University of New Hampshire Nucleon Form Factors Measured with BLAST John Calarco - University of New Hampshire HUGS June, 2006 Outline - Overview and Motivation - Introduction - Existing Methods & Data - Phenomenological Fits -

More information

Cascade Spectroscopy at CLAS

Cascade Spectroscopy at CLAS Cascade Spectroscopy at CLAS D.P. Weygand Thomas Jefferson National Accelerator Facility 12/1/2005 D.P. Weygand Cascade Workshop 1 Outline: Ξ* Resonances at CLAS Ghosts of Ξ s Past Ξ(1620), High Mass Ξ*

More information

THE FIFTH STRUCTURE FUNCTION. Liam Murray Research Advisor: Dr. Gerard Gilfoyle

THE FIFTH STRUCTURE FUNCTION. Liam Murray Research Advisor: Dr. Gerard Gilfoyle 1 THE FIFTH STRUCTURE FUNCTION Liam Murray Research Advisor: Dr. Gerard Gilfoyle Overview 2 Scientific Background History of Modern Atomic Physics Standard Model The Hadronic Model Versus Quantum Chromodynamics

More information

Baryons 2016 International Conference on the Structure of Baryons May 16-20, Tallahassee, Florida G. Fedotov, R. Gothe, V. Burkert, and V.

Baryons 2016 International Conference on the Structure of Baryons May 16-20, Tallahassee, Florida G. Fedotov, R. Gothe, V. Burkert, and V. New Results on v p + - p Cross Sections in the Second and Third Resonance Regions Ralf W. Gothe for Gleb Fedotov Baryons 2016 International Conference on the Structure of Baryons May 16-20, Tallahassee,

More information

DVCS with CLAS. Elton S. Smith. Jefferson Lab. Conference on Intersections of Particle and Nuclear Physics New York, Elton S.

DVCS with CLAS. Elton S. Smith. Jefferson Lab. Conference on Intersections of Particle and Nuclear Physics New York, Elton S. DVCS with CLAS Elton S. Smith Jefferson Lab Conference on Intersections of Particle and Nuclear Physics New York, 2003 Elton S. Smith 1 Deeply Virtual Compton Scattering Inclusive Scattering Forward Compton

More information

Qweak Transverse Asymmetry Measurements

Qweak Transverse Asymmetry Measurements Qweak Transverse Asymmetry Measurements Buddhini Waidyawansa For the Qweak Collaboration Hall C Collaboration Meeting 02-21-2014 Outline Physics of transverse asymmetries Qweak transverse data set Analysis

More information

Measurement of the baryon number transport with LHCb

Measurement of the baryon number transport with LHCb Measurement of the baryon number transport with LHCb Marco Adinolfi University of Bristol On behalf of the LHCb Collaboration 13 April 2011 / DIS 2011 Marco Adinolfi DIS 2011-13 April 2011 - Newport News

More information

π + Electroproduction at High t

π + Electroproduction at High t π + Electroproduction at High t 2017 CAP Congress - Queen's University (Kingston, ON) Samip Basnet Supervisor : Dr. G. M. Huber University of Regina SAPIN-2016-00031 5/30/17 Samip Basnet, Dept. of Physics,

More information

Recoil Polarisation Measurements in Meson Photoproduction

Recoil Polarisation Measurements in Meson Photoproduction Recoil Polarisation Measurements in Meson Photoproduction Polarisation Observables and Partial Wave Analysis Bad Honnef 2009 Derek Glazier, D.P. Watts University of Edinburgh Helpful for PWA At least 8

More information

GlueX Capabilities for Nuclear Photoproduction

GlueX Capabilities for Nuclear Photoproduction GlueX Capabilities for Nuclear Photoproduction A. Somov, Jefferson Lab Nuclear Photoproduction with GlueX April 28 29, 2016 Physics Topics with Nuclear Targets Considered for GlueX Photoproduction of vector

More information

Min Huang Duke University, TUNL On behalf of the E (g2p) collaboration

Min Huang Duke University, TUNL On behalf of the E (g2p) collaboration Min Huang Duke University, TUNL On behalf of the E08-027 (g2p) collaboration Hall A Collaboration Meeting, June 13th, 2013 E08 027 g 2p & the LT Spin Polarizability Spokespeople Alexandre Camsonne (JLab)

More information

arxiv:hep-ph/ v1 15 Dec 2004

arxiv:hep-ph/ v1 15 Dec 2004 On the intrinsic limitation of the Rosenbluth method at large Q 2. E. Tomasi-Gustafsson DAPNIA/SPhN, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France (Dated: February 2, 2008) Abstract arxiv:hep-ph/0412216v1

More information

Large Acceptance High Luminosity Detector at 12 GeV

Large Acceptance High Luminosity Detector at 12 GeV Outline Large Acceptance High Luminosity Detector at 12 GeV E.Chudakov 1 1 Hall A, JLab For June 2006 Hall A Meeting Outline Outline 1 Motivation for a Large Acceptance at High Luminosity DIS Parity Violation

More information

Deeply Virtual Compton Scattering on the neutron

Deeply Virtual Compton Scattering on the neutron Deeply Virtual Compton Scattering on the neutron Malek MAZOUZ For JLab Hall A & DVCS collaborations Physics case n-dvcs experimental setup Analysis method Results and conclusions Exclusive Reactions at

More information

E up to Q 2 =13.5

E up to Q 2 =13.5 G n M E12-09-019 up to Q 2 =13.5 (GeV/c) 2 by Ratio Method Form factors Combining n & p form factors GMn by ratio method Hall A GMn 1 In one-photon exchange approx. 2 j ien( p f ){ F1 ( Q ) 2 i q F2 (

More information

Novel Measurements of Proton Structure at HERA

Novel Measurements of Proton Structure at HERA Introduction Combined Cross Sections & QCD Fits NC & CC Cross Section Measurements F L Summary Novel Measurements of Proton Structure at HERA Katie Oliver University of Oxford On behalf of the H1 and ZEUS

More information

Moskov Amaryan Old Dominion University On behalf of the CLAS Collaboration

Moskov Amaryan Old Dominion University On behalf of the CLAS Collaboration High-t Exclusive 0 Photoproduction Moskov Amaryan Old Dominion University On behalf of the CLAS Collaboration Exclusive Meson Production and Short-Range Hadron Structure Workshop Jefferson Lab, Newport

More information

Status of PRad Experiment

Status of PRad Experiment Status of PRad Experiment Chao Gu Duke University For PRad Collaboration Outline The Proton Charge Radius Experiment Setup Analysis Status and Preliminary Results 2 The Proton Charge Radius Puzzle Proton

More information

Where is Two-photon-exchange effects and Why should you be bothered by them

Where is Two-photon-exchange effects and Why should you be bothered by them Where is Two-photon-exchange effects and Why should you be bothered by them Chung-Wen Kao Chung-Yuan Christian University Taiwan In collaboration of Shin Nan Yang (NTU), Yu Bing Dong (CAS), Yu Chun Chen

More information

Min Huang Duke University, TUNL For the Jefferson Lab Hall A E (g2p) collaboration

Min Huang Duke University, TUNL For the Jefferson Lab Hall A E (g2p) collaboration Min Huang Duke University, TUNL For the Jefferson Lab Hall A E08-027 (g2p) collaboration APS April Meeting, April 16th, 2013 E08 027 g 2p & the LT Spin Polarizability Spokespeople Alexandre Camsonne (JLab)

More information

The achievements of the CERN proton antiproton collider

The achievements of the CERN proton antiproton collider The achievements of the CERN proton antiproton collider Luigi DiLella Scuola Normale Superiore, Pisa, Italy Motivation of the project The proton antiproton collider UA1 and UA2 detectors Discovery of the

More information

Linear Collider Beam Instrumentation Overview

Linear Collider Beam Instrumentation Overview Linear Collider Beam Instrumentation Overview Linear Collider R&D Opportunities Workshop May 31 st, 2002 SLAC Eric Torrence* University of Oregon *with M.Woods and D.Cinabro BI Overview Beam Energy Polarization

More information

Spacal alignment and calibration

Spacal alignment and calibration Spacal alignment and calibration Sebastian Piec AGH University of Science and Technology Al. Mickiewicza 3, Cracow, Poland Email: sepiec@poczta.onet.pl The main purpose of my work was alignment and calibration

More information

Search for Gluonic Excitations with GlueX at Jefferson Lab

Search for Gluonic Excitations with GlueX at Jefferson Lab Search for Gluonic Excitations with GlueX at Jefferson Lab Volker Credé Florida State University Tallahassee, FL The Structure and Dynamics of Hadrons Hirschegg, 01/19/2007 Outline 1 2 3 4 Outline 1 2

More information

The MUon proton Scattering Experiment (MUSE) at the Paul Scherrer Institute

The MUon proton Scattering Experiment (MUSE) at the Paul Scherrer Institute The MUon proton Scattering Experiment (MUSE) at the Paul Scherrer Institute 1. Motivation for a muon scattering experiment 2. Components of the MUSE experiment 3. Projected results Steffen Strauch for

More information

DVCS Measurement and Luminosity Determination at COMPASS

DVCS Measurement and Luminosity Determination at COMPASS .. EPJ manuscript No. Will be inserted by the editor (will be inserted by the editor) DVCS Measurement and Luminosity Determination at COMPASS Nicolas du Fresne von Hohenesche for the COMPASS collaboration,,a

More information

Measurements of the Proton and Kaon Form Factors via ISR at BABAR

Measurements of the Proton and Kaon Form Factors via ISR at BABAR Measurements of the Proton and Kaon Form Factors via ISR at BABAR Fabio Anulli INFN Sezione di Roma on behalf of the BABAR Collaboration HADRON 015 XVI International Conference on Hadron Spectroscopy 13

More information

The Electric Form Factor of the Neutron for SBS

The Electric Form Factor of the Neutron for SBS The Electric Form Factor of the Neutron for SBS Seamus Riordan Stony Brook University seamus.riordan@stonybrook.edu July 1, 16 Seamus Riordan SBS 16 G n E 1/1 G E /G M at high Q - Spin Observables, Pol.

More information

Neutrino Energy Reconstruction Methods Using Electron Scattering Data. Afroditi Papadopoulou Pre-conference, EINN /29/17

Neutrino Energy Reconstruction Methods Using Electron Scattering Data. Afroditi Papadopoulou Pre-conference, EINN /29/17 Neutrino Energy Reconstruction Methods Using Electron Scattering Data Afroditi Papadopoulou Pre-conference, EINN 2017 10/29/17 Outline Nuclear Physics and Neutrino Oscillations. Outstanding Challenges

More information

Detecting. Particles

Detecting. Particles Detecting Experimental Elementary Particle Physics Group at the University of Arizona + Searching for Quark Compositeness at the LHC Particles Michael Shupe Department of Physics M. Shupe - ATLAS Collaboration

More information

Electron Beam Polarimetry: Status and Prospects. DIS 2005, Madison, April 2005 E. Chudakov (JLab)

Electron Beam Polarimetry: Status and Prospects. DIS 2005, Madison, April 2005 E. Chudakov (JLab) Electron Beam Polarimetry: Status and Prospects DIS 2005, Madison, April 2005 E. Chudakov (JLab) Motivation: what accuracy is required for various experiments Methods in use: Optical methods Mott scattering

More information

Overview of Nucleon Form Factor Experiments with 12 GeV at Jefferson Lab

Overview of Nucleon Form Factor Experiments with 12 GeV at Jefferson Lab Overview of Nucleon Form Factor Experiments with 12 GeV at Jefferson Lab E. Cisbani INFN Rome Sanità Group and Italian National Institute of Health Outlook Overview of Form Factors Experimental Status

More information

Recent results at the -meson region from the CMD-3 detector at the VEPP-2000 collider

Recent results at the -meson region from the CMD-3 detector at the VEPP-2000 collider Recent results at the -meson region from the CMD-3 detector at the VEPP-2000 collider Vyacheslav Ivanov *1, Evgeny Solodov 1, Evgeny Kozyrev 1, and Georgiy Razuvaev 1 1 Budker Institute of Nuclear Physics,

More information

Physics at Hadron Colliders Partons and PDFs

Physics at Hadron Colliders Partons and PDFs Physics at Hadron Colliders Partons and PDFs Marina Cobal Thanks to D. Bettoni Università di Udine 1 2 How to probe the nucleon / quarks? Scatter high-energy lepton off a proton: Deep-Inelastic Scattering

More information