Hall B Physics Program and Upgrade Plan

Size: px
Start display at page:

Download "Hall B Physics Program and Upgrade Plan"

Transcription

1 Hall B Physics Program and Upgrade Plan presented by Volker Burkert and Sebastian Kuhn Outline: Introduction Deeply Virtual Exclusive Processes and GPDs Structure Functions & Semi-Inclusive Processes Equipment Plan JLab User Group Meeting, June 10-12, 2002

2

3 Physics Program with CLAS ++ at 12 GeV Internal Nucleon Dynamics and Generalized Parton Distributions Nucleon Structure Functions Semi-exclusive processes - transversity, flavor tagging Elastic and Transition Formfactors Physics at very small Q 2

4 A real 3-dimensional Scotty

5 Scotty Reduced to a Single Dimension density Calcium Water Carbon z

6 Snapshot of a Nucleon (taken through a low resolution microscope) meson cloud quark spin sea quarks valence quarks orbital angular momentum correlations We need to map out the complete wave function of the nucleon!

7 The nucleon structure has been studied in inclusive lepton nucleon scattering experiments for the past 35 years and we learned about: quark longitudinal momentum densities quark helicity densities..

8 The Nucleon Probed in Deeply Inclusive Scattering Longitudinal Parton Momentum Distribution sea quarks xf(x) valence quarks x 1

9 Deeply Virtual Exclusive Processes Inclusive Scattering Forward Compton Scattering θ = 0 Deeply Virtual Compton Scattering (DVCS) t Probes the internal nucleon dynamics at the amplitude level. H(x, ξ, t),.

10 Model of Generalized Parton Distributions Quark distribution q(x) DVCS/BH asymmetry x=ξ qq distribution cross section at fixed ξ

11 Deeply Virtual Processes DVCS DVMP long. only hard gluon hard vertices depends on all 4 GPDs

12 Scaling Cross Sections for Photon and Meson Production 1/Q 6 1/Q 4 In hard scattering, photons dominate at high Q 2

13 Bethe-Heitler as amplifier for the DVCS amplitude Measures DVCSin the interference with BH process: d 4 σ dq 2 dx B dtdφ ~ T DVCS + T BH 2 σ + -σ - ~Im(T DVCS ) T BH At 11 GeV DVCS and BH are comparable in magnitude => measure DVCS cross section

14 DVCS/BH Asymmetry from CLAS 4.25GeV CLAS data show sensitivity to qgq correlations (Belitsky, Mueller, 02)

15 DVCS/BH Asymmetry expected at 11 GeV ep epγ (all final state particles detected) 1000 hours of beam time (one bin of many)

16 DVCS/BH - Target Spin Asymmetry A UL Belitsky, Mueller, 2002 A UL Q2=3GeV2 => Shows different sensitivity to GPD parametrization compared to beam asymmetry.

17 Double-DVCS (D-DVCS) e + e - e - e - -2ξ x+ξ 2(ξ ξ ) x-ξ Q 2 > M ρ 2 H, E, H, E p p D-DVCS allows probing kinematics x = ξ

18 Model of Generalized Parton Distributions Quark distribution q(x) DVCS/BH asymmetry x=ξ qq distribution DDVCS/BH asymmetry x= ξ

19

20 ρ ο π + π Decay Distributions at 11 GeV

21 Separated Cross Section for γ*p -> pρ ο (400hrs) x B = => other kinematics -t = GeV 2 measured at the same time. σ L σ T other channels, e.g. pω measured at the same time

22 Separated Cross section for ep eπ + n Rosenbluth separation for σ L /σ T x B = t = GeV 2 + other bins at the same time Measure pπ ο, pη, KΛ, KΣ,.. simultaneously σ L σ TOT σ T

23 (Semi-)Inclusive (Deeply) Inelastic Scattering Extract valence quark distributions of the nucleon Constrain GPDs Quantify higher twist effects Study transition from partonic to hadronic picture in structure and fragmentation functions - Duality? Learn about new distribution functions like transversity Study quark propagation through cold QCD matter

24 But is 11 GeV high enough? CLAS at 4-6 GeV = Constituent Quark Detector Too high in energy for Chiral Perturbation Theory Too low in energy for pqcd Premise: CLAS at 11 GeV = Higher Twist Detector OPE can describe inclusive structure functions and moments down to Q 2 = 1 GeV 2 Duality seems to work nicely for inclusive structure functions - why not for hadronization? We can TEST this premise in both quark distributions (inclusive structure functions) and quark hadronization (fragmentation functions)

25 The Nucleon Studied in Inclusive en Processes Longitudinal Parton Momentum Distribution ensity momentum d q +q q - q 0 x B 1

26 Proton Helicity Asymmetry A1p

27 Deuteron Helicity Asymmetry A 1d (no nuclear corrections)

28 Polarized Structure Function g 2p (x,q 2 )

29 Neutron Structure Function F 2n SLAC (FS)

30 detect slow recoil proton in backwards direction Neutron Structure Function F 2n Uncertainty due to Fermi motion and off-shell effects

31 The Nucleon Studied in Semi-Inclusive en Processes D h (z) π e h 1 K Longitudinal and transverse parton momentum and spin distributions (tagged by flavor) Quark-gluon (quark-quark) correlations and final state interactions Hadronization ensity momentum d d +d d - d u -u 0 x B, k T, 1

32 The Nucleon Studied in Semi-Inclusive en Processes Beam Pol. Targ. Pol. Moments Sensitive to 0 0 <cosφ> <cos2φ> Higher Twist, k T L 0 <sinφ> e(x), H 1 (z) 0 L <sinφ> <sin2φ> Higher Twist, H 1 (z) 0 L T L,T <sin(φ φ S )> <sin(φ+φ S )> Transversity q( 1 x) Flavor-dependent quark polarization

33 Semi-Inclusive Deeply Inelastic Scattering Double Spin Asymmetry Target*Beam Sensitive to contributions from different quark flavors to proton spin d - d

34 Semi-Inclusive Deeply Inelastic Scattering Single Spin Asymmetry Target (perp.) Sensitive to transversity distribution u -u

35 Semi-Inclusive Deeply Inelastic Scattering Single Spin Asymmetry Beam (long.) Sensitive to twist-3 e distribution and Collins fragmentation function H 1 (z) (Data from CLAS at 4 GeV)

36 Semi-Inclusive Deeply Inelastic Scattering Single Spin Asymmetry Target (long.) Sensitive to twist-2 and -3 distribution functions and Collins fragmentation function (Data from CLAS at 4.25 GeV)

37 Semi-Inclusive Deeply Inelastic Scattering on Nuclei

38 Semi-Inclusive Deeply Inelastic Scattering on Nuclei

39 Status of Magnetic Form Factors for Proton and Neutron

40 Projected G Mn data at 11 GeV with CLAS++

41 Physics potentials with forward electron facility Meson spectroscopy, e.g. with 4He - gas targets Heavy baryon spectroscopy Time-like virtual-compton-scattering Structure functions at very low Q2 GDH Sum Rule..others...

42 Requirements for the CLAS upgrade: Retain high statistics capabilities for exclusive processes at beam b energies up to 12 GeV Complement missing mass techniques by more complete detection of hadronic final state Increase maximum luminosity to cm - 2 sec -1 Extend particle ID to higher momenta (e - /π, π + /Κ +, γ/π ο ) Complement CLAS detection system with new Central Detector - tracking and photon detection in angular range 5 o -135 o - veto events with incomplete determination of final state Reduce DC occupancies to reach higher luminosities - reduce DC cell sizes - new magnetic shielding for Moller electrons Upgrade the CLAS Forward detection system - implement new threshold Cherenkov detector - improve time-of-flight resolution - increase calorimeter granularity for π ο /γ separation

43

44 CLAS ++ - The Central Detector (CD) Superconducting solenoid shields Moller electrons provides large angle tracking and momentum analysis polarized target operation High density SciFi tungsten calorimeter Time-of of-flight flight detectors, de/dx dx Tracking chamber & silicon strip detector

45 CLAS ++ - Central Detector Concept Superconducting coil flux return yoke Electromagnetic calorimeter SciFi-tungsten Time-of of-flight ~ 1.1m Drift Chamber Micro Strip Detector

46 Magnetic Field Distribution in Flux Return Iron Solenoid Coil Flux Return Iron Central B-FieldB 5 Tesla (Gauss)

47 Magnetic Field Distribution in Solenoid Magnet B-Field(Gauss) -0.3m 0 0.3m z r 0.3m

48 Magnetic Shielding of Moller Electrons 32 MeV < E < 830 MeV 3.5 MeV < E < 7.5 MeV 3 o 3 o => Moller electrons are contained in 3 o cone

49 Moller Electrons in Target Region Without B-Field L=10 35 cm -2 s -1, T = 250nsec

50 Moller Electrons in Target Region With B-Field L=10 35 cm -2 s -1, T = 250nsec, B = 5T solenoid coil B=5T

51 Central Electromagnetic Calorimeter PMT Scintillating Fibers Electromagnetic calorimeter SciFi-tungsten

52 Central Calorimeter - Theta Fiber Readout Scintillating Fibers => prototyping effort underway

53 Central Time-of-Flight Scintillators 50 Scintillator Strips PID by Time of Flight

54 Central Drift Chamber Cathode Pad Layer Cathode Pad Chambers: - 20 pads in azimuth - 40 pads parallel to beam anode wires read out cathode pads read out Anode Wires

55 Central Drift Chamber - Cathode Pads (Detail) Cathode Pads Anode Wires

56 Central Detector - Silicon Strip Detector 10cm Silicon Wafers - vertex reconstruction - high rate operation near target - tracking in full azimuth 5cm beamline

57 Forward Detector System Upgrades Region 1, Region 2, Region 3 Drift Chambers => similar design as current DCs, factor 2 smaller cell sizes Time-of-Fight Detector => improve timing resolution to Forward calorimeter => extend γ/π 0 separation to higher momenta + instrument coil regions with calorimetry (PbWO 4 crystals ) Cherenkov Counter => implement second CC with pion threshold ~ 5GeV

58 New Gas Cherenkov Counter 2x8 Mirrors Torus coils Target Light collection and PMTs

59 Inner Calorimeter in Torus coil region Torus coils Inner Calorimeter e.g. PbWO 4 crystals

60 Forward TOF Detector - Improve Time Resolution - reduce scintillator width to 5cm - add 2nd scintillator layer => δt ~ 50psec

61 Pre-shower Calorimeter Scintillator/lead sandwich, with wavelength shifting fiber readout, ~ 4 rad. length. 3.5cm Scintillator strips, ~1cm thick Lead sheets ~ 1mm thick Wavelength Shifting Fibers embedded in scintillator

62 Data Acquisition & Trigger Trigger Rate: 15 KHz & 10 KBytes/event Level 3 Filter Noise reduction 5 KHz & 5 KBytes/event Data Rate: 25 MBytes/sec

63 CLAS ++ Expected Performance ep eπ + n E=6GeV E=11GeV σ=11mev σ=16mev

64 CLAS ++ Expected Missing Mass Resolution ep eπ + n E = 11 GeV, W = 2-2.5GeV

65 CLAS ++ - Expected Performance Forward Detector Central Detector Angular coverage: Tracks (inbending) 10 o -40 o 42 o o Tracks (outbending) 5 o -40 o 42 o o Photons 3 o -40 o 42 o o Track resolution: δp (GeV/c) 0.003p p p T δθ (mr) 1 5 δφ (mr) Photon detection: Energy range > 100 MeV > 50 MeV δe/e 0.09 (1 GeV) 0.06 (1 GeV) δθ (mr) 6 (1 GeV) 15 (1 GeV) Neutron detection: η eff 0.5 (p > 1.5 GeV/c) Particle id: e/π >>1000 ( < 5 GeV/c) >100 ( > 5 GeV/c) π/k (4σ) < 3GeV/c 0.6GeV/c K/p (4σ) < 5GeV/c 1.1GeV/c

66 ep epγ/m Kinematics at 11 GeV

67 DVCS/BH Interference with CLAS 11 GeV

68 DVCS/BH Asymmetry with CLAS 11 GeV

69 DVCS/BH Asymmetry with CLAS 11 GeV

70 Small Angle Electron Detection Quasi-real photoproduction by tagging ~1 o electrons High hadronic interaction rate Low accidental rate compared to real photon tagging Linearly polarized photons come for free, P = Broad physics potentials in meson spectroscopy, TDVCS, η/η Primakoff experiment,... Detector options are being evaluated - located downstream of CLAS Could exist before the upgrade (no cost impact!)

71 The Mission of CLAS ++ and Hall B The primary goal of experiments using the CLAS ++ detector at energies up to 12 GeV is the study of the nucleon wave function in terms of elementary degrees of freedom. Towards this end, the detector has been optimized for studies of a wide variety of exclusive and semi-inclusive reactions. Inclusive processes, for which the unique properties of the Hall B instrumentation are essential, can be measured as well.

Hall B Physics Program and Upgrade Plan

Hall B Physics Program and Upgrade Plan Hall B Physics Program and Upgrade Plan Volker D. Burkert Jefferson Lab Introduction The Equipment Plan The 12 GeV Physics Program Conclusions PAC23 Meeting on the 12 GeV Upgrade, January 20, 2003 Physics

More information

Probing Generalized Parton Distributions in Exclusive Processes with CLAS

Probing Generalized Parton Distributions in Exclusive Processes with CLAS Probing Generalized Parton Distributions in Exclusive Processes with CLAS Volker D. Burkert Jefferson Lab The nucleon: from structure to dynamics First GPD related results in DVCS and DVMP Experimental

More information

Experimental Overview Generalized Parton Distributions (GPDs)

Experimental Overview Generalized Parton Distributions (GPDs) Experimental Overview Generalized Parton Distributions (GPDs) Latifa Elouadrhiri Jefferson Lab Lattice Hadron Physics July 31 August 3, 2006 Outline Generalized Parton Distributions - a unifying framework

More information

HERMES status and future running

HERMES status and future running HERMES status and future running Benedikt Zihlmann University of Gent on behalf of the collaboration DESY PRC Mai 24 p.1/18 Access to Transversity Single spin azimuthal asymmetries on a transverse polarized

More information

Measurements with Polarized Hadrons

Measurements with Polarized Hadrons Aug 15, 003 Lepton-Photon 003 Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Contents: Introduction: Spin of Proton Polarized Deep Inelastic Lepton-Nucleon Scattering 1.

More information

Generalized Parton Distributions and Nucleon Structure

Generalized Parton Distributions and Nucleon Structure Generalized Parton Distributions and Nucleon Structure Volker D. Burkert Jefferson Lab With pqcd established we have the tool to understand matter at a deeper level. Nobel prize 2004 - D. Gross, D. Politzer,

More information

DVCS with CLAS. Elton S. Smith. Jefferson Lab. Conference on Intersections of Particle and Nuclear Physics New York, Elton S.

DVCS with CLAS. Elton S. Smith. Jefferson Lab. Conference on Intersections of Particle and Nuclear Physics New York, Elton S. DVCS with CLAS Elton S. Smith Jefferson Lab Conference on Intersections of Particle and Nuclear Physics New York, 2003 Elton S. Smith 1 Deeply Virtual Compton Scattering Inclusive Scattering Forward Compton

More information

Shape and Structure of the Nucleon

Shape and Structure of the Nucleon Shape and Structure of the Nucleon Volker D. Burkert Jefferson Lab Science & Technology Peer Review June 25-27, 2003 8/7/2003June 25, 2003 Science & Technology Review 1 Outline: From form factors & quark

More information

The Physics Program of CLAS12

The Physics Program of CLAS12 1 The Physics Program of CLAS1 S. Niccolai a, for the CLAS collaboration a Institut de Physique Nucléaire d Orsay, Orsay (France) The experimental program to study nucleon structure at the 1-GeV upgraded

More information

Exclusive Physics with the HERMES Recoil Detector

Exclusive Physics with the HERMES Recoil Detector Exclusive Physics with the HERMES Recoil Detector Erik Etzelmüller on behalf of the HERMES Collaboration!!! workshop on! Exploring Hadron Structure with Tagged Structure Functions! Thomas Jefferson National

More information

Recent results on DVCS from Hall A at JLab

Recent results on DVCS from Hall A at JLab Recent results on DVCS from Hall A at JLab Carlos Muñoz Camacho IPN-Orsay, CNRS/IN2P3 (France) Spatial and Momentum Tomography of Hadrons and Nuclei INT-17-3 Sep 5, 2017 Carlos Muñoz Camacho (IPN-Orsay)

More information

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives Deeply Virtual Compton Scattering off 4 He: New results and future perspectives M. Hattawy (On behalf of the CLAS collaboration) 2016 JLab Users Group Workshop and Annual Meeting June 20-22, Jefferson

More information

Neutrons in a Spin: Nucleon Structure at Jefferson Lab

Neutrons in a Spin: Nucleon Structure at Jefferson Lab Neutrons in a Spin: Nucleon Structure at Jefferson Lab Daria Sokhan University of Glasgow, UK on behalf of the CLAS Collaboration IoP Nuclear Physics Group Conference, York 8 th April 2013 Nucleon structure

More information

CLAS12 at Jefferson Lab

CLAS12 at Jefferson Lab CLAS12 at Jefferson Lab Daria Sokhan University of Glasgow, UK IPPP/NuSTEC Topical Meeting on Neutrino-Nucleus Scattering IPPP, Durham, UK 19 April 2017 Jefferson Lab 6 GeV era Jefferson Lab CEBAF: Continuous

More information

GENERALIZED PARTON DISTRIBUTIONS

GENERALIZED PARTON DISTRIBUTIONS Exploring fundamental questions of NUCLEON STRUCTURE with GENERALIZED PARTON DISTRIBUTIONS Florian Herrmann 16.9.2012 Corfu Summer School LHC COMPASS SPS Versatile facility for hadron structure studies

More information

Timelike Compton Scattering

Timelike Compton Scattering Timelike Compton Scattering Tanja Horn In collaboration with: Y. Illieva, F.J. Klein, P. Nadel-Turonski, R. Paremuzyan, S. Stepanyan 12 th Int. Conference on Meson-Nucleon Physics and the Structure of

More information

Deeply Virtual Compton Scattering and Meson Production at JLab/CLAS

Deeply Virtual Compton Scattering and Meson Production at JLab/CLAS Deeply Virtual Compton Scattering and Meson Production at JLab/CLAS Hyon-Suk Jo for the CLAS collaboration IPN Orsay PANIC 2011 M.I.T. Cambridge - July 25, 2011 19th Particles & Nuclei International Conference

More information

Nucleon Valence Quark Structure

Nucleon Valence Quark Structure Nucleon Valence Quark Structure Z.-E. Meziani, S. Kuhn, O. Rondon, W. Melnitchouk Physics Motivation Nucleon spin and flavor structure High-x quark distributions Spin-flavor separation Moments of structure

More information

Deep Exclusive π " Production with transversely polarized He3 using SoLID

Deep Exclusive π  Production with transversely polarized He3 using SoLID Deep Exclusive π " Production with transversely polarized He3 using SoLID A run-group proposal with E12-10-006 Zhihong Ye, ANL On behalf of Co-Spokespeople: Garth Huber (contact), Zafar Ahmed, from Univ.

More information

Measuring Form Factors and Structure Functions With CLAS

Measuring Form Factors and Structure Functions With CLAS Measuring Form Factors and Structure Functions With CLAS Jerry Gilfoyle for the CLAS Collaboration Physics Department, University of Richmond, Virginia Outline: 1. Jefferson Lab and the CLAS Detector..

More information

Meson spectroscopy at CLAS and CLAS12: the present and the future. Raffaella De Vita INFN Genova for the CLAS Collaboration

Meson spectroscopy at CLAS and CLAS12: the present and the future. Raffaella De Vita INFN Genova for the CLAS Collaboration Meson spectroscopy at CLAS and CLAS12: the present and the future Raffaella De Vita INFN Genova for the CLAS Collaboration Why hadron spectroscopy? QCD is responsible for most of the visible mass in the

More information

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV Dipangkar Dutta Mississippi State University (with Dave Gaskell & Garth Huber) Polarized Target Workshop: June 17-18, 2010 Outline

More information

A glimpse of gluons through deeply virtual Compton scattering

A glimpse of gluons through deeply virtual Compton scattering A glimpse of gluons through deeply virtual Compton scattering M. Defurne On behalf of the DVCS Hall A collaboration CEA Saclay - IRFU/SPhN June 1 st 017 June 1 st 017 1 / 7 The nucleon: a formidable lab

More information

Time-like Compton Scattering with transversely polarized target

Time-like Compton Scattering with transversely polarized target Time-like Compton Scattering with transversely polarized target Vardan Tadevosyan AANSL (YerPhI) Foundation Arthur Mkrtchyan CUA Outline Physics case and motivation Experimental setup Simulation results

More information

Experimental Program of the Future COMPASS-II Experiment at CERN

Experimental Program of the Future COMPASS-II Experiment at CERN Experimental Program of the Future COMPASS-II Experiment at CERN Luís Silva LIP Lisbon lsilva@lip.pt 24 Aug 2012 On behalf of the COMPASS Collaboration co-financed by THE COMPASS EXPERIMENT Common Muon

More information

Time-like Compton Scattering with transversely polarized target

Time-like Compton Scattering with transversely polarized target Time-like Compton Scattering with transversely polarized target Vardan Tadevosyan AANSL (YerPhI) Foundation JLab 1/19/2017 Outline Physics case and motivation Experimental setup Simulation results Latest

More information

Proposal submitted to the SPS comittee (May 17,2010)

Proposal submitted to the SPS comittee (May 17,2010) Proposal for GPD studies at COMPASS E. Bur9n CEA- Saclay Irfu/SPhN On behalf of the COMPASS Collabora9on MENU 2010 College of William & Mary Williamsburg - June 2 nd, 2010 Proposal submitted to the SPS

More information

The Jlab 12 GeV Upgrade

The Jlab 12 GeV Upgrade The Jlab 12 GeV Upgrade R. D. McKeown Jefferson Lab College of William and Mary 1 12 GeV Science Program The physical origins of quark confinement (GlueX, meson and baryon spectroscopy) The spin and flavor

More information

Deeply Virtual Compton Scattering on the neutron

Deeply Virtual Compton Scattering on the neutron Deeply Virtual Compton Scattering on the neutron Malek MAZOUZ For JLab Hall A & DVCS collaborations Physics case n-dvcs experimental setup Analysis method Results and conclusions Exclusive Reactions at

More information

Single and double polarization asymmetries from deeply virtual exclusive π 0 electroproduction

Single and double polarization asymmetries from deeply virtual exclusive π 0 electroproduction Single and double polarization asymmetries from deeply virtual exclusive π electroproduction University of Connecticut E-mail: kenjo@jlab.org Harut Avakian, Volker Burkert et al. (CLAS collaboration) Jefferson

More information

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives Deeply Virtual Compton Scattering off 4 He: New results and future perspectives M. Hattawy (On behalf of the CLAS collaboration) Next generation nuclear physics with JLab12 and EIC 10-13 February 2016,

More information

Deeply Virtual Compton JLab

Deeply Virtual Compton JLab Deeply Virtual Compton Scattering @ JLab Franck Sabatié CEA Saclay For the Hall A and Hall B collaborations Exclusive 07 - JLab May 1 st 007 Introduction Non-dedicated measurements E00-110 experiment in

More information

Di-muon electroproduction with CLAS12

Di-muon electroproduction with CLAS12 Di-muon electroproduction with CLAS1 S. Stepanyan (JLAB) CLAS collaboration meeting, June 16-18, 016 Ø Physics motivation for LOI: Double DVCS J/ψ-electroproduction Ø Detector configuration Background

More information

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois Helicity: Experimental Status Matthias Grosse Perdekamp, University of Illinois Content o The Experimental Effort o Quark and Sea Quark Helicity è DIS, SIDIS, pp è new FFs for global analysis è results

More information

M.Battaglieri Istituto Nazionale di Fisica Nucleare Genova - Italy. A Forward Photon Tagging Facility for CLAS12

M.Battaglieri Istituto Nazionale di Fisica Nucleare Genova - Italy. A Forward Photon Tagging Facility for CLAS12 A Forward Photon Tagging Facility for CLAS12 M.Battaglieri Istituto Nazionale di Fisica Nucleare Genova - Italy 1) From CEBAF at 6 GeV 2) From CEBAF at 6 GeV to CEBAF at 12 GeV add Hall D (and beam line)

More information

Partonic Structure of Light Nuclei

Partonic Structure of Light Nuclei Partonic Structure of Light Nuclei M. Hattawy - Physics motivations - Recent results from CLAS - Proposed measurements with CLAS12 INT 17-3, Thursday, August 31st 2017 EMC Effect EMC effect: the modification

More information

HERMES Status Report

HERMES Status Report HERMES Status Report Sergey Yaschenko for the Collaboration DESY PRC, Hamburg, April 1, 008 Outline Introduction Physics Highlights from HERMES Isoscalar extraction of ΔS Model-dependent constraint on

More information

Cascade Spectroscopy at CLAS

Cascade Spectroscopy at CLAS Cascade Spectroscopy at CLAS D.P. Weygand Thomas Jefferson National Accelerator Facility 12/1/2005 D.P. Weygand Cascade Workshop 1 Outline: Ξ* Resonances at CLAS Ghosts of Ξ s Past Ξ(1620), High Mass Ξ*

More information

Plans to measure J/ψ photoproduction on the proton with CLAS12

Plans to measure J/ψ photoproduction on the proton with CLAS12 Plans to measure J/ψ photoproduction on the proton with CLAS12 Pawel Nadel-Turonski Jefferson Lab Nuclear Photoproduction with GlueX, April 28-29, 2016, JLab Outline Introduction J/ψ on the proton in CLAS12

More information

The GPD program at Jefferson Lab: recent results and outlook

The GPD program at Jefferson Lab: recent results and outlook The GPD program at Jefferson Lab: recent results and outlook Carlos Muñoz Camacho IPN-Orsay, CNRS/INP3 (France) KITPC, Beijing July 17, 1 Carlos Muñoz Camacho (IPN-Orsay) GPDs at JLab KITPC, 1 1 / 3 Outline

More information

Deuteron from CLAS/EG1B Data. Spin Structure Functions of the OUTLINE. Nevzat Guler (for the CLAS Collaboration) Old Dominion University

Deuteron from CLAS/EG1B Data. Spin Structure Functions of the OUTLINE. Nevzat Guler (for the CLAS Collaboration) Old Dominion University Spin Structure Functions of the Deuteron from CLAS/EGB Data Nevzat Guler (for the CLAS Collaboration) Old Dominion University OULINE Formalism Experimental setup Data analysis Results and Conclusion Motivation

More information

THE GPD EXPERIMENTAL PROGRAM AT JEFFERSON LAB. C. Muñoz Camacho 1

THE GPD EXPERIMENTAL PROGRAM AT JEFFERSON LAB. C. Muñoz Camacho 1 Author manuscript, published in "XIX International Baldin Seminar on High Energy Physics Problems, Relativistic Nuclear Physics and Quantum Chromodynamics, Dubna : Russie (8)" THE GPD EXPERIMENTAL PROGRAM

More information

A Measurement of the Induced polarization of electro-produced Λ(1116) with CLAS

A Measurement of the Induced polarization of electro-produced Λ(1116) with CLAS A Measurement of the Induced polarization of electro-produced Λ(1116) with CLAS Marianna Gabrielyan Florida International University HUGS 2008 Why study electromagnetic production of kaons? Formalism.

More information

Flavor Decomposition of Nucleon Spin via polarized SIDIS: JLab 12 GeV and EIC. Andrew Puckett Los Alamos National Laboratory INT 09/24/2010

Flavor Decomposition of Nucleon Spin via polarized SIDIS: JLab 12 GeV and EIC. Andrew Puckett Los Alamos National Laboratory INT 09/24/2010 Flavor Decomposition of Nucleon Spin via polarized SIDIS: JLab 12 GeV and EIC Andrew Puckett Los Alamos National Laboratory INT 09/24/2010 Outline Nucleon Structure Nucleon spin structure Flavor decomposition

More information

Spin Structure of the Nucleon: quark spin dependence

Spin Structure of the Nucleon: quark spin dependence Spin Structure of the Nucleon: quark spin dependence R. De Vita Istituto Nazionale di Fisica Nucleare Electromagnetic Interactions with Nucleons and Nuclei EINN005 Milos September, 005 The discovery of

More information

Analysis of Lepton Pair Production at GlueX

Analysis of Lepton Pair Production at GlueX Analysis of Lepton Pair Production at GlueX A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science degree in Physics from the College of William and Mary by

More information

Generalized Parton Distributions Program at COMPASS. QCD Evolution 2015

Generalized Parton Distributions Program at COMPASS. QCD Evolution 2015 Generalized Parton Distributions Program at COMPASS Eric Fuchey (CEA Saclay) On behalf of COMPASS Collaboration QCD Evolution 2015 Thomas Jefferson National Accelerator Facility (May 26-30 2014) Generalized

More information

The Neutral-Particle Spectrometer

The Neutral-Particle Spectrometer The Neutral-Particle Spectrometer White Paper outlining the Science and Path to Realization of the NPS The Neutral-Particle Spectrometer (NPS) Collaboration at Jefferson Lab November 26, 2014 The two-arm

More information

Studies of OAM at JLAB

Studies of OAM at JLAB Studies of OAM at JLAB Harut Avakian Jefferson Lab UNM/RBRC Workshop on Parton Angular Momentum, NM, Feb 2005 Introduction Exclusive processes Semi-Inclusive processes Summary * In collaboration with V.Burkert

More information

Hadron Physics with Real and Virtual Photons at JLab

Hadron Physics with Real and Virtual Photons at JLab Hadron Physics with Real and Virtual Photons at JLab Elton S. Smith Jefferson Lab Virtual photons shape of the nucleon Elastic scattering (form factors) Inelastic scattering (uark distributions) Exclusive

More information

Threshold photoproduction of J/y with the GlueX experiment. Lubomir Pentchev Jefferson Lab for the GlueX collaboration

Threshold photoproduction of J/y with the GlueX experiment. Lubomir Pentchev Jefferson Lab for the GlueX collaboration Threshold photoproduction of J/y with the GlueX experiment Lubomir Pentchev Jefferson Lab for the GlueX collaboration 7 th Workshop of the APS Topical Group on Hadron Physics, Washington, DC February 1-3

More information

The Jefferson Lab 12 GeV Program

The Jefferson Lab 12 GeV Program The Jefferson Lab 12 GeV Program The Jefferson Lab facilities have undergone a substantial upgrade, both of accelerator, CEBAF, and of the experimental installations. We will discuss the progress to completion

More information

12 GeV Upgrade Project DESIGN SOLUTIONS DOCUMENT. Upgrade Hall B

12 GeV Upgrade Project DESIGN SOLUTIONS DOCUMENT. Upgrade Hall B 12 GeV Upgrade Project DESIGN SOLUTIONS DOCUMENT Upgrade Hall B Version 1.2 August 9, 2010 DESIGN SOLUTIONS DOCUMENT Upgrade Hall B APPROVALS Approved by: Latifa Elouadrhiri Hall B 12 GeV Control Account

More information

The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters

The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters M.Battaglieri, M.Anghinolfi, P.Corvisiero, A.Longhi, M.Ripani, M.Taiuti Istituto Nazionale di Fisica

More information

Experimental investigation of the nucleon transverse structure

Experimental investigation of the nucleon transverse structure Electron-Nucleus Scattering XIII Experimental investigation of the nucleon transverse structure Silvia Pisano Laboratori Nazionali di Frascati INFN. The unsolved proton How do the lagrangian degrees of

More information

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE rhtjhtyhy EINN 2017 NOVEMBER 1, 2017 PAPHOS, CYPRUS THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE KAWTAR HAFIDI Argonne National Laboratory is a U.S. Department of Energy laboratory

More information

DESY Summer Students Program 2008: Exclusive π + Production in Deep Inelastic Scattering

DESY Summer Students Program 2008: Exclusive π + Production in Deep Inelastic Scattering DESY Summer Students Program 8: Exclusive π + Production in Deep Inelastic Scattering Falk Töppel date: September 6, 8 Supervisors: Rebecca Lamb, Andreas Mussgiller II CONTENTS Contents Abstract Introduction.

More information

Outline. Generalized Parton Distributions. Elastic Form Factors and Charge Distributions in Space. From Form Factors to Quark Spin Distributions

Outline. Generalized Parton Distributions. Elastic Form Factors and Charge Distributions in Space. From Form Factors to Quark Spin Distributions Outline Generalized Parton Distributions in lepton scattering and antiproton annihilation experiments Michael DürenD Universität Gießen en The structure of the proton: From form factors to uark spin distributions

More information

HERMES at HERA: Quark-Gluon Spin Structure of the Nucleon

HERMES at HERA: Quark-Gluon Spin Structure of the Nucleon HERMES at HERA: Quark-Gluon Spin Structure of the Nucleon Introduction The year 2002, marked the 75th anniversary of Dennison s discovery that the proton, just like the electron, carries spin. The electron

More information

GlueX Capabilities for Nuclear Photoproduction

GlueX Capabilities for Nuclear Photoproduction GlueX Capabilities for Nuclear Photoproduction A. Somov, Jefferson Lab Nuclear Photoproduction with GlueX April 28 29, 2016 Physics Topics with Nuclear Targets Considered for GlueX Photoproduction of vector

More information

Spin Structure of the Deuteron from the CLAS/EG1b Data

Spin Structure of the Deuteron from the CLAS/EG1b Data Spin Structure of the Deuteron from the CLAS/EGb Data Nevzat Guler (the CLAS Collaboration) Old Dominion University OUTLINE Formalism Experimental setup Data analysis Results Parameterizations Conclusion

More information

MEIC Central Detector Zhiwen Zhao for JLab MEIC Study Group

MEIC Central Detector Zhiwen Zhao for JLab MEIC Study Group MEIC Central Detector Zhiwen Zhao for JLab MEIC Study Group MEIC Collaboration Meeting 2015/10/07 MEIC Design Goals Energy Full coverage of s from 15 to 65 GeV Electrons 3-10 GeV, protons 20-100 GeV, ions

More information

Neutron DVCS. Carlos Muñoz Camacho. IPN-Orsay, CNRS/IN2P3 (France)

Neutron DVCS. Carlos Muñoz Camacho. IPN-Orsay, CNRS/IN2P3 (France) Neutron DVCS Carlos Muñoz Camacho IPN-Orsay, CNRS/IN2P3 (France) Next generation of nuclear physics with JLab12 and EIC Florida International University February 10 13, 2016 Carlos Muñoz Camacho (IPN-Orsay)

More information

Neutron Structure Function from BoNuS

Neutron Structure Function from BoNuS Neutron Structure Function from BoNuS Stephen BültmannB Old Dominion University for the CLAS Collaboration The Structure of the Neutron at Large x The BoNuS Experiment in 005 First Results from the BoNuS

More information

Target single- and double-spin asymmetries in DVCS off a longitudinal polarised hydrogen target at HERMES

Target single- and double-spin asymmetries in DVCS off a longitudinal polarised hydrogen target at HERMES Target single- and double-spin asymmetries in DVCS off a longitudinal polarised hydrogen target at HERMES David Mahon On behalf of the HERMES Collaboration DIS 2010 - Florence, Italy Overview Mahon DIS

More information

The Detector Design of the Jefferson Lab EIC

The Detector Design of the Jefferson Lab EIC The Detector Design of the Jefferson Lab EIC Jefferson Lab E-mail: mdiefent@jlab.org The Electron-Ion Collider (EIC) is envisioned as the next-generation U.S. facility to study quarks and gluons in strongly

More information

Spin and Azimuthal Asymmetries at JLAB

Spin and Azimuthal Asymmetries at JLAB Spin and Azimuthal Asymmetries at JLAB H. Avakian *) Jefferson Lab Single-Spin Asymmetries Workshop, BNL June 1-3, 2005 *) in collaboration with P.Bosted, V. Burkert and L. Elouadrhiri Outline Introduction

More information

Status report of Hermes

Status report of Hermes Status report of Hermes Delia Hasch Physics Research Committee, DESY Oct 27/28 2004 Spin physics: finalised and new results on: inclusive, semi-inclusive and exclusive measurements nuclear effects data

More information

Exclusive Processes at HERMES

Exclusive Processes at HERMES Exclusive Processes at HERMES Arne Vandenbroucke Gent University, Belgium On behalf of the HERMES Collaboration 22nd Winter Workschop on Nuclear Dynamics La Jolla, California, USA March 17th, 26 Outline

More information

BoNuS Program at CLAS and CLAS12:

BoNuS Program at CLAS and CLAS12: BoNuS Program at CLAS and CLAS12: BoNuS=Barely off-shell Nuclear Structure measurement of the free neutron structure function at large x in deuterium via spectator tagging Jixie Zhang ( 张机械 ) Jefferson

More information

3-D Imaging and the Generalized Parton Distribution Program at an Electron Ion Collider

3-D Imaging and the Generalized Parton Distribution Program at an Electron Ion Collider Workshop on Precision Radiative Corrections for Next Generation Experiments 6 9 May 6, Jefferson Lab, Newport News VA 3-D Imaging and the Generalized Parton Distribution Program at an Electron Ion Collider

More information

MEIC Physics. Tanja Horn for the MEIC group. Jlab Users Meeting

MEIC Physics. Tanja Horn for the MEIC group. Jlab Users Meeting MEIC Physics Tanja Horn for the MEIC group Jlab Users Meeting The Structure of the Proton Naïve Quark Model: proton = uud (valence quarks) QCD: proton = uud + uu + dd + ss + The proton sea has a non-trivial

More information

Hadron structure with photon and antiproton induced reactions - QCD in the non-perturbative range -

Hadron structure with photon and antiproton induced reactions - QCD in the non-perturbative range - Hadron structure with photon and antiproton induced reactions - QCD in the non-perturbative range - Introduction Present: Photoproduction of Mesons at ELSA and MAMI CB-ELSA/TAPS Experiment Crystal Ball/TAPS

More information

Hall B CLAS12 Physics Program. Latifa Elouadrhiri Jefferson Lab

Hall B CLAS12 Physics Program. Latifa Elouadrhiri Jefferson Lab Hall B CLAS12 Physics Program Latifa Elouadrhiri Jefferson Lab 1 Outline Introduction to 12 GeV Upgrade CLAS12 Detector CLAS12 Science Program Summary 2 Generalized Parton Distributions (GPDs) D. Mueller,

More information

CLAS12 DDVCS. N. Baltzell (Jefferson Lab) ECT Workshop, October 24-28, 2016

CLAS12 DDVCS. N. Baltzell (Jefferson Lab) ECT Workshop, October 24-28, 2016 CLAS1 DDVCS N. Baltzell (Jefferson Lab) ECT Workshop, October 4-8, 016 Motivation New CLAS1 LOI for di-muon Electroproduction Includes simultaneously: - Double Deeply Virtual Compton Sca4ering (DDVCS)

More information

Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton

Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton Yuqing Mao Ph.D. Defense November 10, 2014 Dept. of Physics and Astronomy, USC Supported in part

More information

LEPS Physics HOTTA, Tomoaki (RCNP, Osaka University) on behalf of the LEPS&LEPS2 collaboration

LEPS Physics HOTTA, Tomoaki (RCNP, Osaka University) on behalf of the LEPS&LEPS2 collaboration LCS2014 International Workshop LEPS Physics HOTTA, Tomoaki (RCNP, Osaka University) on behalf of the LEPS&LEPS2 collaboration Outline Overview of the LEPS&LEPS2 beamlines Recent results from LEPS Search

More information

Physics Prospects with the JLab 12 GeV Upgrade

Physics Prospects with the JLab 12 GeV Upgrade Physics Prospects with the JLab 12 GeV Upgrade Gluonic Excitations 3-dim view of the Nucleon Valence Structure of the Nucleon Elton S. Smith Jefferson Lab PANIC02 Osaka 1 CEBAF @ JLab Today Main physics

More information

Physics Opportunities at the MEIC at JLab

Physics Opportunities at the MEIC at JLab Physics Opportunities at the MEIC at JLab Pawel Nadel-Turonski Jefferson Lab QCD Evolution Workshop, JLab, May 16, 2012 1 The physics program of an EIC Map the spin and spatial structure of sea quarks

More information

a medium energy collider taking nucleon structure beyond the valence region

a medium energy collider taking nucleon structure beyond the valence region EIC@JLAB a medium energy collider taking nucleon structure beyond the valence region Tanja Horn INT09-43W, Seattle, WA 19 October 2009 Tanja Horn, CUA Colloquium 1 A high-luminosity EIC at JLab Use CEBAF

More information

Subleading-twist effects in single-spin asymmetries in semi-inclusive DIS on a longitudinally polarized hydrogen target

Subleading-twist effects in single-spin asymmetries in semi-inclusive DIS on a longitudinally polarized hydrogen target Subleading-twist effects in single-spin asymmetries in semi-inclusive DIS on a longitudinally polarized hydrogen target G Schnell, H Ohsuga, H Tanaka, T Hasegawa, T Kobayashi, Y Miyachi, T-A Shibata Tokyo

More information

Latifa Elouadrhiri. Phone: X Jefferson Lab. Thomas Jefferson National Accelerator Facility Page 1

Latifa Elouadrhiri. Phone: X Jefferson Lab. Thomas Jefferson National Accelerator Facility Page 1 Deep Exclusive Processes Latifa Elouadrhiri Office: CC B121 Phone: X7303 E-mail: latifa@jlab.org Jefferson Lab Thomas Jefferson National Accelerator Facility Page 1 Outline Some basics about the proton

More information

Cross Section of Exclusive π Electro-production from Neutron. Jixie Zhang (CLAS Collaboration) Old Dominion University Sep. 2009

Cross Section of Exclusive π Electro-production from Neutron. Jixie Zhang (CLAS Collaboration) Old Dominion University Sep. 2009 Cross Section of Exclusive π Electro-production from Neutron Jixie Zhang (CLAS Collaboration) Old Dominion University Sep. 2009 Exclusive π electro-production Detect e`, π and at least ONE of the two final

More information

Longitudinal Double Spin Asymmetry in Inclusive Jet Production at STAR

Longitudinal Double Spin Asymmetry in Inclusive Jet Production at STAR Longitudinal Double Spin Asymmetry in Inclusive Jet Production at STAR Katarzyna Kowalik for the STAR Collaboration Lawrence Berkeley National Laboratory, Berkeley, California 94720 Abstract. This contribution

More information

Tagged Deep Inelastic Scattering:

Tagged Deep Inelastic Scattering: Tagged Deep Inelastic Scattering: Exploring the Meson Cloud of the Nucleon Dipangkar Dutta Mississippi State University Next generation nuclear physics with JLab12 and EIC FIU, Feb 10-13, 2016 Outline

More information

Light-Meson Spectroscopy at Jefferson Lab

Light-Meson Spectroscopy at Jefferson Lab Light-Meson Spectroscopy at Jefferson Lab Volker Credé Florida State University, Tallahassee, Florida PANDA Collaboration Meeting Uppsala, Sweden 06/10/2015 Outline Introduction 1 Introduction 2 Detector

More information

Structure of Generalized Parton Distributions

Structure of Generalized Parton Distributions =Hybrids Generalized Parton Distributions A.V. Radyushkin June 2, 201 Hadrons in Terms of Quarks and Gluons =Hybrids Situation in hadronic physics: All relevant particles established QCD Lagrangian is

More information

Present and Future Exploration of the Nucleon Spin and Structure at COMPASS

Present and Future Exploration of the Nucleon Spin and Structure at COMPASS Present and Future Exploration of the Nucleon Spin and Structure at COMPASS 1 2 3 4 5 6 Longitudinal spin structure Transverse spin structure Gluon polarization Primakov: pion polarizabilities DY: Transverse

More information

Hadron Spectroscopy and the CLAS12 Forward Tagger. Raffaella De Vita INFN Genova Frascati, December 19 th 2012

Hadron Spectroscopy and the CLAS12 Forward Tagger. Raffaella De Vita INFN Genova Frascati, December 19 th 2012 Hadron Spectroscopy and the CLAS12 Forward Tagger Raffaella De Vita INFN Genova Frascati, December 19 th 2012 Why Hadron Spectroscopy QCD is responsible for most of the mass of matter that surrounds us

More information

Neutron structure with spectator tagging at MEIC

Neutron structure with spectator tagging at MEIC Neutron structure with spectator tagging at MEIC C. Weiss (JLab), Users Group Workshop 2014, JLab, 03 Jun 14 Light ion physics with EIC e D pol. e p, n High energy process Forward spectators detected Physics

More information

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV Dedicated Arrays: MEDEA GDR studies (E γ = 10-25 MeV) Highly excited CN E*~ 250-350 MeV, 4 T 8 MeV γ-ray spectrum intermediate energy region 10 MeV/A E beam 100 MeV/A - large variety of emitted particles

More information

Hall C SIDIS Program basic (e,e p) cross sections

Hall C SIDIS Program basic (e,e p) cross sections Hall C SIDIS Program basic (e,e p) cross sections Linked to framework of Transverse Momentum Dependent Parton Distributions Validation of factorization theorem needed for most future SIDIS experiments

More information

Latifa Elouadrhiri. Phone: X Jefferson Lab. Thomas Jefferson National Accelerator Facility Page 1

Latifa Elouadrhiri. Phone: X Jefferson Lab. Thomas Jefferson National Accelerator Facility Page 1 Deep Exclusive Processes Latifa Elouadrhiri Office: CC B121 Phone: X7303 E-mail: latifa@jlab.org Jefferson Lab Thomas Jefferson National Accelerator Facility Page 1 Outline Some basics about the proton

More information

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons?

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons? Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons? Volker Credé Florida State University, Tallahassee, FL Spring Meeting of the American Physical Society Atlanta, Georgia,

More information

Project. 1 Introduction. EPJ Web of Conferences 66, (2014)

Project. 1 Introduction. EPJ Web of Conferences 66, (2014) EPJ Web of Conferences 66, 6 (4) DOI:.5/ epjconf/ 4666 C Owned by the authors, published by EDP Sciences, 4 Probing Sea Quarks and Gluons: Project The Electron-Ion Collider Tanja Horn,a Catholic University

More information

Physics Results on the Tagged Structure Functions at HERA

Physics Results on the Tagged Structure Functions at HERA Physics Results on the Tagged Structure Functions at HERA DESY on behalf of H1 and ZEUS Thomas Jefferson National Accelerator Facility Newport News, VA January 16-18 014 Page 1 Exploring Hadron Structure

More information

PANDA. antiproton Annihilation at DArmstadt

PANDA. antiproton Annihilation at DArmstadt antiproton Annihilation at DArmstadt Physics programme Quark confinement: Charmonium spectroscopy Excited gluons: Exotic hybrid mesons & glueballs Nucleon spin puzzle: transverse quark spin distribution

More information

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration Hall A SIDIS Hall A/C collaboration Meeting June 24 2016 Xuefei Yan Duke University E06-010 Collaboration Hall A collaboration The Incomplete Nucleon: Spin Puzzle [X. Ji, 1997] DIS DΣ 0.30 RHIC + DIS Dg

More information

THE FIFTH STRUCTURE FUNCTION. Liam Murray Research Advisor: Dr. Gerard Gilfoyle

THE FIFTH STRUCTURE FUNCTION. Liam Murray Research Advisor: Dr. Gerard Gilfoyle 1 THE FIFTH STRUCTURE FUNCTION Liam Murray Research Advisor: Dr. Gerard Gilfoyle Overview 2 Scientific Background History of Modern Atomic Physics Standard Model The Hadronic Model Versus Quantum Chromodynamics

More information