Deep Exclusive π " Production with transversely polarized He3 using SoLID

Size: px
Start display at page:

Download "Deep Exclusive π " Production with transversely polarized He3 using SoLID"

Transcription

1 Deep Exclusive π " Production with transversely polarized He3 using SoLID A run-group proposal with E Zhihong Ye, ANL On behalf of Co-Spokespeople: Garth Huber (contact), Zafar Ahmed, from Univ. of Regina and Zhihong Ye 05/07/2016 Drafted proposal:

2 Physics Motivation Generalized Parton Distribution: Ø GPDs give the 3D spatial distributions of quarks and gluons in a nucleon Ø GPDs interrelate the longitudinal and transverse momentum structure of partons within a fast moving hadron. Ø At leading twist-2, four quark chirality conserving GPDs for each quark, gluon type. Ø Because quark helicity is conserved in the hard scattering regime, the produced meson acts as a helicity filter. H (,* x, ξ, t spin avg. no heli. flip H% (,* x, ξ, t spin diff. no heli. flip E (,* x, ξ, t spin avg. helicity flip E' (,* x, ξ, t spin diff. helicity flip Ø Leading order QCD predicts: Vector meson production sensitive to unpolarized GPDs, H and E. Pseudoscalar mesons sensitive to polarized GPDs, H% and E'. 2

3 Physics Motivation Generalized Parton Distribution: Ø Integral of transverse components reduces GPDs into one-dimensional PDF Ø Access to Angular Momenta of quarks & gluons. Ø First moments of GPDs are related to nucleon elastic form factors through modelindependent sum rules: 45. e ( 0 dxh ( (x, ξ, t) ( "5 45. e ( 0 dxe ( (x, ξ, t) ( "5 = F 5 (t) = F 8 (t) } t Dirac and Pauli elastic nucleon form factors. -dependence fairly well known. 45. e ( 0 dxh% ( (x, ξ, t) ( "5 = G : (t) Isovector axial form factor. t dep. poorly known. 45. e ( 0 dxe' ( (x, ξ, t) ( "5 = G ; (t) Pseudoscalar form factor. Very poorly known. 3

4 Physics Motivation Factorization of Hard Reactions: Ø Hard probe creates a small size qq= or gluon configuration (or a real photon in DVCS); (described by pqcd) { Ø Non-perturbative part describes how hadron reacts to this configuration, or how the probe is transformed into hadrons; (parameterized by GPDs). Factorization { L ü ü Hard exclusive meson electroproduction first shown to be factorizable by Collins, Frankfurt & Strikman [PRD 56(1997)2982]. Factorization applies when the γ* is longitudinally polarized. ü corresponds to small size configuration compared to transversely polarized γ*. 4

5 Physics Motivation Exclusive Hard Processes to probe GPDs: Ø Deeply Virtual Compton Scattering (DVCS): ü Sensitive to all four GPDs. Ø Deep Exclusive Meson Production (DEMP): ü Vector mesons sensitive to spin-average H, E. ü Pseudoscalar mesons sensitive to spin-difference, H% and E'. Ø Need a variety of Hard Exclusive Measurements to disentangle different GPDs. 5

6 Physics Motivation Probe GPD-E' with DEMP:. e ( 0 dxe' ( (x, ξ, t) ü GPD-E' is not related to an already known parton distribution. ( 45 "5 = G ; (t) ü Experimental information can provide new nucleon structure info unlikely to be available from any other source. ü G P (t), which is highly uncertain, receives contributions from J PG =0 -- states, and contains an important pion pole contribution. Pion pole contribution to G P (t) Pion pole contribution to meson electroproduction at low t. For this reason, a pion pole-dominated ansatz is typically assumed: where F π is the pion FF and φ? the pion PDF. 6

7 Physics Motivation Target Single Spin Asymmetry in DEMP: Ø Asymmetry with transversely polarized target and longitudinally polarized virtual phone Ø Unpolarized Cross section dσ π L = exclusive π cross section for longitudinal γ* β = angle between transversely polarized target vector and the reaction plane. Ø Polarized cross section has additional components sin β module L/T Separation A = y 1 2 2σL P π σ L 7

8 Physics Motivation Target Single Spin Asymmetry in DEMP: Ø Frankfurt et al. have shown A L vanishes if E' is zero [PRD 60(1999)014010]. n If E' 0, the asymmetry will display a sinβ dependence. n Higher order corrections, which may be significant at low Q 2 for σ L, likely cancel in A L. Ø Belitsky and Müller calculations: ü At Q 2 =10 GeV 2, NLO effects can be large, but cancel in A L (PL B513(2001)349). ü At Q 2 =4 GeV 2, higher twist effects even larger in σ L, but still cancel in the asymmetry (CIPANP 2003). This relatively low value of Q 2 for the expected onset of precocious scaling is important, because it is experimentally accessible at JLab 12 GeV. 8

9 Physics Motivation Target Single Spin Asymmetry in DEMP: Full calculation, including transverse and longitudinal γ HERMES Data: Ø Exclusive π + production by scattering 27.6 GeV positrons or electrons from transverse polarized 1 H without L/T separation. [PLB 682(2010)345] Ø x B =0.13, Q 2 =2.38 GeV 2, -t =0.46 GeV 2. Longitudinal γ only ü Goloskokov and Kroll indicate the HERMES results have significant contributions from transverse photons, as well as from L and T interferences. [Eur Phys.J. C65(2010)137] ü Because no factorization theorems exist for exclusive π production by transverse photons, these data cannot be simply interpreted in terms of GPDs. 9

10 Physics Motivation Target Single Spin Asymmetry in DEMP: Ø The study of A L is also important for the reliable extraction of F π from p(e,e π + )n data at high Q 2. [Frankfurt, Polyakov, Strikman, Vanderhaeghen PRL 84(2000)2589]. Non-pion pole contributions need to be accounted for in order to reliably extract F π from σ L data at low -t. 12 GeV Pion Form Factor experiment restricted to Q 2 =6 GeV 2 to keep non-pole contributions to an acceptable level (-t min <0.2 GeV 2 ). Ø A L is an interference between pseudoscalar and pseudovector contributions. Help constrain the non-pole contribution to p(e,e π + )n. Assist the more reliable extraction of the pion form factor. Possibly extend the kinematic region for F π measurements. Ø To cleanly extract A L, we need: Target polarized transverse to γ* direction. Large acceptance in π azimuthal angle (i.e. φ, β). Measurements at multiple beam energies and electron scattering angles. ε dependence (L/T separation); controlled systematic uncertainties 10

11 Physics Motivation Complementarity of SoLID and SHMS+HMS Experiments SHMS+HMS: SoLID: HMS detects scattered e. SHMS detects forward, high momentum π. Expected small systematic uncertainties to give reliable L/T separations. Good missing mass resolution to isolate exclusive final state. Multiple SHMS angle settings to obtain complete azimuthal coverage up to 4 o from q-vector. It is not possible to have complete azimuthal coverage at larger t, where A L is largest. PR by GH, D. Dutta, D. Gaskell, W. Hersman. n n n n n Complete azimuthal coverage, polar angle θ= 8 o up to 24 o for e and π High luminosity, particle ID and vertex resolution capabilities well matched to the experiment. L/T separation is not possible, the asymmetry is diluted by T, TT contributions. The measurement is valuable as it is the only practical way to obtain A sin(φ-φ UT s ) over a wide kinematic range. Complementary to Hall C measurement. 11

12 Measure DEMP with SoLID-SIDIS n e, e A π " p:with transversely polarized He3 Run in parallel with E : E0 = 11.0 GeV (48 days) Luminosity = cm -2 s -1 (per nucleon) Coil Inner Diameter (m) Inner 1.27 Outer 1.45 Vertical 1.83 Note: The target size is roughly close to real but the location is estimated. 12

13 Measure DEMP with SoLID-SIDIS Large-Angle : Detect electrons and protons Forward-Angle : Detect electrons & pions & protons e/π ± Coverage: àforward Acceptance: φ: 2π, θ: 8 o o, P: GeV/c, for e/π ± àlarge Acceptance: φ : 2π, θ: 16 o -24 o, P: GeV/c, for e only Proton Coverage : àsame to e/pi at FA and LA, except the momentum-range can be much lower Resolution: δp/p ~ 2%, θ ~ 0.6mrad, φ ~ 5mrad Online Coincidence Trigger: Electron Trigger + Hadron Trigger Offline Analysis: Identify protons and form triple-coincidence 13

14 A Conceptual Design: ü Cover angles of 24 o to 50 o 2π on the azimuthal angle ü Inner Radius=32 cm Outer Radis = 67 cm Detector Length = 50 cm ü Distance from Target = 79cm (far end touches the magnet) Proton Recoil Detector Ø Need good timing resolution (<60~ps) Ø Need fine segments due to huge low energy backgrounds (An aluminum foil cover can block most of low energy electrons) Ø Need to provide angle information for offline background suppression Ø Photon-Detectors need to work in strong magnetic fields from target & solenoid Ø A good candidate: Scintillating Fiber Tracker Ø Geant4 Simulation is undergoing 14

15 Scintillating Fiber Tracker SiPM àavalanche Photodiode (APD) pixels working in Geiger-mode A 10cm2 SciFi-Tracker made by a medical group A prototype project funded by JSA 2014 Postdoc Prize EASIROC+SiPM ( portable!) 15

16 Proton Detection Using Time-Of-Flight as Proton-PID: Need >5σ timing resolution to identify protons from other charged particles. Ø Existing SoLID Timing Detectors: ü Timing + Momentum Info ü MRPC & FASPD at Forward-Angle cover 8 0 ~ ; >3ns separation ü LASPD at Large-Angle cover 14 0 ~ 24 0 ; >1ns separation Ø A new Proton Recoil Detector: No momentum info; Only reply on 1D TOF cuts ü Cover 14 0 ~ 24 0 ; ü Good separation from electrons/pions (lowp π " highp p >=0.3ns, need σ < 60ps) Hard to separate kaons from protons low-p K mixed with high-p p 16

17 Projection Acceptance: (Cuts on Q2>4 GeV 2 and W>2 GeV) 17

18 Kinematic & Rates: Projection Ø Rates were estimated with a model developed by Garth & Zafar. Ø Good physics rates are at Q 2 >4GeV 2 : 0.53 Hz (or 0.31 Hz w/o PRD) Ø Dominated background are SIDIS events 18

19 Asymmetry Binning: Ø 1D binning on t (May further binning on Q 2 ) Projection Ø Asymmetries are diluted due to not doing L/T separation: from model: Ø Stat. Error is given as: Pà He3 polarization 60% η \ à Effective neutron fà Dilution from protons (0.9 estimated) 19

20 Asymmetry Binning: Ø 1D binning on t (May further binning on Q 2 ) Projection Ø Asymmetries are diluted due to not doing L/T separation: from model: Ø Stat. Error is given as: Pà He3 polarization 60% η \ à Effective neutron fà Dilution from protons (0.9 estimated) 20

21 Exclusivity of DEMP Events Missing Mass Ø With Proton detection, most of background events can be suppressed Ø Major background would be SIDIS events from (a) Protons in X, (b) Accidental coincidence of SIDIS events with protons in all background sources Ø Reconstructing Missing Momentum and Missing Mass to further suppress background during offline analysis. ü Assuming all X in SIDIS contain protons (hard to estimate the real branching-ratio) ü Fold in detector resolutions: ]^ ^ = 8%`,δθ = 0.6 mrad, δφ = 5 mrad ü Nucleus-Effect, Fermi Motion and Radiative Effect are not considered yet but some of them are expected to be small in the asymmetry extraction. 21

22 Exclusivity of DEMP Events Missing Mass ü Missing Momentum are well separated for SIDIS and DEMP. ü Cutting P miss <1.2 GeV/c, reject most of SIDIS background ü Background is expected to be even smaller, since SIDIS rate are overestimated ü Other backgrounds will be more uniform in the MM, asymmetries of which can be evaluated and corrected. ü Rest of random background will largely suppressed in the asymmetry. SIDIS rate is still overestimated for safety 22

23 Systematic Uncertainties Detector-wide, DEMP measurement shares the same systematic uncertainties with SIDIS experiments: Other sources of uncertainties are still under estimation. 23

24 To-Do-List Projections were made by assuming a free neutron. We are implementing Fermi- Motion and Radiative Effect in the generator. Optimizing the projections, e.g. further binning on Q 2 Further designing and evaluating the Proton-Recoil-Detector Study more background situation Evaluating more systematic errors Double check of all calculations 24

25 Summary GPDs provide new information of the 3D spatial distributions of quarks and gluons; connect 1D- PDF, Form-Factors and so on. (Four GPDs for each quark flavor or gluon: H, E, H% and E') DEMP can measure H% and E'; It is an unique process to probe E', which gets access to pion form factors. Target Single-Spin Asymmetry of DEMP has relatively low requirement on the Q 2 (Higher order effects are largely cancelled even at Q 2 ~4 GeV 2 ). Using SoLID-SIDIS configuration and transversely polarized He3, we can measure asymmetries of neutron DEMP Complementary to the Hall-C experiment with limited coverage but doing L/T separation Run in-parallel with SIDIS experiments; No new beam time; No configuration change needed except potentially adding a new proton recoil detector Expect to have very good statistical errors over wide t coverage Proton Detection will help us to maintain the Exclusivity. Missing Momentum and Missing Mass cuts can further reject most background. 25

26 Backup Slides 26

27 DEMP TSSA Connection to GPDs L. Frankfurt et. al., PRD (1999): Charge Pion Production: 27

28 Acceptance w/ Q2>1GeV^2 Cut 28

The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production

The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production Garth Huber SoLID Collaboration, Jefferson Lab, May 15, 2015. Complementarity of Different Reactions Deep

More information

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV Dipangkar Dutta Mississippi State University (with Dave Gaskell & Garth Huber) Polarized Target Workshop: June 17-18, 2010 Outline

More information

Target single- and double-spin asymmetries in DVCS off a longitudinal polarised hydrogen target at HERMES

Target single- and double-spin asymmetries in DVCS off a longitudinal polarised hydrogen target at HERMES Target single- and double-spin asymmetries in DVCS off a longitudinal polarised hydrogen target at HERMES David Mahon On behalf of the HERMES Collaboration DIS 2010 - Florence, Italy Overview Mahon DIS

More information

L-T Separation in Pseudoscalar Meson Production

L-T Separation in Pseudoscalar Meson Production L-T Separation in Pseudoscalar Meson Production Dave Gaskell Jefferson Lab Exclusive Meson Production and Short Range Hadron Structure January 23, 2014 1 Motivation for L-T separations Inclusive Deep Inelastic

More information

Measurements with Polarized Hadrons

Measurements with Polarized Hadrons Aug 15, 003 Lepton-Photon 003 Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Contents: Introduction: Spin of Proton Polarized Deep Inelastic Lepton-Nucleon Scattering 1.

More information

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois Helicity: Experimental Status Matthias Grosse Perdekamp, University of Illinois Content o The Experimental Effort o Quark and Sea Quark Helicity è DIS, SIDIS, pp è new FFs for global analysis è results

More information

A Run-Group Proposal Submitted to PAC 45

A Run-Group Proposal Submitted to PAC 45 A Run-Group Proposal Submitted to PAC 45 Measurement of Deep Exclusive π Production using a Transversely Polarized 3 He Target and the SoLID Spectrometer May 1, 017 J. Arrington, K. Hafidi, M. Hattawy,

More information

Status report of Hermes

Status report of Hermes Status report of Hermes Delia Hasch Physics Research Committee, DESY Oct 27/28 2004 Spin physics: finalised and new results on: inclusive, semi-inclusive and exclusive measurements nuclear effects data

More information

Deeply Virtual Compton Scattering on the neutron

Deeply Virtual Compton Scattering on the neutron Deeply Virtual Compton Scattering on the neutron Malek MAZOUZ For JLab Hall A & DVCS collaborations Physics case n-dvcs experimental setup Analysis method Results and conclusions Exclusive Reactions at

More information

Shape and Structure of the Nucleon

Shape and Structure of the Nucleon Shape and Structure of the Nucleon Volker D. Burkert Jefferson Lab Science & Technology Peer Review June 25-27, 2003 8/7/2003June 25, 2003 Science & Technology Review 1 Outline: From form factors & quark

More information

HERMES status and future running

HERMES status and future running HERMES status and future running Benedikt Zihlmann University of Gent on behalf of the collaboration DESY PRC Mai 24 p.1/18 Access to Transversity Single spin azimuthal asymmetries on a transverse polarized

More information

HERMES Status Report

HERMES Status Report HERMES Status Report Sergey Yaschenko for the Collaboration DESY PRC, Hamburg, April 1, 008 Outline Introduction Physics Highlights from HERMES Isoscalar extraction of ΔS Model-dependent constraint on

More information

Hall B Physics Program and Upgrade Plan

Hall B Physics Program and Upgrade Plan Hall B Physics Program and Upgrade Plan presented by Volker Burkert and Sebastian Kuhn Outline: Introduction Deeply Virtual Exclusive Processes and GPDs Structure Functions & Semi-Inclusive Processes Equipment

More information

Single and double polarization asymmetries from deeply virtual exclusive π 0 electroproduction

Single and double polarization asymmetries from deeply virtual exclusive π 0 electroproduction Single and double polarization asymmetries from deeply virtual exclusive π electroproduction University of Connecticut E-mail: kenjo@jlab.org Harut Avakian, Volker Burkert et al. (CLAS collaboration) Jefferson

More information

Generalized Parton Distributions and Nucleon Structure

Generalized Parton Distributions and Nucleon Structure Generalized Parton Distributions and Nucleon Structure Volker D. Burkert Jefferson Lab With pqcd established we have the tool to understand matter at a deeper level. Nobel prize 2004 - D. Gross, D. Politzer,

More information

Experimental Program of the Future COMPASS-II Experiment at CERN

Experimental Program of the Future COMPASS-II Experiment at CERN Experimental Program of the Future COMPASS-II Experiment at CERN Luís Silva LIP Lisbon lsilva@lip.pt 24 Aug 2012 On behalf of the COMPASS Collaboration co-financed by THE COMPASS EXPERIMENT Common Muon

More information

Transversity experiment update

Transversity experiment update Transversity experiment update Hall A collaboration meeting, Jan 20 2016 Xuefei Yan Duke University E06-010 Collaboration Hall A collaboration The Incomplete Nucleon: Spin Puzzle 1 2 = 1 2 ΔΣ + L q + J

More information

The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production

The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production Dipangkar Dutta, Mississippi State Dave Gaskell, Jefferson Lab Bill Hersman, University of New Hampshire

More information

Experimental investigation of the nucleon transverse structure

Experimental investigation of the nucleon transverse structure Electron-Nucleus Scattering XIII Experimental investigation of the nucleon transverse structure Silvia Pisano Laboratori Nazionali di Frascati INFN. The unsolved proton How do the lagrangian degrees of

More information

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration Hall A SIDIS Hall A/C collaboration Meeting June 24 2016 Xuefei Yan Duke University E06-010 Collaboration Hall A collaboration The Incomplete Nucleon: Spin Puzzle [X. Ji, 1997] DIS DΣ 0.30 RHIC + DIS Dg

More information

Timelike Compton Scattering

Timelike Compton Scattering Timelike Compton Scattering Tanja Horn In collaboration with: Y. Illieva, F.J. Klein, P. Nadel-Turonski, R. Paremuzyan, S. Stepanyan 12 th Int. Conference on Meson-Nucleon Physics and the Structure of

More information

Probing Generalized Parton Distributions in Exclusive Processes with CLAS

Probing Generalized Parton Distributions in Exclusive Processes with CLAS Probing Generalized Parton Distributions in Exclusive Processes with CLAS Volker D. Burkert Jefferson Lab The nucleon: from structure to dynamics First GPD related results in DVCS and DVMP Experimental

More information

The Physics Program of CLAS12

The Physics Program of CLAS12 1 The Physics Program of CLAS1 S. Niccolai a, for the CLAS collaboration a Institut de Physique Nucléaire d Orsay, Orsay (France) The experimental program to study nucleon structure at the 1-GeV upgraded

More information

Flavor Decomposition of Nucleon Spin via polarized SIDIS: JLab 12 GeV and EIC. Andrew Puckett Los Alamos National Laboratory INT 09/24/2010

Flavor Decomposition of Nucleon Spin via polarized SIDIS: JLab 12 GeV and EIC. Andrew Puckett Los Alamos National Laboratory INT 09/24/2010 Flavor Decomposition of Nucleon Spin via polarized SIDIS: JLab 12 GeV and EIC Andrew Puckett Los Alamos National Laboratory INT 09/24/2010 Outline Nucleon Structure Nucleon spin structure Flavor decomposition

More information

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE rhtjhtyhy EINN 2017 NOVEMBER 1, 2017 PAPHOS, CYPRUS THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE KAWTAR HAFIDI Argonne National Laboratory is a U.S. Department of Energy laboratory

More information

Exclusive Physics with the HERMES Recoil Detector

Exclusive Physics with the HERMES Recoil Detector Exclusive Physics with the HERMES Recoil Detector Erik Etzelmüller on behalf of the HERMES Collaboration!!! workshop on! Exploring Hadron Structure with Tagged Structure Functions! Thomas Jefferson National

More information

Generalized Parton Distributions Program at COMPASS. QCD Evolution 2015

Generalized Parton Distributions Program at COMPASS. QCD Evolution 2015 Generalized Parton Distributions Program at COMPASS Eric Fuchey (CEA Saclay) On behalf of COMPASS Collaboration QCD Evolution 2015 Thomas Jefferson National Accelerator Facility (May 26-30 2014) Generalized

More information

GENERALIZED PARTON DISTRIBUTIONS

GENERALIZED PARTON DISTRIBUTIONS Exploring fundamental questions of NUCLEON STRUCTURE with GENERALIZED PARTON DISTRIBUTIONS Florian Herrmann 16.9.2012 Corfu Summer School LHC COMPASS SPS Versatile facility for hadron structure studies

More information

Proposal submitted to the SPS comittee (May 17,2010)

Proposal submitted to the SPS comittee (May 17,2010) Proposal for GPD studies at COMPASS E. Bur9n CEA- Saclay Irfu/SPhN On behalf of the COMPASS Collabora9on MENU 2010 College of William & Mary Williamsburg - June 2 nd, 2010 Proposal submitted to the SPS

More information

Neutrons in a Spin: Nucleon Structure at Jefferson Lab

Neutrons in a Spin: Nucleon Structure at Jefferson Lab Neutrons in a Spin: Nucleon Structure at Jefferson Lab Daria Sokhan University of Glasgow, UK on behalf of the CLAS Collaboration IoP Nuclear Physics Group Conference, York 8 th April 2013 Nucleon structure

More information

E , E , E

E , E , E JLab Experiments E12-09-017, E12-09-011, E12-09-002 First-Year of Hall C experiments towards a complete commissioning of the SHMS for precision experiments Spokespersons: P. Bosted, D. Dutta, R. Ent, D.

More information

GPDs. -- status of measurements -- a very brief introduction prerequisites and methods DVCS & DVMP: selected results on the way to an EIC

GPDs. -- status of measurements -- a very brief introduction prerequisites and methods DVCS & DVMP: selected results on the way to an EIC Delia Hasch GPDs -- status of measurements -- a very brief introduction prerequisites and methods & DVMP: selected results on the way to an EIC see additional slides for results not covered POETIC 01,

More information

Transverse SSA Measured at RHIC

Transverse SSA Measured at RHIC May 21-24, 2007 Jefferson Lab Transverse SSA Measured at RHIC Jan Balewski, IUCF Exclusive Reactions Where does the proton s spin come from? p is made of 2 u and 1d quark S = ½ = Σ S q u u Explains magnetic

More information

Partonic Structure of Light Nuclei

Partonic Structure of Light Nuclei Partonic Structure of Light Nuclei M. Hattawy - Physics motivations - Recent results from CLAS - Proposed measurements with CLAS12 INT 17-3, Thursday, August 31st 2017 EMC Effect EMC effect: the modification

More information

Coherent and Incoherent Nuclear Exclusive Processes

Coherent and Incoherent Nuclear Exclusive Processes Coherent and Incoherent Nuclear Exclusive Processes Vadim Guzey Electron-Ion Collider Workshop: Electron-Nucleon Exclusive Reactions Rutgers University, March 14-15, 2010 Outline Coherent and incoherent

More information

Experimental Overview Generalized Parton Distributions (GPDs)

Experimental Overview Generalized Parton Distributions (GPDs) Experimental Overview Generalized Parton Distributions (GPDs) Latifa Elouadrhiri Jefferson Lab Lattice Hadron Physics July 31 August 3, 2006 Outline Generalized Parton Distributions - a unifying framework

More information

A glimpse of gluons through deeply virtual Compton scattering

A glimpse of gluons through deeply virtual Compton scattering A glimpse of gluons through deeply virtual Compton scattering M. Defurne On behalf of the DVCS Hall A collaboration CEA Saclay - IRFU/SPhN June 1 st 017 June 1 st 017 1 / 7 The nucleon: a formidable lab

More information

The Jlab 12 GeV Upgrade

The Jlab 12 GeV Upgrade The Jlab 12 GeV Upgrade R. D. McKeown Jefferson Lab College of William and Mary 1 12 GeV Science Program The physical origins of quark confinement (GlueX, meson and baryon spectroscopy) The spin and flavor

More information

L/T Separated Kaon Production Cross Sections from 5-11 GeV

L/T Separated Kaon Production Cross Sections from 5-11 GeV 1 L/T Separated Kaon Production Cross Sections from 5-11 GeV Tanja Horn, Garth Huber, Pete Markowitz, Marco Carmignotto, Salina Ali, Samip Basnet, Jonathan Castellanos, Arthur Mkrtchyan Highlights: For

More information

Measuring the gluon Sivers function at a future Electron-Ion Collider

Measuring the gluon Sivers function at a future Electron-Ion Collider Measuring the gluon Sivers function at a future Electron-Ion Collider Speaker: Liang Zheng Central China Normal University In collaboration with: E.C. Aschenauer (BNL) J.H.Lee (BNL) Bo-wen Xiao (CCNU)

More information

DVCS with CLAS. Elton S. Smith. Jefferson Lab. Conference on Intersections of Particle and Nuclear Physics New York, Elton S.

DVCS with CLAS. Elton S. Smith. Jefferson Lab. Conference on Intersections of Particle and Nuclear Physics New York, Elton S. DVCS with CLAS Elton S. Smith Jefferson Lab Conference on Intersections of Particle and Nuclear Physics New York, 2003 Elton S. Smith 1 Deeply Virtual Compton Scattering Inclusive Scattering Forward Compton

More information

The Neutral-Particle Spectrometer

The Neutral-Particle Spectrometer The Neutral-Particle Spectrometer White Paper outlining the Science and Path to Realization of the NPS The Neutral-Particle Spectrometer (NPS) Collaboration at Jefferson Lab November 26, 2014 The two-arm

More information

Single Spin Asymmetries on proton at COMPASS

Single Spin Asymmetries on proton at COMPASS Single Spin Asymmetries on proton at COMPASS Stefano Levorato on behalf of COMPASS collaboration Outline: Transverse spin physics The COMPASS experiment 2007 Transverse Proton run Data statistics Asymmetries

More information

Nucleon Spin Structure: Overview

Nucleon Spin Structure: Overview Nucleon Spin Structure: Overview Jen-Chieh Peng University of Illinois at Urbana-Champaign Workshop on Spin Structure of Nucleons and Nuclei from Low to High Energy Scales EINN2015, Paphos, Cyprus, Nov.

More information

Deeply Virtual Compton Scattering and Meson Production at JLab/CLAS

Deeply Virtual Compton Scattering and Meson Production at JLab/CLAS Deeply Virtual Compton Scattering and Meson Production at JLab/CLAS Hyon-Suk Jo for the CLAS collaboration IPN Orsay PANIC 2011 M.I.T. Cambridge - July 25, 2011 19th Particles & Nuclei International Conference

More information

Studies of OAM at JLAB

Studies of OAM at JLAB Studies of OAM at JLAB Harut Avakian Jefferson Lab UNM/RBRC Workshop on Parton Angular Momentum, NM, Feb 2005 Introduction Exclusive processes Semi-Inclusive processes Summary * In collaboration with V.Burkert

More information

Exclusive Processes at HERMES

Exclusive Processes at HERMES Exclusive Processes at HERMES Arne Vandenbroucke Gent University, Belgium On behalf of the HERMES Collaboration 22nd Winter Workschop on Nuclear Dynamics La Jolla, California, USA March 17th, 26 Outline

More information

Study of Baryon Form factor and Collins effect at BESIII

Study of Baryon Form factor and Collins effect at BESIII Study of Baryon Form factor and Collins effect at BESIII Wenbiao Yan On behalf of BESIII Collaboration INT Program INT-17-3 Hadron imaging at Jefferson Lab and at a future EIC 1 Bird s View of BEPCII &

More information

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives Deeply Virtual Compton Scattering off 4 He: New results and future perspectives M. Hattawy (On behalf of the CLAS collaboration) 2016 JLab Users Group Workshop and Annual Meeting June 20-22, Jefferson

More information

Hall C SIDIS Program basic (e,e p) cross sections

Hall C SIDIS Program basic (e,e p) cross sections Hall C SIDIS Program basic (e,e p) cross sections Linked to framework of Transverse Momentum Dependent Parton Distributions Validation of factorization theorem needed for most future SIDIS experiments

More information

Deeply Virtual Compton JLab

Deeply Virtual Compton JLab Deeply Virtual Compton Scattering @ JLab Franck Sabatié CEA Saclay For the Hall A and Hall B collaborations Exclusive 07 - JLab May 1 st 007 Introduction Non-dedicated measurements E00-110 experiment in

More information

π + Electroproduction at High t

π + Electroproduction at High t π + Electroproduction at High t 2017 CAP Congress - Queen's University (Kingston, ON) Samip Basnet Supervisor : Dr. G. M. Huber University of Regina SAPIN-2016-00031 5/30/17 Samip Basnet, Dept. of Physics,

More information

Longitudinal Double Spin Asymmetry in Inclusive Jet Production at STAR

Longitudinal Double Spin Asymmetry in Inclusive Jet Production at STAR Longitudinal Double Spin Asymmetry in Inclusive Jet Production at STAR Katarzyna Kowalik for the STAR Collaboration Lawrence Berkeley National Laboratory, Berkeley, California 94720 Abstract. This contribution

More information

Hall B Physics Program and Upgrade Plan

Hall B Physics Program and Upgrade Plan Hall B Physics Program and Upgrade Plan Volker D. Burkert Jefferson Lab Introduction The Equipment Plan The 12 GeV Physics Program Conclusions PAC23 Meeting on the 12 GeV Upgrade, January 20, 2003 Physics

More information

Nucleon Valence Quark Structure

Nucleon Valence Quark Structure Nucleon Valence Quark Structure Z.-E. Meziani, S. Kuhn, O. Rondon, W. Melnitchouk Physics Motivation Nucleon spin and flavor structure High-x quark distributions Spin-flavor separation Moments of structure

More information

Spin Structure of the Nucleon: quark spin dependence

Spin Structure of the Nucleon: quark spin dependence Spin Structure of the Nucleon: quark spin dependence R. De Vita Istituto Nazionale di Fisica Nucleare Electromagnetic Interactions with Nucleons and Nuclei EINN005 Milos September, 005 The discovery of

More information

Probing nucleon structure by using a polarized proton beam

Probing nucleon structure by using a polarized proton beam Workshop on Hadron Physics in China and Opportunities with 12 GeV Jlab July 31 August 1, 2009 Physics Department, Lanzhou University, Lanzhou, China Probing nucleon structure by using a polarized proton

More information

Outline. Generalized Parton Distributions. Elastic Form Factors and Charge Distributions in Space. From Form Factors to Quark Spin Distributions

Outline. Generalized Parton Distributions. Elastic Form Factors and Charge Distributions in Space. From Form Factors to Quark Spin Distributions Outline Generalized Parton Distributions in lepton scattering and antiproton annihilation experiments Michael DürenD Universität Gießen en The structure of the proton: From form factors to uark spin distributions

More information

Time-like Compton Scattering with transversely polarized target

Time-like Compton Scattering with transversely polarized target Time-like Compton Scattering with transversely polarized target Vardan Tadevosyan AANSL (YerPhI) Foundation Arthur Mkrtchyan CUA Outline Physics case and motivation Experimental setup Simulation results

More information

Nuclear GPDs and DVCS in Collider kinematics. Vadim Guzey. Theory Center, Jefferson Lab. Outline

Nuclear GPDs and DVCS in Collider kinematics. Vadim Guzey. Theory Center, Jefferson Lab. Outline Nuclear GPDs and DVCS in Collider kinematics Vadim Guzey Theory Center, Jefferson Lab Introduction Outline Nuclear PDFs Nuclear GPDs Predictions for DVCS Conclusions Introduction e(k ) Deeply Virtual Compton

More information

Recent results on DVCS from Hall A at JLab

Recent results on DVCS from Hall A at JLab Recent results on DVCS from Hall A at JLab Carlos Muñoz Camacho IPN-Orsay, CNRS/IN2P3 (France) Spatial and Momentum Tomography of Hadrons and Nuclei INT-17-3 Sep 5, 2017 Carlos Muñoz Camacho (IPN-Orsay)

More information

Present and Future Exploration of the Nucleon Spin and Structure at COMPASS

Present and Future Exploration of the Nucleon Spin and Structure at COMPASS Present and Future Exploration of the Nucleon Spin and Structure at COMPASS 1 2 3 4 5 6 Longitudinal spin structure Transverse spin structure Gluon polarization Primakov: pion polarizabilities DY: Transverse

More information

Overview of recent HERMES results

Overview of recent HERMES results Journal of Physics: Conference Series PAPER OPEN ACCESS Overview of recent HERMES results To cite this article: Hrachya Marukyan and 216 J. Phys.: Conf. Ser. 678 1238 View the article online for updates

More information

Transverse target spin asymmetries in exclusive ρ 0 muoproduction

Transverse target spin asymmetries in exclusive ρ 0 muoproduction ransverse target spin asymmetries in exclusive ρ muoproduction MENU 3 Rome Sep 3 - Oct 4 COMPSS ransverse target spin asymmetries in exclusive ρ muoproduction COMPSS experiment 4 physicists 8 institutions

More information

Measuring the gluon Sivers function at a future Electron-Ion Collider

Measuring the gluon Sivers function at a future Electron-Ion Collider Measuring the gluon Sivers function at a future Electron-Ion Collider Speaker: Liang Zheng Central China Normal University In collaboration with: E.C. Aschenauer (BNL) J.H.Lee (BNL) Bo-wen Xiao (CCNU)

More information

a medium energy collider taking nucleon structure beyond the valence region

a medium energy collider taking nucleon structure beyond the valence region EIC@JLAB a medium energy collider taking nucleon structure beyond the valence region Tanja Horn INT09-43W, Seattle, WA 19 October 2009 Tanja Horn, CUA Colloquium 1 A high-luminosity EIC at JLab Use CEBAF

More information

Nuclear Transparency in A(e,e π/k)x Status and Prospects

Nuclear Transparency in A(e,e π/k)x Status and Prospects Nuclear Transparency in A(e,e π/k)x Status and Prospects Tanja Horn Small size configurations at high-t workshop 26 March 2011 1 Nuclear Transparency Color transparency (CT) is a phenomenon predicted by

More information

DESY Summer Students Program 2008: Exclusive π + Production in Deep Inelastic Scattering

DESY Summer Students Program 2008: Exclusive π + Production in Deep Inelastic Scattering DESY Summer Students Program 8: Exclusive π + Production in Deep Inelastic Scattering Falk Töppel date: September 6, 8 Supervisors: Rebecca Lamb, Andreas Mussgiller II CONTENTS Contents Abstract Introduction.

More information

Summary of subtopic Imaging QCD Matter : Generalized parton distributions and exclusive reactions

Summary of subtopic Imaging QCD Matter : Generalized parton distributions and exclusive reactions Summary of subtopic Imaging QCD Matter : Generalized parton distributions and exclusive reactions of weeks 8 and 9 of the INT program Gluons and the quark sea at high energy: distributions, polarization,

More information

Time-like Compton Scattering with transversely polarized target

Time-like Compton Scattering with transversely polarized target Time-like Compton Scattering with transversely polarized target Vardan Tadevosyan AANSL (YerPhI) Foundation JLab 1/19/2017 Outline Physics case and motivation Experimental setup Simulation results Latest

More information

THE GPD EXPERIMENTAL PROGRAM AT JEFFERSON LAB. C. Muñoz Camacho 1

THE GPD EXPERIMENTAL PROGRAM AT JEFFERSON LAB. C. Muñoz Camacho 1 Author manuscript, published in "XIX International Baldin Seminar on High Energy Physics Problems, Relativistic Nuclear Physics and Quantum Chromodynamics, Dubna : Russie (8)" THE GPD EXPERIMENTAL PROGRAM

More information

A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak

A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak Buddhini P. Waidyawansa For the Qweak Collaboration JLab Users Group Meeting June

More information

Hadronization with JLab 6/12 GeV

Hadronization with JLab 6/12 GeV Hadronization with JLab 6/12 GeV Next generation nuclear physics with JLab12 and EIC Florida International University February 10-13th, 2016 Lamiaa El Fassi (On behalf of EG2 and CLAS Collaborations) Outline

More information

The GPD program at Jefferson Lab: recent results and outlook

The GPD program at Jefferson Lab: recent results and outlook The GPD program at Jefferson Lab: recent results and outlook Carlos Muñoz Camacho IPN-Orsay, CNRS/INP3 (France) KITPC, Beijing July 17, 1 Carlos Muñoz Camacho (IPN-Orsay) GPDs at JLab KITPC, 1 1 / 3 Outline

More information

Proton longitudinal spin structure- RHIC and COMPASS results

Proton longitudinal spin structure- RHIC and COMPASS results Proton longitudinal spin structure- RHIC and COMPASS results Fabienne KUNNE CEA /IRFU Saclay, France Gluon helicity PHENIX & STAR: pp jets, pp p 0 COMPASS g 1 QCD fit + DG direct measurements Quark helicity

More information

Possible relations between GPDs and TMDs

Possible relations between GPDs and TMDs Possible relations between GPDs and TMDs Marc Schlegel, Theory Center, Jefferson Lab Hall C summer meeting: Physics opportunities in Hall C at 12 GeV Generalized Parton Distributions Exclusive processes

More information

G Ep /G Mp with an 11 GeV Electron Beam in Hall C

G Ep /G Mp with an 11 GeV Electron Beam in Hall C G Ep /G Mp with an 11 GeV Electron Beam in Hall C E.J. Brash, M.K. Jones, C.F. Perdrisat, V. Punjabi, A. Puckett, M. Khandaker and the GEp-IV Collaboration (Update to E12-09-101) Elastic EM Form Factors

More information

Generalized Parton Distributions Recent Progress

Generalized Parton Distributions Recent Progress Generalized Parton Distributions Recent Progress (Mostly a summary of various talks at SIR2005@Jlab in May 2005 Pervez Hoodbhoy Quaid-e-Azam University Islamabad γ* γ,π,ρ hard soft x+ξ x-ξ GPDs P P t Factorisation:

More information

Hadron Propagation and Color Transparency at 12 GeV

Hadron Propagation and Color Transparency at 12 GeV Hadron Propagation and Color Transparency at 12 GeV Dipangkar Dutta Mississippi State University Hall C Users Meeting Jan 21-22, 2016 Hall C meeting Jan 2016 D. Dutta Hadron propagation in nuclear medium

More information

Structure of Generalized Parton Distributions

Structure of Generalized Parton Distributions =Hybrids Generalized Parton Distributions A.V. Radyushkin June 2, 201 Hadrons in Terms of Quarks and Gluons =Hybrids Situation in hadronic physics: All relevant particles established QCD Lagrangian is

More information

Recent transverse spin results from STAR

Recent transverse spin results from STAR 1 STAR! Recent transverse spin results from STAR Qinghua Xu, Shandong University PanSpin215, Taipei, October 8, 215! Outline 2 Introduction Single spin asymmetries in the forward region Mid-rapidity hadron-jet

More information

3-D Imaging and the Generalized Parton Distribution Program at an Electron Ion Collider

3-D Imaging and the Generalized Parton Distribution Program at an Electron Ion Collider Workshop on Precision Radiative Corrections for Next Generation Experiments 6 9 May 6, Jefferson Lab, Newport News VA 3-D Imaging and the Generalized Parton Distribution Program at an Electron Ion Collider

More information

MEIC Physics. Tanja Horn for the MEIC group. Jlab Users Meeting

MEIC Physics. Tanja Horn for the MEIC group. Jlab Users Meeting MEIC Physics Tanja Horn for the MEIC group Jlab Users Meeting The Structure of the Proton Naïve Quark Model: proton = uud (valence quarks) QCD: proton = uud + uu + dd + ss + The proton sea has a non-trivial

More information

High-energy hadron physics at J-PARC

High-energy hadron physics at J-PARC KEK theory center workshop on Hadron and Nuclear Physics in 2017 KEK, January 7-10, 2017 High-energy hadron physics at J-PARC Wen-Chen Chang Institute of Physics, Academia Sinica Outline High-momentum

More information

MEIC Central Detector Zhiwen Zhao for JLab MEIC Study Group

MEIC Central Detector Zhiwen Zhao for JLab MEIC Study Group MEIC Central Detector Zhiwen Zhao for JLab MEIC Study Group MEIC Collaboration Meeting 2015/10/07 MEIC Design Goals Energy Full coverage of s from 15 to 65 GeV Electrons 3-10 GeV, protons 20-100 GeV, ions

More information

Progress on the DVCS program at Compass E. Burtin CEA Saclay Irfu/SPhN GDR nucléon, Ecole Polytechnique, 12 décembre 2008

Progress on the DVCS program at Compass E. Burtin CEA Saclay Irfu/SPhN GDR nucléon, Ecole Polytechnique, 12 décembre 2008 Progress on the DVCS program at Compass E. Burtin CEA Saclay Irfu/SPhN GDR nucléon, Ecole Polytechnique, 12 décembre 2008 Today and tomorrow 2010 and beyond 2008 (Today) : Target region Ring B Ring A 2008

More information

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives Deeply Virtual Compton Scattering off 4 He: New results and future perspectives M. Hattawy (On behalf of the CLAS collaboration) Next generation nuclear physics with JLab12 and EIC 10-13 February 2016,

More information

Spin and Azimuthal Asymmetries at JLAB

Spin and Azimuthal Asymmetries at JLAB Spin and Azimuthal Asymmetries at JLAB H. Avakian *) Jefferson Lab Single-Spin Asymmetries Workshop, BNL June 1-3, 2005 *) in collaboration with P.Bosted, V. Burkert and L. Elouadrhiri Outline Introduction

More information

Studies on transverse spin properties of nucleons at PHENIX

Studies on transverse spin properties of nucleons at PHENIX Studies on transverse spin properties of nucleons at PHENIX Pacific Spin 2015 Academia Sinica in Taipei, Taiwan October 8, 2015 Yuji Goto (RIKEN/RBRC) 3D structure of the nucleon Conclusive understanding

More information

Update on Experiments using SoLID Spectrometer

Update on Experiments using SoLID Spectrometer Update on Experiments using SoLID Spectrometer Yi Qiang for SoLID Collaboration Hall A Collaboration Meeting Dec 16, 2011 Overview SoLID: Solenoidal Large Intensity Device High rate capability: allow for

More information

hunting the OAM Delia Hasch a very brief review of the spin sum rule observables of OAM some attempts to quantify OAM conclusion

hunting the OAM Delia Hasch a very brief review of the spin sum rule observables of OAM some attempts to quantify OAM conclusion INT workshop on gluons and the quark sea at high energies, INT Seattle, Sep-Nov, 2010 Delia Hasch hunting the OAM a very brief review of the spin sum rule observables of OAM some attempts to quantify OAM

More information

Proton Form Factor Puzzle and the CLAS Two-Photon Exchange Experiment

Proton Form Factor Puzzle and the CLAS Two-Photon Exchange Experiment Proton Form Factor Puzzle and the CLAS Two-Photon Exchange Experiment Dipak Rimal Florida International University April 15, 2014 University of Virginia Nuclear Physics Seminar, 2014 TPE in CLAS D. Rimal

More information

Plans to measure J/ψ photoproduction on the proton with CLAS12

Plans to measure J/ψ photoproduction on the proton with CLAS12 Plans to measure J/ψ photoproduction on the proton with CLAS12 Pawel Nadel-Turonski Jefferson Lab Nuclear Photoproduction with GlueX, April 28-29, 2016, JLab Outline Introduction J/ψ on the proton in CLAS12

More information

Hall B CLAS12 Physics Program. Latifa Elouadrhiri Jefferson Lab

Hall B CLAS12 Physics Program. Latifa Elouadrhiri Jefferson Lab Hall B CLAS12 Physics Program Latifa Elouadrhiri Jefferson Lab 1 Outline Introduction to 12 GeV Upgrade CLAS12 Detector CLAS12 Science Program Summary 2 Generalized Parton Distributions (GPDs) D. Mueller,

More information

hermes Collaboration

hermes Collaboration Probes of Orbital Angular Momentum at HERMES - a drama with prologe, some slides, and a (not yet so) happy end - G Schnell Universiteit Gent gunarschnell@desyde For the hermes Collaboration Gunar Schnell,

More information

TCS with transversally polarized target at NPS

TCS with transversally polarized target at NPS TCS with transversally polarized target at NPS Observables Fits of Compton Form Factors Simulations PAC theoretical review in 2015 for LOI Marie Boër NPS collaboration meeting, JLab, Jan 21, 2016. TCS

More information

well known known uncertain

well known known uncertain well known known uncertain Kinematical domain E=190, 100GeV Nx2 Collider : H1 & ZEUS 0.0001

More information

Overview of Nucleon Form Factor Experiments with 12 GeV at Jefferson Lab

Overview of Nucleon Form Factor Experiments with 12 GeV at Jefferson Lab Overview of Nucleon Form Factor Experiments with 12 GeV at Jefferson Lab E. Cisbani INFN Rome Sanità Group and Italian National Institute of Health Outlook Overview of Form Factors Experimental Status

More information

CLAS12 at Jefferson Lab

CLAS12 at Jefferson Lab CLAS12 at Jefferson Lab Daria Sokhan University of Glasgow, UK IPPP/NuSTEC Topical Meeting on Neutrino-Nucleus Scattering IPPP, Durham, UK 19 April 2017 Jefferson Lab 6 GeV era Jefferson Lab CEBAF: Continuous

More information

Probing Nuclear Color States with J/Ψ and φ

Probing Nuclear Color States with J/Ψ and φ Probing Nuclear Color States with J/Ψ and φ Michael Paolone Temple University Next Generation Nuclear Physics with JLab12 and the EIC FIU - Miami, Florida February 12th 2016 J/Ψ and φ experiments at a

More information