Hadron Propagation and Color Transparency at 12 GeV

Size: px
Start display at page:

Download "Hadron Propagation and Color Transparency at 12 GeV"

Transcription

1 Hadron Propagation and Color Transparency at 12 GeV Dipangkar Dutta Mississippi State University Hall C Users Meeting Jan 21-22, 2016 Hall C meeting Jan 2016 D. Dutta Hadron propagation in nuclear medium 1 /24

2 Outline! Nuclear Transparency and Hadron Propagation! Color Transparency & Small size configurations! CT and soft-hard factorization/gpds! (e,e p) experiment as a commissioning experiment! Summary Hall C Meeting, Jan 2016 D. Dutta Hadron propagation in nuclear medium 2 /24

3 Hadron Propagation through nuclear matter is a key element of the nuclear many body problem. Needed for interpretation of experiments involving hadrons in the nuclear matter and searches for QCD in nuclei. An active area of interest. N. C. R. Makins et al. PRL 72, 1986 (1994) (cited 153 times); K. Garrow et al. PRC 66, (2002) (cited 92 times); B. Clasie et al. PRL (2007) (cited 59 times) L. El-Fassi et al. PLB 712, 326 (2014) (cited 15 times) At high energies it is dominated by reduction of flux, which is quantified by Nuclear Transparency. Hall C Meeting, Jan 2016 D. Dutta Hadron propagation in nuclear medium 3 /24

4 Nuclear Transparency is the ratio of cross-sections for exclusive processes from nuclei to nucleons. = free (nucleon) cross-section parameterized as = Fit to α = , for π, K, p Hadron momentum 60, 200, 250 GeV/c α σ Ν Hadron Nucleus total cross-section Κ A. S. Carroll et al. Phys. Lett 80B 319 (1979) π p -- p T = A α σ Ν (µb) α < 1 interpreted as due to the strong interaction nature of the probe Hall C Meeting, Jan 2016 D. Dutta Hadron propagation in nuclear medium 4 /24

5 Nuclear Transparency is expected to be energy independent. 1.0 T Traditional NP calculations 2.0 Energy (GeV) 10.0 Ingredients σ hν h-n cross-section Glauber multiple scattering approximation Correlations & FSI effects. For light nuclei very precise calculations of are possible. Hall C Meeting, Jan 2016 D. Dutta Hadron propagation in nuclear medium 5 /24

6 Nuclear Transparency is expected to be energy independent. 1.0 T Traditional NP calculations 2.0 Energy (GeV) 10.0 N-N cross-section is energy independent Ingredients σ hν h-n cross-section Glauber multiple scattering approximation Correlations & FSI effects. For light nuclei very precise calculations are possible. pp scatt. cross-section pn scatt. cross-section Hall C Meeting, Jan 2016 D. Dutta Hadron propagation in nuclear medium 6 /24

7 Nuclear Transparency is expected to be energy independent. 1.0 T Traditional NP calculations 2.0 Energy (GeV) 10.0 N-N cross-section is energy independent Ingredients σ hν h-n cross-section Glauber multiple scattering approximation Correlations & FSI effects. For light nuclei very precise calculations of are possible. All other reaction mechanisms are energy independent! pp scatt. cross-section pn scatt. cross-section Hall C Meeting, Jan 2016 D. Dutta Hadron propagation in nuclear medium 7 /24

8 Color Transparency is the result of squeezing and freezing. At high momentum transfers, scattering takes place via selection of amplitudes characterized by small transverse size (PLC) - squeezing The compact size is maintained while traversing the nuclear medium - freezing. The PLC is color screened - it passes undisturbed through the nuclear medium. Hall C Meeting, Jan 2016 D. Dutta Hadron propagation in nuclear medium 8 /24

9 Color Transparency is a color coherence property of QCD. CT leads to vanishing of the hadron-nucleon interaction for hadrons produced at high momentum transfers CT is unexpected in a strongly interacting hadronic picture. But it is natural in a quark-gluon framework. CT is well established at high energies (DIS data cannot be described without assuming CT). The onset of CT is of primary interest. Onset of CT would be a signature of the onset of QCD degrees of freedom in nuclei Hall C Meeting, Jan 2016 D. Dutta Hadron propagation in nuclear medium 9 /24

10 Hall C Meeting, Jan 2016 D. Dutta Hadron propagation in nuclear medium 10 /24 CT is also connected to the new framework of GPDs developed in the last two decades. The new framework, assumes the dominance of the handbag mechanism. -factorizes into a hard interaction with a single quark and a soft part parametrized as GPDs. Factorization theorems have been derived for deep-exclusive processes and are essential to access GPDs Recent DVCS and wide angle Compton scattering results disagree with pqcd predictions but are consistent with the dominance of handbag mechanism.

11 Factorization is not rigorously possible without the onset of CT Meson distribution amplitude calculable in pqcd small size configurations (SSC/PLC) needed for factorization: It is still uncertain at what Q 2 value reaches the factorization regime The onset of CT is a necessary (but not sufficient) conditions for factorization. -Strikman, Frankfurt, Miller and Sargsian Hall C Meeting, Jan 2016 D. Dutta Hadron propagation in nuclear medium 11 /24

12 CT is well established at high energies. Coherent diffractive dissociation of 500 GeV/c pions on Pt and C. π + A (2 jets) + A 2 Q 2 = 7 (GeV 2 ) Q 2 = 10 (GeV 2 ) Q 2 = 20 (GeV 2 ) 1.5 α with CT 1 without CT k T JET (GeV) Aitala et al., PRL 86, 4773 (2001) Hall C Meeting, Jan 2016 D. Dutta Hadron propagation in nuclear medium 12 /24

13 CT is well established at high energies. Vector Meson production at large Q 2 at HERA dσ/dt e - bt b (GeV -2 ) ZEUS ρ 0 ZEUS J/ψ FKS ρ 0 8 FKS J/ψ Convergence of the t-slope of ρ and J/ψ electroproduction at large Q 2 predicted by the presence of small size qq-bar state Q 2 (GeV 2 ) Hall C Meeting, Jan 2016 D. Dutta Hadron propagation in nuclear medium 13 /24

14 No Evidence for CT at intermediate energies is a mixed bag. First direct search for the onset of CT Transparency in A(p,2p) Reaction at BNL PRL 87, (2001) PRL 81, 5085 (1998) PRL 61, 1698 (1988) Solid line is fit to 1/oscillation in p-p scattering data Shaded band Glauber calculation Results inconsistent with CT only. But can be explained by including additional mechanisms such as nuclear filtering or charm resonance states. Hall C Meeting, Jan 2016 D. Dutta Hadron propagation in nuclear medium 14 /24

15 Evidence for CT at intermediate energies is a mixed bag. A(e,e'p) results Q 2 dependence consistent with standard nuclear physics calculations Solid Pts JLab Open Pts -- other Constant value fit for Q 2 > 2 (GeV/c) 2 has χ 2 / df 1 N. C. R. Makins et al. PRL 72, 1986 (1994) G. Garino et al. PRC 45, 780 (1992) D. Abbott et al. PRL 80, 5072 (1998) K. Garrow et al. PRC 66, (2002) Hall C Meeting, Jan 2016 D. Dutta Hadron propagation in nuclear medium 15 /24

16 JLab Experiments conclusively find the onset of CT. A(e,e' π + ) A(e,e' ρ 0 ) Hall-C Experiment E pion electroproduction from nuclei found an enhancement in transparency with increasing Q 2 & A, consistent with the prediction of CT. (X. Qian et al., PRC81: (2010), B. Clasie et al, PRL99: (2007)) CLAS Experiment E rho electroproduction from nuclei found a similar enhancement, consistent with the same predictions (L. El-Fassi, et al., PLB 712, 326 (2012) ) FMS: Frankfurt, Miller and Strikman, Phys. Rev., C78: , 2008 Hall C Meeting, Jan 2016 D. Dutta Hadron propagation in nuclear medium 16 /24

17 Experiment E : 11 GeV, will provide answers. A(e,e 11 GeV JLab (spokespersons: R. Ent & D. Dutta ) Can help interpret the rise seen in the BNL A(p,2p) data at P p = 6-9 GeV/c PRC 45, 791 (1992) PRC 51, 3435 (95), 50, R1296 (94) PRC 74, R (2007) P p (GeV/c) Hall C Meeting, Jan 2016 D. Dutta Hadron propagation in nuclear medium 17/24

18 Hall C Meeting, Jan 2016 D. Dutta Hadron propagation in nuclear medium 18 /24 (p,2p) results are related to oscillations in p-p cross sections. PRL 87, (2001) PRL 81, 5085 (1998) PRL 61, 1698 (1988) Solid line is fit to 1/oscillation in p-p scattering data Shaded band Glauber calculation

19 Experiment E is one of the commissioning experiments. A(e,e 11 GeV JLab A(e,e p) cross-section on 1 H and 12 C with 80uA of 8.8 & 11.0 GeV beam. 5 different Q 2 points (8,10, 12, 14 & 16.4 GeV 2 ) Total beam time requested for A(e,e'p) = 235 hrs ~ 10 days (for 10 cm LH2) Hall C Meeting, Jan 2016 D. Dutta Hadron propagation in nuclear medium 19/24

20 Hall C Meeting, Jan 2016 D. Dutta Hadron propagation in nuclear medium 20 /24 Requirements for the spectrometers and target are middle of the road. 10 HMS: p = GeV/c θ = deg SHMS: p = GeV/c θ = deg

21 A(e,e p) is an ideal commissioning experiment. Hall C Meeting, Jan 2016 D. Dutta Hadron propagation in nuclear medium 21 /24

22 Hall C Meeting, Jan 2016 D. Dutta Hadron propagation in nuclear medium 22 /24 A(e,e p) is an ideal commissioning experiment. The version simulations and analysis package was able to monitor rates online at the 10% level. We should be able to do much better now and provide a great diagnostic tool for commissioning.

23 Possible run plan for the commissioning experiment. E measured C(e,e p) at Q 2 = 8.1 GeV 2 this is same as the lowest point for E We are currently using this data to test the new Hall-C analyzer and SIMC. This kinematics is ideal to begin the commissioning experiment Hall C Meeting, Jan 2016 D. Dutta Hadron propagation in nuclear medium 23 /24

24 Hall C Meeting, Jan 2016 D. Dutta Hadron propagation in nuclear medium 24 /24 Summary Measurement of hadron transparencies provides an understanding of the propagation of highly energetic particles through the nuclear matter. By comparing exclusive processes on both nucleons and nuclei, one of the signatures of the transition from quarks to hadrons - namely color transparency can be studied. Proton transparency data can be well described by conventional nuclear physics. These studies will be extended to higher energies at the upgraded JLab. The range in Q 2 covered by the A(e,e p) experiment will have significant overlap with the BNL A(p,2p) experiment and will help interpret the rise in transparency observed in the BNL experiment.

25 Oscillations in p-p cross sections with energy is well known. RI s 10 (dσ/dt) data from Landshoff and Polkinghorne D.Dutta and H. Gao, PRC 71, R (2005) Hall C Meeting, Jan 2016 D. Dutta Hadron propagation in nuclear medium 25 /24

Nuclear Transparency in A(e,e π/k)x Status and Prospects

Nuclear Transparency in A(e,e π/k)x Status and Prospects Nuclear Transparency in A(e,e π/k)x Status and Prospects Tanja Horn Small size configurations at high-t workshop 26 March 2011 1 Nuclear Transparency Color transparency (CT) is a phenomenon predicted by

More information

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV Dipangkar Dutta Mississippi State University (with Dave Gaskell & Garth Huber) Polarized Target Workshop: June 17-18, 2010 Outline

More information

σ tot (J/ψN) 3 4 mb Mark Strikman, PSU Jlab, March 26, 2011

σ tot (J/ψN) 3 4 mb Mark Strikman, PSU Jlab, March 26, 2011 J/ψ exclusive photoproduction off protons and nuclei near threshold Mark Strikman, PSU Application of VDM: σ V DM tot (J/ψN) 1 mb, σtot VDM (Ψ N) m2 (J/ψN) σ VDM tot J/ψ m 2 Ψ though r 2 Ψ r 2 J/ψ 4 QCD:

More information

Study of Dimensional Scaling in Two- Body Photodisintegration of 3 He

Study of Dimensional Scaling in Two- Body Photodisintegration of 3 He Study of Dimensional Scaling in Two- Body Photodisintegration of 3 He Yordanka Ilieva CLAS Collaboration 2011 Fall Meeting of the APS Division on Nuclear Physics Meeting Michigan State University October

More information

Hadronization with JLab 6/12 GeV

Hadronization with JLab 6/12 GeV Hadronization with JLab 6/12 GeV Next generation nuclear physics with JLab12 and EIC Florida International University February 10-13th, 2016 Lamiaa El Fassi (On behalf of EG2 and CLAS Collaborations) Outline

More information

arxiv: v1 [nucl-th] 17 Aug 2012

arxiv: v1 [nucl-th] 17 Aug 2012 Color Transparency Gerald A. Miller Physics Department, Univ. of Washington, Seattle, Wa. 98195-1560, USA arxiv:1208.3668v1 [nucl-th] 17 Aug 2012 Abstract. Color transparency is the vanishing of nuclear

More information

Coherent and Incoherent Nuclear Exclusive Processes

Coherent and Incoherent Nuclear Exclusive Processes Coherent and Incoherent Nuclear Exclusive Processes Vadim Guzey Electron-Ion Collider Workshop: Electron-Nucleon Exclusive Reactions Rutgers University, March 14-15, 2010 Outline Coherent and incoherent

More information

Nucleons in the Nuclear Environment

Nucleons in the Nuclear Environment Nucleons in the Nuclear Environment "The next seven years..." John Arrington Argonne National Lab Topic: Study of nucleons (hadrons, quarks) in nuclei 1 - The EMC effect and related measurements 2 - Color

More information

Next-generation nuclear physics with JLab12 and EIC

Next-generation nuclear physics with JLab12 and EIC Next-generation nuclear physics with JLab12 and EIC Topical Workshop, Florida International University, 10 13 Feb 2016 W. Brooks, R. Dupre, Ch. Hyde, M. Sargsian, C. Weiss (Organizers) Welcome! Physics

More information

Measurement of Nuclear Transparency in A(e,e +) Reactions

Measurement of Nuclear Transparency in A(e,e +) Reactions Measurement of Nuclear Transparency in A(e,e +) Reactions Ben Clasie Jefferson Laboratory Experiment 01 107 Spokespersons: Dipangkar Dutta, Rolf Ent and Ken Garrow Introduction Search for Color Transparency

More information

SEARCH FOR THE ONSET OF COLOR TRANSPARENCY ELECTROPRODUCTION ON NUCLEI. Outline

SEARCH FOR THE ONSET OF COLOR TRANSPARENCY ELECTROPRODUCTION ON NUCLEI. Outline SEARCH FOR THE ONSET OF COLOR TRANSPARENCY THROUGH ρ 0 ELECTROPRODUCTION ON NUCLEI Outline 1 introduction 2 Theoretical introduction 3 Experiments 4 CLAS EG2 5 Results 6 Future ρ 0 measurements at JLAB

More information

Color Transparency: past, present and future

Color Transparency: past, present and future Color Transparency: past, present and future D. Dutta, 1 K. Hafidi, 2 M. Strikman 3 1 Mississippi State University, Mississippi State, MS 39762, USA 2 Argonne National Laboratory, Argonne, IL 60439, USA

More information

Exclusive processes at Jefferson Lab

Exclusive processes at Jefferson Lab PRAMANA cfl Indian Academy of Sciences Vol. 61, No. 5 journal of November 2003 physics pp. 837 846 Exclusive processes at Jefferson Lab HAIYAN GAO 1;2 1 Department of Physics, Duke University, Durham,

More information

E , E , E

E , E , E JLab Experiments E12-09-017, E12-09-011, E12-09-002 First-Year of Hall C experiments towards a complete commissioning of the SHMS for precision experiments Spokespersons: P. Bosted, D. Dutta, R. Ent, D.

More information

Nuclear GPDs and DVCS in Collider kinematics. Vadim Guzey. Theory Center, Jefferson Lab. Outline

Nuclear GPDs and DVCS in Collider kinematics. Vadim Guzey. Theory Center, Jefferson Lab. Outline Nuclear GPDs and DVCS in Collider kinematics Vadim Guzey Theory Center, Jefferson Lab Introduction Outline Nuclear PDFs Nuclear GPDs Predictions for DVCS Conclusions Introduction e(k ) Deeply Virtual Compton

More information

Wide-Angle Compton Scattering up to 10 GeV

Wide-Angle Compton Scattering up to 10 GeV γp -> γp Wide-Angle Compton Scattering up to 10 GeV B. Wojtsekhowski Outline WACS physics WACS method and results Next WACS measurements Proposed measurements with NPD/HMS JLab, January 24, 2013 WACS in

More information

A zz in Quasielastic and Deep Inelastic Scattering at x>1

A zz in Quasielastic and Deep Inelastic Scattering at x>1 A zz in Quasielastic and Deep Inelastic Scattering at x> Fantasia on a theme of tensor polarizations Main Motivation: To use Tensor Polarizations to study short range distances in the deuteron & large

More information

Photodisintegration of Light Nuclei

Photodisintegration of Light Nuclei Photodisintegration of Light Nuclei Yordanka Ilieva for the CLAS Collaboration Motivation Two-body photodisintegration of deuteron Two-body photodisintegration of 3 He The 7th International Workshop on

More information

Plans to measure J/ψ photoproduction on the proton with CLAS12

Plans to measure J/ψ photoproduction on the proton with CLAS12 Plans to measure J/ψ photoproduction on the proton with CLAS12 Pawel Nadel-Turonski Jefferson Lab Nuclear Photoproduction with GlueX, April 28-29, 2016, JLab Outline Introduction J/ψ on the proton in CLAS12

More information

Exclusive J/ψ production and gluonic structure

Exclusive J/ψ production and gluonic structure Exclusive J/ψ production and gluonic structure C. Weiss (JLab), Exclusive Meson Production Workshop, JLab, 22 24 Jan 25 Quarkonium size and structure Parametric: Dynamical scales Numerical: Potential models,

More information

Hall C SIDIS Program basic (e,e p) cross sections

Hall C SIDIS Program basic (e,e p) cross sections Hall C SIDIS Program basic (e,e p) cross sections Linked to framework of Transverse Momentum Dependent Parton Distributions Validation of factorization theorem needed for most future SIDIS experiments

More information

The Search for Color Transparency at 12 GeV. July 7, 2006

The Search for Color Transparency at 12 GeV. July 7, 2006 The Search for Color Transparency at 2 GeV July 7, 26 J. Dunne and D. Dutta (Co-spokesperson and contact person) MISSISSIPPI STATE UNIVERSITY P. Bosted, A. Bruell, D. Gaskell, D.G. Meekins, R. Ent (Co-spokesperson,*),

More information

Upgrade for SRC/EMC Studies. Stephen Wood

Upgrade for SRC/EMC Studies. Stephen Wood Upgrade for SRC/EMC Studies Stephen Wood Outline Hall C 12 Hardware overview Standard Spectrometers Additional detectors Hall C SRC/EMC/Nuclear-effects physics program Deuteron EMC with LAD Standard Hall

More information

Probing Nuclear Color States with J/Ψ and φ

Probing Nuclear Color States with J/Ψ and φ Probing Nuclear Color States with J/Ψ and φ Michael Paolone Temple University Next Generation Nuclear Physics with JLab12 and the EIC FIU - Miami, Florida February 12th 2016 J/Ψ and φ experiments at a

More information

The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production

The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production Garth Huber SoLID Collaboration, Jefferson Lab, May 15, 2015. Complementarity of Different Reactions Deep

More information

Shape and Structure of the Nucleon

Shape and Structure of the Nucleon Shape and Structure of the Nucleon Volker D. Burkert Jefferson Lab Science & Technology Peer Review June 25-27, 2003 8/7/2003June 25, 2003 Science & Technology Review 1 Outline: From form factors & quark

More information

3-D Imaging and the Generalized Parton Distribution Program at an Electron Ion Collider

3-D Imaging and the Generalized Parton Distribution Program at an Electron Ion Collider Workshop on Precision Radiative Corrections for Next Generation Experiments 6 9 May 6, Jefferson Lab, Newport News VA 3-D Imaging and the Generalized Parton Distribution Program at an Electron Ion Collider

More information

Transport Theoretical Studies of Hadron Attenuation in Nuclear DIS. Model Results Summary & Outlook

Transport Theoretical Studies of Hadron Attenuation in Nuclear DIS. Model Results Summary & Outlook Transport Theoretical Studies of Hadron Attenuation in Nuclear DIS T. Falter, W. Cassing,, K. Gallmeister,, U. Mosel Contents: Motivation Model Results Summary & Outlook Motivation elementary en reaction

More information

Study of Color Transparency in Exclusive Vector Meson Electroproduction off Nuclei

Study of Color Transparency in Exclusive Vector Meson Electroproduction off Nuclei Study of Color Transparency in Exclusive Vector Meson Electroproduction off Nuclei Kawtar Hafidi (co-spokesperson), Brahim Mustapha (co-spokesperson), John Arrington, Lamiaa El Fassi (co-spokesperson),

More information

Diffractive dijet photoproduction in UPCs at the LHC

Diffractive dijet photoproduction in UPCs at the LHC Diffractive dijet photoproduction in UPCs at the LHC V. Guzey Petersburg Nuclear Physics Institute (PNPI), National Research Center Kurchatov Institute, Gatchina, Russia Outline: l Diffractive dijet photoproduction

More information

L-T Separation in Pseudoscalar Meson Production

L-T Separation in Pseudoscalar Meson Production L-T Separation in Pseudoscalar Meson Production Dave Gaskell Jefferson Lab Exclusive Meson Production and Short Range Hadron Structure January 23, 2014 1 Motivation for L-T separations Inclusive Deep Inelastic

More information

Timelike Compton Scattering

Timelike Compton Scattering Timelike Compton Scattering Tanja Horn In collaboration with: Y. Illieva, F.J. Klein, P. Nadel-Turonski, R. Paremuzyan, S. Stepanyan 12 th Int. Conference on Meson-Nucleon Physics and the Structure of

More information

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE rhtjhtyhy EINN 2017 NOVEMBER 1, 2017 PAPHOS, CYPRUS THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE KAWTAR HAFIDI Argonne National Laboratory is a U.S. Department of Energy laboratory

More information

L/T Separated Kaon Production Cross Sections from 5-11 GeV

L/T Separated Kaon Production Cross Sections from 5-11 GeV 1 L/T Separated Kaon Production Cross Sections from 5-11 GeV Tanja Horn, Garth Huber, Pete Markowitz, Marco Carmignotto, Salina Ali, Samip Basnet, Jonathan Castellanos, Arthur Mkrtchyan Highlights: For

More information

ALICE results on vector meson photoproduction in ultraperipheral p-pb and Pb-Pb collisions

ALICE results on vector meson photoproduction in ultraperipheral p-pb and Pb-Pb collisions ALICE results on vector meson photoproduction in ultraperipheral p-pb and Pb-Pb collisions Evgeny Kryshen (Petersburg Nuclear Physics Institute, Russia) for the ALICE collaboration INT workshop INT-17-65W

More information

Short-range NN interactions: Experimental Past and Future

Short-range NN interactions: Experimental Past and Future Short-range NN interactions: Experimental Past and Future 7th Workshop of the APS Topical Group on Hadronic Physics Nadia Fomin University of Tennessee February 1 st, 017 Independent Particle Shell Model

More information

Charmonium production in antiproton-induced reactions on nuclei

Charmonium production in antiproton-induced reactions on nuclei Charmonium production in antiproton-induced reactions on nuclei Alexei Larionov Frankfurt Institute for Advanced Studies (FIAS), D-60438 Frankfurt am Main, Germany and National Research Center Kurchatov

More information

Based on studies together principally with Farrar, Frankfurt, Miller, Sargsian, Zhalov

Based on studies together principally with Farrar, Frankfurt, Miller, Sargsian, Zhalov Color transparency: 33 years and still running Mark Strikman, PSU Topics to be covered Discovery of high energy CT and search for disappearance of CT at LHC Search for CT at intermediate energies - bane

More information

Photoproduction of J/ψ on Nuclei

Photoproduction of J/ψ on Nuclei Outline E.Chudakov SRC Workshop, Jlab 2007 Photoproduction of J/ψ on Nuclei 1 Photoproduction of J/ψ on Nuclei E.Chudakov 1 1 JLab SRC Workshop, Jlab 2007 E.Chudakov SRC Workshop, Jlab 2007 Photoproduction

More information

GlueX Capabilities for Nuclear Photoproduction

GlueX Capabilities for Nuclear Photoproduction GlueX Capabilities for Nuclear Photoproduction A. Somov, Jefferson Lab Nuclear Photoproduction with GlueX April 28 29, 2016 Physics Topics with Nuclear Targets Considered for GlueX Photoproduction of vector

More information

FUTURE SPIN EXPERIMENTS AT SLAC

FUTURE SPIN EXPERIMENTS AT SLAC SLAC-PUB-9658 February 2003 FUTURE SPIN EXPERIMENTS AT SLAC Stephen Rock for the Real Photon Collaboration University of Mass, Amherst MA 01003 Abstract. A series of three photo-production experiments

More information

Wide-Angle Compton Scattering and Pion photo-production

Wide-Angle Compton Scattering and Pion photo-production γp -> γp Wide-Angle Compton Scattering and Pion photo-production B. Wojtsekhowski, for the NPS/WACS/Pion collaboration Outline WACS proposal update (David&Simon) Pion proposal formulation (Dipangkar) Experimental

More information

PoS(DIS 2010)071. Diffractive electroproduction of ρ and φ mesons at H1. Xavier Janssen Universiteit Antwerpen

PoS(DIS 2010)071. Diffractive electroproduction of ρ and φ mesons at H1. Xavier Janssen Universiteit Antwerpen Diffractive electroproduction of ρ and φ mesons at Universiteit Antwerpen E-mail: xavier.janssen@ua.ac.be Diffractive electroproduction of ρ and φ mesons is measured at HERA with the detector in the elastic

More information

High Momentum Nucleons: where have we been and where are we going

High Momentum Nucleons: where have we been and where are we going High Momentum Nucleons: where have we been and where are we going Nadia Fomin High Energy Nuclear Physics with Spectator Tagging March 10 th, 015 High momentum nucleons where do they come from? Independent

More information

Deep Exclusive π " Production with transversely polarized He3 using SoLID

Deep Exclusive π  Production with transversely polarized He3 using SoLID Deep Exclusive π " Production with transversely polarized He3 using SoLID A run-group proposal with E12-10-006 Zhihong Ye, ANL On behalf of Co-Spokespeople: Garth Huber (contact), Zafar Ahmed, from Univ.

More information

Neutrino Energy Reconstruction Methods Using Electron Scattering Data. Afroditi Papadopoulou Pre-conference, EINN /29/17

Neutrino Energy Reconstruction Methods Using Electron Scattering Data. Afroditi Papadopoulou Pre-conference, EINN /29/17 Neutrino Energy Reconstruction Methods Using Electron Scattering Data Afroditi Papadopoulou Pre-conference, EINN 2017 10/29/17 Outline Nuclear Physics and Neutrino Oscillations. Outstanding Challenges

More information

Physics Prospects with the JLab 12 GeV Upgrade

Physics Prospects with the JLab 12 GeV Upgrade Physics Prospects with the JLab 12 GeV Upgrade Gluonic Excitations 3-dim view of the Nucleon Valence Structure of the Nucleon Elton S. Smith Jefferson Lab PANIC02 Osaka 1 CEBAF @ JLab Today Main physics

More information

MEIC Physics. Tanja Horn for the MEIC group. Jlab Users Meeting

MEIC Physics. Tanja Horn for the MEIC group. Jlab Users Meeting MEIC Physics Tanja Horn for the MEIC group Jlab Users Meeting The Structure of the Proton Naïve Quark Model: proton = uud (valence quarks) QCD: proton = uud + uu + dd + ss + The proton sea has a non-trivial

More information

The Jlab 12 GeV Upgrade

The Jlab 12 GeV Upgrade The Jlab 12 GeV Upgrade R. D. McKeown Jefferson Lab College of William and Mary 1 12 GeV Science Program The physical origins of quark confinement (GlueX, meson and baryon spectroscopy) The spin and flavor

More information

Max. Central Momentum 11 GeV/c 9 GeV/c Min. Scattering Angle 5.5 deg 10 deg Momentum Resolution.15% -.2% Solid Angle 2.1 msr 4.

Max. Central Momentum 11 GeV/c 9 GeV/c Min. Scattering Angle 5.5 deg 10 deg Momentum Resolution.15% -.2% Solid Angle 2.1 msr 4. Hall C - 12 GeV pcdr Max. Central Momentum 11 GeV/c 9 GeV/c Min. Scattering Angle 5.5 deg 10 deg Momentum Resolution.15% -.2% Solid Angle 2.1 msr 4.4 msr Momentum Acceptance 40% Target Length Acceptance

More information

Recent results on DVCS from Hall A at JLab

Recent results on DVCS from Hall A at JLab Recent results on DVCS from Hall A at JLab Carlos Muñoz Camacho IPN-Orsay, CNRS/IN2P3 (France) Spatial and Momentum Tomography of Hadrons and Nuclei INT-17-3 Sep 5, 2017 Carlos Muñoz Camacho (IPN-Orsay)

More information

Diffractive rho and phi production in DIS at HERA

Diffractive rho and phi production in DIS at HERA Xavier Janssen, on behalf of H and Collaborations. Université Libre de Bruxelles, Belgium. E-mail: xjanssen@ulb.ac.be These proceedings report on H and results on diffractive electroproduction of ρ and

More information

Central Questions in Nucleon Structure

Central Questions in Nucleon Structure Central Questions in Nucleon Structure Werner Vogelsang BNL Nuclear Theory QCD and Hadron Physics Town Meeting, 01/13/2007 Exploring the nucleon: Of fundamental importance in science Know what we are made

More information

Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility

Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility 1 Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility Motivation Quantum Chromo Dynamics Proton=uud Visible Universe Galaxies, stars, people, Silent Partners: Protons & Neutrons

More information

Thermal dileptons as fireball probes at SIS energies

Thermal dileptons as fireball probes at SIS energies Thermal dileptons as fireball probes at SIS energies Critical Point and Onset of Deconfinement 2016, Wrocław. Florian Seck TU Darmstadt in collaboration with T. Galatyuk, P. M. Hohler, R. Rapp & J. Stroth

More information

Measurement of the Charged Pion Form Factor to High Q 2

Measurement of the Charged Pion Form Factor to High Q 2 Measurement of the Charged Pion Form Factor to High Q 2 Dave Gaskell Jefferson Lab Hall C Users Meeting January 22, 2016 1 Outline 1. Motivation and techniques for measuring F π (Q 2 ) 2. Data àpre-jlab

More information

Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron

Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron Ralf W. Gothe Nucleon Resonances: From Photoproduction to High Photon October 12-16, 2015, ECT*, Trento, Italy

More information

Hunting for Quarks. G n M Co-conspirators: Jerry Gilfoyle for the CLAS Collaboration University of Richmond

Hunting for Quarks. G n M Co-conspirators: Jerry Gilfoyle for the CLAS Collaboration University of Richmond Hunting for Quarks Jerry Gilfoyle for the CLAS Collaboration University of Richmond JLab Mission What we know and don t know. The Neutron Magnetic Form Factor Experiments with CLAS More JLab Highlights

More information

Jets and Diffraction Results from HERA

Jets and Diffraction Results from HERA Jets and Diffraction Results from HERA A. Buniatyan DESY, Notkestrasse 5, 7 Hamburg, Germany for the H and ZEUS Collaborations he latest results on precision measurements of jet and diffractive cross sections

More information

Experimental Overview Generalized Parton Distributions (GPDs)

Experimental Overview Generalized Parton Distributions (GPDs) Experimental Overview Generalized Parton Distributions (GPDs) Latifa Elouadrhiri Jefferson Lab Lattice Hadron Physics July 31 August 3, 2006 Outline Generalized Parton Distributions - a unifying framework

More information

Hadron Physics with Real and Virtual Photons at JLab

Hadron Physics with Real and Virtual Photons at JLab Hadron Physics with Real and Virtual Photons at JLab Elton S. Smith Jefferson Lab Virtual photons shape of the nucleon Elastic scattering (form factors) Inelastic scattering (uark distributions) Exclusive

More information

M.Battaglieri Istituto Nazionale di Fisica Nucleare Genova - Italy. A Forward Photon Tagging Facility for CLAS12

M.Battaglieri Istituto Nazionale di Fisica Nucleare Genova - Italy. A Forward Photon Tagging Facility for CLAS12 A Forward Photon Tagging Facility for CLAS12 M.Battaglieri Istituto Nazionale di Fisica Nucleare Genova - Italy 1) From CEBAF at 6 GeV 2) From CEBAF at 6 GeV to CEBAF at 12 GeV add Hall D (and beam line)

More information

Short Range Correlations and the EMC Effect

Short Range Correlations and the EMC Effect Short Range Correlations and the EMC Effect Or Hen, Tel-Aviv University Short Range Correlations The EMC Effect and nucleon modification The EMC SRC correlation Implications of the EMC-SRC correlation

More information

Single and double polarization asymmetries from deeply virtual exclusive π 0 electroproduction

Single and double polarization asymmetries from deeply virtual exclusive π 0 electroproduction Single and double polarization asymmetries from deeply virtual exclusive π electroproduction University of Connecticut E-mail: kenjo@jlab.org Harut Avakian, Volker Burkert et al. (CLAS collaboration) Jefferson

More information

SRC Studies using Triple Coincidence A(e,e'pp) & A(e,e'np) reactions

SRC Studies using Triple Coincidence A(e,e'pp) & A(e,e'np) reactions SRC Studies using Triple Coincidence A(e,e'pp) & A(e,e'np) reactions A data-mining project using CLAS EG2 data Meytal Duer Tel-Aviv University July 12, 2018 NPWG meeting, JLab 1 SRC Pair Fraction [%] np-dominance

More information

LEPS Physics HOTTA, Tomoaki (RCNP, Osaka University) on behalf of the LEPS&LEPS2 collaboration

LEPS Physics HOTTA, Tomoaki (RCNP, Osaka University) on behalf of the LEPS&LEPS2 collaboration LCS2014 International Workshop LEPS Physics HOTTA, Tomoaki (RCNP, Osaka University) on behalf of the LEPS&LEPS2 collaboration Outline Overview of the LEPS&LEPS2 beamlines Recent results from LEPS Search

More information

GPDs and TMDs at Electron-Ion Collider. Workshop on hadron tomography at J-PARC and KEKB January 6 th, 2017 KEK, Tsukuba, Japan Yuji Goto (RIKEN)

GPDs and TMDs at Electron-Ion Collider. Workshop on hadron tomography at J-PARC and KEKB January 6 th, 2017 KEK, Tsukuba, Japan Yuji Goto (RIKEN) GPDs and TMDs at Electron-Ion Collider Workshop on hadron tomography at J-PARC and KEKB January 6 th, 2017 KEK, Tsukuba, Japan Yuji Goto (RIKEN) Electron-Ion Collider World s first polarized electron +

More information

Deuteron Photo-disintegration at High Energies

Deuteron Photo-disintegration at High Energies Deuteron Photo-disintegration at High Energies E. C. Schulte (spokesperson), R. Gilman, C. Glashausser, X. Jiang, G. Kumbartzki, R. Ransome Rutgers, The State University of New Jersey J. R. Arrington,

More information

Tagged Deep Inelastic Scattering:

Tagged Deep Inelastic Scattering: Tagged Deep Inelastic Scattering: Exploring the Meson Cloud of the Nucleon Dipangkar Dutta Mississippi State University Next generation nuclear physics with JLab12 and EIC FIU, Feb 10-13, 2016 Outline

More information

Probing high-momentum neutrons and protons in asymmetric nuclei

Probing high-momentum neutrons and protons in asymmetric nuclei Probing high-momentum neutrons and protons in asymmetric nuclei A data-mining project using JLAB CLAS data Meytal Duer Tel-Aviv University March 8, 017 Workshop on high-density nuclear matter, Weizmann

More information

Recent results from the STAR experiment on Vector Meson production in ultra peripheral AuAu collisions at RHIC.

Recent results from the STAR experiment on Vector Meson production in ultra peripheral AuAu collisions at RHIC. Recent results from the STAR experiment on Vector Meson production in ultra peripheral AuAu collisions at RHIC. Leszek Adamczyk On behalf of STAR Collaboration September 7, 2016 RHIC AA: Au+Au, Cu+Cu,

More information

Threshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab

Threshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab hreshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab Introduction With the advent of higher energies at Jefferson Lab, the study of charmonium becomes possible. he threshold production of J/5

More information

x(1 x) b 2 dζ 2 m 2 1 x dζ 2 d dζ 2 + V (ζ) ] + k2 + m2 2 1 x k2 + m2 1 dζ 2 + m2 1 x + m2 2 LF Kinetic Energy in momentum space Holographic Variable

x(1 x) b 2 dζ 2 m 2 1 x dζ 2 d dζ 2 + V (ζ) ] + k2 + m2 2 1 x k2 + m2 1 dζ 2 + m2 1 x + m2 2 LF Kinetic Energy in momentum space Holographic Variable [ d dζ + V (ζ) ] φ(ζ) = M φ(ζ) m 1 de Teramond, sjb x ζ = x(1 x) b m b (1 x) Holographic Variable d dζ k x(1 x) LF Kinetic Energy in momentum space Assume LFWF is a dynamical function of the quark-antiquark

More information

Probing nucleon structure by using a polarized proton beam

Probing nucleon structure by using a polarized proton beam Workshop on Hadron Physics in China and Opportunities with 12 GeV Jlab July 31 August 1, 2009 Physics Department, Lanzhou University, Lanzhou, China Probing nucleon structure by using a polarized proton

More information

Strong interaction physics with an Electron Ion Collider

Strong interaction physics with an Electron Ion Collider Strong interaction physics with an Electron Ion Collider C. Weiss (JLab), UNAM, Mexico City, 03 April 17 [E-mail] Internal structure of nucleon Quantum Chromodynamics Concepts and methods for structure

More information

The Electron-Ion Collider (EIC)

The Electron-Ion Collider (EIC) The Electron-Ion Collider (EIC) A. Accardi, R. Ent, V. Guzey, T. Horn, C. Hyde, P. Nadel-Turonski, A. Prokudin, C. Weiss,... + CASA / accelerator team + lots of JLab of users! JLab Users' Town Hall Meeting,

More information

Photo-production of vector mesons in 2.76 TeV ultra-peripheral Pb+Pb collisions at ALICE. Daniel Tapia Takaki. On behalf of the ALICE Collaboration

Photo-production of vector mesons in 2.76 TeV ultra-peripheral Pb+Pb collisions at ALICE. Daniel Tapia Takaki. On behalf of the ALICE Collaboration Photo-production of vector mesons in 2.76 TeV ultra-peripheral Pb+Pb collisions at ALICE On behalf of the ALICE Collaboration Rencontres du Viet Nam: 14th Workshop on Elastic and Diffractive Scattering

More information

The JLAB12 Collaboration

The JLAB12 Collaboration The JLAB12 Collaboration M.Battaglieri on behalf of the JLAB12 Collaboration INFN -GE, Italy 1 The CEBAF parameters Primary Beam: Electrons Beam Energy: 4 GeV (original) 6 GeV now 10 > λ > 0.1 fm 12 GeV

More information

Nuclear Short Range Correlations

Nuclear Short Range Correlations Nuclear Short Range Correlations Larry Weinstein Old Dominion University What are Correlations? Neutron stars EMC effect Hit the correlated pair Spectator correlated pairs np vs pp pairs Summary Elba Workshop,

More information

Imaging the Proton via Hard Exclusive Production in Diffractive pp Scattering

Imaging the Proton via Hard Exclusive Production in Diffractive pp Scattering Exclusive Reactions at High Momentum Transfer Jefferson Lab, Newport News, VA May 21-24, 2007 Imaging the Proton via Hard Exclusive Production in Diffractive pp Scattering Charles Earl Hyde Old Dominion

More information

Deuteron Electro-Disintegration at Very High Missing Momenta

Deuteron Electro-Disintegration at Very High Missing Momenta Deuteron Electro-Disintegration at Very High Missing Momenta K. Aniol California State University L.A. F. Benmokhtar Carnegie Mellon University W.U. Boeglin (spokesperson), P.E. Markowitz, B.A. Raue, J.

More information

LNS. Tagging the EMC effect in d(e, e N) reactions using the BAND and LAD detectors at JLab12. Axel Schmidt MIT. July 5, 2017

LNS. Tagging the EMC effect in d(e, e N) reactions using the BAND and LAD detectors at JLab12. Axel Schmidt MIT. July 5, 2017 Tagging the EMC effect in d(e, e N) reactions using the BAND and LAD detectors at JLab12 Axel Schmidt MIT July 5, 2017 LNS Laboratory for Nuclear Science 1 The EMC effect still puzzles. 1.2 2σ C 12σ d

More information

Electroproduction of hadrons in nuclei

Electroproduction of hadrons in nuclei Electroproduction o hadrons in nuclei Nicola Bianchi Bianchi@ln.inn.it Fragmentation Function modiications in the nuclear medium HERMES recent and new results Expectations rom CLAS Interpretations Workshop

More information

Nucleon Spin Structure from Confinement to Asymptotic Freedom

Nucleon Spin Structure from Confinement to Asymptotic Freedom 21 September 2009 QNP09 Beijing Nucleon Spin Structure from Confinement to Asymptotic Freedom K. Griffioen College of William & Mary griff@physics.wm.edu 5th International Conference on Quarks in Nuclear

More information

High-energy ea scattering. Spectator nucleon tagging. Future facilities. Energy, luminosity, polarization. Physics objectives with light nuclei

High-energy ea scattering. Spectator nucleon tagging. Future facilities. Energy, luminosity, polarization. Physics objectives with light nuclei High-energy nuclear physics with spectator tagging A. Deshpande, D. Higinbotham, Ch. Hyde, S. Kuhn, M. Sargsian, C. Weiss Topical Workshop, Old Dominion U., 9 11 March 015 High-energy ea scattering e e

More information

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives Deeply Virtual Compton Scattering off 4 He: New results and future perspectives M. Hattawy (On behalf of the CLAS collaboration) 2016 JLab Users Group Workshop and Annual Meeting June 20-22, Jefferson

More information

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC PHENIX! AGS! RHIC! STAR! Cover 3 decades of energy in center-of-mass s NN = 2.76 TeV 5.5 TeV (2015) CMS LHC! s NN = 5-200 GeV

More information

Physics with Hadron Beams at COMPASS

Physics with Hadron Beams at COMPASS Physics with Hadron Beams at COMPASS Bernhard Ketzer Technische Universität München MAMI and Beyond 2009 International Workshop on Hadron Structure and Spectroscopy 2009 30 March 2009 The Goal Understand

More information

GENERALIZED PARTON DISTRIBUTIONS

GENERALIZED PARTON DISTRIBUTIONS Exploring fundamental questions of NUCLEON STRUCTURE with GENERALIZED PARTON DISTRIBUTIONS Florian Herrmann 16.9.2012 Corfu Summer School LHC COMPASS SPS Versatile facility for hadron structure studies

More information

a medium energy collider taking nucleon structure beyond the valence region

a medium energy collider taking nucleon structure beyond the valence region EIC@JLAB a medium energy collider taking nucleon structure beyond the valence region Tanja Horn INT09-43W, Seattle, WA 19 October 2009 Tanja Horn, CUA Colloquium 1 A high-luminosity EIC at JLab Use CEBAF

More information

The Electron-Ion Collider: Exploring the science of Nuclear Femtography

The Electron-Ion Collider: Exploring the science of Nuclear Femtography The Nature of Hadron Mass and Quark-Gluon Confinement from JLab Experiments in the 12-GeV Era The Electron-Ion Collider: Exploring the science of Nuclear Femtography Jianwei Qiu Theory Center, Jefferson

More information

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois Helicity: Experimental Status Matthias Grosse Perdekamp, University of Illinois Content o The Experimental Effort o Quark and Sea Quark Helicity è DIS, SIDIS, pp è new FFs for global analysis è results

More information

Probing Generalized Parton Distributions in Exclusive Processes with CLAS

Probing Generalized Parton Distributions in Exclusive Processes with CLAS Probing Generalized Parton Distributions in Exclusive Processes with CLAS Volker D. Burkert Jefferson Lab The nucleon: from structure to dynamics First GPD related results in DVCS and DVMP Experimental

More information

St anfo rd L in ear A ccele rat o r Cent e r

St anfo rd L in ear A ccele rat o r Cent e r SLAC-PUB-7212 July 1996 NUCLEAR EFFECTS AT HERA STANLEY J. BRODSKY St anfo rd L in ear A ccele rat o r Cent e r St anfo rd University, St anfo rd, California 94 309 To appear in the Proceedings of the

More information

Duality in Inclusive Structure Functions: Present and Future. Simona Malace Jefferson Lab

Duality in Inclusive Structure Functions: Present and Future. Simona Malace Jefferson Lab Duality in Inclusive Structure Functions: Present and Future Simona Malace Jefferson Lab University of Virginia, March 13 2015 What is Quark-hadron duality? Quark-Hadron Duality Quark-hadron duality =

More information

GPDs. -- status of measurements -- a very brief introduction prerequisites and methods DVCS & DVMP: selected results on the way to an EIC

GPDs. -- status of measurements -- a very brief introduction prerequisites and methods DVCS & DVMP: selected results on the way to an EIC Delia Hasch GPDs -- status of measurements -- a very brief introduction prerequisites and methods & DVMP: selected results on the way to an EIC see additional slides for results not covered POETIC 01,

More information

Hall C Users Meeting. January 22-23, 2010

Hall C Users Meeting. January 22-23, 2010 Hall C Users Meeting January 22-23, 2010 Experiments completed in last year Exp Title Spin Asymmetries of the Nucleon Experiment E07-003 (SANE) Spokespersons S. Choi, M. Jones, Z. E. Meziani, O. Rondon

More information

High-energy hadron physics at J-PARC

High-energy hadron physics at J-PARC KEK theory center workshop on Hadron and Nuclear Physics in 2017 KEK, January 7-10, 2017 High-energy hadron physics at J-PARC Wen-Chen Chang Institute of Physics, Academia Sinica Outline High-momentum

More information

Exclusive VM electroproduction

Exclusive VM electroproduction Exclusive VM electroproduction γ * p V p V γ ρ ϕ ψ =,,, J /, ϒ Aharon Levy Tel Aviv University on behalf of the H and collaborations June, 28 A. Levy: Exclusive VM, GPD8, Trento Why are we measuring σ

More information

PANDA. antiproton Annihilation at DArmstadt

PANDA. antiproton Annihilation at DArmstadt antiproton Annihilation at DArmstadt Physics programme Quark confinement: Charmonium spectroscopy Excited gluons: Exotic hybrid mesons & glueballs Nucleon spin puzzle: transverse quark spin distribution

More information