Multidimensional Markovian FBSDEs with superquadratic

Size: px
Start display at page:

Download "Multidimensional Markovian FBSDEs with superquadratic"

Transcription

1 Mulidimenional Markovian FBSDE wih uperquadraic growh Michael Kupper a,1, Peng Luo b,, Ludovic angpi c,3 December 14, 17 ABSRAC We give local and global exience and uniquene reul for mulidimenional coupled FBSDE for generaor wih arbirary growh in he conrol variable. he local exience reul i baed on Malliavin calculu argumen for Markovian equaion. Under addiional monooniciy condiion on he generaor we conruc global oluion by a paing echnique along PDE oluion. AUHORS INFO a Univeriy of Konanz, Univeriäraße. 1, D Konanz, Germany b EH Zürich, Rämirae 11, 89 Zürich, Swizerland c Univeriy of Vienna, Faculy of Mahemaic, Okar- Morgenern-Plaz 1, A-19 Wien, Auria 1 kupper@uni-konanz.de peng.luo@mah.ehz.ch 3 ludovic.angpi@univie.ac.a PAPER INFO AMS CLASSIFICAION: 6H1, 6H7, 6H3 1 Inroducion Given a mulidimenional Brownian moion W on a probabiliy pace, we conider he yem of forward and backward ochaic differenial equaion { X Y = x + b X, Y d + σ dw = hx + g X, Y, Z d Z dw,, ] where x i he iniial value, > i a finie ime horizon, and b, σ, g and h are given funcion. In hi paper, we give condiion under which he yem admi a unique oluion in he cae where he value proce Y i mulidimenional and he generaor g can grow arbirarily fa in he conrol proce Z. Our focu i on Markovian yem, in which he funcion b, σ, g and h are deerminiic. We conider generaor ha are Lipchiz coninuou in X and Y and locally Lipchiz coninuou in Z. For one-dimenional value procee he decoupled yem wih b depending only on X ha been olved by Cheridio and Nam 6] baed on Malliavin calculu argumen. In fac, uing ha for Lipchiz coninuou generaor he race of he Malliavin derivaive of he value proce Y i a verion of he conrol proce, hey how ha he conrol proce can be uniformly bounded, hence enabling olvabiliy for locally Lipchiz generaor by a runcaion argumen. o olve 1.1 in he mulidimenional cae we propoe a Picard ieraion cheme which yield a Cauchy equence in an appropriae Banach pace under uniform boundedne of he conrol procee. Uing Malliavin calculu argumen he boundedne i guaraneed if he ime horizon i mall enough. Here we make ample ue of he mehod in Cheridio and Nam 6]. Moreover uing he PDE repreenaion of Markovian Lipchiz FBSDE a developed for inance in Delarue 8] and a paing procedure, we conruc a unique global oluion for generaor wih an addiional monooniciy-ype condiion and non-degeneracy of he volailiy σ, ee heorem

2 Syem uch a 1.1 naurally appear in numerou area of applied mahemaic including ochaic conrol and mahemaical finance, ee e.g. Yong and Zhou 3], El Karoui e al. 1], Hor e al. 17], Kramkov and Pulido ] and Bielagk e al. 3]. A hown for inance in Ma e al. 5] and Cheridio and Nam 6], in he Markovian cae, FBSDE can be linked o parabolic PDE. More recenly i i hown in Fromm e al. 15] ha FBSDE can be ued in he udy of he Skorokhod embedding problem. BSDE and FBSDE wih Lipchiz coninuou generaor are well underood, we refer o El Karoui e al. 1] and Delarue 8]. If Y i one-dimenional and g ha quadraic growh in he conrol proce Z, BSDE oluion have been obained by Kobylanki 1], Barrieu and El Karoui ] and Briand and Hu 4, 5] under differen aumpion on he erminal condiion ξ = hx. We furher refer o Delbaen e al. 9], Drapeau e al. 11], Cheridio and Nam 6] and Heyne e al. 16] for reul on one-dimenional BSDE and FBSDE wih uperquadraic growh. Mainly due o he abence of comparion principle, general olvabiliy of mulidimenional BSDE wih quadraic growh i le well underood. Under mallne of he erminal condiion olvabiliy i hown in evzadze 8], ee alo Hu and ang 18], Luo and angpi 4], Jamnehan e al. ], Cheridio and Nam 7], Frei 13] and Xing and Žiković 9] for more recen developmen. o he be of our knowledge, Anonelli and Hamadène 1], Luo and angpi 4] and Fromm and Imkeller 14] are he only work udying well-poedne of coupled FBSDE wih quadraic growh. In Anonelli and Hamadène 1] he auhor conider a one-dimenional equaion wih one dimenional Brownian moion and impoe monooniciy condiion on he coefficien o ha comparion principle for SDE and BSDE can be applied. A non-necearily unique oluion i hen obained by monoone convergence of an ieraive cheme. hi approach canno be ranfered o he preen mulidimenional cae ince comparion reul are no available. Fromm and Imkeller 14] conider fully coupled Markovian FB- SDE wih mulidimenional forward and value procee and locally Lipchiz coninuou generaor in Y, Z. Uing he echnique of decoupling field hey obain exience of a unique local oluion and provide an exenion o a maximal ime inerval. Compared o Fromm and Imkeller 14], we ue an eenially differen echnique baed on Malliavin calculu which guaranee he exience of a uniformly Lipchiz decoupling field and Malliavin differeniabiliy of oluion. Moreover, we alo conruc a global oluion. Alhough he non-markovian yem udied in Luo and angpi 4] i he ame a he one conidered here, he echnique are eenially differen. In paricular, he growh condiion in he preen paper are weaker and we do no impoe any diagonally quadraic condiion. Our main reul can be exended o he non-markovian eing and o random diffuion coefficien when σ depend on X and Y under ronger aumpion involving he Malliavin derivaive of g and h, for deail we refer o he Ph.D. hei of Luo 3]. he paper i organized a follow. In he nex ecion, we preen he eing and main reul. In Secion 3 we prove local olvabiliy of mulidimenional BSDE wih uperquadraic growh and give condiion guaraneeing global olvabiliy. Secion 4 i dedicaed o he proof of he main reul. Main reul Le Ω, F, F, ], P be a filered probabiliy pace, where F, ] i he augmened filraion generaed by a d-dimenional Brownian moion W, and F = F for a finie ime horizon,. he produc Ω, ] i endowed wih he predicable σ-algebra. Sube of R k and R k k, k N,

3 are alway endowed wih he Borel σ-algebra induced by he Euclidean norm. he inerval, ] i equipped wih he Lebegue meaure. Unle oherwie aed, all equaliie and inequaliie beween random variable and procee will be underood in he P -almo ure and P d-almo ure ene, repecively. For p 1, ] and k N, we denoe by S p R k he pace of all predicable coninuou procee X wih value in R k uch ha X S p R k := up, ] X p <, and by H p R k he pace of all predicable procee Z wih value in R k uch ha Z H p R k := Z u du 1/ p <. Here, p denoe he L p -norm. Le l, m N be fixed. A oluion of 1.1 wih value in R m R l R l d can be obained under he following condiion: A1 b :, ] R m R l R m i a meaurable funcion, b, i coninuou for each, ], and here exi k 1, k, λ 1 uch ha b x, y b x, y k 1 x x + k y y and b x, y λ x + y for all x, x R m and y, y R l. A σ :, ] R m d i a meaurable funcion and here i λ uch ha σ λ for all, ]. A3 h : R m R l i a coninuou funcion and here exi k 5 uch ha hx hx k 5 x x for all x, x R m. A4 g :, ] R m R l R l d R l i a meaurable funcion and g,, d < +. Moreover, he funcion g,, i coninuou for each, ] and here exi k 3, k 4 and a nondecreaing funcion ρ : R + R + uch ha g x, y, z g x, y, z k 3 x x.1 for all x, x R m, y R l and z R l d uch ha z M := 8λ k 5 dl and g x, y, z g x, y, z k 4 y y + ρ z z z z for all x R m, y, y R l and z, z R l d. A5 here exi a conan K uch ha g x, y, z g x, y, z g x, y, z + g x, y, z K x x y y + z z for all, ], x, x R m, y, y R l and z, z R l d. Our main reul enure local exience and uniquene for he coupled FBSDE 1.1 under he previou aumpion. he proof i given in Secion 4. 3

4 heorem.1. Aume ha A1-A5 hold. hen here exi a conan C > depending on k 1, k, k 3, k 4, k 5, λ, l and d, uch ha he FBSDE 1.1 ha a unique oluion X, Y, Z S R m S R l S R l d wih Z M, whenever C. Local exience reul have been obained in 14, heorem 3] and 4, heorem.1] in eenially differen eing and wih differen mehod. Le u menion ha our echnique allow o obain exience of oluion of coupled FBSDE wih Burger ype nonlineariie a lea for mall enough ime horizon. Example.. Aume ha i mall enough, b, σ and h aify A1-A3, wih h λ 5 for ome λ 5. hen for each k 1 he FBSDE { X Y = x + b X, Y d + σ dw = hx + Y Z k d Z dw,, ] admi a oluion X, Y, Z S R m S R l S R l d. he deail are given in Subecion 4.. Remark.3. he condiion A5 i he minimal condiion needed o enure Lipchiz coninuiy in y, z of he Malliavin derivaive of g X, y, z for a given SDE oluion X, ee e.g. El Karoui e al. 1] and Cheridio and Nam 6] for deail. When he generaor g i of he form g x, y, z := f 1 x + f y + f 3 z for ome funcion f 1, f and f 3, hen A5 i aified. Moreover, le u menion ha an advanage of our mehod i ha i implie Malliavin differeniabiliy of he forward proce X and he value proce Y in he oluion X, Y, Z of he FBSDE 1.1 obained in heorem.1. We refer o Subecion 4.3 for deail. Remark.4. he following counerexample how ha in general, even in he one-dimenional cae, coupled yem do no have a unique global oluion. Conider he FBSDE { X = hi equaion can be rewrien a Y = Y = Y u du kx u du Z u dw u. ky u du d. Z u dw u..3 I i hown in 1, Example 3.] ha if k < π hen he BSDE wih ime-delayed generaor.3 ha a unique oluion wherea if k = π, he equaion.3 may no have any oluion and if i ha one, here are infiniely many. Nex, we would like o find condiion under which heorem.1 can be exended o obain global olvabiliy. In he preen eing, under addiional aumpion, a paing mehod baed on PDE allow o ge global exience and uniquene for he FBSDE

5 A6 here exi K 4 aifying K 4 e k 1 k k 5 + k 3 + k 3 + ρ M dl wih M = 8λ K 5 dl and K5 = k 5 + k 3 e k 1 uch ha y i y i gx, i y, z gx, i y, z K 4 y y for all x R m, y, y R l and z R l d. A7 here exi K 1, K 4 aifying K 1 k 5 K 4 ρ M dl k k 5 + k 3 uch ha m x i x i b i x, y b i x, y K 1 x x, y i y i gx, i y, z gx, i y, z K 4 y y for all x, x R m, y, y R l and z R l d. heorem.5. Aume ha A1-A5 hold and here exi λ 3, λ 4, λ 5 > uch ha 1 b x, y λ y x, σ σ x λ 3 x g x, y, z λ y + ρ z z hx λ 5.4 for all, ], x, x R m, y, y R l and z, z R l d. hen, if A6 repecively A7 i aified, he FBSDE 1.1 ha a unique global oluion X, Y, Z S R m S R l S R l d uch ha Z M repecively Z M. Remark.6. Aumpion A6 and A7 can be underood a monooniciy condiion on he generaor and he drif coefficien. hee condiion are aified for inance when he componen of g rep. b are linear in y rep. x. In fac, if here i a funcion f wih value in R l uch ha g x, y, z := K 4 y + f x, z, hen g aifie A6, and uiable condiion on f guaranee ha g aifie A4 and A5 a well. Noice ha heorem.5 yield exience of a decoupling field, ee 14]. In paricular, he boundedne of Z yield uniform Lipchiz coninuiy of he decoupling field. heorem.1 relie on an exience reul for mulidimenional BSDE preened in Nam 6] and reviied in he nex ecion. 1 σ i he ranpoe marix of σ. 5

6 3 Mulidimenional BSDE wih bounded Malliavin derivaive Le u inroduce he pace of Malliavin differeniable random variable and ochaic procee D 1, R l and La 1, R l. For a horough reamen of he heory of Malliavin calculu we refer o Nualar 7]. Le M be he cla of mooh random variable ξ = ξ 1,..., ξ l of he form ξ i = ϕ i h i1 dw,..., h in dw where ϕ i i in he pace C p R n ; R of infiniely coninuouly differeniable funcion whoe parial derivaive have polynomial growh, h i1,..., h in L, ]; R d and n 1. For every ξ in M le he operaor D = D 1,..., D d : M L Ω, ]; R d be given by D ξ i := n j=1 ϕ i x j h i1 dw,..., h in dw h ij,, 1 i l, and he norm ξ 1, := E ξ + D ξ d] 1/. A hown in Nualar 7], he operaor D exend o he cloure D 1, R l of he e M wih repec o he norm 1,. A random variable ξ i Malliavin differeniable if ξ D 1, R l and we denoe by D ξ i Malliavin derivaive. Denoe by La 1, R l he pace of procee Y H R l uch ha Y D 1, R l for all, ], he proce DY admi a quare inegrable progreively meaurable verion and Y L 1, a R l := Y H R l + E We nex conider a yem of uperquadraic BSDE of he form aifying he following condiion: Y = ξ + g u Y u, Z u du ] D r Y dr d <. Z u dw u 3.1 B1 g : Ω, ] R l R l d R l i a meaurable funcion and here exi a conan B R + and a nondecreaing funcion ρ : R + R + uch ha g y, z g y, z B y y + ρ z z z z for all, ], y, y R l and z, z R l d. B ξ D 1, R l and here exi conan A ij uch ha D j ξi A ij for all i = 1,..., l, j = 1,..., d and, ]. 6

7 B3 g, H 4 R l and here exi Borel-meaurable funcion q ij :, ] R + aifying q ij d < uch ha for every pair y, z Rl R l d wih d z Q := A ij + qij d one ha j=1 g y, z L 1, a R l wih Dug j y, i z q ij for all i = 1,..., l, j = 1,..., d and u, ], for almo all u, ] one ha Du g y, z D u g y, z Ku y y + z z for all, ], y, y R l and z, z R l d for ome R + -valued adaped proce K u, ] aifying K u 4 H 4 R du <. he following i an exenion of Cheridio and Nam 6, heorem.] o he mulidimenional cae. I wa proved in Nam 6] under lighly differen aumpion. For inance, we do no aume a monooniciy-ype condiion on y g y, z for every z. Our reul rely on he echnique of 6]. For he ake of compleene we give he proof. heorem 3.1. Aume ha B1-B3 hold and oluion in S 4 R l S R l d and Z Q. Conider he following ronger verion of he condiion B1 and B3: log. hen he BSDE 3.1 admi a unique B+ρ Q+1 B1 g i coninuouly differeniable in y, z and here exi conan B R + and ρ R + uch ha y g y, z B and z g y, z ρ for all, ], y, y R l and z, z R l d. B3 he condiion B3 hold for all y, z R l R l d. Lemma 3.. If B1, B and B3 hold, hen he BSDE 3.1 admi a unique oluion Y, Z S 4 R l H 4 R l d and Z j A ij + q ije B+ρ +1 d e B+ρ +1 for all j = 1,..., d. 3. Proof. By B, each componen ξ i of ξ ha bounded Malliavin derivaive, which implie by 6, Lemma.5] ha E ξ i p ] < for all p 1. I follow from El Karoui e al. 1, heorem 5.1 and Propoiion 5.3] ha he BSDE 3.1 ha a unique oluion Y, Z S 4 R l H 4 R l d, which i Malliavin differeniable. Moreover for every i = 1,..., l and j = 1,..., d, he proce DrY j i, DrZ j i, ] ha a verion U ij,r, V ij,r, ] which aifie U ij,r =, V ij,r =, for < r, 7

8 and i he unique oluion in S R l H R l d of he BSDE U j,r = Drξ j + y g Y, Z U j,r Applying Iô formula o U j,r yield U j,r = Drξ j + D j rξ D j rξ U j,r V j,r dw U j,r y g Y, Z U j,r U j,r V j,r dw + U j,r V j,r dw + + z g Y, Z V j,r + U j,r z g Y, Z V j,r B U j,r + Drg j Y, Z d + U j,r + ρ U j,r V j,r B + ρ + 1 U j,r + V j,r dw. Drg j Y, Z V j,r d + l qijd. Uing condiion B3 and aking condiional expecaion in he above inequaliy yield U j,r E A ij + B + ρ + 1 U j,r + q ij U j,r V j,r d qijd F ]. 3.3 By El Karoui e al. 1, Propoiion 5.3] he proce Z i a verion of he race U, ] of he Malliavin derivaive of Y. Hence 3. follow from 3.3 by applying Gronwall inequaliy. Proof heorem 3.1. Define he Lipchiz coninuou funcion g by { g y, z if z Q, g y, z = g y, Qz/ z if z > Q. 3.4 By Cheridio and Nam 6, Lemma.5], he condiion B implie E ξ p ] < + for all p 1,. hu, ξ L p for all p 1. herefore, i follow from El Karoui e al. 1, heorem 5.1] ha he BSDE correponding o g, ξ ha a unique oluion Y, Z S 4 R l H 4 R l d. For x = y, z R l+l d le β C R l+l d be he mollifier { λ exp 1 if x < 1, 1 x βx := oherwie, 8

9 where he conan λ R + i choen uch ha R βxdx = 1. Se β n x := n l+l d βnx, l+l d n N \ {}, and define g n ω, x := g ω, x β n x x dx R l+l d o ha for each n > he funcion g n aifie B1 and B3 wih he conan ρ replaced by ρq. By Lemma 3. he BSDE correponding o g n, ξ ha a unique oluion Y n, Z n in S 4 R l H 4 R l d which aifie Since Z n,j A ij + A ij + log we obain B+ρ Q+1 Z n,j A ij + qije B+ρ Q+1 d e B+ρ Q+1 qijd e B+ρQ+1. qijd for all j = 1,..., d. hi how Z n Q. Since g n converge uniformly in, ω, y, z o g, uing he procedure of he proof of Cheridio and Nam 6, heorem.], i follow ha Y n, Z n converge o Y, Z in S R l H R l d, o ha Z Q. Since gy, z = gy, z for all y, z R l R l d wih z Q, i follow ha Y, Z i he unique oluion of he BSDE correponding o ξ, g in S 4 R l S R l d. log Corollary 3.3. Suppoe B1-B3 hold, B+ρ Q+1 and Y, Z S4 R l S R l d i he oluion of he BSDE 3.1. hen Y D 1, R l for all, ] and for every j = 1,..., d, one ha DrY j A ij + q ijd for all r, ]. 3.5 Proof. Since Z Q i bounded, Y, Z olve he BSDE wih erminal condiion ξ and generaor g defined by 3.4. If g aifie B1 and B3, hen he reul follow from Lemma 3.. Oherwie conider he equence of mooh funcion g n converging o g a defined in he proof of heorem 3.1. Le Y n, Z n S 4 R l H 4 R l d be he oluion o he BSDE correponding o g n, ξ, which converge o Y, Z in S R l H R l d. By Lemma 3. Y n, Z n D 1, R l D 1, R l d for each, ] and he argumen in he proof of heorem 3.1 imply DrY j n A ij + qijd j = 1,..., d, r,, ]. 9

10 Hence, up n N E Dj ry n dr] < for each, ]. Since Y n converge o Y in L, i follow from Nualar 7, Lemma 1..3] ha Y D 1, R l and D r Y n converge o D r Y in he weak opology of H R l d. hu, D r Y aifie 3.5. A a conequence o heorem 3.1, we give a condiion for global olvabiliy of fully coupled yem of BSDE. For he remainder of hi ecion we pu n := log B + ρ n Q + 1, n N. Propoiion 3.4. Aume ha B1-B hold, ha here exi N N uch ha N n= n, and B3 hold wih Q replaced by N Q. hen he BSDE 3.1 ha a unique oluion in S 4 R l S R l d and Z N Q. Proof. If hen he reul follow from heorem 3.1. Oherwie, if > i follow by he ame argumen a in he proof of heorem 3.1 ha he BSDE 3.1 ha a unique oluion Y, Z in S 4 R l S R l d on he inerval, ]. Moreover, Z aifie Z Q and by Corollary 3.3 one ha Y D 1, R l and for every r, D j ry A ij + q ij d for all j = 1,..., d. Since g aifie B3 for all y, z R l R l d uch ha z cq, again by heorem 3.1 he BSDE 3.1 wih erminal condiion Y ha a unique oluion Y 1, Z 1 in S 4 R l S R l d on 1, ], and D j ry 1 1 A ij + Z 1 Q, 1, ]. + q ij d, for all j = 1,..., d Repeaing he previou argumen, for N he BSDE 3.1 ha a unique oluion Y N, Z N in S 4 R l S R l d on N n= n, N 1 n= n ] wih erminal condiion Y N 1 Moreover, D j ry N N n= n Z N N Q, N A ij + N n= N k q ij d for all j = 1,..., d k=1 N 1 n, n= ] n. n= n. 1

11 Hence, he pair Y, Z given by Y := Y 1 1, ] + Z := Z 1 1, ] + N n=1 N n=1 olve 3.1 and i uniquene follow from heorem 3.1. Y n 1 n i= i, n 1 i= i ] Z n 1 n i= i, n 1 i= i ] Remark 3.5. he condiion N n= n for ome N N doe no guaranee global olvabiliy of mulidimenional BSDE wih uperquadraic growh. In fac, if ρx C1 + x for all x, hen n n <. However, i doe guaranee global olvabiliy for BSDE whoe generaor grow lighly faer han he linear funcion. For inance, if ρx C1 + log1 + x one ha n= log B + ρ N Q + 1 log B + C 1 + log N 1 + Q + 1 n= log = B + C 1 + log1 + Q + n log + 1 =. n= Noe alo ha global olvabiliy of ric ubquadraic yem ha been eablihed by Cheridio and Nam 7]. 4 Coupled FBSDE wih uperquadraic growh 4.1 Proof of heorem.1 Sep 1: We fir aume ha h, b and g are coninuouly differeniable in all variable. Le u define C 1 := k 5 k3 log λ k 1 k M log k 4 + ρ M + 1 wih M := 8k 5 λ dl. We will how ha for C1, he equence X n, Y n, Z n given by X =, Y =, Z = and { X n+1 Y n+1 = x + = hx n+1 bxn+1 u, Yu n du + σ u dw u u, Zu n+1 + g u X n+1 u, Y n+1 du Z n+1 u dw u, n 1 i well defined and ha Z n M for all n N and, ]. he proce X 1 i well defined, X 1 belong o D 1, R m for every and he proce D r X, ] aifie he linear equaion D r X 1 =, < r, D r X 1 = r x bd r Xu 1 + y bd r Yu du + D r r σ u dw u, r, 11

12 wih D r r σ u dw u = σ1 r,], ee Nualar 7, Lemma..1 and heorem..1]. Hence, ince b i Lipchiz coninuou, we have Dr X 1 r k 1 D r X 1 u du + σ r and Dr X 1 λ e k 1, where he econd eimae come from Gronwall inequaliy. We will now how ha ince C 1, hx 1 and gx1,, aify B1-B3. In fac, ince h i coninuouly differeniable and X 1 D 1, R m, i follow from he chain rule, ee for inance Nualar 7, Propoiion 1..4], ha hx 1 D 1, R l and DrhX j 1 = xhx 1 Dj rx 1 λ k 5 e k 1 for all r, ], j = 1,..., d. Uing log k 1, we deduce ha hx 1 aifie B wih A ij := λ k 5. Similarly, by A4 and uing ha he funcion x gx, y, z i coninuouly differeniable, i follow ha g. X. 1, y, z La 1, R l and D j g ị X 1, y, z λ k 3 e k 1, j = 1,..., d for all y, z R l R l d uch ha z M and, due o A5, applying he ame argumen o ĝ x, y, y, z, z := g x, y, z g x, y, z yield D j rg X 1, y, z D j rg X 1, y, z Kλ e k 1. Uing k 5 log k3 k 1, we deduce ha g. X. 1, y, z aifie B3 wih q ij = λ k 3 and K u := Kλ. Moreover due o A4, he funcion, y, z g X 1, y, z aifie B1. log herefore, by k 4 +ρ M+1, heorem 3.1 enure ha Y 1, Z 1 exi. Conider he funcion g defined by { g x, y, z if z M g x, y, z = g x, y, zm/ z if z > M. Since Y 1, Z 1 alo olve he BSDE wih erminal condiion hx 1 and a Lipchiz generaor gx1,,, i follow from Lemma 3. and i proof ha Y 1, Z 1 D 1, R l D 1, R l d for all, ] and D Y 1 i bounded and i hold Z 1 = D Y 1. In addiion, we have D r X 1 4λ and D r Y 1 M. Now le n N, aume ha X n, Y n, Z n D 1, R m D 1, R l D 1, R l d, Z n = D Y n and D r X n 4λ, D r Y n M for all r,, ]. he proce X n+1 i well defined, for each ; X n+1 belong o D 1, R m and i hold D r X n+1 =, < r, D r X n+1 = σ r + r x bd r X n+1 u + y bd r Y n u du, r. Since x b, y b and σ are bounded by k 1, k and λ repecively, i follow from Gronwall inequaliy ha D r X n+1 e k 1 λ + k D r Yu n du. Hence, Dr X n+1 e k 1 λ + k M < 4.1 1

13 o ha ince λ k M, we have D r X n+1 4λ. A above, hx n+1 and g. X n+1, y, z are Malliavin differeniable and aify B1-B3 wih A ij := 4λ k 5, q ij = λ k 3 and K u := Kλ. I hen follow again from heorem 3.1 ha Y n+1, Z n+1 exi and Z n+1 M i bounded. Since Y n+1, Z n+1 alo olve he BSDE wih erminal condiion hx n+1 and Lipchiz coninuou generaor g X n+1,,, Lemma 3. and i proof guaranee ha Y n+1, Z n+1 D 1, R l D 1, R l d for all, ] and D Y n+1 i bounded and i hold Z n+1 = D Y n+1, wih D r Y n+1 M. Sep : Now we how ha here i a poiive conan C depending on k 1, k, k 3, k 4, k 5, λ, l and d, uch ha if C, hen X n, Y n, Z n i a Cauchy equence in S R m S R l H R l d. Uing A1 we can eimae he norm of he difference X n+1 X n a hu X n X n+1 up X n+1 X n k 1 X n+1 k 1 X n+1 X n d X n d + + k Y n k Y n Y n 1 aking expecaion on boh ide and uing Cauchy-Schwarz inequaliy, we have E ] up X n+1 X n k1e k 1E X n+1 ] up X n+1 X n + ke Chooing o be mall enough o ha k1 1, i follow E ] up X n+1 X n 4 ke On he oher hand, applying Iô formula o e β Y n+1 e β Y n+1 Y n = e β hx n+1 hx n + e β Z n+1 e β Y n+1 X n d + ke Z n d ] up Y n Y n 1. d Y n 1 Y n. d Y n 1. d ] up Y n Y n Y n, β, we have e β Y n+1 βe β Y n+1 Y n g X n+1, Y n+1, Z n+1 Y n Z n+1 Z n dw Y n d g X n, Y n, Z n ] d. 13

14 Hence, due o he condiion A3 and he boundedne of Z n, i hold e β Y n+1 Y n + e β Z n+1 e β hx n+1 hx n + βe β Y n+1 e β k 7 Y n+1 Z n d Y n d + e β Y n+1 Y n X n+1 X n e β ρm Y n+1 Y n Z n+1 Z n dw d + Y n Z n+1 Z n e β k 4 Y n+1 Wih ome poiive conan α 1, α, i follow from A3 and Young inequaliy ha e β Y n+1 Y n + e β Y n+1 e β Z n+1 Z n d e β k 5 X n+1 X n Y n Z n+1 Z n dw + α ρm + + k 3 + k 4 β α 1 α e β Y n+1 e β X n+1 Y n d + α 1 X n d Leing β = ρm α 1 + k 3 α + k 4 and aking expecaion on boh ide above, we have E e β Y n+1 Y n ] + E e β Z n+1 + α 1 E d Y n d. Z n d e β k5e X n+1 X n ] e β Z n+1 Puing α 1 = 1 and α = 1, he previou eimae yield E e β Z n+1 Z n d + α E Z n d e β k5e X n+1 X n ] + E e β Z n+1 Z n d. 4.3 e β X n+1 e β X n+1 X n d. X n d. 14

15 Nex, aking condiional expecaion wih repec o F in 4.3 give e β Y n+1 Y n + E + α 1 E e β Z n+1 Z n d F e β k5e X n+1 X n ] F e β Z n+1 Z n d F + α E e β X n+1 X n d F. hu, by Burkholder-Davi-Gundy inequaliy, wih a poiive conan c 1 and α 1 = 1, α = 1, we have ] E up e β Y n+1 Y n c 1 e β k5e X n+1 X n ] 1 + c 1 E e β Z n+1 Z n d + c 1 E e β X n+1 X n d I now follow from 4. ha E aking mall enough o ha c 1 e β k 5E X n+1 ] up Y n+1 Y n + E X n ] + c 1 E 8c 1 + 1e β k 5 + k E Z n+1 8c 1 + 1e β k 5 + k 1, e β X n+1 Z n d ] up Y n Y n 1. X n d. we obain ha X n, Y n, Z n i a Cauchy equence in S R m S R l H R l d. hu, i uffice o define C by he condiion { k 1 1 8c 1 + 1e β k 5 + k 1. By coninuiy of b, g and h we have he exience of a oluion X, Y, Z in S R m S R l H R l d of FBSDE 1.1 and i follow from he boundedne of Z n ha Z M. he uniquene in S R m S R l S R l d follow from he boundedne of Z and by repeaing he above argumen on he difference of wo oluion. 15

16 Sep 3: If one of he funcion b, g or h i no differeniable, we apply he echnique of he proof of heorem 3.1. Namely, we ue an approximaion by he mooh funcion defined a follow: For n N, le β 1 n, β n and β 3 n be nonnegaive C funcion wih uppor on {x R m : x 1 n }, {x Rm+l : x 1 n } and {x Rm+l+l d : x 1 n } repecively, and aifying R m β 1 nrdr = 1, R m+l β nrdr = 1 and R m+l+l d β 3 nrdr = 1. We define he convoluion b n x, y := b x, y βnx x, y ydx dy, h n x := hx βnx 1 xdx, R m+l R m g n u, x, y, z := gu, x, y, z βnx 3 x, y y, z zdx dy dz. R m+l+l d I i eay o check ha b n aifie A1 wih he conan k 1, k and λ 1 and ha g n and h n aify A4 - A5 and A3, repecively, wih he ame conan. From Sep 1 and, here exi a poiive conan C independen of n uch ha if C, FBSDE 1.1 wih parameer b n, h n, g n admi a unique oluion X n, Y n, Z n S R m S R l S R l d and Z n M. By he Lipchiz coninuiy condiion on b and h and he locally Lipchiz condiion of g, he equence b n and h n converge uniformly o b and h on R m+l and R m, repecively, and g n converge o g uniformly on R m+l Λ for any compac ube Λ of R l d. Combining hee uniform convergence wih he boundedne of Z n, imilar o above, here exi a conan C depending on k 1, k, k 3, k 4, k 5, λ, l and d uch ha if C, X n, Y n, Z n i a Cauchy equence in he Banach pace S R m S R l H R l d. In fac, for any m, n N, uing Cauchy-Schwarz inequaliy we have X n X m b n ux n u, Y n u b m u X m u, Y m u du. hu, aking he upremum wih repec o and hen expecaion on boh ide give X n X m S R m 3 b n uxu n, Yu n b u Xu n, Yu n + b m u Xu m, Yu m b u Xu m, Yu m + b u X n u, Y n u b u X m u, Y m u du 3 b n uxu n, Yu n b u Xu n, Yu n + b m u Xu m, Yu m b u Xu m, Yu m du + 3k 1 X n X m S R m + 3k Y n Y m S R l

17 where he econd inequaliy follow from A1. On he oher hand, applying Iô formula a in Sep, one ha Y m Y n + Z n u Z m u du h n X n hx n + h m X m hx m + k 5 X n X m + Y n+1 Y n Z n+1 Z n dw Y n u Y m u g n ux n u, Y n u, Z n u g u X n u, Y n u, Z n u + g m u X m u, Y m u, Z m u g u X m u, Y m u, Z m u + k 3 X n u X m u + k 4 Y n u Y m u + ρm Z n u Z m u du. 4.5 aking expecaion, due o Young inequaliy we have Z n Z m H R l d E h n X n hx n ] + E h m X m hx m ] + k k 3 X n X m S R m + 1 Y n Y m S R l + 1 g n ux n u, Y n u, Z n u g u X n u, Y n u, Z n u + g m u X m u, Y m u, Z m u g u X m u, Y m u, Z m u du + 1 k 4ρ M Y n Y m S R l + 1 Zn Z m H R l d. On he oher hand, aking condiional expecaion in 4.5 and hen he upremum wih repec o and hen expecaion on boh ide, we have due o Young inequaliy Y n Y m S R l E h n X n hx n ] + E h m X m hx m ] + k 5 X n X m S R m + 1 Y n Y m S R l + 1 g n ux n u, Y n u, Z n u g u X n u, Y n u, Z n u + g m u X m u, Y m u, Z m u g u X m u, Y m u, Z m u du + 1 k 3 X n X m S R m + 1 k 4ρ M Y n Y m S R l + 1 Zn Z m H R l d. Combining 4.4 and 4.1 we oberve ha if i mall enough o ha { 3k k 5 k k 3 k + 1 k 4 ρ M 1 17

18 hen, he uniform convergence of b n, g n and h n o b, g and h enure ha X n, Y n, Z n i a Cauchy equence. he verificaion ha he limi X, Y, Z of he equence X n, Y n, Z n olve he FBSDE 1.1 ue coninuiy of he funcion b, h and g, and ha Z M i a conequence of he boundedne of Z n. aking C := C C conclude he proof. 4. Proof of Example. λ 5e Mk Le k 1, gy, z = y z k and R := wih < 1 log 1 1. he funcion g 1 M k e Mk M k M k rericed o he ball {y : y R} {z : z M} i Lipchiz coninuou, i.e. gy, z gy, z M k y y + RM k 1 z z for all y, y R and z, z M. hu, i can be exenden o a Lipchiz coninuou funcion g wih he ame Lipchiz conan on R l R l d. In paricular, g aifie he condiion of heorem.1. hu, he FBSDE. wih generaor g replaced by g admi a unique oluion, Ỹ, Z S R m S R l S R l d wih Z M. Moreover, one ha Ỹ λ 5 + E M k Ỹ + RM k 1 Z d F o by Gronwall inequaliy and boundedne of Z, i follow ha Ỹ λ 5 + RM k e M k = R. ha i, gỹ, Z = gỹ, Z, howing ha, Ỹ, Z olve he FBSDE. wih generaor g. 4.3 Proof of Remark.3 By conrucion, for ufficienly mall, here i a equence X n, Y n, Z n S R m S R l S R l d converging in S R m S R l S R l d o he oluion X, Y, Z of he FBSDE 1.1. Moreover, for each, ] i hold X n, Y n, Z n D 1, R m D 1, R l D 1, R l d wih D r X n 4λ and D r Y n M for all r, ]. For, ] one ha X n X L + Y n Y L. hu, i follow from 7, Propoiion 1..3] ha X, Y D 1, R m D 1, R l. 4.4 Proof of heorem.5 Fir aume ha A6 i aified. If C, hen he reul follow from heorem.1. Aume > C and le h M : R R be a coninuouly differeniable funcion whoe derivaive i bounded by 1 and uch ha h Ma = 1 for all M a M and M + 1 if a > M + h Ma = a if a M M + 1 if a < M +. 18

19 An example of uch a funcion i given by { M h Ma + = Ma aa 4 /4 if a M, M + ] M + Ma + aa + 4 /4 if M +, M], ee Imkeller and do Rei 19]. By he aumpion A3 he funcion g :, ] R m R l R l d R l defined by g x, y, z := g x, y, h Mz 4.6 wih h Mz := h Mz ij ij being Lipchiz coninuou in all variable. hu, i follow from Delarue 8, heorem.6] ha he equaion { = x + b u u, Ỹu du + σ u dw u Ỹ = h + g u u, Ỹu, Z u du Z u dw u,, ] 4.7 admi a unique oluion, Ỹ, Z S R m S R l S R l d. Moreover, here exi a Lipchiz coninuou funcion θ :, ] R m R l bounded by K 5 uch ha Ỹ = θ, for all, ]. In fac, for every x, x R d,, ] and i = 1,..., l, i follow by Iô formula ha θ, x θ, = h x h + h x h + θ i u, x u θ i u, θu, x u θu, K 4 θu, x u θu, θ i u, x u θ i u, u Zx,i u Z,i u dw u u gu i u, x Ỹ u x, Z u x gu i u, Ỹ u, Z u du θ i u, x u θ i u, u k 3 u x u + Z x u u Zx,i u Z,i u dw u u + ρ M dl Z x u Z u du Z u du h x h + k 3 x u θ i u, x u θ i u, u Zx,i u Z,i u dw u u K 4 k 3 ρ M dl θu, u x θu, u du 19

20 Since by Gronwall lemma we have x x i hold θ, x θ, E e k1 k5 + k 3 x hu, + k + e k1 k k5 + k 3 + k 3 + ρ M ] dl K 4 e k 1 k 5 + k 3 x. θ, x θ, Ỹ x u Ỹ u due k 1,, ], K 5 x θu, x u θu,. u du F ] Le C := Ck 1, k, k 3, k 4, K 5, λ, l, d and pu N = / C, where a denoe he ineger par of a, and i := i C, i =,..., N and N+1 =. Since 1 C, by heorem.1 he FBSDE { X = x + b ux u, Y u du + σ u dw u Y = θ 1, X g u X u, Y u, Z u du 1 Z u dw u,, 1 ] admi a unique oluion X 1, Y 1, Z 1 uch ha Z 1 M wih M = 8λ K 5 dl for all, 1 ]. herefore, X 1, Y 1, Z 1 1,1 ] =, Ỹ, Z1,1 ]. Similarly, we obain a family X i, Y i, Z i of oluion of he FBSDE { X = + i 1 i 1 b u X u, Y u du + i 1 σ u dw u Y = θ i, X i + i g u X u, Y u, Z u du i Z u dw u, i 1, i ] uch ha X i, Y i, Z i 1 i 1, i ] =, Ỹ, Z1 i 1, i ], i = 1,..., N + 1. Define X := N+1 X i 1 i 1, i ], Y := N+1 Y i 1 i 1, i ] and Z := N+1 Z i 1 i 1, i ]. hen, X, Y, Z S R m S R l S R l d i he unique oluion of he FBSDE 1.1 aifying Z M for all, ]. In fac, i i clear ha X, Y, Z S R m S R l S R l d a a finie um of elemen of he ame pace. Le, ] and i = 1,..., N + 1 uch ha i 1, i ]. We have x + b u X u du + σ u du = x + i j=1 = X i = X j j 1 b u X j u du + j j 1 σ u dw u

21 and hx + g u X u, Y u, Z u du = hx N+1 + N+1 j=i j j 1 Z u dw u g u X j u, Y j u, Z j u du j j 1 Zu j dw u = Y i = Y. ha i, X, Y, Z aifie Equaion 1.1. In he cae where A7 i aified, he proof i imilar and we only need o provide he argumen for he Lipchiz coninuiy of θ. If C, hen he reul follow from heorem.1. Aume > C and le h M : R R be a uiable runcaing funcion and g :, ] R m R l R l d R l defined by g x, y, z := g x, y, h M z 4.8 wih h M z := h M z ij ij. I follow from Delarue 8, heorem.6] ha he equaion { = x + b u u, Ỹu du + σ u dw u Ỹ = h + g u u, Ỹu, Z u du Z u dw u,, ] 4.9 admi a unique oluion, Ỹ, Z S R m S R l S R l d. Moreover, here exi a Lipchiz coninuou funcion θ :, ] R m R l bounded by k 5 uch ha Ỹ = θ, for all, ]. In fac, for every x, x R d,, ] and i = 1,..., l applying Iô formula we have θ, x θ, = h x h + h x h + θ i u, x u θ i u, θu, x u θu, K 4 θu, x u θu, θ i u, x u θ i u, u Zx,i u Z,i u dw u u gu i u, x Ỹ u x, Z u x gu i u, Ỹ u, Z u du θ i u, x u θ i u, u k 3 u x u + Z x u u Zx,i u Z,i u dw u u + ρm ld Z x u Z u du Z u du 1

22 h x h + Since for, ], x i hold θ, x θ, hu, k 3 θu, x u θu, E k5 x x + θ i u, x u θ i u, u x u + K 1 k 5 x u u Zx,i u Z,i u dw u u K 4 ρ M ld θu, u x θu, K 1 x u + ρ M ld K 4 θu, u x θu, k 5 x. θ, x θ, u + k x u u + k k 5 + k 3 x u u du F ] k 5 x. u Ỹ x u Ỹ u du, u du u Ỹ x u Ỹ u du Having proved hi Lipchiz coninuiy propery, he re of he proof i exacly he ame a in he fir par. Remark 4.1. Wih he echnique preened above, i i hard o conider yem where he drif b depend on z, ince we do no have good enough eimae on he Malliavin derivaive of he conrol proce Z. Similarly, when he diffuion coefficien σ i a funcion of x, y or z, we looe he eimae on he Malliavin derivaive of he oluion. hee cae even he in non-markovian cae can neverhele be udied under ronger aumpion, we refer o 3] for deail. Reference 1] F. Anonelli and S. Hamadène. Exience of oluion of backward-forward SDE wih coninuou monoone coefficien. Sai. Probab. Le., 7614: , 6. ] P. Barrieu and N. El Karoui. Monoone abiliy of quadraic emimaringale wih applicaion o unbounded general quadraic BSDE. Ann. Probab., 413B: , ] J. Bielagk, A. Lionne, and G. do Rei. Equilibrium pricing under relaive performance concern. SAIM Fin. Mah., 81:435 48, 17.

23 4] P. Briand and Y. Hu. BSDE wih quadraic growh and unbounded erminal value. Probab. heory Rela. Field, 136:64 618, 6. 5] P. Briand and Y. Hu. Quadraic BSDE wih convex generaor and unbounded erminal condiion. Probab. heory Rela. Field, 141: , 8. 6] P. Cheridio and K. Nam. BSDE wih erminal condiion ha have bounded Malliavin derivaive. J. Func. Anal., 663: , 14. 7] P. Cheridio and K. Nam. Mulidimenional quadraic and ubquadraic BSDE wih pecial rucure. Sochaic, 875: , 15. 8] F. Delarue. On he exience and uniquene of oluion o FBSDE in a non-degenerae cae. Soch. Proc. Appl., 99:9 86,. 9] F. Delbaen, Y. Hu, and X. Bao. Backward SDE wih uperquadraic growh. Probab. heory Rela. Field, 15:145 19, 11. 1] L. Delong and P. Imkeller. Backward ochaic differenial equaion wih ime delayed generaor - reul and counerexample. Ann. Appl. Probab., : , 1. 11] S. Drapeau, G. Heyne, and M. Kupper. Minimal uperoluion of convex BSDE. Ann. Probab., 416: , 13. 1] N. El Karoui, S. Peng, and M. C. Quenez. Backward ochaic differenial equaion in finance. Mah. Finance, 11:1 71, ] C. Frei. Spliing mulidimenional BSDE and finding local equilibria. Soch. Proc. Appl., 148: , ] A. Fromm and P. Imkeller. Exience, uniquene and regulariy of decoupling field o mulidimenional fully coupled FBSDE. Preprin, ] A. Fromm, P. Imkeller, and D. J. Prömel. An FBSDE approach of he Skorokhod embedding problem for Gauian procee wih non-linear drif. Elec. J. Probab., 17:1 38, ] G. Heyne, M. Kupper, and L. angpi. Porfolio opimizaion under nonlinear uiliy. In. J. heor. Appl. Finance, 195, ] U. Hor, Y. Hu, P. Imkeller, A. Réveillac, and J. Zhang. Forward backward yem for expeced uiliy maximizaion. Soch. Proc. Appl., 145: , ] Y. Hu and S. ang. Muli-dimenional backward ochaic differenial equaion of diagonally quadraic generaor. Soch. Proc. Appl., 164: , ] P. Imkeller and G. do Rei. Pah regulariy and explici convergence rae for BSDE wih runcaed quadraic growh. Soch. Proc. Appl., 1: , 1. ] A. Jamnehan, M. Kupper, and P. Luo. Mulidimenional quadraic BSDE wih eparaed generaor. Elecron. Commun. Probab., 58:1, 17. 1] M. Kobylanki. Backward ochaic differenial equaion and parial differenial equaion wih quadraic growh. Ann. Probab, 8:558 6,. ] D. Kramkov and S. Pulido. Sabiliy and analyic expanion of local oluion of yem of quadraic BSDE wih applicaion o a price impac model. SAIM Fin. Mah., 71: , 16. 3] P. Luo. Eay on Mulidimenional BSDE and FBSDE. PhD hei, Univeriy of Konanz, 15. 4] P. Luo and L. angpi. Solvabiliy of coupled FBSDE wih diagonally quadraic generaor. Soch. Dyn., 17 6:17543, 17. 5] J. Ma, P. Proer, and J. Yong. Solving forward-backward ochaic differenial equaion explicily - a four ep cheme. Probab. heory Rela. Field, 98: , ] K. Nam. Backward Sochaic Differenial Equaion wih Superlinear Driver. PhD hei, Princeon Univeriy, 14. 3

24 7] D. Nualar. he Malliavin Calculu and Relaed opic. Probabiliy and i Applicaion New York. Springer-Verlag, Berlin, econd ediion, 6. 8] R. evzadze. Solvabiliy of backward ochaic differenial equaion wih quadraic growh. Soch. Proc. Appl., 118:53 515, 8. 9] H. Xing and G. Žiković. A cla of globally olvable Markovian quadraic BSDE yem and applicaion. Forhcoming in Ann. Probab., 16. 3] J. Yong and X. Y. Zhou. Sochaic conrol, Hamilonian Syem and HJB equaion, volume 43. Springer- Verlag, New York,

Multidimensional Markov FBSDEs with superquadratic

Multidimensional Markov FBSDEs with superquadratic Mulidimenional Markov FBSDE wih uperquadraic growh Michael Kupper a,1, Peng Luo b,2, Ludovic angpi c,3 December 12, 216 arxiv:155.1796v2 [mah.pr] 9 Dec 216 ABSRAC We give local and global exience and uniquene

More information

ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS

ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS Elec. Comm. in Probab. 3 (998) 65 74 ELECTRONIC COMMUNICATIONS in PROBABILITY ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS L.A. RINCON Deparmen of Mahemaic Univeriy of Wale Swanea Singleon Par

More information

FULLY COUPLED FBSDE WITH BROWNIAN MOTION AND POISSON PROCESS IN STOPPING TIME DURATION

FULLY COUPLED FBSDE WITH BROWNIAN MOTION AND POISSON PROCESS IN STOPPING TIME DURATION J. Au. Mah. Soc. 74 (23), 249 266 FULLY COUPLED FBSDE WITH BROWNIAN MOTION AND POISSON PROCESS IN STOPPING TIME DURATION HEN WU (Received 7 Ocober 2; revied 18 January 22) Communicaed by V. Sefanov Abrac

More information

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance.

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance. 1 An Inroducion o Backward Sochasic Differenial Equaions (BSDEs) PIMS Summer School 2016 in Mahemaical Finance June 25, 2016 Chrisoph Frei cfrei@ualbera.ca This inroducion is based on Touzi [14], Bouchard

More information

Essays on Multidimensional BSDEs and FBSDEs. Dissertation submitted for the degree of Doctor of Natural Sciences (Dr. Rer. Nat.) Presented by PENG LUO

Essays on Multidimensional BSDEs and FBSDEs. Dissertation submitted for the degree of Doctor of Natural Sciences (Dr. Rer. Nat.) Presented by PENG LUO Eay on Mulidimenional BSDE and FBSDE Dieraion ubmied for he degree of Docor of Naural Science (Dr. Rer. Na.) Preened by PENG LUO a he Faculy of Science Deparmen of Mahemaic and Saiic Acceped on he recommendaion

More information

Explicit form of global solution to stochastic logistic differential equation and related topics

Explicit form of global solution to stochastic logistic differential equation and related topics SAISICS, OPIMIZAION AND INFOMAION COMPUING Sa., Opim. Inf. Compu., Vol. 5, March 17, pp 58 64. Publihed online in Inernaional Academic Pre (www.iapre.org) Explici form of global oluion o ochaic logiic

More information

Mathematische Annalen

Mathematische Annalen Mah. Ann. 39, 33 339 (997) Mahemaiche Annalen c Springer-Verlag 997 Inegraion by par in loop pace Elon P. Hu Deparmen of Mahemaic, Norhweern Univeriy, Evanon, IL 628, USA (e-mail: elon@@mah.nwu.edu) Received:

More information

Research Article Existence and Uniqueness of Solutions for a Class of Nonlinear Stochastic Differential Equations

Research Article Existence and Uniqueness of Solutions for a Class of Nonlinear Stochastic Differential Equations Hindawi Publihing Corporaion Abrac and Applied Analyi Volume 03, Aricle ID 56809, 7 page hp://dx.doi.org/0.55/03/56809 Reearch Aricle Exience and Uniquene of Soluion for a Cla of Nonlinear Sochaic Differenial

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

Fractional Ornstein-Uhlenbeck Bridge

Fractional Ornstein-Uhlenbeck Bridge WDS'1 Proceeding of Conribued Paper, Par I, 21 26, 21. ISBN 978-8-7378-139-2 MATFYZPRESS Fracional Ornein-Uhlenbeck Bridge J. Janák Charle Univeriy, Faculy of Mahemaic and Phyic, Prague, Czech Republic.

More information

MALLIAVIN CALCULUS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND APPLICATION TO NUMERICAL SOLUTIONS

MALLIAVIN CALCULUS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND APPLICATION TO NUMERICAL SOLUTIONS The Annal of Applied Probabiliy 211, Vol. 21, No. 6, 2379 2423 DOI: 1.1214/11-AAP762 Iniue of Mahemaical Saiic, 211 MALLIAVIN CALCULUS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND APPLICATION TO

More information

Dual Representation of Minimal Supersolutions of Convex BSDEs

Dual Representation of Minimal Supersolutions of Convex BSDEs Dual Repreenaion of Minimal Superoluion of Convex BSDE Samuel Drapeau a,1,, Michael Kupper b,2,, Emanuela Roazza Gianin c,3, Ludovic Tangpi a,4, December 15, 214 ABSTRACT We give a dual repreenaion of

More information

Stability in Distribution for Backward Uncertain Differential Equation

Stability in Distribution for Backward Uncertain Differential Equation Sabiliy in Diribuion for Backward Uncerain Differenial Equaion Yuhong Sheng 1, Dan A. Ralecu 2 1. College of Mahemaical and Syem Science, Xinjiang Univeriy, Urumqi 8346, China heng-yh12@mail.inghua.edu.cn

More information

Backward Stochastic Differential Equations and Applications in Finance

Backward Stochastic Differential Equations and Applications in Finance Backward Sochaic Differenial Equaion and Applicaion in Finance Ying Hu Augu 1, 213 1 Inroducion The aim of hi hor cae i o preen he baic heory of BSDE and o give ome applicaion in 2 differen domain: mahemaical

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

Utility maximization in incomplete markets

Utility maximization in incomplete markets Uiliy maximizaion in incomplee markes Marcel Ladkau 27.1.29 Conens 1 Inroducion and general seings 2 1.1 Marke model....................................... 2 1.2 Trading sraegy.....................................

More information

BSDE Approach to Non-Zero-Sum Stochastic Differential Games of Control and Stopping

BSDE Approach to Non-Zero-Sum Stochastic Differential Games of Control and Stopping BSDE Approach o Non-Zero-Sum Sochaic Differenial Game of Conrol and Sopping Ioanni Karaza INTECH Invemen Managemen One Palmer Square, Suie 441 Princeon, NJ 8542 ik@enhanced.com Qinghua Li Saiic Deparmen,

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 3, March 28, Page 99 918 S 2-9939(7)989-2 Aricle elecronically publihed on November 3, 27 FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL

More information

Rough Paths and its Applications in Machine Learning

Rough Paths and its Applications in Machine Learning Pah ignaure Machine learning applicaion Rough Pah and i Applicaion in Machine Learning July 20, 2017 Rough Pah and i Applicaion in Machine Learning Pah ignaure Machine learning applicaion Hiory and moivaion

More information

Measure-valued Diffusions and Stochastic Equations with Poisson Process 1

Measure-valued Diffusions and Stochastic Equations with Poisson Process 1 Publihed in: Oaka Journal of Mahemaic 41 (24), 3: 727 744 Meaure-valued Diffuion and Sochaic quaion wih Poion Proce 1 Zongfei FU and Zenghu LI 2 Running head: Meaure-valued Diffuion and Sochaic quaion

More information

arxiv: v1 [math.pr] 2 Jan 2015

arxiv: v1 [math.pr] 2 Jan 2015 Mean-field backward ochaic differenial equaion on Markov chain arxiv:151.955v1 [mah.pr] 2 Jan 215 Wen Lu 1 Yong Ren 2 1. School of Mahemaic and Informaional Science, Yanai Univeriy, Yanai 2645, China 2.

More information

Reflected Solutions of BSDEs Driven by G-Brownian Motion

Reflected Solutions of BSDEs Driven by G-Brownian Motion Refleced Soluion of BSDE Driven by G-Brownian Moion Hanwu Li Shige Peng Abdoulaye Soumana Hima Sepember 1, 17 Abrac In hi paper, we udy he refleced oluion of one-dimenional backward ochaic differenial

More information

Backward Stochastic Partial Differential Equations with Jumps and Application to Optimal Control of Random Jump Fields

Backward Stochastic Partial Differential Equations with Jumps and Application to Optimal Control of Random Jump Fields Backward Sochaic Parial Differenial Equaion wih Jump and Applicaion o Opimal Conrol of Random Jump Field Bern Økendal 1,2, Frank Proke 1, Tuheng Zhang 1,3 June 7, 25 Abrac We prove an exience and uniquene

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

Stochastic Optimal Control in Infinite Dimensions: Dynamic Programming and HJB Equations

Stochastic Optimal Control in Infinite Dimensions: Dynamic Programming and HJB Equations Sochaic Opimal Conrol in Infinie Dimenion: Dynamic Programming and HJB Equaion G. Fabbri 1 F. Gozzi 2 and A. Świe ch3 wih Chaper 6 by M. Fuhrman 4 and G. Teiore 5 1 Aix-Mareille Univeriy (Aix-Mareille

More information

An introduction to the (local) martingale problem

An introduction to the (local) martingale problem An inroducion o he (local) maringale problem Chri Janjigian Ocober 14, 214 Abrac Thee are my preenaion noe for a alk in he Univeriy of Wiconin - Madion graduae probabiliy eminar. Thee noe are primarily

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

Approximation for Option Prices under Uncertain Volatility

Approximation for Option Prices under Uncertain Volatility Approximaion for Opion Price under Uncerain Volailiy Jean-Pierre Fouque Bin Ren February, 3 Abrac In hi paper, we udy he aympoic behavior of he wor cae cenario opion price a he volailiy inerval in an uncerain

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

On the Exponential Operator Functions on Time Scales

On the Exponential Operator Functions on Time Scales dvance in Dynamical Syem pplicaion ISSN 973-5321, Volume 7, Number 1, pp. 57 8 (212) hp://campu.m.edu/ada On he Exponenial Operaor Funcion on Time Scale laa E. Hamza Cairo Univeriy Deparmen of Mahemaic

More information

arxiv: v1 [math.pr] 23 Apr 2018

arxiv: v1 [math.pr] 23 Apr 2018 arxiv:184.8469v1 [mah.pr] 23 Apr 218 The Neumann Boundary Problem for Ellipic Parial ifferenial Equaion wih Nonlinear ivergence Term Xue YANG Tianjin Univeriy e-mail: xyang213@ju.edu.cn Jing ZHANG Fudan

More information

On the Benney Lin and Kawahara Equations

On the Benney Lin and Kawahara Equations JOURNAL OF MATEMATICAL ANALYSIS AND APPLICATIONS 11, 13115 1997 ARTICLE NO AY975438 On he BenneyLin and Kawahara Equaion A Biagioni* Deparmen of Mahemaic, UNICAMP, 1381-97, Campina, Brazil and F Linare

More information

On the Malliavin differentiability of BSDEs

On the Malliavin differentiability of BSDEs On he Malliavin differeniabiliy of BSDE Thibau Marolia Dylan Poamaï Anhony Réveillac Univerié Pari-Dauphine CEREMADE UMR CNRS 7534 Place du Maréchal De Lare De Taigny 75775 Pari cedex 16 France April 3,

More information

FUZZY n-inner PRODUCT SPACE

FUZZY n-inner PRODUCT SPACE Bull. Korean Mah. Soc. 43 (2007), No. 3, pp. 447 459 FUZZY n-inner PRODUCT SPACE Srinivaan Vijayabalaji and Naean Thillaigovindan Reprined from he Bullein of he Korean Mahemaical Sociey Vol. 43, No. 3,

More information

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions Generalized Orlicz Space and Waerein Diance for Convex-Concave Scale Funcion Karl-Theodor Surm Abrac Given a ricly increaing, coninuou funcion ϑ : R + R +, baed on he co funcional ϑ (d(x, y dq(x, y, we

More information

Systems of nonlinear ODEs with a time singularity in the right-hand side

Systems of nonlinear ODEs with a time singularity in the right-hand side Syem of nonlinear ODE wih a ime ingulariy in he righ-hand ide Jana Burkoová a,, Irena Rachůnková a, Svaolav Saněk a, Ewa B. Weinmüller b, Sefan Wurm b a Deparmen of Mahemaical Analyi and Applicaion of

More information

Time discretization of quadratic and superquadratic Markovian BSDEs with unbounded terminal conditions

Time discretization of quadratic and superquadratic Markovian BSDEs with unbounded terminal conditions Time discreizaion of quadraic and superquadraic Markovian BSDEs wih unbounded erminal condiions Adrien Richou Universié Bordeaux 1, INRIA équipe ALEA Oxford framework Le (Ω, F, P) be a probabiliy space,

More information

On a Fractional Stochastic Landau-Ginzburg Equation

On a Fractional Stochastic Landau-Ginzburg Equation Applied Mahemaical Sciences, Vol. 4, 1, no. 7, 317-35 On a Fracional Sochasic Landau-Ginzburg Equaion Nguyen Tien Dung Deparmen of Mahemaics, FPT Universiy 15B Pham Hung Sree, Hanoi, Vienam dungn@fp.edu.vn

More information

Energy Equality and Uniqueness of Weak Solutions to MHD Equations in L (0,T; L n (Ω))

Energy Equality and Uniqueness of Weak Solutions to MHD Equations in L (0,T; L n (Ω)) Aca Mahemaica Sinica, Englih Serie May, 29, Vol. 25, No. 5, pp. 83 814 Publihed online: April 25, 29 DOI: 1.17/1114-9-7214-8 Hp://www.AcaMah.com Aca Mahemaica Sinica, Englih Serie The Ediorial Office of

More information

Quadratic Backward Stochastic Volterra Integral Equations

Quadratic Backward Stochastic Volterra Integral Equations Quadraic Backward Sochaic Volerra Inegral Equaion Hanxiao Wang Jingrui Sun Jiongmin Yong Ocober 25, 218 arxiv:181.1149v1 mah.pr 24 Oc 218 Abrac. Thi paper i concerned wih backward ochaic Volerra inegral

More information

A stability approach for solving multidimensional quadratic BSDES

A stability approach for solving multidimensional quadratic BSDES A abiliy approach for olving mulidimenional quadraic BSDES Jonahan Harer, Adrien Richou To cie hi verion: Jonahan Harer, Adrien Richou A abiliy approach for olving mulidimenional quadraic BSDES 17 HAL

More information

About the Pricing Equation in Finance

About the Pricing Equation in Finance Abou he Pricing Equaion in Finance Séphane Crépey Déparemen de Mahémaique Univerié d Évry Val d Eonne 91025 Évry Cedex, France Thi verion: July 10, 2007 1 Inroducion In [16], we conruced a raher generic

More information

DIMENSIONAL REDUCTION IN NONLINEAR FILTERING: A HOMOGENIZATION APPROACH

DIMENSIONAL REDUCTION IN NONLINEAR FILTERING: A HOMOGENIZATION APPROACH DIMNSIONAL RDUCION IN NONLINAR FILRING: A HOMOGNIZAION APPROACH PR IMKLLR 1, N. SRI NAMACHCHIVAYA 2, NICOLAS PRKOWSKI 1, AND HOONG C. YONG 2 Abrac. We propoe a homogenized filer for mulicale ignal, which

More information

Approximate Controllability of Fractional Stochastic Perturbed Control Systems Driven by Mixed Fractional Brownian Motion

Approximate Controllability of Fractional Stochastic Perturbed Control Systems Driven by Mixed Fractional Brownian Motion American Journal of Applied Mahemaic and Saiic, 15, Vol. 3, o. 4, 168-176 Available online a hp://pub.ciepub.com/ajam/3/4/7 Science and Educaion Publihing DOI:1.1691/ajam-3-4-7 Approximae Conrollabiliy

More information

arxiv: v5 [math.pr] 6 Oct 2015

arxiv: v5 [math.pr] 6 Oct 2015 ON THE EXISTENCE AND UNIQUENESS OF SOLUTIONS TO STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY G-BROWNIAN MOTION WITH INTEGRAL-LIPSCHITZ COEFFICIENTS XUEPENG BAI AND YIQING LIN arxiv:12.146v5 mah.pr] 6 Oc

More information

Approximation for Option Prices under Uncertain Volatility

Approximation for Option Prices under Uncertain Volatility SIAM J. FINANCIAL MATH. Vol. 5, pp. 360 383 c 014 Sociey for Indurial and Applied Mahemaic Approximaion for Opion Price under Uncerain Volailiy Jean-Pierre Fouque and Bin Ren Abrac. In hi paper, we udy

More information

Dynamic Systems and Applications 16 (2007) BACKWARD STOCHASTIC DIFFERENTIAL INCLUSIONS 1. INTRODUCTION. x t + t

Dynamic Systems and Applications 16 (2007) BACKWARD STOCHASTIC DIFFERENTIAL INCLUSIONS 1. INTRODUCTION. x t + t Dynamic Syem and Applicaion 16 (7) 11-14 BACKWARD STOCHASTIC DIFFERENTIAL INCLUSIONS MICHA L KISIELEWICZ Faculy of Mahemaic, Compuer Science and Economeric, Univeriy of Zielona Góra, Podgórna 5, 65 46

More information

arxiv: v1 [math.pr] 25 Jul 2017

arxiv: v1 [math.pr] 25 Jul 2017 COUPLING AND A GENERALISED POLICY ITERATION ALGORITHM IN CONTINUOUS TIME SAUL D. JACKA, ALEKSANDAR MIJATOVIĆ, AND DEJAN ŠIRAJ arxiv:177.7834v1 [mah.pr] 25 Jul 217 Abrac. We analye a verion of he policy

More information

Analysis of a Non-Autonomous Non-Linear Operator-Valued Evolution Equation to Diagonalize Quadratic Operators in Boson Quantum Field Theory

Analysis of a Non-Autonomous Non-Linear Operator-Valued Evolution Equation to Diagonalize Quadratic Operators in Boson Quantum Field Theory 1 Analyi of a Non-Auonomou Non-Linear Operaor-Valued Evoluion Equaion o Diagonalize Quadraic Operaor in Boon Quanum Field Theory Volker Bach and Jean-Bernard Bru Abrac. We udy a non auonomou, non-linear

More information

SINGULAR FORWARD BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND EMISSIONS DERIVATIVES

SINGULAR FORWARD BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND EMISSIONS DERIVATIVES he Annal of Applied Probabiliy 213, Vol. 23, No. 3, 186 1128 DOI: 1.1214/12-AAP865 Iniue of Mahemaical Saiic, 213 SINGULAR FORWARD BACKWARD SOCHASIC DIFFERENIAL EQUAIONS AND EMISSIONS DERIVAIVES BY RENÉ

More information

On the Malliavin differentiability of BSDEs

On the Malliavin differentiability of BSDEs On he Malliavin differeniabiliy of BSDE Thibau Marolia Dylan Poamaï Anhony Réveillac Augu 25, 215 arxiv:144.126v4 [mah.pr 24 Aug 215 Abrac In hi paper we provide new condiion for he Malliavin differeniabiliy

More information

NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY

NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY Ian Crawford THE INSTITUTE FOR FISCAL STUDIES DEPARTMENT OF ECONOMICS, UCL cemmap working paper CWP02/04 Neceary and Sufficien Condiion for Laen

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

BSDE's, Clark-Ocone formula, and Feynman-Kac formula for Lévy processes Nualart, D.; Schoutens, W.

BSDE's, Clark-Ocone formula, and Feynman-Kac formula for Lévy processes Nualart, D.; Schoutens, W. BSD', Clark-Ocone formula, and Feynman-Kac formula for Lévy procee Nualar, D.; Schouen, W. Publihed: 1/1/ Documen Verion Publiher PDF, alo known a Verion of ecord (include final page, iue and volume number)

More information

Existence of Stepanov-like Square-mean Pseudo Almost Automorphic Solutions to Nonautonomous Stochastic Functional Evolution Equations

Existence of Stepanov-like Square-mean Pseudo Almost Automorphic Solutions to Nonautonomous Stochastic Functional Evolution Equations Exience of Sepanov-like Square-mean Peudo Almo Auomorphic Soluion o Nonauonomou Sochaic Funcional Evoluion Equaion Zuomao Yan Abrac We inroduce he concep of bi-quare-mean almo auomorphic funcion and Sepanov-like

More information

Spectral gaps for the O-U/Stochastic heat processes on path space over a Riemannian manifold with boundary

Spectral gaps for the O-U/Stochastic heat processes on path space over a Riemannian manifold with boundary arxiv:181.186v1 [mah.pr] 5 Dec 18 ec1 Specral gap for he O-U/Sochaic hea procee on pah pace over a Riemannian manifold wih boundary Bo Wu School of Mahemaical Science, Fudan Univeriy, Shanghai 433, China

More information

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann. Func. Anal. 2 2011, no. 2, 34 41 A nnals of F uncional A nalysis ISSN: 2008-8752 elecronic URL: www.emis.de/journals/afa/ CLASSIFICAION OF POSIIVE SOLUIONS OF NONLINEAR SYSEMS OF VOLERRA INEGRAL EQUAIONS

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THE BACKWARD STOCHASTIC LORENZ SYSTEM

EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THE BACKWARD STOCHASTIC LORENZ SYSTEM Communicaions on Sochasic Analysis Vol. 1, No. 3 (27) 473-483 EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THE BACKWARD STOCHASTIC LORENZ SYSTEM P. SUNDAR AND HONG YIN Absrac. The backward sochasic Lorenz

More information

1 Motivation and Basic Definitions

1 Motivation and Basic Definitions CSCE : Deign and Analyi of Algorihm Noe on Max Flow Fall 20 (Baed on he preenaion in Chaper 26 of Inroducion o Algorihm, 3rd Ed. by Cormen, Leieron, Rive and Sein.) Moivaion and Baic Definiion Conider

More information

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER #A30 INTEGERS 10 (010), 357-363 FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER Nahan Kaplan Deparmen of Mahemaic, Harvard Univeriy, Cambridge, MA nkaplan@mah.harvard.edu Received: 7/15/09, Revied:

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms Chaper 6. Laplace Tranform Kreyzig by YHLee;45; 6- An ODE i reduced o an algebraic problem by operaional calculu. The equaion i olved by algebraic manipulaion. The reul i ranformed back for he oluion of

More information

Backward stochastic dynamics on a filtered probability space

Backward stochastic dynamics on a filtered probability space Backward sochasic dynamics on a filered probabiliy space Gechun Liang Oxford-Man Insiue, Universiy of Oxford based on join work wih Terry Lyons and Zhongmin Qian Page 1 of 15 gliang@oxford-man.ox.ac.uk

More information

Simulation of BSDEs and. Wiener Chaos Expansions

Simulation of BSDEs and. Wiener Chaos Expansions Simulaion of BSDEs and Wiener Chaos Expansions Philippe Briand Céline Labar LAMA UMR 5127, Universié de Savoie, France hp://www.lama.univ-savoie.fr/ Workshop on BSDEs Rennes, May 22-24, 213 Inroducion

More information

arxiv: v7 [q-fin.pm] 20 Mar 2019

arxiv: v7 [q-fin.pm] 20 Mar 2019 Porfolio choice, porfolio liquidaion, and porfolio raniion under drif uncerainy arxiv:161107843v7 [q-finpm] 20 Mar 2019 Alexi Bimuh, Olivier Guéan, Jiang Pu Abrac hi paper preen everal model addreing opimal

More information

REPRESENTATION THEOREMS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS. BY JIN MA 1 AND JIANFENG ZHANG Purdue University and University of Minnesota

REPRESENTATION THEOREMS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS. BY JIN MA 1 AND JIANFENG ZHANG Purdue University and University of Minnesota The Annal of Applied Probabiliy 22, Vol. 12, No. 4, 139 1418 REPRESENTATION THEOREMS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS BY JIN MA 1 AND JIANFENG ZHANG Purdue Univeriy and Univeriy of Minneoa

More information

6. Stochastic calculus with jump processes

6. Stochastic calculus with jump processes A) Trading sraegies (1/3) Marke wih d asses S = (S 1,, S d ) A rading sraegy can be modelled wih a vecor φ describing he quaniies invesed in each asse a each insan : φ = (φ 1,, φ d ) The value a of a porfolio

More information

Elements of Mathematical Oncology. Franco Flandoli

Elements of Mathematical Oncology. Franco Flandoli Elemen of Mahemaical Oncology Franco Flandoli Conen Par. Sochaic Differenial Equaion, linear Parial Differenial Equaion and heir link 5 Chaper. Brownian moion and hea equaion 7. Inroducion 7. Simulaion

More information

arxiv:math/ v2 [math.fa] 30 Jul 2006

arxiv:math/ v2 [math.fa] 30 Jul 2006 ON GÂTEAUX DIFFERENTIABILITY OF POINTWISE LIPSCHITZ MAPPINGS arxiv:mah/0511565v2 [mah.fa] 30 Jul 2006 JAKUB DUDA Abrac. We prove ha for every funcion f : X Y, where X i a eparable Banach pace and Y i a

More information

Introduction to Congestion Games

Introduction to Congestion Games Algorihmic Game Theory, Summer 2017 Inroducion o Congeion Game Lecure 1 (5 page) Inrucor: Thoma Keelheim In hi lecure, we ge o know congeion game, which will be our running example for many concep in game

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

Semi-discrete semi-linear parabolic SPDEs

Semi-discrete semi-linear parabolic SPDEs Semi-dicree emi-linear parabolic SPDE Nico Georgiou Univeriy of Suex Davar Khohnevian Univeriy of Uah Mahew Joeph Univeriy of Sheffield Shang-Yuan Shiu Naional Cenral Univeriy La Updae: November 2, 213

More information

Network Flows: Introduction & Maximum Flow

Network Flows: Introduction & Maximum Flow CSC 373 - lgorihm Deign, nalyi, and Complexiy Summer 2016 Lalla Mouaadid Nework Flow: Inroducion & Maximum Flow We now urn our aenion o anoher powerful algorihmic echnique: Local Search. In a local earch

More information

An ergodic BSDE approach to forward entropic risk measures: representation and large-maturity behavior

An ergodic BSDE approach to forward entropic risk measures: representation and large-maturity behavior An ergodic BSDE approach o forward enropic rik meaure: repreenaion and large-mauriy behavior W. F. Chong Y. Hu G. Liang. Zariphopoulou Fir verion: January 2016; hi verion: November 30, 2016 Abrac Uing

More information

and Applications Alexander Steinicke University of Graz Vienna Seminar in Mathematical Finance and Probability,

and Applications Alexander Steinicke University of Graz Vienna Seminar in Mathematical Finance and Probability, Backward Sochasic Differenial Equaions and Applicaions Alexander Seinicke Universiy of Graz Vienna Seminar in Mahemaical Finance and Probabiliy, 6-20-2017 1 / 31 1 Wha is a BSDE? SDEs - he differenial

More information

Positive continuous solution of a quadratic integral equation of fractional orders

Positive continuous solution of a quadratic integral equation of fractional orders Mah. Sci. Le., No., 9-7 (3) 9 Mahemaical Sciences Leers An Inernaional Journal @ 3 NSP Naural Sciences Publishing Cor. Posiive coninuous soluion of a quadraic inegral equaion of fracional orders A. M.

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

Coupling Homogenization and Large Deviations. Principle in a Parabolic PDE

Coupling Homogenization and Large Deviations. Principle in a Parabolic PDE Applied Mahemaical Science, Vol. 9, 215, no. 41, 219-23 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/1.12988/am.215.5169 Coupling Homogenizaion and Large Deviaion Principle in a Parabolic PDE Alioune Coulibaly,

More information

Time Varying Multiserver Queues. W. A. Massey. Murray Hill, NJ Abstract

Time Varying Multiserver Queues. W. A. Massey. Murray Hill, NJ Abstract Waiing Time Aympoic for Time Varying Mulierver ueue wih Abonmen Rerial A. Melbaum Technion Iniue Haifa, 3 ISRAEL avim@x.echnion.ac.il M. I. Reiman Bell Lab, Lucen Technologie Murray Hill, NJ 7974 U.S.A.

More information

On Delayed Logistic Equation Driven by Fractional Brownian Motion

On Delayed Logistic Equation Driven by Fractional Brownian Motion On Delayed Logiic Equaion Driven by Fracional Brownian Moion Nguyen Tien Dung Deparmen of Mahemaic, FPT Univeriy No 8 Ton Tha Thuye, Cau Giay, Hanoi, 84 Vienam Email: dungn@fp.edu.vn ABSTRACT In hi paper

More information

U T,0. t = X t t T X T. (1)

U T,0. t = X t t T X T. (1) Gauian bridge Dario Gabarra 1, ommi Soinen 2, and Eko Valkeila 3 1 Deparmen of Mahemaic and Saiic, PO Box 68, 14 Univeriy of Helinki,Finland dariogabarra@rnihelinkifi 2 Deparmen of Mahemaic and Saiic,

More information

OPTIMAL INVESTMENT AND CONSUMPTION IN A BLACK SCHOLES MARKET WITH LÉVY-DRIVEN STOCHASTIC COEFFICIENTS

OPTIMAL INVESTMENT AND CONSUMPTION IN A BLACK SCHOLES MARKET WITH LÉVY-DRIVEN STOCHASTIC COEFFICIENTS The Annal of Applied Probabiliy 2008, Vol. 18, No. 3, 879 908 DOI: 10.1214/07-AAP475 Iniue of Mahemaical Saiic, 2008 OPTIMAL INVESTMENT AND CONSUMPTION IN A BLACK SCHOLES MARKET WITH LÉVY-DRIVEN STOCHASTIC

More information

Backward doubly stochastic di erential equations with quadratic growth and applications to quasilinear SPDEs

Backward doubly stochastic di erential equations with quadratic growth and applications to quasilinear SPDEs Backward doubly sochasic di erenial equaions wih quadraic growh and applicaions o quasilinear SPDEs Badreddine MANSOURI (wih K. Bahlali & B. Mezerdi) Universiy of Biskra Algeria La Londe 14 sepember 2007

More information

The generalized deniion allow u for inance o deal wih parial averaging of yem wih diurbance (for ome claical reul on parial averaging ee [3, pp

The generalized deniion allow u for inance o deal wih parial averaging of yem wih diurbance (for ome claical reul on parial averaging ee [3, pp Averaging wih repec o arbirary cloed e: cloene of oluion for yem wih diurbance A.R.Teel 1, Dep. of Elec. and Comp. Eng., Univeriy of California, Sana Barbara, CA, 93106-9560 D.Neic Dep. of Elec. and Elecronic

More information

Existence Theory of Second Order Random Differential Equations

Existence Theory of Second Order Random Differential Equations Global Journal of Mahemaical Sciences: Theory and Pracical. ISSN 974-32 Volume 4, Number 3 (22), pp. 33-3 Inernaional Research Publicaion House hp://www.irphouse.com Exisence Theory of Second Order Random

More information

A Stochastic Representation for Fully Nonlinear PDEs and Its Application to Homogenization

A Stochastic Representation for Fully Nonlinear PDEs and Its Application to Homogenization J. Mah. Sci. Univ. Tokyo 12 (2005), 467 492. A Sochaic Repreenaion for Fully Nonlinear PDE and I Applicaion o Homogenizaion By Naoyuki Ichihara Abrac. We eablih a ochaic repreenaion formula for oluion

More information

BSDEs on finite and infinite horizon with timedelayed

BSDEs on finite and infinite horizon with timedelayed BSDEs on finie and infinie horizon wih imedelayed generaors Peng Luo a,b,1,, Ludovic Tangpi c,, June 1, 18 arxiv:159.1991v1 [mah.pr] 7 Sep 15 ABSTRACT We consider a backward sochasic differenial equaion

More information

Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes: Non-Ergodic Case

Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes: Non-Ergodic Case Parameer Eimaion for Fracional Ornein-Uhlenbeck Procee: Non-Ergodic Cae R. Belfadli 1, K. E-Sebaiy and Y. Ouknine 3 1 Polydiciplinary Faculy of Taroudan, Univeriy Ibn Zohr, Taroudan, Morocco. Iniu de Mahémaique

More information

Simulation of BSDEs and. Wiener Chaos Expansions

Simulation of BSDEs and. Wiener Chaos Expansions Simulaion of BSDEs and Wiener Chaos Expansions Philippe Briand Céline Labar LAMA UMR 5127, Universié de Savoie, France hp://www.lama.univ-savoie.fr/ Sochasic Analysis Seminar Oxford, June 1, 213 Inroducion

More information

A proof of Ito's formula using a di Title formula. Author(s) Fujita, Takahiko; Kawanishi, Yasuhi. Studia scientiarum mathematicarum H Citation

A proof of Ito's formula using a di Title formula. Author(s) Fujita, Takahiko; Kawanishi, Yasuhi. Studia scientiarum mathematicarum H Citation A proof of Io's formula using a di Tile formula Auhor(s) Fujia, Takahiko; Kawanishi, Yasuhi Sudia scieniarum mahemaicarum H Ciaion 15-134 Issue 8-3 Dae Type Journal Aricle Tex Version auhor URL hp://hdl.handle.ne/186/15878

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms 6- Chaper 6. Laplace Tranform 6.4 Shor Impule. Dirac Dela Funcion. Parial Fracion 6.5 Convoluion. Inegral Equaion 6.6 Differeniaion and Inegraion of Tranform 6.7 Syem of ODE 6.4 Shor Impule. Dirac Dela

More information

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER John Riley 6 December 200 NWER TO ODD NUMBERED EXERCIE IN CHPTER 7 ecion 7 Exercie 7-: m m uppoe ˆ, m=,, M (a For M = 2, i i eay o how ha I implie I From I, for any probabiliy vecor ( p, p 2, 2 2 ˆ ( p,

More information

On Gronwall s Type Integral Inequalities with Singular Kernels

On Gronwall s Type Integral Inequalities with Singular Kernels Filoma 31:4 (217), 141 149 DOI 1.2298/FIL17441A Published by Faculy of Sciences and Mahemaics, Universiy of Niš, Serbia Available a: hp://www.pmf.ni.ac.rs/filoma On Gronwall s Type Inegral Inequaliies

More information

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship Laplace Tranform (Lin & DeCarlo: Ch 3) ENSC30 Elecric Circui II The Laplace ranform i an inegral ranformaion. I ranform: f ( ) F( ) ime variable complex variable From Euler > Lagrange > Laplace. Hence,

More information

The multisubset sum problem for finite abelian groups

The multisubset sum problem for finite abelian groups Alo available a hp://amc-journal.eu ISSN 1855-3966 (prined edn.), ISSN 1855-3974 (elecronic edn.) ARS MATHEMATICA CONTEMPORANEA 8 (2015) 417 423 The muliube um problem for finie abelian group Amela Muraović-Ribić

More information

On the goodness of t of Kirk s formula for spread option prices

On the goodness of t of Kirk s formula for spread option prices On he goodne of of Kirk formula for pread opion price Elia Alò Dp. d Economia i Emprea Univeria Pompeu Fabra c/ramon ria Farga, 5-7 08005 Barcelona, Spain Jorge A. León y Conrol Auomáico CINVESAV-IPN Aparado

More information

Fractional Brownian Bridge Measures and Their Integration by Parts Formula

Fractional Brownian Bridge Measures and Their Integration by Parts Formula Journal of Mahemaical Reearch wih Applicaion Jul., 218, Vol. 38, No. 4, pp. 418 426 DOI:1.377/j.in:295-2651.218.4.9 Hp://jmre.lu.eu.cn Fracional Brownian Brige Meaure an Their Inegraion by Par Formula

More information

PATHWISE UNIQUENESS FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH SINGULAR DRIFT AND NONCONSTANT DIFFUSION. Katharina von der Lühe

PATHWISE UNIQUENESS FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH SINGULAR DRIFT AND NONCONSTANT DIFFUSION. Katharina von der Lühe Dieraion PATHWISE UNIQUENESS FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH SINGULAR DRIFT AND NONCONSTANT DIFFUSION Kaharina on der Lühe Fakulä für Mahemaik Unieriä Bielefeld Augu 26 Conen Conen. Inroducion..

More information

Chapter 7: Inverse-Response Systems

Chapter 7: Inverse-Response Systems Chaper 7: Invere-Repone Syem Normal Syem Invere-Repone Syem Baic Sar ou in he wrong direcion End up in he original eady-ae gain value Two or more yem wih differen magniude and cale in parallel Main yem

More information