MALLIAVIN CALCULUS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND APPLICATION TO NUMERICAL SOLUTIONS

Size: px
Start display at page:

Download "MALLIAVIN CALCULUS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND APPLICATION TO NUMERICAL SOLUTIONS"

Transcription

1 The Annal of Applied Probabiliy 211, Vol. 21, No. 6, DOI: /11-AAP762 Iniue of Mahemaical Saiic, 211 MALLIAVIN CALCULUS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND APPLICATION TO NUMERICAL SOLUTIONS BY YAOZHONG HU 1,DAVID NUALART 2 AND XIAOMING SONG Univeriy of Kana In hi paper we udy bacward ochaic differenial equaion wih general erminal value and general random generaor. In paricular, we do no require he erminal value be given by a forward diffuion equaion. The randomne of he generaor doe no need o be from a forward equaion, eiher. Moivaed from applicaion o numerical imulaion, fir we obain he L p -Hölder coninuiy of he oluion. Then we conruc everal numerical approximaion cheme for bacward ochaic differenial equaion and obain he rae of convergence of he cheme baed on he obained L p - Hölder coninuiy reul. The main ool i he Malliavin calculu. 1. Inroducion. The bacward ochaic differenial equaion BSDE, for hor we hall conider in hi paper ae he following form: 1.1 Y = ξ + fr,y r,z r dr Z r dw r, T, where W ={W } T i a andard Brownian moion, ξ i he given erminal value and f i he given random generaor. To olve hi equaion i o find a pair of adaped procee Y ={Y } T and Z ={Z } T aifying he above equaion 1.1. Linear bacward ochaic differenial equaion were fir udied by Bimu [3] in an aemp o olve ome opimal ochaic conrol problem hrough he mehod of maximum principle. The general nonlinear bacward ochaic differenial equaion were fir udied by Pardoux and Peng [15]. Since hen here have been exenive udie of hi equaion. We refer o he review paper by El Karoui, Peng and Quenez [7], o he boo of El Karoui and Mazlia [6] and of Ma and Yong [12] and he reference herein for more comprehenive preenaion of he heory. A curren imporan opic in he applicaion of BSDE i he numerical approximaion cheme. In mo wor on numerical imulaion, a cerain forward Received March 21; revied Ocober Suppored by he NSF Gran DMS Suppored by he NSF gran DMS MSC21 ubjec claificaion. 6H7, 6H1, 6H35, 65C3, 91G6. Key word and phrae. Bacward ochaic differenial equaion, Malliavin calculu, explici cheme, implici cheme, Clar Ocone Hauman formula, rae of convergence, Hölder coninuiy of he oluion. 2379

2 238 Y. HU, D. NUALART AND X. SONG ochaic differenial equaion of he following form: 1.2 X = X + br,x r,y r dr + σr,x r dw r i needed. Uually i i aumed ha he generaor f in 1.1 depend on X r a he ime r: fr,y r,z r = fr,x r,y r,z r,wherefr,x,y,z i a deerminiic funcion of r,x,y,z,andf i global Lipchiz in x,y,z. If in addiion he erminal value ξ i of he form ξ = hx T,whereh i a deerminiic funcion, a o-called four-ep numerical cheme ha been developed by Ma, Proer and Yong in [11]. A baic ingredien in hi paper i ha he oluion {Y } T o he BSDE i of he form Y = u, X,whereu, x i deermined by a quai-linear parial differenial equaion of parabolic ype. Recenly, Bouchard and Touzi [4] propoe a Mone-Carlo approach which may be more uiable for high-dimenional problem. Again in hi forward bacward eing, if he generaor f ha a quadraic growh in Z, a numerical approximaion i developed by Imeller and Do Rei [9] in which a runcaion procedure i applied. In he cae where he erminal value ξ i a funcional of he pah of he forward diffuion X, namely, ξ = gx, differen approache o conruc numerical mehod have been propoed. We refer o Bally [1] for a cheme wih a random ime pariion. In he wor by Zhang [16], he L 2 -regulariy of Z i obained, which allow one o ue deerminiic ime pariion a well a o obain he rae eimae ee Bender and Den [2], Gobe, Lemor and Warin [8]andZhang[16] for differen algorihm. We hould alo menion he wor by Briand, Delyon and Mémin [5] and Ma e al. [1], where he Brownian moion i replaced by a caled random wal. The purpoe of he preen paper i o conruc numerical cheme for he general BSDE 1.1, wihou auming any paricular form for he erminal value ξ and generaor f.thimeanhaξ can be an arbirary random variable, and fr,y,z can be an arbirary F r -meaurable random variable ee Aumpion 2.2 in Secion 2 for precie condiion on ξ and f. The naural ool ha we hall ue i he Malliavin calculu. We emphaize ha he main difficuly in conrucing a numerical cheme for BSDE i uually he approximaion of he proce Z. I i neceary o obain ome regulariy properie for he rajecorie of hi proce Z.The Malliavin calculu urn ou o be a uiable ool o handle hee problem becaue he random variable Z can be expreed in erm of he race of he Malliavin derivaive of Y, namely, Z = D Y. Thi relaionhip wa proved in he paper by El Karoui, Peng and Quenez [7] and wa ued by hee auhor o obain eimae for he momen of Z. We hall furher exploi hi ideniy o obain he L p -Hölder coninuiy of he proce Z, which i he criical ingredien for he rae eimae of our numerical cheme. Our fir numerical cheme wa inpired by he paper of Zhang [16], where he auhor conider a cla of BSDE whoe erminal value ξ ae he form gx,

3 MALLIAVIN CALCULUS, NUMERICAL SOLUTION OF BSDE 2381 where X i a forward diffuion of he form 1.2, and g aifie a Lipchiz condiion wih repec o he L or L 1 norm imilar aumpion for f. The dicreizaion cheme i baed on he regulariy of he proce Z in he mean quare ene; ha i, for any pariion π ={ = < 1 < < n = T }, one obain 1.3 n 1 i= i+1 E [ Z Z i 2 + Z Z i+1 2 ] d K π, i where π =max i n 1 i+1 i,andk i a conan independen of he pariion π. We conider he cae of a general erminal value ξ which i wice differeniable in he ene of Malliavin calculu, and he fir and econd derivaive aify ome inegrabiliy condiion; we alo made imilar aumpion for he generaor f ee Aumpion 2.2 in Secion 2 for deail. In hi ene our framewor exend ha of [13] and i alo naural. In hi framewor, we are able o obain an eimae of he form 1.4 E Z Z p K p/2, where K i a conan independen of and. Clearly, 1.4 wih p = 2 implie 1.3. Moreover, 1.4 implie he exience of a γ -Hölder coninuou verion of he proce Z for any γ< p. Noice ha, up o now he pah regulariy of Z ha been udied only when he erminal value and he generaor are funcional of a forward diffuion. Afer eablihing he regulariy of Z, we conider differen ype of numerical cheme. Fir we analyze a cheme imilar o he one propoed in [16][ee3.2]. In hi cae we obain a rae of convergence of he following ype: E up Y Y π 2 + T E Z Z π 2 d K π +E ξ ξ π 2. Noice ha hi reul i ronger han ha in [16] which can be aed a when ξ π = ξ up E Y Y π 2 + E Z Z π 2 d K π. T We alo propoe and udy an implici numerical cheme [ee 4.1 in Secion 4 for he deail]. For hi cheme we obain a much beer reul on he rae of convergence, p/2 E up Y Y π p + E Z Z d π 2 K π p/2 + E ξ ξ π p, T where p>1 depend on he aumpion impoed on he erminal value and he coefficien.

4 2382 Y. HU, D. NUALART AND X. SONG In boh cheme, he inegral of he proce Z i ued in each ieraion, and for hi reaon hey are no compleely dicree cheme. In order o implemen he cheme on compuer, one mu replace an inegral of he form i+1 i Z π d by dicree um, and hen he convergence of he obained cheme i hardly guaraneed. To avoid hi dicreizaion we propoe a ruly dicree numerical cheme uing our repreenaion of Z a he race of he Malliavin derivaive of Y ee Secion 5 for deail. For hi new cheme, we obain a rae of convergence reul of he form E max { Y i Y π i n i p + Z i Z π i p } K π p/2 ε for any ε>. In fac, we have a lighly beer rae of convergence ee Theorem 5.2, E max { Y i Y π i n i p + Z i Z π i p } K π p/2 p/2log1/ π log 1 p/2. π However, hi ype of reul on he rae of convergence applie only o ome clae of BSDE, and hu hi cheme remain o be furher inveigaed. In he compuer realizaion of our cheme or any oher cheme, an exremely imporan procedure i o compue he condiional expecaion of form EY F i. In hi paper we hall no dicu hi iue bu only menion he paper [2, 4] and [8]. The paper i organized a follow. In Secion 2 we obain a repreenaion of he maringale inegrand Z in erm of he race of he Malliavin derivaive of Y, and hen we ge he L p -Hölder coninuiy of Z by uing hi repreenaion. The condiion ha we aume on he erminal value ξ and he generaor f are alo pecified in hi ecion. Some example of applicaion are preened o explain he validiy of he condiion. Secion 3 i devoed o he analyi of he approximaion cheme imilar o he one inroduced in [16]. Under ome differeniabiliy and inegrabiliy condiion in he ene of Malliavin calculu on ξ and he nonlinear coefficien f, we eablih a beer rae of convergence for hi cheme. In Secion 4, we inroduce an implici cheme and obain he rae of convergence in he L p norm. A compleely dicree cheme i propoed and analyzed in Secion 5. Throughou he paper for impliciy we conider only calar BSDE. The reul obained in hi paper can be eaily exended o muli-dimenional BSDE. 2. The Malliavin calculu for BSDE Noaion and preliminarie. Le W ={W } T be a one-dimenional andard Brownian moion defined on ome complee filered probabiliy pace, F,P,{F } T. We aume ha {F } T i he filraion generaed by he Brownian moion and he P -null e, and F = F T. We denoe by P he progreive σ -field on he produc pace [,T]. For any p 1 we conider he following clae of procee:

5 MALLIAVIN CALCULUS, NUMERICAL SOLUTION OF BSDE 2383 M 2,p,foranyp 2, denoe he cla of quare inegrable random variable F wih a ochaic inegral repreenaion of he form F = EF + u dw, where u i a progreively meaurable proce aifying up T E u p <. H p F [,T] denoe he Banach pace of all progreively meaurable procee ϕ : [,T],P R, B wih norm p/2 1/p ϕ H p = E ϕ d 2 <. S p F [,T] denoe he Banach pace of all he RCLL righ coninuou wih lef limi adaped procee ϕ : [,T],P R, B wih norm ϕ S p = E up ϕ p 1/p <. T Nex, we preen ome preliminarie on Malliavin calculu, and we refer he reader o he boo by Nualar [14] for more deail. Le H = L 2 [,T] be he eparable Hilber pace of all quare inegrable realvalued funcion on he inerval [,T] wih calar produc denoed by, H.The norm of an elemen h H will be denoed by h H.Foranyh H we pu Wh = h dw. We denoe by Cp Rn he e of all infiniely coninuouly differeniable funcion g : R n R uch ha g and all of i parial derivaive have polynomial growh. We mae ue of he noaion i g = g x i whenever g C 1 R n. Le S denoe he cla of mooh random variable uch ha a random variable F S ha he form 2.1 F = gwh 1,..., Wh n, where g belong o Cp Rn, h 1,...,h n are in H and n 1. The Malliavin derivaive of a mooh random variable F of he form 2.1ihe H-valued random variable given by n DF = i gwh 1,..., Wh n h i. i=1 For any p 1 we will denoe he domain of D in L p by D 1,p, meaning ha D 1,p i he cloure of he cla of mooh random variable S wih repec o he norm F 1,p = E F p + E DF p H 1/p. We can define he ieraion of he operaor D in uch a way ha for a mooh random variable F, he ieraed derivaive D F i a random variable wih value

6 2384 Y. HU, D. NUALART AND X. SONG in H. Then for every p 1 and any naural number 1 we inroduce he eminorm on S defined by 1/p F,p = E F p + E D j F p H j. j=1 We will denoe by D,p he compleion of he family of mooh random variable S wih repec o he norm,p. Le μ be he Lebegue meaure on [,T]. Forany 1andF D,p,he derivaive D F ={D 1,..., F, i [,T],i = 1,...,} i a meaurable funcion on he produc pace [,T], which i defined a.e. wih repec o he meaure μ P. We ue L 1,p a o denoe he e of real-valued progreively meaurable procee u ={u } T uch ha: i For almo all [,T],u D 1,p. ii E u 2 d p/2 + D θ u 2 dθ d p/2 <. Noice ha we can chooe a progreively meaurable verion of he H-valued proce {Du } T Eimae on he oluion of BSDE. The generaor f in he BSDE 1.1 i a meaurable funcion f : [,T] R R, P B B R, B, andhe erminal value ξ i an F T -meaurable random variable. DEFINITION 2.1. A oluion o he BSDE 1.1 i a pair of progreively meaurable procee Y, Z uch ha Z 2 d <, f,y,z d <,a.. and Y = ξ + fr,y r,z r dr Z r dw r, T. The nex lemma provide a ueful eimae on he oluion o he BSDE 1.1. LEMMA 2.2. Fix q 2. Suppoe ha ξ L q, f,, H q F [,T] and f i uniformly Lipchiz in y, z; namely, here exi a poiive number L uch ha μ P a.e. f,y 1,z 1 f,y 2,z 2 L y 1 y 2 + z 1 z 2 for all y 1,y 2 R and z 1,z 2 R. Then here exi a unique oluion pair Y, Z S q F [,T] H q F [,T] o 1.1. Moreover, we have he following eimae for he

7 oluion: 2.2 MALLIAVIN CALCULUS, NUMERICAL SOLUTION OF BSDE 2385 q/2 E up Y q + E Z 2 d T q/2 K E ξ q + E f,, 2 d, where K i a conan depending only on L, q and T. PROOF. The proof of he exience and uniquene of he oluion Y, Z can be found in [7], Theorem 5.1, wih he local maringale M, ince he filraion here i he filraion generaed by he Brownian moion W. Eimae 2.2 can be eaily obained from Propoiion 5.1 in [7] wih f 1,ξ 1 = f, ξ and f 2,ξ 2 =,. A we will ee laer, for a given BSDE he proce Z will be expreed in erm of he Malliavin derivaive of he oluion Y, which will aify a linear BSDE wih random coefficien. To udy he properie of Z we need o analyze a cla of linear BSDE. Le {α } T and {β } T be wo progreively meaurable procee. We will mae ue of he following inegrabiliy condiion: ASSUMPTION 2.1. H1 For any λ>, C λ := E exp λ H2 For any p 1, α +β 2 d <. K p := up E α p + β p <. T Under condiion H1, we denoe by {ρ } T he oluion of he linear ochaic differenial equaion { dρ = α ρ d + β ρ dw, T, 2.3 ρ = 1. The following heorem i a criical ool for he proof of he main heorem in hi ecion, and i ha alo i own inere. THEOREM 2.3. Le q>p 2 and le ξ L q and f H q F [,T]. Aume ha {α } T and {β } T are wo progreively meaurable procee aifying condiion H1 and H2 in Aumpion 2.1. Suppoe ha he random

8 2386 Y. HU, D. NUALART AND X. SONG variable ξρ T and ρ f d belong o M 2,q, where {ρ } T i he oluion o 2.3. Then he following linear BSDE, 2.4 Y = ξ + [α r Y r + β r Z r + f r ] dr Z r dw r, T, ha a unique oluion pair Y, Z, and here i a conan K>uch ha 2.5 E Y Y p K p/2 for all, [,T]. We need he following lemma o prove he above reul. LEMMA 2.4. Le {α } T and {β } T be wo progreively meaurable procee aifying condiion H1 in Aumpion 2.1, and {ρ } T be he oluion of 2.3. Then, for any r R we have 2.6 E up ρ r <. T PROOF. Le [,T]. The oluion o 2.3 can be wrien a { ρ = exp α β2 d + β dw }. 2 For any real number r, wehave { exp r α β2 2 } d + r β dw } β 2 d E up ρ r = E up T T { E exp r α d r +r2 { up exp r β dw r2 β }. 2 T 2 d Then, fixing any p>1 and uing Hölder inequaliy, we obain { E up ρ r C E up exp rp β dw pr2 } 1/p 2.7 β 2 T T 2 d, where { C = E exp q r α d + q } 1/q 2 r +r2 β 2 d and p 1 + q 1 = 1.

9 MALLIAVIN CALCULUS, NUMERICAL SOLUTION OF BSDE 2387 Se M = exp{r β dw r2 2 β 2 d}. Then{M } T i a maringale due o H1. We can rewrie 2.7 ino E up ρ r C E up M p 1/p. 2.8 T T By Doob maximal inequaliy, we have 2.9 E up M p c p EM p T T for ome conan c p > depending only on p. Finally, chooing any γ>1,λ>1 uch ha γ 1 + λ 1 = 1 and applying again he Hölder inequaliy yield { EM p T exp = E rp β dw γ } 2 p2 r 2 β 2 d { γp 1 T } exp pr 2 β 2 d { E exp rpγ 2 β dw 1 } 1/γ 2 γ 2 p 2 r 2 β 2 d { λγp 1 T } 1/λ E exp pr 2 β 2 2 d { λγp 1 T } 1/λ = E exp pr 2 β 2 2 d <. Combining hi inequaliy wih 2.8 and2.9 we complee he proof. PROOF OF THEOREM 2.3. The exience and uniquene i well nown. We are going o prove 2.5. Le [,T]. Denoe γ = ρ 1,where{ρ } T i he oluion o 2.3. Then {γ } T aifie he following linear ochaic differenial equaion: { dγ = α + β 2γ d β γ dw, T, γ = 1. For any T and any poiive number r 1, we have, uing H2, he Hölder inequaliy, he Burholder Davi Gundy inequaliy and Lemma 2.4 applied o he proce {γ } T, E γ γ r = E α u + βu 2 r γ u du β u γ u dw u [E r 1 C r/2, α u +β 2 u γ u du r +C r E β 2 u γ 2 u du r/2]

10 2388 Y. HU, D. NUALART AND X. SONG where C r i a conan depending only on r, andc i a conan depending on T, r and he conan appearing in condiion H1 and H2. From 2.3, 2.4 and by Iô formula, we obain A a conequence, 2.11 Y = ρ 1 E ξρ T + dy ρ = ρ f d + β ρ Y + ρ Z dw. ρ r f r drf = E ξρ,t + wherewewrieρ,r = ρ 1 ρ r = γ ρ r for any r T. Now, fix T.Wehave E Y Y p T = E ξρ E,T + ρ,r f r drf E ξρ,t + 2 p 1 [ E Eξρ,T F Eξρ,T F p ρ,r f r drf, p ρ,r f r drf + E E T p] ρ,r f r drf E ρ,r f r drf = 2 p 1 I 1 + I 2. Fir we eimae I 1.Wehave I 1 = E Eξρ,T F Eξρ,T F p = E Eξρ,T F Eξρ,T F + Eξρ,T F Eξρ,T F p 2 p 1[ E Eξρ,T F Eξρ,T F p + E Eξρ,T F Eξρ,T F p] 2 p 1[ E ξρ,t ρ,t p + E Eξρ,T F Eξρ,T F p] = 2 p 1 I 3 + I 4. Uing he Hölder inequaliy, Lemma 2.4 and he eimae 2.1 wih r = 2pq q p,he erm I 3 can be eimaed a follow: I 3 E ξ q p/q E ρ,t ρ,t pq/q p q p/q E ξ q p/q E γ γ 2pq/q p q p/2q Eρ 2pq/q p T C p/2, q p/2q where C i a conan depending only on p,q,t, E ξ q and he conan appearing in condiion H1 and H2. In order o eimae he erm I 4 we will mae ue of he condiion ξρ T M 2,q. Thi condiion implie ha ξρ T = Eξρ T + u r dw r,

11 MALLIAVIN CALCULUS, NUMERICAL SOLUTION OF BSDE 2389 where u i a progreively meaurable proce aifying up T E u q <. Therefore, by he Burholder Davi Gundy inequaliy, we have E Eξρ T F Eξρ T F q q = E u r dw r C q E u 2 q/2 r dr C q q 2/2 E u r q dr C q q/2 up T E u q. A a conequence, from he definiion of I 4 we have I 4 = E γ [Eξρ T F Eξρ T F ] p Eγ pq/q p C p/2, q p/q E Eξρ T F Eξρ T F q p/q where C i a conan depending on p,q,t,up T E u q < and he conan appearing in condiion H1 and H2. The erm I 2 can be decompoed a follow: I 2 = E E T p ρ,r f r drf E ρ,r f r drf 3 p 1 [E E + E E + E E = 3 p 1 I 5 + I 6 + I 7. T p ρ,r f r drf E ρ,r f r drf ρ,r f r drf E ρ,r f r drf E p ρ,r f r drf p] ρ,r f r drf Le u fir eimae he erm I 5. Suppoe ha p<p <q. Then, uing 2.1 and he Hölder inequaliy, we can wrie I 5 = E E T p ρ,r f r drf E ρ,r f r drf E ρ,r ρ,r f r dr { E γ γ pp /p p } p p/p { E p T = E γ γ p p ρ r f r dr ρ r f r dr p } p/p

12 239 Y. HU, D. NUALART AND X. SONG C {E p/2 { q/2 } p/q E fr 2 dr ρ 2 r dr p q/2q p } pq p /p q Ĉ p/2 f p H q, where Ĉ i a conan depending on p,p, q, T and he conan appearing in condiion H1 and H2. Now we eimae I 6. Suppoe ha p<p <q. We have, a in he eimae of he erm I 5, I 6 = E E T p ρ,r f r drf E ρ,r f r drf p E ρ,r f r dr = E ρ p p ρ r f r dr { Eρ pp /p p } p p/p { p } p/p E ρ r f r dr { p } p/p = C E ρ r f r dr C p/2{ E up T ρ p q/q p } pq p /p q p f H q = Ĉ p/2, where Ĉ i a conan depending on p,p, q, T and he conan appearing in condiion H1 and H2. The fac ha ρ r f r dr belong o M 2,q implie ha ρ r f r dr = E ρ r f r dr + v r dw r, where {v } T i a progreively meaurable proce aifying up E v q <. T Then, by he Burholder Davi Gundy inequaliy we have E E T q ρ r f r drf E ρ r f r drf = E E T q ρ r f r drf E ρ r f r drf q = E v r dw r C q q/2 up E v q. T

13 MALLIAVIN CALCULUS, NUMERICAL SOLUTION OF BSDE 2391 Finally, we eimae I 7 a follow: I 7 = E E T p ρ,r f r drf E ρ,r f r drf = E ρ 1 T p E ρ r f r drf E ρ r f r drf { Eρ pq/q p } q p/p 2.12 { E E T q} p/q ρ r f r drf E ρ r f r drf { C E E T q} p/q ρ r f r drf E ρ r f r drf Ĉ p/2, where Ĉ i a conan depending on p, q, T,up T E v q and he conan appearing in condiion H1 and H2. A a conequence, we obain for all, [,T] E Y Y p K p/2, where K i a conan independen of and The Malliavin calculu for BSDE. We reurn o he udy of 1.1. The main aumpion we mae on he erminal value ξ and generaor f are he following: ASSUMPTION 2.2. Fix 2 p< q 2. i ξ D 2,q, and here exi L>, uch ha for all θ,θ [,T], and E D θ ξ D θ ξ p L θ θ p/2, up E D θ ξ q < θ T 2.15 up θ T up E D u D θ ξ q <. u T ii The generaor f,y,z ha coninuou and uniformly bounded firand econd-order parial derivaive wih repec o y and z, and f,, H q F [,T]. iii Aume ha ξ and f aify he above condiion i and ii. Le Y, Z be he unique oluion o 1.1 wih erminal value ξ and generaor f. For each

14 2392 Y. HU, D. NUALART AND X. SONG y, z R R, f,y,z, y f,y,z and z f,y,z belong o L 1,q a,andhe Malliavin derivaive Df,y,z, D y f,y,zand D z f,y,zaify q/2 up E D θ f,y,z d 2 <, θ T θ q/2 up E D θ y f,y,z d 2 <, θ T θ q/2 up E D θ z f,y,z d 2 <, θ T θ and here exi L> uch ha for any,t],andforany θ,θ T p/ E D θ fr,y r,z r D θ fr,y r,z r dr 2 L θ θ p/2. For each θ [,T], and each pair of y, z, D θ f,y,z L 1,q a and i ha coninuou parial derivaive wih repec o y,z, which are denoed by y D θ f,y,z and z D θ f,y,z, and he Malliavin derivaive D u D θ f,y,zaifie 2.2 up θ T q/2 up E D u D θ f,y,z d 2 <. u T θ u The following propery i eay o chec and we omi he proof. REMARK 2.5. Condiion 2.17 and2.18 imply q/2 up E y D θ f,y,z d 2 < θ T θ and q/2 up E z D θ f,y,z d 2 <, θ T θ repecively. The following i he main reul of hi ecion. THEOREM 2.6. Le Aumpion 2.2 be aified. a There exi a unique oluion pair {Y,Z } T o he BSDE 1.1, and Y,Z are in L 1,q a. A verion of he Malliavin derivaive {D θ Y,D θ Z } θ, T of

15 MALLIAVIN CALCULUS, NUMERICAL SOLUTION OF BSDE 2393 he oluion pair aifie he following linear BSDE: D θ Y = D θ ξ + [ y fr,y r,z r D θ Y r z fr,y r,z r D θ Z r + D θ fr,y r,z r ] dr D θ Z r dw r, θ T ; 2.22 D θ Y =, D θ Z =, <θ T. Moreover, {D Y } T defined by 2.21 give a verion of {Z } T, namely, μ P a.e Z = D Y. b There exi a conan K>, uch ha, for all, [,T], 2.24 E Z Z p K p/2. PROOF. Par a: The proof of he exience and uniquene of he oluion Y, Z, andy,z La 1,2 i imilar o ha of Propoiion 5.3 in [7], and alo he fac ha D θ Y,D θ Z i given by 2.21 and2.22. In Propoiion 5.3 in [7] he exponen q i equal o 4, and one aume ha D θ f,y,z 2 dθ <, H 2 which i a conequence of 2.16 and he fac ha Y,Z L 1,2 a. Furhermore, from condiion 2.14and2.16 and he eimae in Lemma 2.2, we obain { q/2 } 2.25 up E up D θ Y q + E D θ Z 2 d <. θ T θ T θ Hence, by Propoiion in [14], Y and Z belong o L 1,q a. Par b: Le T. In hi proof, C>will be a conan independen of and, and may vary from line o line. By repreenaion 2.23 wehave 2.26 Z Z = D Y D Y = D Y D Y + D Y D Y. From Lemma 2.2 and equaion 2.21forθ = and θ =, repecively, we obain, uing condiion 2.13 and2.19, p/2 E D Y D Y p + E D Z r D Z r 2 dr [ C E D ξ D ξ p 2.27 p/2 ] + E D fr,y r,z r D fr,y r,z r 2 dr C p/2.

16 2394 Y. HU, D. NUALART AND X. SONG Denoe α u = y fu,y u,z u and β u = z fu,y u,z u for all u [,T]. Then, by Aumpion 2.2ii, he procee α and β aify condiion H1 and H2 in Aumpion 2.1, and from 2.21 wehaveforr [,T ] D Y r = D ξ + r [α u D Y u + β u D Z u + D fu,y u,z u ] du r D Z u dw u. Nex, we are going o ue Theorem 2.3 o eimae E D Y D Y p.fixp wih p<p < q 2 noice ha p < q p 2 i equivalen o q p < 1. From condiion 2.14 and2.16, i i obviou ha D ξ L q L p and D f,y,z H q [,T] H p [,T] for any [,T]. We are going o how ha, for any [,T], ρ T D ξ and ρ u D fu,y u,z u duare elemen in M 2,p,where { r r ρ r = exp β u dw u + α u 1 } 2 β2 u du. For any θ r T, le u compue { r D θ ρ r = ρ r [ yz fu,y u,z u D θ Y u θ + zz fu,y u,z u D θ Z u + D θ z fu,y u,z u ] dw u + z fθ,y θ,z θ + + r θ r θ + yy fu,y u,z u yz fu,y u,z u β u Dθ Y u du yz fu,y u,z u zz fu,y u,z u β u Dθ Z u du r θ Dθ y fu,y u,z u β u D θ z fu,y u,z u } du. By he boundedne of he fir- and econd-order parial derivaive of f wih repec o y and z,2.17, 2.18, 2.25, Lemma2.4, he Hölder inequaliy and he Burholder Davi Gundy inequaliy, i i eay o how ha for any p <q, 2.28 up θ T E up θ r T D θ ρ r p <. By he Clar Ocone Hauman formula, we have ρ T D ξ = Eρ T D ξ+ = Eρ T D ξ+ = Eρ T D ξ+ ED θ ρ T D ξ F θ dw θ ED θ ρ T D ξ + ρ T D θ D ξ F θ dw θ u θ dw θ

17 MALLIAVIN CALCULUS, NUMERICAL SOLUTION OF BSDE 2395 and ρ r D fr,y r,z r dr = E + = E + ρ r D fr,y r,z r dr E D θ ρ r D fr,y r,z r dr ρ r D fr,y r,z r drf θ dw θ E [D θ ρ r D fr,y r,z r + ρ r y D fr,y r,z r D θ Y r + ρ r z D fr,y r,z r D θ Z r + ρ r D θ D fr,y r,z r ] drf θ dw θ = E ρ r D fr,y r,z r dr + vθ dw θ. We claim ha up θ T E u θ p < and up θ T E v θ p <. In fac, E u θ p = E ED θ ρ T D ξ + ρ T D θ D ξ F θ p 2 p 1 E D θ ρ T D ξ p + E ρ T D θ D ξ p 2 p 1 E D θ ρ T p q/q p q p /q E D ξ q p /q + Eρ p q/q p q p /q T E Dθ D ξ q p /q. By 2.14, 2.15, 2.28 and Lemma 2.4, wehaveup T up θ T E u θ p <. On he oher hand, E vθ T p = E E [D θ ρ r D fr,y r,z r + ρ r y D fr,y r,z r D θ Y r + ρ r z D fr,y r,z r D θ Z r 4 p 1 [J 1 + J 2 + J 3 + J 4 ], p + ρ r D θ D fr,y r,z r ] drf θ

18 2396 Y. HU, D. NUALART AND X. SONG where and J 1 = E J 2 = E J 3 = E For J 1,wehave J 1 E For J 2,wehave J 2 E up θ r T J 4 = E up θ r T D θ ρ r D fr,y r,z r dr p, ρ r y D fr,y r,z r D θ Y r dr ρ r z D fr,y r,z r D θ Z r dr ρ r D θ D fr,y r,z r dr p. p, T p D θ ρ r p D fr,y r,z r dr E up D θ ρ r p q/q p q p /q θ r T E D fr,y r,z r dr q p /q T p /2 E up D θ ρ r p q/q p q p /q θ r T q/2 p /q E D fr,y r,z r 2 dr. D θ Y r p p up ρ r y D fr,y r,z r dr r T E up D θ Y r q p /q θ r T E up r T ρ r E up D θ Y r q p /qe up θ r T r T p q/q p q p /q y D fr,y r,z r dr q p /q E y D fr,y r,z r dr p ρ p q/q 2p q 2p /q r

19 MALLIAVIN CALCULUS, NUMERICAL SOLUTION OF BSDE 2397 T p /2 E up D θ Y r q p /qe up θ r T r T q/2 p E y D fr,y r,z r 2 /q dr. Uing a imilar echnique a before, we obain ha and q/2 p /q J 3 T p /2 E D θ Z r 2 dr E up r T q/2 p E z D fr,y r,z r 2 /q dr J 4 T p /2 E up r T ρ p q/q p q p /q r ρ p q/q 2p q 2p /q r ρ p q/q 2p q 2p /q r q/2 p E D θ D fr,y r,z r 2 /q dr. By 2.16, , 2.28 and Lemma 2.4, we obain ha up T up E vθ p <. θ T Therefore, ρ T ξ and ρ u D fu,y u,z u dubelong o M 2,p. Thu by Theorem 2.3 wih p<p, here i a conan C >, uch ha E D Y D Y p C p/2 for all [,T ]. Furhermore, aing ino accoun he proof of he eimae I = 3, 4,...,7 in he proof of Theorem 2.3, we can how ha up T C =: C<. Thu we have 2.29 E D Y D Y p C p/2 for all, [,T]. Combining 2.29 wih 2.26 and2.27, we obain ha here i a conan K>independen of and, uch ha E Z Z p K p/2 for all, [,T]. COROLLARY 2.7. Under he aumpion in Theorem 2.2, le Y, Z S q F [,T] H q F [,T] be he unique oluion pair o 1.1. If up T E Z q <, hen here exi a conan C, uch ha, for any, [,T], 2.3 E Y Y q C q/2.

20 2398 Y. HU, D. NUALART AND X. SONG PROOF. Wihou lo of generaliy we aume T. C>i a conan independen of and, which may vary from line o line. Since Y = Y + fr,y r,z r dr Z r dw r, we have, by he Lipchiz condiion on f, E Y Y q q = E fr,y r,z r dr Z r dw r 2 E q 1 q q fr,y r,z r dr + E Z r dw r q/2 C q q/2 E fr,y r,z r dr 2 + E [ C { q/2 E C q/2. The proof i complee. q/2 Y r dr 2 + E Z r 2 dr q/2 Z r 2 dr q/2 q/2 ] + E fr,, 2 dr } + q/2 up E Z r q r T REMARK 2.8. From Theorem 2.6 we now ha {D θ Y,D θ Z } θ T aifie equaion 2.21andZ = D Y, μ P a.e. Moreover, ince 2.14and2.16 hold, we can apply he eimae 2.2 in Lemma 2.2 o he linear BSDE 2.21and deduce up T E Z q <. Therefore, by Lemma 2.7, he proce Y aifie he inequaliy 2.3. By Kolmogorov coninuiy crierion hi implie ha Y ha Hölder coninuou rajecorie of order γ for any γ< 1 2 q Example. In hi ecion we dicu hree paricular example where Aumpion 2.2 i aified. EXAMPLE 2.9. Conider equaion 1.1. Aume ha: a f,y,z: [,T] R R R i a deerminiic funcion ha ha uniformly bounded fir- and econd-order parial derivaive wih repec o y and z, and f,, 2 d <. b The erminal value ξ i a muliple ochaic inegral of he form 2.31 ξ = g 1,..., n dw 1 dw n, [,T ] n

21 MALLIAVIN CALCULUS, NUMERICAL SOLUTION OF BSDE 2399 where n 2 i an ineger and g 1,..., n i a ymmeric funcion in L 2 [,T] n, uch ha up g 1,..., n 1,u 2 d 1 d n 1 <, u T [,T ] n 1 g 1,..., n 2,u,v 2 d 1 d n 2 <, [,T ] n 2 up u,v T and here exi a conan L> uch ha for any u, v [,T] [,T ] n 1 g 1,..., n 1,u g 1,..., n 1,v 2 d 1 d n 1 <L u v. From 2.31, we now ha D u ξ = n g 1,..., n 1,udW 1 dw n 1. [,T ] n 1 The above aumpion implie Aumpion 2.2, and herefore, Z aifie he Hölder coninuiy propery EXAMPLE 2.1. Le = C [, 1] equipped wih he Borel σ -field and Wiener meaure. Then, i a Banach pace wih upremum norm,and W = ω i he canonical Wiener proce. Conider equaion 1.1 on he inerval [, 1]. Aume ha: g1 f,y,z: [, 1] R R R i a deerminiic funcion ha ha uniformly bounded fir- and econd-order parial derivaive wih repec o y and z, and 1 f,, 2 d <. g2 ξ = ϕw, whereϕ : R i wice Fréche differeniable, and he firand econd-order Fréche derivaive δϕ and δ 2 ϕ aify ϕω + δϕω + δ 2 ϕω C 1 exp {C 2 ω r } for all ω and ome conan C 1 >, C 2 > and<r<2, where denoe he operaor norm oal variaion norm. g3 If λ denoe he igned meaure on [, 1] aociaed wih δϕ, here exi a conan L> uch ha for all θ θ 1, for ome p 2. E λθ, θ ] p L θ θ p/2 I i eay o how ha D θ ξ = λθ, 1] and D u D θ ξ = νθ, 1] u, 1], whereν denoe he igned meaure on [, 1] [, 1] aociaed wih δ 2 ϕ. From he above aumpion and Fernique heorem, we can ge Aumpion 2.2, and herefore, he Hölder coninuiy propery 2.24 ofz.

22 24 Y. HU, D. NUALART AND X. SONG EXAMPLE Conider he following forward bacward ochaic differenial equaion FBSDE for hor: X = X + br,x r dr + σr,x r dw r, 2.32 Y = ϕ Xr 2 dr + fr,x r,y r,z r dr Z r dw r, where b,σ, ϕ and f are deerminiic funcion, and X R. We mae he following aumpion: h1 b and σ ha uniformly bounded fir- and econd-order parial derivaive wih repec o x, and here i a conan L>, uch ha, for any, [,T], x R, σ,x σ,x L 1/2. h2 up T { b, + σ, } <. h3 ϕ i wice differeniable, and here exi a conan C > and a poiive ineger n uch ha ϕ X 2 d T + ϕ X 2 d T + ϕ X 2 d C1 + X n, where x = up{ x, T } for any x C[,T]. h4 f,x,y,z ha coninuou and uniformly bounded fir- and econdorder parial derivaive wih repec o x,y and z and f,,, 2 d <. Noice ha in hi example, X = ϕ X 2 d i no necearily globally Lipchiz in X, and he reul of [16] canno be applied direcly. Under he above aumpion, h1 and h4, equaion 2.32 ha a unique oluion riple X,Y,Z, and we have he following claical reul: for any real number r>, here exi a conan C>uch ha E up X r <, E X X r C r/2 T for any, [,T]. Foranyfixedy, z R R, wehaved θ f,x,y,z= x f,x,y,zd θ X. Then, under all he aumpion in hi example, by Theorem and Lemma in [14] and he reul lied above, we can verify Aumpion 2.2. Therefore, Z ha he Hölder coninuiy propery Noe ha in he mulidimenional cae we do no require he marix σσ T o be inverible. 3. An explici cheme for BSDE. In he remaining par of hi paper, we le π ={ = < 1 < < n = T } be a pariion of he inerval [,T] and π = max i n 1 i+1 i. Denoe i = i+1 i, i n 1.

23 3.1 MALLIAVIN CALCULUS, NUMERICAL SOLUTION OF BSDE 241 From 1.1, we now ha, when [ i, i+1 ], Y = Y i+1 + i+1 fr,y r,z r dr i+1 Z r dw r. Comparing wih he numerical cheme for forward ochaic differenial equaion, we could inroduce a numerical cheme of he form Y 1,π n = ξ π, Y 1,π i = Y 1,π i+1 + f i+1,y 1,π i+1,z 1,π i+1 i i+1 i Z 1,π r dw r, [ i, i+1, i = n 1,n 2,...,, where ξ π L 2 i an approximaion of he erminal condiion ξ. Thileado a bacward recurive formula for he equence {Y 1,π i,z 1,π i } i n. In fac, once Y 1,π i+1 and Z 1,π i+1 are defined, hen we can find Y 1,π i by Y 1,π i = E Y 1,π i+1 + f i+1,y 1,π i+1,z 1,π i+1 i F i, and {Zr 1,π } i r< i+1 i deermined by he ochaic inegral repreenaion of he random variable Y 1,π i Y 1,π i+1 f i+1,y 1,π i+1,z 1,π i+1 i. Alhough {Zr 1,π } i r< i+1 can be expreed explicily by Clar Ocone Hauman formula, i compuaion i a hard problem in pracice. On he oher hand, here are difficulie in udying he convergence of he above cheme. An alernaive cheme i inroduced in [16], where he approximaing pair Y π,z π are defined recurively by 3.2 Y π n = ξ π, Z π n =, Y π 1 = Y π i+1 + f i+1,y π i+1, E i+1 i+2 i+1 Zr π dr Fi+1 i i+1 Zr π dw r, [ i, i+1, i = n 1,n 2,...,, where, by convenion, E 1 i+2 i+1 i+1 Zr π dr F i+1 = wheni = n 1. In [16] he following rae of convergence i proved for hi approximaion cheme, auming ha he erminal value ξ and he generaor f are funcional of a forward diffuion aociaed wih he BSDE, 3.3 max E Y i Y π i n i 2 + E Z Z π 2 d K π. The main reul of hi ecion i he following, which on one hand improve he above rae of convergence, and on he oher hand exend erminal value ξ and generaor f o more general iuaion.

24 242 Y. HU, D. NUALART AND X. SONG THEOREM 3.1. Conider he approximaion cheme 3.2. Le Aumpion 2.2 be aified, and le he pariion π aify max i n 1 i / i+1 L 1, where L 1 i a conan. Aume ha a conan L 2 > exi uch ha 3.4 f 2,y,z f 1,y,z L /2 for all 1, 2 [,T] and y,z R. Then here are poiive conan K and δ, independen of he pariion π, uch ha, if π <δ, hen 3.5 E up Y Y π 2 + E T Z Z π 2 d K π +E ξ ξ π 2. PROOF. In hi proof, C> will denoe a conan independen of he pariion π, which may vary from line o line. Inequaliy 2.24 in Theorem 2.6b yield he following eimae Theorem 3.1 in [16] wih p = 2: n 1 i+1 E Z Z i 2 + Z Z i+1 2 d C π. i= i Uing hi eimae and following he ame argumen a he proof of Theorem 5.3 in [16], we can obain he following reul: 3.6 max E Y i Y π i n i 2 + E Denoe Z π 3.7 i = 1 i+1 E i Z Z π 2 d C π +E ξ ξ π 2., if i = n; Zr π dr Fi i, if i = n 1,n 2,...,. If i < i+1, i = n 1,n 2,...,, hen, by ieraion, we have 3.8 Therefore, Y π Y π i+1 = Y π i+1 + f i+1,y π i+1, Z π i+1 i Zr π dw r n = ξ π + f,y π, Z π 1 Zr π dw r. = E ξ π + n We rewrie he BSDE 1.1 a follow: 3.9 Y = ξ + = ξ + n f,y π, Z π F 1, [ i, i+1. fr,y r,z r dr Z r dw r f,y,z 1 Z r dw r + R π,

25 where MALLIAVIN CALCULUS, NUMERICAL SOLUTION OF BSDE 243 R π = fr,y r,z r dr = n n n f,y,z 1 1 [fr,y r,z r f,y,z ] dr 1 fr,y r,z r f,y,z dr + By Lemma 2.2 and he Lipchiz condiion on f,wehave p/2 E fr,y r,z r dr 2 <, and hence, 3.1 E max i n 1 i+1 i p fr,y r,z r dr i i+1 p/2 π p/2 E fr,y r,z r dr 2. Define a funcion {r} r T by { T, if r = T, r= i+1, if i r< i+1, i = n 1,...,. i fr,y r,z r dr fr,y r,z r dr. By he Hölder inequaliy, he boundedne of he fir-order parial derivaive of f,3.4, 2.24, Remar 2.8 and 3.1, i i eay o ee ha E up R π p 2 [E p 1 fr,y r,z r f p r,y r,z r dr T i+1 p ] + E max fr,y r,z r dr i n 1 i T p 1 E + 2 p 1 π p/2 E C π p/2, fr,y r,z r f r,y r,z r p dr p/2 fr,y r,z r 2 dr where, by convenion, R T =. In paricular, we obain 3.12 E up R π 2 C π. T

26 244 Y. HU, D. NUALART AND X. SONG To implify he noaion we denoe and δy π = Y Y π, δz π = Z Z π for all [,T] Ẑ π i = Z i Z π i for i = n, n 1,...,. Then, when i < i+1,by3.8 and3.9 we can wrie δy π n = [f,y,z f,y π, Z π ] 1 δz π r dw r + R π + δξ π, where δξ π = ξ ξ π. Therefore, we obain n 3.13 = E δy π [f,y,z f,y π, Z π ] 1 + R π + δξ π F Denoe f π = f,y,z f,y π, Z π. From equaliy 3.13 for j < j+1,wherei j n 1, and aing ino accoun ha δyt π = δy π n = δξ π,we obain up δy π n up E f π 1 + up Rr π + δξπ F. i T i T r T The above condiional expecaion i a maringale if i i conidered a a proce indexed by [ i,t]. Thu, uing Doob maximal inequaliy, we obain [ E up δy π 2 E up i T i T From 3.12, we deduce n E f π 1 + up r T ] 2 Rr π + δξπ F n 2 CE f π 1 + up Rr π + δξπ r T { n 2 C E f π 1 + E up Rr π 2 + E δξ π }. 2 r T { n 2 } E up δy π 2 C E f π 1 + E δξ π 2 + π. i T.

27 MALLIAVIN CALCULUS, NUMERICAL SOLUTION OF BSDE 245 Uing he Lipchiz condiion on f, we obain { 3.14 E up δy π 2 C i T T i 2 E up δy π 2 i+1 n + E n 1 + CE δξ π 2 + π. Ẑπ E Ẑ n 2 2 n 1 Noice ha n 1 2 n 1 E Ẑπ 1 = E Z EZu π F du 1 n E E Z Zu π F du n 1 L 2 1 E 2 +1 E Z Zu π F du 3.15 { n 1 2L E E Z Z u F du n 1 2 } +1 + E E Z u Zu π F du = 2L 2 1 I 1 + I 2. Now he Minowi and he Hölder inequaliie yield } 3.16 I 1 E n 1 { +1 T i T i CT i n 1 n 1 n 1 E Z Z u F } 1/2 2 du 1/ E E Z Z u F 2 du E Z Z u 2 du u du C π. 2

28 246 Y. HU, D. NUALART AND X. SONG In a imilar way and by 3.6, we obain 3.17 On he oher hand, I 2 T i n 1 +1 E Z u Z π u 2 du = T i E δzu π 2 du C π. i EẐπ n n 1 2 = E Z n 2 n 1 2 C π 2. From , we have E up δy π 2 C 1 T i 2 E up δy π 2 i T i+1 n C 2 E δξ π 2 + π, where C 1 and C 2 are wo poiive conan independen of he pariion π. We can find a conan δ>independen of he pariion π, uch ha C 1 3δ 2 < 1 2 and T>2δ. Denoe l =[T 2δ ] [x] mean he greae ineger no larger han x. Then l 1 i an ineger independen of he pariion π. If π <δ, hen for he pariion π we can chooe n 1 >i 1 >i 2 > >i l, uch ha, T 2δ i1 1, i1 ], T 4δ i2 1, i2 ],...,T 2δl [, il ] wih 1 =. For impliciy, we denoe i = T and il+1 =. Each inerval [ ij+1, ij ],j =, 1,...,l, ha lengh le han 3δ, hai, ij ij+1 < 3δ. On each inerval [ ij+1, ij ],j =, 1,...,l, we conider he recurive formula 3.2, and 3.19 become E up δy π 2 C 1 ij ij+1 2 E up δy π 2 ij+1 ij i j+1 +1 i j C 2 E δy π ij 2 + π. Uing 3.2, we can obain inducively E up δy π 2 ij+1 ij 3.21 C 1 ij ij+1 2 E up δy π 2 + C 2 E δy π ij 2 + π i j+1 +1 i j C 1 ij ij+1 2 C 1 ij ij 1 2 E δy π ij 2 + C 2 E δy π ij 2 + π 1 + C 1 ij ij C 1 ij ij+1 2 C 1 ij ij C 1 ij ij+1 2 C 1 ij ij C 1 ij ij 1 2

29 MALLIAVIN CALCULUS, NUMERICAL SOLUTION OF BSDE 247 C 1 3δ 2 i j i j+1 E δy π ij 2 + C 2 E δy π ij 2 + π 1 + C 1 3δ 2 + C 1 3δ C 1 3δ 2 i j i j+1 E δy π ij 2 C C 1 3δ 2 E δy π ij 2 + π E δy π ij 2 + 2C 2 E δy π ij 2 + π = 2C 2 + 1E δy π ij 2 + 2C 2 π. By recurrence, we obain 3.22 E up δy π ij+1 ij 2 2C j+1 E δξ π 2 + C 2 π 1 + 2C C j 2C l+1 E δξ π 2 + C 2 π 1 + 2C C l 32C l+1 E δξ π 2 + π. 2 Therefore, aing C = 32C 2+1 l+1 2, we obain E up δy π 2 max T j l E up δy π 2 C π +E ξ ξ π 2. ij+1 ij Combining he above eimae wih 3.6, we now ha here exi a conan K> independen of he pariion π, uch ha E up Y Y π 2 + E Z Z π 2 d K π +E ξ ξ π 2. T REMARK 3.2. The numerical cheme inroduced before, a oher imilar cheme, involve he compuaion of condiional expecaion wih repec o he σ -field F i+1. To implemen hi cheme in pracice we need o approximae hee condiional expecaion. Some wor ha been done o olve hi problem, and we refer he reader o he reference [2, 4] and[8]. 4. An implici cheme for BSDE. In hi ecion, we propoe an implici numerical cheme for he BSDE 1.1. Define he approximaing pair Y π,z π

30 248 Y. HU, D. NUALART AND X. SONG recurively by 4.1 Y π n = ξ π, Y π = Y π i+1 + f i+1,y π i+1, 1 i+1 i+1 Zr π dr i Zr π dw r, i i [ i, i+1, i = n 1,n 2,...,, where he pariion π and i, i = n 1,...,, are defined in Secion 3, andξ π i an approximaion of he erminal value ξ. In hi recurive formula 4.1, on each ubinerval [ i, i+1, i = n 1,...,, he nonlinear generaor f conain he informaion of Z π on he ame inerval. In hi ene, hi formula i differen from formula 3.2, and 4.1 i an equaion for {Y π,z π} i < i+1.when π i ufficienly mall, he exience and uniquene of he oluion o he above equaion can be eablihed. In fac, equaion 4.1 i of he following form: b b 4.2 Y = ξ + g Z r dr Z r dw r, [a,b] and a<b T. a For he BSDE 4.2, we have he following heorem. THEOREM 4.1. Le a<b T and p 2. Le ξ be F b -meaurable and ξ L p. If here exi a conan L>uch ha g : R, F b B R, B aifie gz 1 gz 2 L z 1 z 2 for all z 1,z 2 R and g L p, hen here i a conan δp,l >, uch ha, when b a<δp,l, equaion 4.2 ha a unique oluion Y, Z S p F [a,b] H p F [a,b]. PROOF. We hall ue he fixed poin heorem for he mapping from H p F [a,b] ino H p F [a,b] which map z o Z, wherey, Z i he oluion of he following BSDE: b b 4.3 Y = ξ + g z r dr Z r dw r, [a,b]. a In fac, by he maringale repreenaion heorem, here exi a progreively meaurable proce Z ={Z } a b uch ha E b a Z 2 d < and b b Fa b ξ + g z r dr = E ξ + g z r dr + Z dw. a a a By he inegrabiliy properie of ξ,g and z, one can how ha Z H p F [a,b]. Define Y = Eξ + g b a z r dr F, [a,b].theny, Z aifie equaion 4.3.

31 MALLIAVIN CALCULUS, NUMERICAL SOLUTION OF BSDE 249 Noice ha Y i a maringale. Then by he Lipchiz condiion on g, he inegrabiliy of ξ,g and z, and Doob maximal inequaliy, we can prove ha Y S p F [a,b]. Le z 1,z 2 be wo elemen in he Banach pace H p F [a,b], andley 1,Z 1, Y 2,Z 2 be he aociaed oluion, ha i, Y i = ξ + g b b zr i dr Zr i dw r, [a,b],i = 1, 2. a Denoe Ȳ = Y 1 Y 2, Z = Z 1 Z 2, z = z 1 z 2. Then b b b 4.4 Ȳ = g zr 1 dr g zr 2 dr Z r dw r a a for all [a,b].so b b F Ȳ = E g zr 1 dr g zr 2 dr a a for all [a,b]. Thu by Doob maximal inequaliy, we have E up Ȳ p b b F = E up g E zr 1 dr g zr 2 p dr a b a b a a b b CE g zr 1 dr g zr 2 p dr a a 4.5 b b CE zr 1 dr zr 2 p dr a Cb a p/2 E a b a z r 2 dr p/2, where C> i a generic conan depending on L and p, which may vary from line o line. From 4.4, i i eay o ee Ȳ = Ȳ a + a Z r dw r for all [a,b]. Therefore, by he Burholder Davi Gundy inequaliy and 4.5, we have b p/2 E Z r dr 2 p CE up Z r dw r a a b a [ 4.6 C E Ȳ a p + E up Ȳ p] a b b p/2 Cb a p/2 E z r dr 2, a

32 241 Y. HU, D. NUALART AND X. SONG ha i, Z H p C 1 b a 1/2 z H p, where C 1 i a poiive conan depending only on L and p. Tae δp,l = 1/C1 2. I i obviou ha he mapping i a conracion when b a<δp,l, and hence here exi a unique oluion Y, Z S p F [a,b] [a,b] o he BSDE 4.2. H p F Now we begin o udy he convergence of he cheme 4.1. THEOREM 4.2. Le Aumpion 2.2 be aified, and le π be any pariion. Aume ha ξ π L p and here exi a conan L 1 > uch ha, for all 1, 2 [,T], f 2,y,z f 1,y,z L /2. Then, here are wo poiive conan δ and K independen of he pariion π, uch ha, when π <δ, we have p/2 E up Y Y π p + E Z Z d π 2 K π p/2 + E ξ ξ π p. T PROOF. If π <δp,l,whereδp,l i he conan in Theorem 4.1, hen Theorem 4.1 guaranee he exience and uniquene of Y π,z π. Denoe, for i = n 1,n 2,...,, Z π 1 i+1 i+1 = Zr π i+1 dr. i Noice ha { Z π i, } i=n 1,n 2,..., here i differen from ha in Secion 3. Then Y π i = Y π i+1 + f i+1,y π i+1, Z π i+1 i Recurively, we obain Denoe and Y π δξ π = ξ ξ π, i+1 i = ξ π + i i Z π r dw r, i = n 1,n 2,...,. n f,y π, Z π 1 i Zr π dw r, i = n 1,n 2,...,. δy π = Y Y π, δz π = Z Z π, [,T], Ẑ π i = Z i Z π i, i = n 1,...,.

33 4.7 MALLIAVIN CALCULUS, NUMERICAL SOLUTION OF BSDE 2411 If [ i, i+1, i = n 1,n 2,...,, hen by ieraion, we have δy π = δξ π + n [f,y,z f,y π, Z π ] 1 δzr π dw r + R π, i where R π i exacly he ame a ha in Secion 3. Denoe f π = f,y,z f,y π, Z π. Then for [ i, i+1, i = n 1,n 2,...,, we have n δy π = E δξ π + f π 1 + R π 4.8 F. From equaliy 4.8for j < j+1,wherei j n 1, and aing ino accoun ha δyt π = δy π n = δξ π, we obain n up δy π up E i T i T f π 1 + up r T Rr π + δξπ F. The above condiional expecaion i a maringale if i i conidered a a proce indexed by for [ i,t]. Uing Doob maximal inequaliy, 3.11, and he Lipchiz condiion on f,wehave E up δy π p i T [ E up E i T n f π 1 + up r T ] p Rr π + δξπ F n p CE f π 1 + up Rr π + δξπ r T { n p } C E f π 1 + E up Rr π p + E δξ π p r T { n n C C { E p δy π 1 + E T i p E up δy π p i+1 n n p + E Ẑπ 1 + π p/2 + E δξ π }, p p } Ẑπ 1 + π p/2 + E δξ π p

34 2412 Y. HU, D. NUALART AND X. SONG where, and in he following, C> denoe a generic conan independen of he pariion π and may vary from line o line. On he oher hand, we have, by he Hölder coninuiy of Z givenby2.24, n p E Ẑπ 1 n = E Z 1 p Zr π dr n n p E Z Z r dr + Z r Zr π dr 1 1 p C π p/2 + 2 p 1 E Z r Zr π dr Hence, we obain i C π p/2 + 2 p 1 T i p/2 E Z r Zr π 2 dr i p/2 = C π p/2 + 2 p 1 T i p/2 E δzr π 2 dr. i E up δy π p i T p/2 4.9 C 1 {T i p E up δy p i+1 n p/2 + T i p/2 E δzr π 2 dr i + π p/2 + E δξ π p }, where C 1 i a conan independen of he pariion π. By he Burholder Davi Gundy inequaliy, we have p/2 E δzr π dr c p E i From 4.7, we obain i δzr π dw p r i δz π r dw r = δξ π + n f π 1 + R π i δy π i.

35 MALLIAVIN CALCULUS, NUMERICAL SOLUTION OF BSDE 2413 Thu, from 4.1 and4.11, we obain p/2 E δzr π 2 dr i n p } C p {E f π 1 + E δξ π p + E R π i p + E δy π i p. Similar o 4.9, we have E δzr π 2 dr i p/2 C 2 {T i p E up δy p i+1 n p/2 } + T i p/2 E δzr π 2 dr + π p/2 + E δξ π p, i where C 2 i a conan independen of he pariion π. If C 2 T i p/2 < 1 2,henwehave 4.12 p/2 E δzr π 2 dr 2C 2 T i p E up δy p i i+1 n Subiuing 4.12 ino4.9, we have 4.13 E up δy π p i T C C2 T i p/2 T i p E + 2C 2 π p/2 + E δξ π p. up i+1 n + C C2 T i p/2 π p/2 + E δξ π p 2C 1 T i p E up i+1 n δy p δy p + 2C 1 π p/2 + E δξ π p. We can find a poiive conan δ<δp,lindependen of he pariion π, uch ha, 4.14 C 2 3δ p/2 < 1 2, C13δ p < 1 2 and T>2δ. Denoe l =[ 2δ T ].Thenl 1 i an ineger independen of he pariion π. If π <δ, hen for he pariion π we can chooe n 1 >i 1 >i 2 > > i l, uch ha, T 2δ i1 1, i1 ], T 4δ i2 1, i2 ],...,T 2δl [, il ] wih 1 =. For impliciy, we denoe i = T and il+1 =. Each inerval

36 2414 Y. HU, D. NUALART AND X. SONG [ ij+1, ij ],j =, 1,...,l, ha lengh le han 3δ, hai, ij ij+1 < 3δ. On [ ij+1, ij ], we conider he recurive formula 4.1. Then yield E up δy π ij+1 ij p C 1 ij ij+1 p E up δy p + 2C 1 π p/2 + E δy π ij p i j+1 +1 i j 2C 1 3δ p E up δy p + 2C 1 π p/2 + E δy π ij p i j+1 +1 i j 1 2 up δy p + 2C 1 π p/2 + E δy π ij p. i j+1 +1 i j A in he proof of 3.21 and3.22, we have E up δy π p 4C 1 + 1E δy π ij p + 4C 1 π p/2 ij+1 ij and E up δy π p 34C l+1 E δξ π 2 + π p/2. ij+1 ij 2 Therefore, we obain 4.17 E up δy π p max T j l E up δy π ij+1 ij p 34C l+1 E δξ π p + π p/2. 2 On [ ij+1, ij ],j =, 1,...,l, baed on he recurive formula 4.1 and4.17, inequaliy 4.12 become ij p/2 E δzr π 2 dr ij+1 2C 2 ij ij+1 p E up δy p + 2C 2 π p/2 + E δξ π p i j+1 +1 i j 2C 2 3δ p E up δy p + 2C 2 π p/2 + E δξ π p i j+1 +1 i j 1 2 E up δy p + 2C 2 π p/2 + E δξ π p i j+1 +1 i j 34C1 + 1 l+1 + 2C 2 π p/2 + E δξ π p. 4

37 MALLIAVIN CALCULUS, NUMERICAL SOLUTION OF BSDE 2415 Thu 4.18 p/2 E δz π 2 d l ij = E δz π 2 d ij+1 j= l + 1 p/2 1 l j= p/2 ij p/2 E δz π 2 d ij+1 l + 1 p/2 34C1 + 1 l+1 + 2C 2 π p/2 + E δξ π p. 4 Combining 4.17 and4.18, we now ha here exi a conan K = l + 1 p/2 34C1 + 1 l+1 + 4C 2 2 independen of he pariion π, uch ha p/2 E up Y Y π p + E Z Z π 2 d T K π p/2 + E ξ ξ π p. REMARK 4.3. The advanage of hi implici numerical cheme are: i we can obain he rae of convergence in L p ene; ii he pariion π can be arbirary π hould be mall enough wihou auming max i n 1 i / i+1 L A new dicree cheme. For all he numerical cheme conidered in Secion 3 and 4, one need o evaluae procee {Z π} T wih coninuou index. In hi ecion, we ue he repreenaion of Z in erm of he Malliavin derivaive of Y o derive a compleely dicree cheme. From 2.21, {D θ Y } θ T can be repreened a 5.1 D θ Y = E ρ,t D θ ξ + ρ,r D θ fr,y r,z r drf, where 5.2 { r ρ,r = exp β dw + r wih α = y f,y,z and β = z f,y,z. α 1 } 2 β2 d

38 2416 Y. HU, D. NUALART AND X. SONG Uing ha Z = D Y, μ P a.e., from 1.1, 5.1 and5.2, we propoe he following numerical cheme. We define recurively 5.3 Y π n = ξ, Z π n = D T ξ, Y π i = E Y π i+1 + f i+1,y π i+1,z π i+1 i F i, Z π i = E n 1 ρ π i+1, n D i ξ + =i ρ π i+1, +1 D i f +1,Y π +1,Z π +1 Fi i = n 1,n 2,...,,, where ρ π i, i = 1,i =, 1,...,n,andfor i<j n, 5.4 ρ π i, j = exp { j 1 +1 =i j =i z fr,y π,z π dw r y fr,y π,z π 1 } 2 [ zfr,y π,z π ] 2 dr. An alernaive expreion for ρ π i, j i given by he following formula: 5.5 ρ π i, j = exp { j 1 =i z f,y π,z π W +1 W j 1 + y f,y π,z π 1 2 [ zf,y π,z π ] 2 }. =i However, we will only conider he cheme 5.3 wih ρ π i, j givenby5.4. We mae he following aumpion: G1 f,y,zi deerminiic, which implie D θ f,y,z=. G2 f,y,z i linear wih repec o y and z; namely, here are hree funcion g, h and f 1 uch ha f,y,z= gy + hz + f 1. Aume ha g, h are bounded and f 1 L 2 [,T]. Moreover, here exi a conan L 2 >, uch ha, for all 1, 2 [,T], g 2 g 1 + h 2 h 1 + f 1 2 f 1 1 L 2 1 1/2. G3 E up θ T D θ ξ r <, for all r 1.

39 MALLIAVIN CALCULUS, NUMERICAL SOLUTION OF BSDE 2417 Noice ha G1 and G2 imply ii and iii in Aumpion 2.2. REMARK 5.1. We propoe condiion G1 in order o implify {Z π i } i=n 1,..., in formula 5.3. In fac, here are ome difficulie in generalizing he condiion G, epecially G1, o a forward bacward ochaic differenial equaion FBSDE, for hor cae. If we conider a FBSDE X = X + br,x r dr + σr,x r dw r, Y = ξ + fr,x r,y r,z r dr Z r dw r, where X R, and he funcion b,σ,f are deerminiic, hen under ome appropriae condiion [e.g., h1 h4 in Example 2.11] Z π i for i = n 1,...,in5.3 i of he form Z π i = E ρ π i+1, n D i ξ n 1 + =i ρ π i+1, +1 x f +1,X π +1,Y π +1,Z π +1 D i X π +1 Fi where X π,y π,z π i a cerain numerical cheme for X,Y,Z.Iihardo guaranee he exience and he convergence of Malliavin derivaive of X π,and herefore, he convergence of Z π i difficul o derive., THEOREM 5.2. Le Aumpion 2.2i and aumpion G1 G3 be aified. Then here are poiive conan K and δ independen of he pariion π, uch ha, when π <δwe have E max { Y i Y π i n i p + Z i Z π i p } K π p/2 p/2log1/ π log 1 p/2. π PROOF. In he proof, C> will denoe a conan independen of he pariion π, which may vary from line o line. Under he aumpion G1, we can ee ha 5.6 Z π i = Eρ π i+1, n D i ξ F i, i = n 1,n 2,...,. Denoe, for i = n 1,n 2,...,, δz π i = Z i Z π i, δy π i = Y i Y π i.

40 2418 Y. HU, D. NUALART AND X. SONG Since e x e y e x + e y x y, we deduce, for all i = n 1,n 2,...,, δz π i = Eρ i, n D i ξ F i Eρ π i+1, n D i ξ F i E ρ i, n ρ π i+1, n D i ξ F i E D i ξ ρ i, n + ρ π i+1, n hr dw r + grdr 1 i i 2 n 1 +1 hr dw r E D i ξ ρ i, n + ρ π i+1, n [ i+1 i+1 hr dw r + i i θ T [ i i+1 i T i+1 + n 1 n 1 hr 2 dr i gr dr ] Fi. hr 2 dr grdr hr 2 dr F i From G2, we have D i ξ ρ π i+1, n { n 1 +1 D i ξ exp hr dw r + grdr 1 } T hr 2 dr i+1 2 i+1 C 1 up D θ ξ { up exp hr dw r }, θ T T where C 1 > i a conan independen of he pariion π. In he ame way, we obain D i ξ ρ i, n <C 1 up D θ ξ { up exp hr dw r }. θ T T Thu for i = n 1,n 2,...,, δz π i 2C 1 E up D θ ξ { } up exp hr dw r i hr dw r i gr dr i+1 i ] Fi hr 2 dr

41 MALLIAVIN CALCULUS, NUMERICAL SOLUTION OF BSDE C 1 E up D θ ξ up θ T T [ +1 up n 1 { exp hr dw r hr dw r } +1 + up n up 2 n 1 gr dr ] Fi hr 2 dr. The righ-hand ide of he above inequaliy i a maringale a a proce indexed by i = n 1,n 2,...,. Le η = exp{ hu dw u }. Then, η aifie he following linear ochaic differenial equaion: { dη = hη dw h2 η d, η = 1. By G1, G2, he Hölder inequaliy and Lemma 2.4, i i eay o how ha, for any r, { } r E up exp hu dw u T { } { } r = E exp hu dw u up exp hu dw u T { } 1/2 5.7 E exp 2r hu dw u E up T { exp 2r = exp {r 2 hu dr} 2 E up T hu dw u } 1/2 η 2r 1/2 <. For any p p, q 2, by Doob maximal inequaliy and he Hölder inequaliy, G3 and 5.7, we have E up δz π i p i n CE up p D θ ξ up T θ T [ +1 up n up n 1 hr dw r { exp gr dr hr dw r } p +1 ] p up hr 2 dr n 1

42 242 Y. HU, D. NUALART AND X. SONG [ pp C E /p p up D θ ξ θ T [ E [ C E [ E up T +1 up n 1 up θ T up T [ +1 E up n 1 { } pp /p p] p p/p exp hr dw r hr dw r up n 1 2pp /p p] p /2p p D θ ξ +1 gr dr +1 p ] p/p up hr 2 dr n 1 { } 2pp /p p] p /2p p exp hr dw r hr dw r p + E up n 1 = C[I 1 + I 2 + I 3 ] p/p. For any r>1, by he Hölder inequaliy we can obain +1 p { I 1 = E up hr dw r E up n 1 { n 1 +1 E = hr dw r p r } 1/r. +1 p gr dr +1 p ] p/p + E up hr 2 dr n 1 n 1 +1 hr dw r p r} 1/r For any cenered Gauian variable X,andanyγ 1, we now ha E X γ C γ γ γ/2 E X 2 γ/2, where C i a conan independen of γ. Thu, we can ee ha I 1 C p r p r p r/2 n 1 i+1 p hr 2 r/2 1/r dr Cr p /2 π p /2 1/r. i= Tae r = 2log1/ π p. Aume π i mall enough; hen we have I 1 C π p /2 p /2log1/ π log 1 p /2. π i

ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS

ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS Elec. Comm. in Probab. 3 (998) 65 74 ELECTRONIC COMMUNICATIONS in PROBABILITY ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS L.A. RINCON Deparmen of Mahemaic Univeriy of Wale Swanea Singleon Par

More information

Fractional Ornstein-Uhlenbeck Bridge

Fractional Ornstein-Uhlenbeck Bridge WDS'1 Proceeding of Conribued Paper, Par I, 21 26, 21. ISBN 978-8-7378-139-2 MATFYZPRESS Fracional Ornein-Uhlenbeck Bridge J. Janák Charle Univeriy, Faculy of Mahemaic and Phyic, Prague, Czech Republic.

More information

Multidimensional Markovian FBSDEs with superquadratic

Multidimensional Markovian FBSDEs with superquadratic Mulidimenional Markovian FBSDE wih uperquadraic growh Michael Kupper a,1, Peng Luo b,, Ludovic angpi c,3 December 14, 17 ABSRAC We give local and global exience and uniquene reul for mulidimenional coupled

More information

Mathematische Annalen

Mathematische Annalen Mah. Ann. 39, 33 339 (997) Mahemaiche Annalen c Springer-Verlag 997 Inegraion by par in loop pace Elon P. Hu Deparmen of Mahemaic, Norhweern Univeriy, Evanon, IL 628, USA (e-mail: elon@@mah.nwu.edu) Received:

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

Explicit form of global solution to stochastic logistic differential equation and related topics

Explicit form of global solution to stochastic logistic differential equation and related topics SAISICS, OPIMIZAION AND INFOMAION COMPUING Sa., Opim. Inf. Compu., Vol. 5, March 17, pp 58 64. Publihed online in Inernaional Academic Pre (www.iapre.org) Explici form of global oluion o ochaic logiic

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

Stability in Distribution for Backward Uncertain Differential Equation

Stability in Distribution for Backward Uncertain Differential Equation Sabiliy in Diribuion for Backward Uncerain Differenial Equaion Yuhong Sheng 1, Dan A. Ralecu 2 1. College of Mahemaical and Syem Science, Xinjiang Univeriy, Urumqi 8346, China heng-yh12@mail.inghua.edu.cn

More information

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER #A30 INTEGERS 10 (010), 357-363 FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER Nahan Kaplan Deparmen of Mahemaic, Harvard Univeriy, Cambridge, MA nkaplan@mah.harvard.edu Received: 7/15/09, Revied:

More information

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance.

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance. 1 An Inroducion o Backward Sochasic Differenial Equaions (BSDEs) PIMS Summer School 2016 in Mahemaical Finance June 25, 2016 Chrisoph Frei cfrei@ualbera.ca This inroducion is based on Touzi [14], Bouchard

More information

Simulation of BSDEs and. Wiener Chaos Expansions

Simulation of BSDEs and. Wiener Chaos Expansions Simulaion of BSDEs and Wiener Chaos Expansions Philippe Briand Céline Labar LAMA UMR 5127, Universié de Savoie, France hp://www.lama.univ-savoie.fr/ Workshop on BSDEs Rennes, May 22-24, 213 Inroducion

More information

FULLY COUPLED FBSDE WITH BROWNIAN MOTION AND POISSON PROCESS IN STOPPING TIME DURATION

FULLY COUPLED FBSDE WITH BROWNIAN MOTION AND POISSON PROCESS IN STOPPING TIME DURATION J. Au. Mah. Soc. 74 (23), 249 266 FULLY COUPLED FBSDE WITH BROWNIAN MOTION AND POISSON PROCESS IN STOPPING TIME DURATION HEN WU (Received 7 Ocober 2; revied 18 January 22) Communicaed by V. Sefanov Abrac

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

CHAPTER 7: SECOND-ORDER CIRCUITS

CHAPTER 7: SECOND-ORDER CIRCUITS EEE5: CI RCUI T THEORY CHAPTER 7: SECOND-ORDER CIRCUITS 7. Inroducion Thi chaper conider circui wih wo orage elemen. Known a econd-order circui becaue heir repone are decribed by differenial equaion ha

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 3, March 28, Page 99 918 S 2-9939(7)989-2 Aricle elecronically publihed on November 3, 27 FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL

More information

Simulation of BSDEs and. Wiener Chaos Expansions

Simulation of BSDEs and. Wiener Chaos Expansions Simulaion of BSDEs and Wiener Chaos Expansions Philippe Briand Céline Labar LAMA UMR 5127, Universié de Savoie, France hp://www.lama.univ-savoie.fr/ Sochasic Analysis Seminar Oxford, June 1, 213 Inroducion

More information

On the Exponential Operator Functions on Time Scales

On the Exponential Operator Functions on Time Scales dvance in Dynamical Syem pplicaion ISSN 973-5321, Volume 7, Number 1, pp. 57 8 (212) hp://campu.m.edu/ada On he Exponenial Operaor Funcion on Time Scale laa E. Hamza Cairo Univeriy Deparmen of Mahemaic

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

arxiv: v1 [math.pr] 2 Jan 2015

arxiv: v1 [math.pr] 2 Jan 2015 Mean-field backward ochaic differenial equaion on Markov chain arxiv:151.955v1 [mah.pr] 2 Jan 215 Wen Lu 1 Yong Ren 2 1. School of Mahemaic and Informaional Science, Yanai Univeriy, Yanai 2645, China 2.

More information

Rough Paths and its Applications in Machine Learning

Rough Paths and its Applications in Machine Learning Pah ignaure Machine learning applicaion Rough Pah and i Applicaion in Machine Learning July 20, 2017 Rough Pah and i Applicaion in Machine Learning Pah ignaure Machine learning applicaion Hiory and moivaion

More information

Backward Stochastic Differential Equations and Applications in Finance

Backward Stochastic Differential Equations and Applications in Finance Backward Sochaic Differenial Equaion and Applicaion in Finance Ying Hu Augu 1, 213 1 Inroducion The aim of hi hor cae i o preen he baic heory of BSDE and o give ome applicaion in 2 differen domain: mahemaical

More information

1 Motivation and Basic Definitions

1 Motivation and Basic Definitions CSCE : Deign and Analyi of Algorihm Noe on Max Flow Fall 20 (Baed on he preenaion in Chaper 26 of Inroducion o Algorihm, 3rd Ed. by Cormen, Leieron, Rive and Sein.) Moivaion and Baic Definiion Conider

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Research Article Existence and Uniqueness of Solutions for a Class of Nonlinear Stochastic Differential Equations

Research Article Existence and Uniqueness of Solutions for a Class of Nonlinear Stochastic Differential Equations Hindawi Publihing Corporaion Abrac and Applied Analyi Volume 03, Aricle ID 56809, 7 page hp://dx.doi.org/0.55/03/56809 Reearch Aricle Exience and Uniquene of Soluion for a Cla of Nonlinear Sochaic Differenial

More information

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions Generalized Orlicz Space and Waerein Diance for Convex-Concave Scale Funcion Karl-Theodor Surm Abrac Given a ricly increaing, coninuou funcion ϑ : R + R +, baed on he co funcional ϑ (d(x, y dq(x, y, we

More information

Notes on cointegration of real interest rates and real exchange rates. ρ (2)

Notes on cointegration of real interest rates and real exchange rates. ρ (2) Noe on coinegraion of real inere rae and real exchange rae Charle ngel, Univeriy of Wiconin Le me ar wih he obervaion ha while he lieraure (mo prominenly Meee and Rogoff (988) and dion and Paul (993))

More information

REPRESENTATION THEOREMS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS. BY JIN MA 1 AND JIANFENG ZHANG Purdue University and University of Minnesota

REPRESENTATION THEOREMS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS. BY JIN MA 1 AND JIANFENG ZHANG Purdue University and University of Minnesota The Annal of Applied Probabiliy 22, Vol. 12, No. 4, 139 1418 REPRESENTATION THEOREMS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS BY JIN MA 1 AND JIANFENG ZHANG Purdue Univeriy and Univeriy of Minneoa

More information

Fractional Brownian Bridge Measures and Their Integration by Parts Formula

Fractional Brownian Bridge Measures and Their Integration by Parts Formula Journal of Mahemaical Reearch wih Applicaion Jul., 218, Vol. 38, No. 4, pp. 418 426 DOI:1.377/j.in:295-2651.218.4.9 Hp://jmre.lu.eu.cn Fracional Brownian Brige Meaure an Their Inegraion by Par Formula

More information

An introduction to the (local) martingale problem

An introduction to the (local) martingale problem An inroducion o he (local) maringale problem Chri Janjigian Ocober 14, 214 Abrac Thee are my preenaion noe for a alk in he Univeriy of Wiconin - Madion graduae probabiliy eminar. Thee noe are primarily

More information

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship Laplace Tranform (Lin & DeCarlo: Ch 3) ENSC30 Elecric Circui II The Laplace ranform i an inegral ranformaion. I ranform: f ( ) F( ) ime variable complex variable From Euler > Lagrange > Laplace. Hence,

More information

The multisubset sum problem for finite abelian groups

The multisubset sum problem for finite abelian groups Alo available a hp://amc-journal.eu ISSN 1855-3966 (prined edn.), ISSN 1855-3974 (elecronic edn.) ARS MATHEMATICA CONTEMPORANEA 8 (2015) 417 423 The muliube um problem for finie abelian group Amela Muraović-Ribić

More information

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details!

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details! MAT 257, Handou 6: Ocober 7-2, 20. I. Assignmen. Finish reading Chaper 2 of Spiva, rereading earlier secions as necessary. handou and fill in some missing deails! II. Higher derivaives. Also, read his

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

Chapter 7: Inverse-Response Systems

Chapter 7: Inverse-Response Systems Chaper 7: Invere-Repone Syem Normal Syem Invere-Repone Syem Baic Sar ou in he wrong direcion End up in he original eady-ae gain value Two or more yem wih differen magniude and cale in parallel Main yem

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

BSDE's, Clark-Ocone formula, and Feynman-Kac formula for Lévy processes Nualart, D.; Schoutens, W.

BSDE's, Clark-Ocone formula, and Feynman-Kac formula for Lévy processes Nualart, D.; Schoutens, W. BSD', Clark-Ocone formula, and Feynman-Kac formula for Lévy procee Nualar, D.; Schouen, W. Publihed: 1/1/ Documen Verion Publiher PDF, alo known a Verion of ecord (include final page, iue and volume number)

More information

arxiv: v1 [math.pr] 23 Apr 2018

arxiv: v1 [math.pr] 23 Apr 2018 arxiv:184.8469v1 [mah.pr] 23 Apr 218 The Neumann Boundary Problem for Ellipic Parial ifferenial Equaion wih Nonlinear ivergence Term Xue YANG Tianjin Univeriy e-mail: xyang213@ju.edu.cn Jing ZHANG Fudan

More information

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

Systems of nonlinear ODEs with a time singularity in the right-hand side

Systems of nonlinear ODEs with a time singularity in the right-hand side Syem of nonlinear ODE wih a ime ingulariy in he righ-hand ide Jana Burkoová a,, Irena Rachůnková a, Svaolav Saněk a, Ewa B. Weinmüller b, Sefan Wurm b a Deparmen of Mahemaical Analyi and Applicaion of

More information

Approximation for Option Prices under Uncertain Volatility

Approximation for Option Prices under Uncertain Volatility Approximaion for Opion Price under Uncerain Volailiy Jean-Pierre Fouque Bin Ren February, 3 Abrac In hi paper, we udy he aympoic behavior of he wor cae cenario opion price a he volailiy inerval in an uncerain

More information

Backward stochastic dynamics on a filtered probability space

Backward stochastic dynamics on a filtered probability space Backward sochasic dynamics on a filered probabiliy space Gechun Liang Oxford-Man Insiue, Universiy of Oxford based on join work wih Terry Lyons and Zhongmin Qian Page 1 of 15 gliang@oxford-man.ox.ac.uk

More information

4 Sequences of measurable functions

4 Sequences of measurable functions 4 Sequences of measurable funcions 1. Le (Ω, A, µ) be a measure space (complee, afer a possible applicaion of he compleion heorem). In his chaper we invesigae relaions beween various (nonequivalen) convergences

More information

Energy Equality and Uniqueness of Weak Solutions to MHD Equations in L (0,T; L n (Ω))

Energy Equality and Uniqueness of Weak Solutions to MHD Equations in L (0,T; L n (Ω)) Aca Mahemaica Sinica, Englih Serie May, 29, Vol. 25, No. 5, pp. 83 814 Publihed online: April 25, 29 DOI: 1.17/1114-9-7214-8 Hp://www.AcaMah.com Aca Mahemaica Sinica, Englih Serie The Ediorial Office of

More information

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001 CS 545 Flow Nework lon Efra Slide courey of Charle Leieron wih mall change by Carola Wenk Flow nework Definiion. flow nework i a direced graph G = (V, E) wih wo diinguihed verice: a ource and a ink. Each

More information

Main Reference: Sections in CLRS.

Main Reference: Sections in CLRS. Maximum Flow Reied 09/09/200 Main Reference: Secion 26.-26. in CLRS. Inroducion Definiion Muli-Source Muli-Sink The Ford-Fulkeron Mehod Reidual Nework Augmening Pah The Max-Flow Min-Cu Theorem The Edmond-Karp

More information

Stochastic Optimal Control in Infinite Dimensions: Dynamic Programming and HJB Equations

Stochastic Optimal Control in Infinite Dimensions: Dynamic Programming and HJB Equations Sochaic Opimal Conrol in Infinie Dimenion: Dynamic Programming and HJB Equaion G. Fabbri 1 F. Gozzi 2 and A. Świe ch3 wih Chaper 6 by M. Fuhrman 4 and G. Teiore 5 1 Aix-Mareille Univeriy (Aix-Mareille

More information

Backward Stochastic Partial Differential Equations with Jumps and Application to Optimal Control of Random Jump Fields

Backward Stochastic Partial Differential Equations with Jumps and Application to Optimal Control of Random Jump Fields Backward Sochaic Parial Differenial Equaion wih Jump and Applicaion o Opimal Conrol of Random Jump Field Bern Økendal 1,2, Frank Proke 1, Tuheng Zhang 1,3 June 7, 25 Abrac We prove an exience and uniquene

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms Chaper 6. Laplace Tranform Kreyzig by YHLee;45; 6- An ODE i reduced o an algebraic problem by operaional calculu. The equaion i olved by algebraic manipulaion. The reul i ranformed back for he oluion of

More information

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1 Conider he following flow nework CS444/944 Analyi of Algorihm II Soluion for Aignmen (0 mark) In he following nework a minimum cu ha capaciy 0 Eiher prove ha hi aemen i rue, or how ha i i fale Uing he

More information

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes: Non-Ergodic Case

Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes: Non-Ergodic Case Parameer Eimaion for Fracional Ornein-Uhlenbeck Procee: Non-Ergodic Cae R. Belfadli 1, K. E-Sebaiy and Y. Ouknine 3 1 Polydiciplinary Faculy of Taroudan, Univeriy Ibn Zohr, Taroudan, Morocco. Iniu de Mahémaique

More information

Reflected Solutions of BSDEs Driven by G-Brownian Motion

Reflected Solutions of BSDEs Driven by G-Brownian Motion Refleced Soluion of BSDE Driven by G-Brownian Moion Hanwu Li Shige Peng Abdoulaye Soumana Hima Sepember 1, 17 Abrac In hi paper, we udy he refleced oluion of one-dimenional backward ochaic differenial

More information

On the Malliavin differentiability of BSDEs

On the Malliavin differentiability of BSDEs On he Malliavin differeniabiliy of BSDE Thibau Marolia Dylan Poamaï Anhony Réveillac Augu 25, 215 arxiv:144.126v4 [mah.pr 24 Aug 215 Abrac In hi paper we provide new condiion for he Malliavin differeniabiliy

More information

On the Benney Lin and Kawahara Equations

On the Benney Lin and Kawahara Equations JOURNAL OF MATEMATICAL ANALYSIS AND APPLICATIONS 11, 13115 1997 ARTICLE NO AY975438 On he BenneyLin and Kawahara Equaion A Biagioni* Deparmen of Mahemaic, UNICAMP, 1381-97, Campina, Brazil and F Linare

More information

T-Rough Fuzzy Subgroups of Groups

T-Rough Fuzzy Subgroups of Groups Journal of mahemaic and compuer cience 12 (2014), 186-195 T-Rough Fuzzy Subgroup of Group Ehagh Hoeinpour Deparmen of Mahemaic, Sari Branch, Ilamic Azad Univeriy, Sari, Iran. hoienpor_a51@yahoo.com Aricle

More information

u(t) Figure 1. Open loop control system

u(t) Figure 1. Open loop control system Open loop conrol v cloed loop feedbac conrol The nex wo figure preen he rucure of open loop and feedbac conrol yem Figure how an open loop conrol yem whoe funcion i o caue he oupu y o follow he reference

More information

Additional Methods for Solving DSGE Models

Additional Methods for Solving DSGE Models Addiional Mehod for Solving DSGE Model Karel Meren, Cornell Univeriy Reference King, R. G., Ploer, C. I. & Rebelo, S. T. (1988), Producion, growh and buine cycle: I. he baic neoclaical model, Journal of

More information

18.03SC Unit 3 Practice Exam and Solutions

18.03SC Unit 3 Practice Exam and Solutions Sudy Guide on Sep, Dela, Convoluion, Laplace You can hink of he ep funcion u() a any nice mooh funcion which i for < a and for > a, where a i a poiive number which i much maller han any ime cale we care

More information

Existence of Stepanov-like Square-mean Pseudo Almost Automorphic Solutions to Nonautonomous Stochastic Functional Evolution Equations

Existence of Stepanov-like Square-mean Pseudo Almost Automorphic Solutions to Nonautonomous Stochastic Functional Evolution Equations Exience of Sepanov-like Square-mean Peudo Almo Auomorphic Soluion o Nonauonomou Sochaic Funcional Evoluion Equaion Zuomao Yan Abrac We inroduce he concep of bi-quare-mean almo auomorphic funcion and Sepanov-like

More information

BSDE Approach to Non-Zero-Sum Stochastic Differential Games of Control and Stopping

BSDE Approach to Non-Zero-Sum Stochastic Differential Games of Control and Stopping BSDE Approach o Non-Zero-Sum Sochaic Differenial Game of Conrol and Sopping Ioanni Karaza INTECH Invemen Managemen One Palmer Square, Suie 441 Princeon, NJ 8542 ik@enhanced.com Qinghua Li Saiic Deparmen,

More information

ON FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES

ON FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES Communicaion on Sochaic Analyi Vol. 5, No. 1 211 121-133 Serial Publicaion www.erialpublicaion.com ON FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES TERHI KAARAKKA AND PAAVO SALMINEN Abrac. In hi paper we udy

More information

NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY

NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY Ian Crawford THE INSTITUTE FOR FISCAL STUDIES DEPARTMENT OF ECONOMICS, UCL cemmap working paper CWP02/04 Neceary and Sufficien Condiion for Laen

More information

Let. x y. denote a bivariate time series with zero mean.

Let. x y. denote a bivariate time series with zero mean. Linear Filer Le x y : T denoe a bivariae ime erie wih zero mean. Suppoe ha he ime erie {y : T} i conruced a follow: y a x The ime erie {y : T} i aid o be conruced from {x : T} by mean of a Linear Filer.

More information

On the Malliavin differentiability of BSDEs

On the Malliavin differentiability of BSDEs On he Malliavin differeniabiliy of BSDE Thibau Marolia Dylan Poamaï Anhony Réveillac Univerié Pari-Dauphine CEREMADE UMR CNRS 7534 Place du Maréchal De Lare De Taigny 75775 Pari cedex 16 France April 3,

More information

A proof of Ito's formula using a di Title formula. Author(s) Fujita, Takahiko; Kawanishi, Yasuhi. Studia scientiarum mathematicarum H Citation

A proof of Ito's formula using a di Title formula. Author(s) Fujita, Takahiko; Kawanishi, Yasuhi. Studia scientiarum mathematicarum H Citation A proof of Io's formula using a di Tile formula Auhor(s) Fujia, Takahiko; Kawanishi, Yasuhi Sudia scieniarum mahemaicarum H Ciaion 15-134 Issue 8-3 Dae Type Journal Aricle Tex Version auhor URL hp://hdl.handle.ne/186/15878

More information

Network Flows: Introduction & Maximum Flow

Network Flows: Introduction & Maximum Flow CSC 373 - lgorihm Deign, nalyi, and Complexiy Summer 2016 Lalla Mouaadid Nework Flow: Inroducion & Maximum Flow We now urn our aenion o anoher powerful algorihmic echnique: Local Search. In a local earch

More information

CHAPTER 7. Definition and Properties. of Laplace Transforms

CHAPTER 7. Definition and Properties. of Laplace Transforms SERIES OF CLSS NOTES FOR 5-6 TO INTRODUCE LINER ND NONLINER PROBLEMS TO ENGINEERS, SCIENTISTS, ND PPLIED MTHEMTICINS DE CLSS NOTES COLLECTION OF HNDOUTS ON SCLR LINER ORDINRY DIFFERENTIL EQUTIONS (ODE")

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

A stability approach for solving multidimensional quadratic BSDES

A stability approach for solving multidimensional quadratic BSDES A abiliy approach for olving mulidimenional quadraic BSDES Jonahan Harer, Adrien Richou To cie hi verion: Jonahan Harer, Adrien Richou A abiliy approach for olving mulidimenional quadraic BSDES 17 HAL

More information

Utility maximization in incomplete markets

Utility maximization in incomplete markets Uiliy maximizaion in incomplee markes Marcel Ladkau 27.1.29 Conens 1 Inroducion and general seings 2 1.1 Marke model....................................... 2 1.2 Trading sraegy.....................................

More information

Approximate Controllability of Fractional Stochastic Perturbed Control Systems Driven by Mixed Fractional Brownian Motion

Approximate Controllability of Fractional Stochastic Perturbed Control Systems Driven by Mixed Fractional Brownian Motion American Journal of Applied Mahemaic and Saiic, 15, Vol. 3, o. 4, 168-176 Available online a hp://pub.ciepub.com/ajam/3/4/7 Science and Educaion Publihing DOI:1.1691/ajam-3-4-7 Approximae Conrollabiliy

More information

Multidimensional Markov FBSDEs with superquadratic

Multidimensional Markov FBSDEs with superquadratic Mulidimenional Markov FBSDE wih uperquadraic growh Michael Kupper a,1, Peng Luo b,2, Ludovic angpi c,3 December 12, 216 arxiv:155.1796v2 [mah.pr] 9 Dec 216 ABSRAC We give local and global exience and uniquene

More information

DIMENSIONAL REDUCTION IN NONLINEAR FILTERING: A HOMOGENIZATION APPROACH

DIMENSIONAL REDUCTION IN NONLINEAR FILTERING: A HOMOGENIZATION APPROACH DIMNSIONAL RDUCION IN NONLINAR FILRING: A HOMOGNIZAION APPROACH PR IMKLLR 1, N. SRI NAMACHCHIVAYA 2, NICOLAS PRKOWSKI 1, AND HOONG C. YONG 2 Abrac. We propoe a homogenized filer for mulicale ignal, which

More information

Lecture 20: Riccati Equations and Least Squares Feedback Control

Lecture 20: Riccati Equations and Least Squares Feedback Control 34-5 LINEAR SYSTEMS Lecure : Riccai Equaions and Leas Squares Feedback Conrol 5.6.4 Sae Feedback via Riccai Equaions A recursive approach in generaing he marix-valued funcion W ( ) equaion for i for he

More information

18 Extensions of Maximum Flow

18 Extensions of Maximum Flow Who are you?" aid Lunkwill, riing angrily from hi ea. Wha do you wan?" I am Majikhie!" announced he older one. And I demand ha I am Vroomfondel!" houed he younger one. Majikhie urned on Vroomfondel. I

More information

CSC 364S Notes University of Toronto, Spring, The networks we will consider are directed graphs, where each edge has associated with it

CSC 364S Notes University of Toronto, Spring, The networks we will consider are directed graphs, where each edge has associated with it CSC 36S Noe Univeriy of Torono, Spring, 2003 Flow Algorihm The nework we will conider are direced graph, where each edge ha aociaed wih i a nonnegaive capaciy. The inuiion i ha if edge (u; v) ha capaciy

More information

Introduction to Congestion Games

Introduction to Congestion Games Algorihmic Game Theory, Summer 2017 Inroducion o Congeion Game Lecure 1 (5 page) Inrucor: Thoma Keelheim In hi lecure, we ge o know congeion game, which will be our running example for many concep in game

More information

Quadratic Backward Stochastic Volterra Integral Equations

Quadratic Backward Stochastic Volterra Integral Equations Quadraic Backward Sochaic Volerra Inegral Equaion Hanxiao Wang Jingrui Sun Jiongmin Yong Ocober 25, 218 arxiv:181.1149v1 mah.pr 24 Oc 218 Abrac. Thi paper i concerned wih backward ochaic Volerra inegral

More information

Research Article On Double Summability of Double Conjugate Fourier Series

Research Article On Double Summability of Double Conjugate Fourier Series Inernaional Journal of Mahemaic and Mahemaical Science Volume 22, Aricle ID 4592, 5 page doi:.55/22/4592 Reearch Aricle On Double Summabiliy of Double Conjugae Fourier Serie H. K. Nigam and Kuum Sharma

More information

U T,0. t = X t t T X T. (1)

U T,0. t = X t t T X T. (1) Gauian bridge Dario Gabarra 1, ommi Soinen 2, and Eko Valkeila 3 1 Deparmen of Mahemaic and Saiic, PO Box 68, 14 Univeriy of Helinki,Finland dariogabarra@rnihelinkifi 2 Deparmen of Mahemaic and Saiic,

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

Mon Apr 2: Laplace transform and initial value problems like we studied in Chapter 5

Mon Apr 2: Laplace transform and initial value problems like we studied in Chapter 5 Mah 225-4 Week 2 April 2-6 coninue.-.3; alo cover par of.4-.5, EP 7.6 Mon Apr 2:.-.3 Laplace ranform and iniial value problem like we udied in Chaper 5 Announcemen: Warm-up Exercie: Recall, The Laplace

More information

On a Fractional Stochastic Landau-Ginzburg Equation

On a Fractional Stochastic Landau-Ginzburg Equation Applied Mahemaical Sciences, Vol. 4, 1, no. 7, 317-35 On a Fracional Sochasic Landau-Ginzburg Equaion Nguyen Tien Dung Deparmen of Mahemaics, FPT Universiy 15B Pham Hung Sree, Hanoi, Vienam dungn@fp.edu.vn

More information

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes Half-Range Series 2.5 Inroducion In his Secion we address he following problem: Can we find a Fourier series expansion of a funcion defined over a finie inerval? Of course we recognise ha such a funcion

More information

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER John Riley 6 December 200 NWER TO ODD NUMBERED EXERCIE IN CHPTER 7 ecion 7 Exercie 7-: m m uppoe ˆ, m=,, M (a For M = 2, i i eay o how ha I implie I From I, for any probabiliy vecor ( p, p 2, 2 2 ˆ ( p,

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann. Func. Anal. 2 2011, no. 2, 34 41 A nnals of F uncional A nalysis ISSN: 2008-8752 elecronic URL: www.emis.de/journals/afa/ CLASSIFICAION OF POSIIVE SOLUIONS OF NONLINEAR SYSEMS OF VOLERRA INEGRAL EQUAIONS

More information

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS LECTURE : GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS We will work wih a coninuous ime reversible Markov chain X on a finie conneced sae space, wih generaor Lf(x = y q x,yf(y. (Recall ha q

More information

Ricci Curvature and Bochner Formulas for Martingales

Ricci Curvature and Bochner Formulas for Martingales Ricci Curvaure and Bochner Formula for Maringale Rober Halhofer and Aaron Naber Augu 15, 16 Abrac We generalize he claical Bochner formula for he hea flow on M o maringale on he pah pace, and develop a

More information

Graphs III - Network Flow

Graphs III - Network Flow Graph III - Nework Flow Flow nework eup graph G=(V,E) edge capaciy w(u,v) 0 - if edge doe no exi, hen w(u,v)=0 pecial verice: ource verex ; ink verex - no edge ino and no edge ou of Aume every verex v

More information

Essays on Multidimensional BSDEs and FBSDEs. Dissertation submitted for the degree of Doctor of Natural Sciences (Dr. Rer. Nat.) Presented by PENG LUO

Essays on Multidimensional BSDEs and FBSDEs. Dissertation submitted for the degree of Doctor of Natural Sciences (Dr. Rer. Nat.) Presented by PENG LUO Eay on Mulidimenional BSDE and FBSDE Dieraion ubmied for he degree of Docor of Naural Science (Dr. Rer. Na.) Preened by PENG LUO a he Faculy of Science Deparmen of Mahemaic and Saiic Acceped on he recommendaion

More information

Approximation for Option Prices under Uncertain Volatility

Approximation for Option Prices under Uncertain Volatility SIAM J. FINANCIAL MATH. Vol. 5, pp. 360 383 c 014 Sociey for Indurial and Applied Mahemaic Approximaion for Opion Price under Uncerain Volailiy Jean-Pierre Fouque and Bin Ren Abrac. In hi paper, we udy

More information

SINGULAR FORWARD BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND EMISSIONS DERIVATIVES

SINGULAR FORWARD BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND EMISSIONS DERIVATIVES he Annal of Applied Probabiliy 213, Vol. 23, No. 3, 186 1128 DOI: 1.1214/12-AAP865 Iniue of Mahemaical Saiic, 213 SINGULAR FORWARD BACKWARD SOCHASIC DIFFERENIAL EQUAIONS AND EMISSIONS DERIVAIVES BY RENÉ

More information

arxiv: v1 [math.pr] 25 Jul 2017

arxiv: v1 [math.pr] 25 Jul 2017 COUPLING AND A GENERALISED POLICY ITERATION ALGORITHM IN CONTINUOUS TIME SAUL D. JACKA, ALEKSANDAR MIJATOVIĆ, AND DEJAN ŠIRAJ arxiv:177.7834v1 [mah.pr] 25 Jul 217 Abrac. We analye a verion of he policy

More information

Backward stochastic differential equations and integral partial differential equations

Backward stochastic differential equations and integral partial differential equations Backward ochaic differenial equaion and inegral parial differenial equaion Guy BARLS, Rainer BUCKDAHN 1 and ienne PARDOUX 2 June 30, 2009 Abrac We conider a backward ochaic differenial equaion, whoe he

More information

Time Varying Multiserver Queues. W. A. Massey. Murray Hill, NJ Abstract

Time Varying Multiserver Queues. W. A. Massey. Murray Hill, NJ Abstract Waiing Time Aympoic for Time Varying Mulierver ueue wih Abonmen Rerial A. Melbaum Technion Iniue Haifa, 3 ISRAEL avim@x.echnion.ac.il M. I. Reiman Bell Lab, Lucen Technologie Murray Hill, NJ 7974 U.S.A.

More information