Multidimensional Markov FBSDEs with superquadratic

Size: px
Start display at page:

Download "Multidimensional Markov FBSDEs with superquadratic"

Transcription

1 Mulidimenional Markov FBSDE wih uperquadraic growh Michael Kupper a,1, Peng Luo b,2, Ludovic angpi c,3 December 12, 216 arxiv: v2 [mah.pr] 9 Dec 216 ABSRAC We give local and global exience and uniquene reul for yem of coupled FBSDE in he mulidimenional eing and wih generaor allowed o grow arbirarily fa in he conrol variable. Our reul are baed on Malliavin calculu argumen and paing echnique. KEYWORDS: uniquene 1 Inroducion Markovian FBSDE, uperquadraic, exience and AUHORS INFO a Univeriy of Konanz, Univeriäraße. 1, D Konanz, Germany b EH Zürich, Rämirae 11, 892 Zürich, Swizerland c Univeriy of Vienna, Faculy of Mahemaic, Okar-Morgenern-Plaz 1, A-19 Wien, Auria 1 kupper@uni-konanz.de 2 peng.luo@mah.ehz.ch 3 ludovic.angpi@univie.ac.a PAPER INFO AMS CLASSIFICAION: (2) 6H1, 6H7, 6H3 Given a mulidimenional Brownian moion W on a probabiliy pace, conider he yem of forward and backward ochaic differenial equaion { X = x+ b (X,Y )d+ σ dw Y = h(x )+ g (X,Y,Z )d (1.1) Z dw, [,] where x i a known iniial value, > and b, σ, g and h are given funcion. In hi paper, we give condiion under which he yem admi a unique oluion in he cae where he value proce Y i mulidimenional and he generaor g can grow arbirarily fa in he conrol proce Z. he focu in hi paper i on Markovian yem, in which he funcion b, σ, g and h are deerminiic. We conider generaor ha are Lipchiz coninuou in X and Y and locally Lipchiz coninuou inz. In hi eing, and for one-dimenional value procee, he decoupled yem (wih b depending only on X) ha been olved by Cheridio and Nam [5] baed on Malliavin calculu argumen. In fac, uing ha for Lipchiz coninuou generaor he race of he Malliavin derivaive of he value proce Y i a verion of he conrol proce, hey howed ha he conrol proce can be uniformly bounded, hence enabling olvabiliy for locally Lipchiz generaor by a runcaion argumen. We make ample ue of heir mehod o deal wih he coupled yem (1.1). In hi cae, we propoe a Picard ieraion cheme which yield a equence ha can 1

2 be proved o be a Cauchy equence in an appropriae Banach pace under uniform boundedne of he conrol procee derived uing Malliavin calculu argumen provided ha he ime horizon i mall enough. Moreover uing he PDE repreenaion of Markovian Lipchiz FBSDE a developed for inance in Delarue [7] and a paing precedure, we conruc a unique global oluion for generaor wih growh pecified on he diagonal and under addiional aumpion, mainly non-degeneracy of he volailiy σ, ee heorem 2.2. Syem uch a (1.1) naurally appear in numerou area of applied mahemaic including ochaic conrol and mahemaical finance, ee Yong and Zhou [28], El Karoui e al. [11] and Hor e al. [16]. A hown for inance in Ma e al. [23] and Cheridio and Nam [5], in he Markovian cae, FBSDE can be linked o parabolic PDE. More recenly Fromm e al. [14] proved ha FBSDE can be ued in he udy of he Skorokhod embedding problem. BSDE and FBSDE wih Lipchiz coninuou generaor are well underood, we refer o El Karoui e al. [11] and Delarue [7]. If Y i one-dimenional and g i allowed o have quadraic growh in he conrol proce Z, BSDE oluion have been obained by Kobylanki [2], Barrieu and El Karoui [2] and Briand and Hu [3, 4] under variou aumpion on he erminal condiion ξ = h(x ). We furher refer o Delbaen e al. [8], Drapeau e al. [1], Cheridio and Nam [5] and Heyne e al. [15] for reul on one-dimenional BSDE and FBSDE wih uperquadraic growh. Mainly due o he abence of comparion principle, general olvabiliy of mulidimenional BSDE wih quadraic growh i le well underood. Some imporan progre have been achieved recenly for BSDE wih mall erminal condiion, ee evzadze [26] and for more recen developmen, ee Hu and ang [17], Luo and angpi [22], Jamnehan e al. [19], Cheridio and Nam [6], Frei [12] and Xing and Žikovi`c [27]. o he be of our knowledge, he only work udying well-poedne of coupled FBSDE wih quadraic growh are he aricle of Anonelli and Hamadène [1] and he preprin of Luo and angpi [22] and Fromm and Imkeller [13]. In [1] he auhor conider a one-dimenional equaion wih one dimenional Brownian moion and impoe monooniciy condiion on he coefficien o ha comparion principle for SDE and BSDE can be applied. A (non-necearily unique) oluion i hen obained by monoone convergence of an ieraive cheme. In [13], a fully coupled Markovian FBSDE i conidered wih mulidimenional forward and value procee and locally Lipchiz generaor in (Y, Z) and a exience of a unique local oluion i obained uing he echnique of decoupling field and an exenion o global oluion i propoed. Alhough he (non-markovian) yem udied in Luo and angpi [22] i he ame a he one conidered in he preen paper, he echnique here are eenially differen. Furhermore, he main reul we preen here can be exended o he non-markovian eing and o random diffuion coefficien (when σ depend on X and Y ) under ronger aumpion involving he Malliavin derivaive ofg andh. We refer o he Ph.D. hei of Luo [21] for deail. In he nex ecion, we preen our probabiliic eing and he principal reul of he paper. In Secion 3 we prove local olvabiliy of mulidimenional BSDE wih uperquadraic growh and give condiion guaraneeing global olvabiliy. Secion 4 i dedicaed o he proof of he main reul. 2

3 2 Main reul Le (Ω,F,(F ) [,],P) be a filered probabiliy pace, where (F ) [,] i he augmened filraion generaed by a d-dimenional Brownian moion W, and F = F for a finie ime horizon (, ). he produc Ω [, ] i endowed wih he predicable σ-algebra. Sube ofr k andr k k,k N, are alway endowed wih he Borelσ-algebra induced by he Euclidean norm. he inerval [,] i equipped wih he Lebegue meaure. Unle oherwie aed, all equaliie and inequaliie beween random variable and procee will be underood in he P -almo ure and P d-almo ure ene, repecively. For p [1, ] and k N, denoe by S p (R k ) he pace of all predicable coninuou procee X wih value in R k uch ha X p S p (R k ) := E[(up [,] X ) p ] <, and by H p (R k ) he pace of all predicable procee Z wih value inr k uch ha Z p H p (R k ) := E[( Z u 2 du) p/2 ] <. Le l,m N be fixed. he oluion of (1.1) wih value in R m R l R l d can be obained under he following condiion: (A1) b : [,] R l R m i a coninuou funcion and here exi k 1,k 2,λ 1 uch ha b (x,y) b (x,y ) k1 x x +k2 y y and b (x,y) λ 1 (1+ x + y ) for all x,x R m and y,y R l. (A2) σ : [,] R m d i a meaurable funcion and here i λ 2 uch ha σ λ 2 for all [,]. (A3) h : R m R l i a coninuou funcion and here exi k 5 uch ha h(x) h(x ) k5 x x for all x,x R m. (A4) g : [,] R m R l R l d R l i a coninuou funcion aifying g (,,) L 2 ([,]), and here exik 3,k 4 and a nondecreaing funcionρ : R + R + uch ha g (x,y,z) g (x,y,z) k3 x x (2.1) for all x,x R m, y R l and z R l d uch ha z M := 4λ 2 k 5 dl and g (x,y,z) g (x,y,z ) k4 y y +ρ ( z z ) z z for all x R m,y,y R l and z,z R l d. (A5) here exi a conan K uch ha g (x,y,z) g (x,y,z) g (x,y,z )+g (x,y,z ) K x x ( y y + z z ) for all [,], x,x R m,y,y R l and z,z R l d. 3

4 Our fir main reul enure local exience and uniquene for he coupled FBSDE (1.1) under he previou aumpion. he proof i given in Secion 4. heorem 2.1. Aume ha (A1)-(A5) hold. hen here exi a conan C k,λ,l,d > depending only on k 1, k 2, k 3, k 4, k 5, λ 2, l and d, uch ha he FBSDE (1.1) ha a unique oluion (X,Y,Z) S 2 (R m ) S 2 (R l ) S (R l d ) wih Z M, whenever C k,λ,l,d. Local exience reul a heorem 2.1 above have been obained in [13, heorem 3] and [22, heorem 2.1] in eenially differen eing and wih differen mehod. A naural queion i o find condiion under which he above reul can be exended o obain global olvabiliy. Fromm and Imkeller [13] propoe a concaenaion procedure allowing o prove exience of oluion o a fully coupled FBSDE on a "maximal inerval". In he preen eing, under addiional aumpion, a paing mehod baed on PDE allow o ge global exience and uniquene for he FBSDE (1.1). he proof i alo given in Secion 4. (A4 ) g : [,] R m R l R l d R l i a coninuou funcion aifying g (,,) L 2 ([,]), and here exik 3,k 4 and a nondecreaing funcionρ : R + R + uch ha g i (x,y,z) g i (x,y,z ) k3 x x +k4 y y +ρ ( z z ) z i (z ) i for all i = 1,...,l; x,x R m, y,y R l and z,z R l d. heorem 2.2. Aume ha (A1), (A2), (A3), (A4 ), and (A5) hold and here exi λ 3 > ; λ 4,λ 5 uch ha 1 b (x,y) λ 1 (1+ y ) x,σ σ x λ 3 x 2 (2.2) g (x,y,z) λ 4 (1+ y +ρ( z ) z ) h(x) λ 5 for all [,], x,x R m, y,y R l and z,z R l d, hen he FBSDE (1.1) ha a unique global oluion (X,Y,Z) S 2 (R m ) S 2 (R l ) S (R l d ) uch ha Z M for ome conan M. Remark 2.3. he following counerexample how ha he addiional condiion in heorem 2.2 canno be dropped wihou violaing global olvabiliy. Conider he FBSDE { X = Y udu Y = kx u du Z u dw u. hi equaion can be rewrien a 1 σ i he ranpoe marix of σ. Y = ky u dud Z u dw u. (2.3) 4

5 I ha been hown in [9, Example 3.2] ha if k < π 2 hen he BSDE wih ime-delayed generaor (2.3) ha a unique oluion wherea if k = π 2, (2.3) may no have any oluion and if i doe have one, here are infiniely many. heorem 2.2 exend o fully coupled generaor provided ha a more pecial rucure i aumed. he proof of he nex propoiion i given in Secion 4.3. Propoiion 2.4. If here exi an inverible marixγ R n n and λ 3 > ; λ 4,λ 5 uch ha (A1), (A2), (A3), (A4 ), (A5) and (2.2) hold for h := Γh, g (x,y,z) := Γg (x,γ 1 y,γ 1 z) and b (x,y) := b (x,γ 1 y), hen he FBSDE (1.1) ha a unique global oluion (X,Y,Z) S 2 (R m ) S 2 (R 2 ) S (R 2 d ) uch ha Z M for ome conan M. he poin of he above propoiion i ha global olvabiliy can be obained for a generaor ha doe no aify he "diagonally uperquadraic" growh condiion (A4 ) provided ha he ranformed generaor g doe. Moreover, noice ha heorem 2.2 and Propoiion 2.4 guaranee exience of a decoupling field, ee [13]. In paricular, he boundedne of Z guaranee a uniform Lipchiz propery of he decoupling field. heorem 2.1 relie on an exience reul for mulidimenional BSDE preened in Nam [24] and reviied in he nex ecion. 3 Mulidimenional BSDE wih bounded Malliavin derivaive Le u inroduce he pace of Malliavin differeniable random variable and ochaic procee D 1,2 (R l ) andl 1,2 a (R l ). For a horough reamen of he heory of Malliavin calculu we refer o Nualar [25]. Le M be he cla of mooh random variable ξ = (ξ 1,...,ξ l ) of he form ξ i = ϕ i( h i1 dw,..., h in dw ) where ϕ i i in he pace C p (Rn ;R) of infiniely coninuouly differeniable funcion whoe parial derivaive have polynomial growh, h i1,...,h in L 2 ([,];R d ) and n 1. For every ξ inmle he operaor D = (D 1,...,D d ) : M L 2 (Ω [,];R d ) be given by D ξ i := n j=1 ϕ i ( x j h i1 dw,..., h in dw ) h ij,, 1 i l, and he norm ξ 1,2 := (E[ ξ 2 + D ξ 2 d]) 1/2. A hown in Nualar [25], he operaor D exend o he cloured 1,2 (R l ) of he emwih repec o he norm 1,2. A random variableξ i Malliavin differeniable ifξ D 1,2 (R l ) and we denoe byd ξ i Malliavin derivaive. Denoe by L 1,2 a (R l ) he pace of procee Y H 2 (R l ) uch ha Y D 1,2 (R l ) for all [,], he proce DY admi a quare inegrable progreively meaurable verion and [ Y 2 L 1,2 a (R l ) := Y H 2 (R l ) +E ] D r Y 2 drd <. 5

6 We nex conider a yem of uperquadraic BSDE of he form Y = ξ + aifying he following condiion: g u (Y u,z u )du Z u dw u (3.1) (B1) g : Ω [,] R l R l d R l i a meaurable funcion and here exi a conan B R + and a nondecreaing funcion ρ : R + R + uch ha g (y,z) g (y,z ) B y y +ρ ( z z ) z z for all [,], y,y R l and z,z R l d. (B2) ξ D 1,2 (R l ) and here exi conan A ij uch ha D j ξi A ij for all i = 1,...,l, j = 1,...,d and [,]. (B3) g (,) H 4 (R l ) and here exi Borel-meaurable funcion q ij : [,] R + aifying q2 ij ()d < and for every pair (y,z) Rl R l d wih ( d ) z Q := 2 A 2 ij + qij 2()d i hold j=1 g (y,z) L 1,2 a (R l ) wih D j ug i (y,z) q ij () for all i = 1,...,l, j = 1,...,d and u [,], for almo all u [,] one ha Du g (y,z) D u g (y,z ) Ku () ( y y + z z ) for all [,],y,y R l andz,z R l d for omer + -valued adaped proce (K u ()) [,] aifying K u 4 H 4 (R) du <. he following i an exenion of Cheridio and Nam [5, heorem 2.2] o he mulidimenional cae. I wa proved in Nam [24] under lighly differen aumpion. We give he proof for he ake of compleene. log(2) heorem 3.1. Aume ha (B1)-(B3) hold and. hen he BSDE (3.1) admi 2B+ρ 2 (Q)+1 a unique oluion in S 4 (R l ) S (R l d ) and Z Q. Conider he following ronger verion of he condiion (B1) and (B3): (B1 ) g i coninuouly differeniable in(y,z) and here exi conan B R + andρ R + uch ha y g (y,z) B and z g (y,z) ρ for all [,], y,y R l and z,z R l d. 6

7 (B3 ) he condiion (B3) hold for all (y,z) R l R l d. Lemma 3.2. If (B1 ), (B2) and (B3 ) hold, hen he BSDE (3.1) admi a unique oluion (Y,Z) S 4 (R l ) H 4 (R l d ) and Z j 2 ( A 2 ij+ q 2 ij()e (2B+ρ2 +1)( ) d ) e (2B+ρ2 +1)( ) for all j = 1,...,d. Proof. By Cheridio and Nam [5, Lemma 2.5], he condiion (B2) impliee[ ξ p ] < + for all p [1, ). I follow from El Karoui e al. [11, heorem 5.1 and Propoiion 5.3] ha he BSDE (3.1) ha a unique oluion (Y,Z) S 4 (R l ) H 4 (R l d ), which i Malliavin differeniable. Moreover for every i = 1,...,l and j = 1,...,d, he proce (DrY j i,dj rz i) [,] ha a verion (U ij,r ) [,] which aifie,v ij,r U ij,r =, V ij,r =, for < r, and i he unique oluion in S 2 (R l ) H 2 (R l d ) of he BSDE U j,r = Drξ j + Applying Iô formula o U j,r 2 yield U j,r 2 = Drξ j 2 + D j r ξ 2 D j r ξ 2 y g (Y,Z )U j,r + z g (Y,Z )V j,r +Drg j (Y,Z )d 2U j,r V j,r dw (3.2) V j,r dw. 2U j,r y g (Y,Z )U j,r +2U j,r z g (Y,Z )V j,r +2U j,r D j rg (Y,Z ) V j,r 2 d 2U j,r V j,r dw + 2U j,r V j,r dw + 2B U j,r 2 +2ρ U j,r j,r V ( 2B +ρ 2 +1 ) U j,r l qij 2 ()d. Uing condiion (B3) and aking condiional expecaion in he above inequaliy yield U j,r 2 E [ A 2 ij + ( 2B +ρ 2 +1 ) U j,r 2 + qij 2() Uj,r j,r V 2 d qij 2 ()d F ]. (3.3) By El Karoui e al. [11, Propoiion 5.3] he proce Z i a verion of he race(u ) [,] of he Malliavin derivaive of Y. Hence (3.2) follow from (3.3) by applying Gronwall inequaliy. 7

8 Proof (heorem 3.1). Define he Lipchiz coninuou funcion g by { g (y,z) if z Q, g (y,z) = g (y,qz/ z ) if z > Q. By Cheridio and Nam [5, Lemma 2.5] and El Karoui e al. [11, heorem 5.1] he BSDE correponding o( g,ξ) ha a unique oluion (Y,Z) S 4 (R l ) H 4 (R l d ). Forx = (y,z) R l+l d le β C (R l+l d ) be he mollifier { ( ) λexp 1 if x < 1, 1 x β(x) := 2 oherwie, where he conanλ R + i choen uch ha R β(x)dx = 1. Seβ n (x) := n l+l d β(nx), l+l d n N\{}, and define g n (ω,x) := g (ω,x )β n (x x )dx R l+l d o ha for each n > he funcion g n aifie (B1 ) and (B3 ) wih he conan ρ replaced by ρ(q). By Lemma 3.2 he BSDE correponding o (g n,ξ) ha a unique oluion (Y n,z n ) in S 4 (R l ) H 4 (R l d ) which aifie Since Z n,j 2 A 2 ij + A 2 ij + log(2) we obain 2B+ρ 2 (Q)+1 Z n,j 2 2 A 2 ij + q 2 ij()e (2B+ρ2 (Q)+1)( ) d qij()d 2 e (2B+ρ2(Q)+1). e (2B+ρ2 (Q)+1)( ) qij()d 2 for all j = 1,...,d. hi how Z n Q. Since gn converge uniformly in (,ω,y,z) o g, uing he procedure of he proof of Cheridio and Nam [5, heorem 2.2], i follow ha (Y n,z n ) converge o (Y,Z) in S 2 (R l ) H 2 (R l d ), o ha Z Q. Since g(y,z) = g(y,z) for all (y,z) R l R l d wih z Q, i follow ha (Y,Z) i he unique oluion of he BSDE correponding o (ξ,g) in S 4 (R l ) S (R l d ). log(2) Corollary 3.3. Suppoe (B1)-(B3) hold, 2B+ρ 2 (Q)+1 and(y,z) S4 (R l ) S (R l d ) i he oluion of he BSDE (3.1). heny D 1,2 (R l ) for all [,] and for everyj = 1,...,d, one ha ( ) DrY j 2 2 A 2 ij + qij()d 2 for all r [,]. (3.5) (3.4) 8

9 Proof. Since Z Q i bounded, (Y,Z) olve he BSDE wih erminal condiion ξ and generaor g defined by (3.4). If g aifie (B1 ) and (B3 ), hen he reul follow from Lemma 3.2. Oherwie conider he equence of mooh funcion g n converging o g a defined in he proof of heorem 3.1. Le (Y n,z n ) S 4 (R l ) H 4 (R l d ) be he oluion o he BS- DE correponding o (g n,ξ), which converge o (Y,Z) in S 2 (R l ) H 2 (R l d ). By Lemma 3.2 (Y n,zn ) D1,2 (R l ) D 1,2 (R l d ) for each [,] and he argumen in he proof of heorem 3.1 imply Dr j Y n 2 2 A 2 ij + qij 2 ()d j = 1,...,d, r, [,]. Hence, up n N E[ Dj ry n 2 dr] < for each [,]. Since (Y n ) converge o Y in L 2, i follow from Nualar [25, Lemma 1.2.3] ha Y D 1,2 (R l ) and (DY n ) converge o DY in he weak opology of H 2 (R l d ). hu, D r Y aifie (3.5). A a concequence o heorem 3.1, we give a condiion for global olvabiliy of fully coupled yem of BSDE. For he remainder of hi ecion we pu n := log(2) 2B +ρ 2 (2 n Q)+1, n N. Propoiion 3.4. Aume ha (B1)-(B2) hold, ha here exi N N uch ha N n= n, and (B3) hold wih Q replaced by 2 N Q. hen he BSDE (3.1) ha a unique oluion in S 4 (R l ) S (R l d ) and Z 2 N Q. Proof. If hen he reul follow from heorem 3.1. Oherwie, if > i follow by he ame argumen a in he proof of heorem 3.1 ha he BSDE (3.1) ha a unique oluion (Y,Z ) in S 4 (R l ) S (R l d ) on he inerval [,]. Moreover, Z aifie Z Q and by Corollary 3.3 one ha Y D 1,2 (R l ) and for every r, D j r Y 2 2 A ij q ij () 2 d for all j = 1,...,d. Since g aifie (B3) for all (y,z) R l R l d uch ha z cq, again by heorem 3.1 he BSDE (3.1) wih erminal condiion Y ha a unique oluion (Y 1,Z 1 ) in S 4 (R l ) S (R l d ) on [( 1 ), ], and D j ry 1 ( 1 ) A ij 2 + Z 1 2Q, [( 1 ), ]. (2 2 +2) q ij () 2 d, for all j = 1,...,d Repeaing he previou argumen, for N 2 he BSDE (3.1) ha a unique oluion (Y N,Z N ) ins 4 (R l ) S (R l d ) on[( N n= n),( N 1 n= n) ] wih erminal condiion 9

10 Y ( N 1 n= n). Moreover, D j ry N ( N n= n) 2 Z N 2N Q, 2 N A ij 2 + [ ( Hence, he pair (Y,Z) given by N n= N ( 2 k ) q ij () 2 d for all j = 1,...,d k=1 N 1 n ),( n= ] n ). Y := Y 1 [ 1,] + Z := Z 1 [ 1,] + N n=1 N n=1 olve (3.1) and i uniquene follow from heorem 3.1. Y n 1 [( n i= i),( n 1 i= i) ] Z n 1 [( n i= i),( n 1 i= i) ] Remark 3.5. he condiion N n= n for ome N N doe no guaranee global olvabiliy of mulidimenional BSDE wih uperquadraic growh. In fac, if ρ(x) C(1+ x) for all x, hen n n <. However, i doe guaranee global olvabiliy for BS- DE whoe generaor grow lighly faer han he linear funcion. For inance, if ρ(x) C(1+ log(1+x)) one ha n= log(2) 2B +ρ 2 (2 N Q)+1 log(2) 2B +2C 2 (1+log(2 N (1+Q)))+1 n= log(2) = 2B +2C 2 (1+log(1+Q)+nlog(2))+1 =. n= 4 Coupled FBSDE wih uperquadraic growh 4.1 Proof of heorem 2.1 Sep 1: We fir aume ha h,b and g are coninuouly differeniable in all variable. Le u define C 1 k,λ,l,d := k2 5 k 2 3 log2 λ 2 k 1 k 2 M log2 2k 4 +ρ 2 (M)+1 wih M := 4k 5 λ 2 dl. We will how ha for C 1 k,λ,l,d, he equence (X n,y n,z n ) given by X =, Y =, Z = and { X n+1 Y n+1 = x+ = h(x n+1 b(xn+1 u,y n u )du+ σ udw u )+ g u (X n+1 u,y n+1 u,zu n+1 )du Z n+1 u dw u, n 1 1

11 i well defined and ha Z n M for all n N and [,]. he proce X 1 i well defined, X 1 belong o D 1,2 (R m ) for every and he proce (D r X ) [,] aifie he linear equaion D r X 1 =, < r, D r X 1 = r ( x bd r Xu 1 + y bd r Yu)du+D r r σ u dw u, r, wihd r ( r σ udw u ) = σ1 [r,], ee Nualar [25, Lemma and heorem 2.2.1]. Hence, ince b i Lipchiz coninuou, we have Dr X 1 r k 1 D r X 1 udu+σ r and Dr X 1 λ2 e k 1, where he econd eimae come from Gronwall inequaliy. We will now how ha ince Ck,λ,l,d 1, h(x1 ) and g(x1,, ) aify (B1)-(B3). In fac, ince h i coninuouly differeniable and X 1 D1,2 (R m ), i follow from he chain rule, ee for inance Nualar [25, Propoiion 1.2.4], ha h(x 1) D1,2 (R l ) and Dr(h(X j 1)) = xh(x 1)Dj rx 1 λ 2k 5 e k 1 for all r [,], j = 1,...,d. Uing log2 k 1, we deduce ha h(x 1) aifie (B2) wih A ij := 2λ 2 k 5. Similarly, by (A4) and uing ha he funcion x g(x, y, z) i coninuouly differeniable, i follow ha g. (X. 1,y,z) L 1,2 a (R l ) and D j (g ị (X 1,y,z)) λ2 k 3 e k 1, j = 1,...,d for all (y,z) R l R l d uch ha z M and, due o (A5), applying he ame argumen o ĝ (x,y,y,z,z ) := g (x,y,z) g (x,y,z ) yield D j rg (X 1,y,z) D j rg (X 1,y,z ) Kλ 2 e k 1. Uing k2 5 log2 k3 2 k 1, we deduce hag. (X. 1,y,z) aifie (B3) wihq ij = 2λ 2 k 3 andk u () := 2Kλ 2. Moreover due o (A4), he funcion (,y,z) g (X,y,z) 1 aifie (B1). log2 herefore, by 2k 4 +ρ 2 (M)+1, heorem 3.1 enure ha (Y 1,Z 1 ) exi. Conider he funcion g defined by { g (x,y,z) if z M g (x,y,z) = g (x,y,zm/ z ) if z > M. Since (Y 1,Z 1 ) alo olve he BSDE wih erminal condiion h(x 1 ) and a Lipchiz generaor g(x 1,, ), i follow from Lemma 3.2 and i proof ha (Y 1,Z1 ) D1,2 (R l ) D 1,2 (R l d ) for all [,] and D Y 1 i bounded and i hold Z 1 = D Y 1. In addiion, we have Dr X 1 4λ 2 and Dr Y 1 M. Now len N, aume ha(x n,y n,z n ) D 1,2 (R m ) D 1,2 (R l ) D 1,2 (R l d ),Z n = D Y n and D r X n 4λ 2, D r Y n M for all r, [,]. he proce X n+1 i well defined, for each ; X n+1 belong o D 1,2 (R m ) and i hold D r X n+1 =, < r, D r X n+1 = σ r + r ( x bd r Xu n+1 + y bd r Yu n )du, r. 11

12 Since x b, y b and σ are bounded by k 1, k 2 and λ 2 repecively, i follow from Gronwall inequaliy ha Dr X n+1 e k 1 λ 2 +k 2 D r Yu n du. Hence, Dr X n+1 e k 1 (λ 2 +k 2 M) < (4.1) o ha ince λ 2 k 2 M, we have D r X n+1 4λ 2. A above, h(x n+1 ) and g. (X n+1,y,z) are Malliavin differeniable and aify (B1)-(B3) wih A ij := 2λ 2 k 5, q ij = 2λ 2 k 3 and K u () := 2Kλ 2. I hen follow again from heorem 3.1 ha (Y n+1,z n+1 ) exi and Z n+1 M i bounded. Since (Y n+1,z n+1 ) alo olve he BSDE wih erminal condiion h(x n+1 ) and a Lipchiz generaor g(x n+1,, ), Lemma 3.2 and i proof guaranee ha (Y n+1,z n+1 ) D 1,2 (R l ) D 1,2 (R l d ) for all [,] and D Y n+1 i bounded and i hold Z n+1 = D Y 1, wih Dr Y n+1 M. Sep 2: Now we how ha here i a poiive conan 2 2 k,λ,l,d uch ha if 22 k,λ,l,d, hen (X n,y n,z n ) i a Cauchy equence in S 2 (R m ) S 2 (R l ) H 2 (R l d ). Uing (A1) we can eimae he norm of he difference X n+1 X n a hu X n 2 2 X n+1 up X n+1 X n 2 2 k 1 X n+1 k 1 X n+1 X d n 2 X d n k 2 Y n Y n 1 k 2 Y n d Y n 1 aking expecaion on boh ide and uing Cauchy-Schwarz inequaliy, we have E [ ] up X n+1 X n 2 2k1E 2 [ 2 2 k 2 1E X n+1 up X n+1 X n ] k2e 2 X n 2 d +2k2E 2 [ ] up Y n Y n 1 2. Chooing o be mall enough o ha 2 2 k , i follow [ [ E ] up X n+1 X n k2e 2 Y n 2. d 2 Y n 1. 2 d ] up Y n Y n 1 2. (4.2) 12

13 On he oher hand, applying Iô formula o e β Y n+1 Y n 2,β, we have e β Y n+1 Y n 2 = e β h(x n+1 +2 e β (Z n+1 e β (Y n+1 ) h(x) n 2 2 Z n ) 2 d e β (Y n+1 βe β (Y n+1 Y n ) [ g (X n+1,y n+1,z n+1 Y n )(Z n+1 Z)dW n Y n ) 2 d Hence, due o he condiion (A3) and he boundedne of (Z n ), i hold e β Y n+1 Y n 2 + e β (Z n+1 e β h(x n+1 ) h(x) n βe β (Y n+1 e β k 7 Y n+1 Z n ) 2 d Y n ) 2 d+2 e β (Y n+1 e β ρ(m) Y n+1 Y n X n+1 X n d+2 Y n )(Z n+1 Z)dW n ) g (X,Y n n,z) n ] d. Y n Z n+1 Z n d e β k 4 Y n+1 Y n 2 d. Wih ome poiive conan α 1, α 2, i follow from (A3) and Young inequaliy ha e β Y n+1 2 Y n 2 + e β (Y n+1 e β (Z n+1 Z n )2 d e β k 2 5 Xn+1 X n 2 Y n )(Zn+1 Z n )dw +α 2 ( ) (ρ(m)) k2 3 +2k 4 β α 1 α 2 e β (Y n+1 e β X n+1 Y n )2 d+α 1 X n 2 d e β Z n+1 Z n 2 d. (4.3) 13

14 Leing β = (ρ(m))2 α 1 + k2 7 α 2 +2k 8 and aking expecaion on boh ide above, we have E [ e β Y n+1 Y n 2] +E +α 1 E e β (Z n+1 e β Z n+1 Z) n 2 d e β k5e 2 [ X n+1 X n 2] Z n 2 d +α 2 E Puing α 1 = 1 2 and α 2 = 1, he previou eimae yield E e β (Z n+1 Z) n 2 d 2e β k5e 2 [ X n+1 X n 2] +2E Nex, aking condiional expecaion wih repec of in (4.3) give e β Y n+1 Y n 2 +E +α 1 E e β (Z n+1 e β Z n+1 e β X n+1 e β X n+1 X n 2 d. X n 2 d. Z) n 2 d F e β k5e 2 [ X n+1 X n 2 ] F Z n 2 d F +α 2 E e β X n+1 X n 2 d F. hu, by Burkholder-Davi-Gundy inequaliy, wih a poiive conan c 1 andα 1 = 1 2,α 2 = 1, we have [ ] E up e β Y n+1 Y n 2 c 1 e β k5e 2 [ X n+1 X n 2] 1 +c 1 2 E e β Z n+1 Z n 2 d +c 1 E e β X n+1 X n 2 d 2c 1 e β k 2 5E [ X n+1 I now follow from (4.2) ha E [ up Y n+1 Y n ]+E 2 X n 2] +2c 1 E (Z n+1 8(c 1 +1)e β (k 2 5 +)2 k 2 2 E [ e β X n+1 Z) n 2 d ] up Y n Y n 1 2. X n 2 d. 14

15 aking mall enough o ha 8(c 1 +1)e β (k 2 5 +)2 k , we obain ha (X n,y n,z n ) i a Cauchy equence in S 2 (R m ) S 2 (R l ) H 2 (R l d ). hu, i uffice o define 2 2 k,λ,d,l by he condiion { 2 2 k (c 1 +1)e β (k5 2 +)2 k By coninuiy ofb,g andhwe have he exience of a oluion(x,y,z) ins 2 (R m ) S 2 (R l ) H 2 (R l d ) of FBSDE (1.1) and i follow from he boundedne of (Z n ) ha Z M. he uniquene in S 2 (R m ) S 2 (R l ) S (R l d ) follow from he boundedne of Z and by repeaing he above argumen on he difference of wo oluion. Sep 3: If one of he funcion b, g or h i no differeniable, we apply he echnique of he proof of heorem 3.1. Namely, we ue an approximaion by he mooh funcion defined a follow: Forn N, le βn,β 1 n 2 andβn 3 be nonnegaive C funcion wih uppor on{x R m : x 1 n }, {x Rm+l : x 1 n } {x Rm+l+l d : x 1 n } repecively, and aifying R β 1 m n (r)dr = 1, R β 2 m+l n (r)dr = 1 and R β 3 m+l+l d n (r)dr = 1. We define he convoluion b n (x,y) := b (x,y )βn(x 2 x,y y)dx dy, h n (x) := h(x )βn(x 1 x)dx, R m+l R m g n (u,x,y,z) := g(u,x,y,z )βn(x 3 x,y y,z z)dx dy dz. R m+l+l d I i eay o check ha b n aifie (A1) wih he conan k 1,k 2 and 2λ 1 and ha g n and h n aify (A4) - (A5) and (A3), repecively, wih he ame conan. From Sep 1 and 2, here exi a poiive conan Ck,λ,l,d independen of n uch ha if C k,λ,l,d, FBSDE (1.1) wih parameer (b n,h n,g n ) admi a unique oluion (X n,y n,z n ) S 2 (R m ) S 2 (R l ) S (R l d ) and Z n M. By he Lipchiz coninuiy condiion on b and h and he locally Lipchiz condiion of g, he equence (b n ) and(h n ) converge uniformly obandhonr m+l andr m, repecively, and(g n ) converge o g uniformly on R m+l Λ for any compac ube Λ of R l d. Combining hee uniform convergence wih he boundedne of Z n, imilar o above, we can how ha here exi a conan Ck,λ,l,d depending only on k 1,k 2,k 3,k 4,k 5,λ 2,l,d uch ha if C k,λ,l,d, (X n,y n,z n ) i a Cauchy equence in he Banach pace S 2 (R m ) S 2 (R l ) H 2 (R l d ). In fac, for any m,n N, uing Cauchy-Schwarz inequaliy we have X n Xm 2 b n u (Xn u,y n u ) bm u (Xm u,y m u ) 2 du. 15

16 hu, aking he upremum wih repec o and hen expecaion on boh ide give X n X m 2 S 2 (R m ) 3 ( b n u (Xn u,y n u ) b u(x n u,y n u ) 2 + b m u (Xm u,y m u ) b u(x m u,y m u ) 2 + b u (Xu n,y u n ) b u(xu m,y u m ) 2 )du 3 ( b n u(x n u,y n u ) b u (X n u,y n u ) 2 + b m u (X m u,y m u ) b u (X m u,y m u ) 2 )du +3k X n X m 2 S 2 (R m ) +3k2 2 2 Y n Y m 2 S 2 (R l ) (4.4) where he econd inequaliy follow from (A1). On he oher hand, applying Iô formula a in Sep 2, one ha Y m Y n 2 + Z n u Z m u 2 du h n (X n ) h(xn ) 2 + h m (X m ) h(xm ) 2 +k 2 5 Xn Xm (Y n+1 Y n )(Z n+1 Z)dW n Y n u Y m u ( g n u(x n u,y n u,z n u) g u (X n u,y n u,z n u) + g m u (Xm u,y m u,zm u ) g u(x m u,y m u,zm u ) +k 3 X n u Xm u +k 4 Y n u Ym u +ρ(m) Zu n Zm u ). (4.5) aking expecaion, due o Young inequaliy we have Z n Z m 2 H 2 (R l d ) E[ h n (X n ) h(xn ) 2 ]+E[ h m (X m ) h(xm ) 2 ]+(k k2 3 ) Xn X m 2 S 2 (R m ) Y n Y m 2 S 2 (R l ) g n u (Xn u,y n u,zn u ) g u(x n u,y n u,zn u ) 2 + g m u (X m u,y m u,z m u ) g u (X m u,y m u,z m u ) 2 du k2 4ρ 2 (M) Y n Y m 2 S 2 (R l ) Zn Z m 2 H 2 (R l d ). On he oher hand, aking condiional expecaion in (4.5) and hen he upremum wih repec 16

17 o and hen expecaion on boh ide, we have due o Young inequaliy Y n Y m 2 S 2 (R l ) E[ h n (X n ) h(x n ) 2 ]+E[ h m (X m ) h(x m ) 2 ]+k 2 5 X n X m 2 S 2 (R m ) Y n Y m 2 S 2 (R l ) g n u(x n u,y n u,z n u) g u (X n u,y n u,z n u) 2 + gu m (Xm u,y u m,zm u ) g u(xu m,y u m,zm u ) 2 du 1 2 k2 3 Xn X m 2 S 2 (R m ) k2 4 ρ2 (M) Y n Y m 2 S 2 (R l ) Zn Z m 2 H 2 (R l d ). Combining (4.4) and (4.1) we oberve ha if i mall enough o ha { 3k k2 5 k k3 2k k2 4 ρ2 (M) 1 2 hen, he uniform convergence of (b n ), g n and (h n ) o b, g and h enure ha (X n,y n,z n ) i a Cauchy equence. he verificaion ha he limi (X,Y,Z) of he equence (X n,y n,z n ) olve he FBSDE (1.1) ue coninuiy of he funcionb,handg, and ha Z M i a conequence of he boundedne of(z n ). akingc k,λ,l,d := C k,λ,l,d C k,λ,l,d conclude he proof. Due o heorem 2.1 above, our global exience reul now follow from a paing procedure. 4.2 Proof of heorem 2.2 If C k,λ,l,d, hen he reul follow from heorem 2.1. Aume > C k,λ,l,d and le h M : R R be a coninuouly differeniable funcion whoe derivaive i bounded by 1 and uch ha h M (a) = 1 for all M a M and (M +1) if a > M +2 h M (a) = a if a M (M +1) if a < (M +2). An example of uch a funcion i given by {( M h 2 +2Ma a(a 4) ) /4 if a [M,M +2] M (a) = ( M 2 +2Ma+a(a+4) ) /4 if [ (M +2), M], ee Imkeller and Rei [18]. By he aumpion (A3) he funcion g : [,] R m R l R l d R defined by g (x,y,z) := g (x,y,h M (z)) (4.6) wih h M (z) := ( h M (z ij )) ij i Lipchiz coninuou in all variable. hu, i follow from Delarue [7, heorem 2.6] ha he equaion { X = x+ b u( X u,ỹu)du+ σ udw u Ỹ = h( X )+ g u ( X u,ỹu, Z u )du (4.7) Z u dw u, [,] 17

18 admi a unique oluion ( X,Ỹ, Z) S 2 (R m ) S (R l ) S (R l d ). Moreover, here exi a Lipchiz coninuou funcion θ : [,] R m R l bounded by a conan K uch ha Ỹ = θ(, X ) for all [,]. In fac, for everyx,x R d, [,] and,...,l we have θ(, X x x ) θ(, X ) = h i ( X x ) hi x ( X )+ gu i ( X u x,ỹ u x, Z u x ) gi u = h i ( X x ) hi ( x X )+ ( X x gu( i X u,ỹ x u x, Z u) g x u( i Z u x,i Z x i u u x x,ỹu, Z u )du x X u,ỹ u x x, Z u ) Z x,i u Z x,i u dw u ( Z x,i u Z x i u )1 { Z x,i u Z x,i } du + (g i u ( X x u,ỹ x u, Z x ) g i u ( X x u x x,ỹu, Z u ))1 { Z u x,i Z x i =}du u Z x,i u Z x,i u dw u. hu, Giranov heorem yield θ i (, X x ) θ i x (, X ) E Qi h i ( X x ) hi x + ( X ) gu i ( X u x,ỹ u x, Z u x ) gi x x x u ( X u,ỹu, Z u ) 1{ Zx,i u Z x i u =} du F E Qi k 5 X x x X + where Q i i he probabiliy meaure given by ( dq i dp = E gu i( X u x,ỹ u x, Z u x) gi u ( k 3 X ) u x x X u +k 4 Ỹ u x Ỹx u ( X x u Z u x,i Z x,i u x x,ỹu, Z u ) du F 1 W { Zx,i u Z x,i u } By (A4 ) and boundedne ofỹx andỹ x i well defined. Since by Gronwall lemma we have X x i hold θ i (, X x ) θ i (, X x ( X x x X ) E Qi e k1 (k 5 +k 3 ) X x X x +k 2 ) Ỹ x u Ỹx u du)ek 1, [,], x X +(k 2k 3 e k1 +k 4 +k 2 k 5 e k1 ). θ(u, X u x x ) θ(u, X u ) du F. 18

19 Hence, θ i (, X x) θi (, u = e k 1 (k 5 +k 3 )l X x which i given by u = e k 1 (k 5 +k 3 )l X x X x ) u where u i he oluion of he ODE x X +(k 2k 3 e k1 +k 4 +k 2 k 5 e k1 ) lu du ( ) x X exp (k 2 k 3 e k1 +k 4 +k 2 k 5 e k1 )l( ). hu, θ(, X x ) θ(, X x ) K5 X x X x, wihk 5 := le k1 (k 5 +k 3 )lexp ( (k 2 k 3 e k1 +k 4 +k 2 k 5 e k1 )l ) which how ha θ i a Lipchiz funcion and he Lipchiz coefficien doe no depend on he bound M of Z. Le C k,λ,l,d be he conan C k,λ,l,d wih k 5 replaced by K 5 and pu N = / C k,λ,l,d, where a denoe he ineger par of a, and i := i C k,λ,l,d, i =,...,N and N+1 =. Since 1 C k,λ,l,d, by heorem 2.1 he FBSDE { X = x+ b u(x u,y u )du+ σ udw u Y = θ( 1,X 1 )+ 1 g u (X u,y u,z u )du 1 Z u dw u, [, 1 ] admi a unique oluion (X 1,Y 1,Z 1 ) uch ha Z 1 M wih M = 4λ 2 K 5 dl for all [, 1 ]. herefore, (X 1,Y 1,Z 1 )1 [,1 ] = ( X,Ỹ, Z)1 [,1 ]. Similarly, we obain a family (X i,y i,z i ) of oluion of he FBSDE { X = X + i 1 i 1 b u (X u,y u )du+ i 1 σ u dw u Y = θ( i,x i )+ i g u (X u,y u,z u )du i Z u dw u, [ i 1, i ] uch ha (X i,y i,z i )1 [i 1, i ] = ( X,Ỹ, Z)1 [i 1, i ], i = 1,...,N +1. Define X := N+1 X i 1 [i 1, i ]; Y := N+1 Y i 1 [i 1, i ] and Z := N+1 Z i 1 [i 1, i ]. hen, (X,Y,Z) S 2 (R m ) S (R l ) S (R l d ) i he unique oluion of he FBSDE (1.1) aifying Z M for all [,]. In fac, i i clear ha (X,Y,Z) S 2 (R m ) S (R l ) S (R l d ) a a finie um of elemen of he ame pace. Le [,] and i = 1,...,N +1 uch ha [ i 1, i ]. We have x+ b u (X u )du+ σ u du = x+ i j j b u (Xu j )du+ σ u dw u j 1 j 1 j=1 = X i = X 19

20 and h(x )+ g u (X u,y u,z u )du = h(x N+1 )+ N+1 j=i j j 1 Z u dw u g u (X j u,y j u,z j u)du j j 1 ZudW j u = Y i = Y. ha i, (X, Y, Z) aifie Equaion (1.1). 4.3 Proof of Propoiion 2.4 By heorem 2.2 he FBSDE { X = x+ b ( X,Ỹ)d+ σ dw Ỹ = h( X )+ g ( X,Ỹ, Z )d Z dw, [,] ha a unique global oluion ( X,Ỹ, Z) S 2 (R m ) S 2 (R l ) S (R l d ) uch ha Z M for ome conan M. Le X = X,Y = Γ 1 Ỹ,Z = Γ 1 Z, we obain ha (X,Y,Z) S 2 (R m ) S 2 (R l ) S (R l d ) uch ha Z M for ome conan M. Moreover, (X, Y, Z) aifie he FBSDE (1.1). hi complee he proof. Reference [1] F. Anonelli and S. Hamadène. Exience of oluion of backward-forward SDE wih coninuou monoone coefficien. Sai. Probab. Le., 76(14): , 26. [2] P. Barrieu and N. El Karoui. Monoone abiliy of quadraic emimaringale wih applicaion o unbounded general quadraic BSDE. Ann. Probab., 41(3B): , [3] P. Briand and Y. Hu. BSDE wih Quadraic Growh and Unbounded erminal Value. Probab. heory Rela. Field, 136:64 618, 26. [4] P. Briand and Y. Hu. Quadraic BSDE wih Convex Generaor and Unbounded erminal Condiion. Probab. heory Rela. Field, 141: , 28. [5] P. Cheridio and K. Nam. BSDE wih erminal condiion ha have bounded Malliavin derivaive. J. Func. Anal., 266(3): , 214. [6] P. Cheridio and K. Nam. Mulidimenional quadraic and ubquadraic bde wih pecial rucure. Sochaic, 87(5): , 215. [7] F. Delarue. On he exience and uniquene of oluion o FBSDE in a non-degenerae cae. Soch. Proc. Appl., 99:29 286, 22. [8] F. Delbaen, Y. Hu, and X. Bao. Backward SDE wih Superquadraic Growh. Probab. heory Rela. Field, 15: , 211. ISSN [9] L. Delong and P. Imkeller. Backward Sochaic Differenial Equaion wih ime Delayed Generaor - Reul and Counerexample. Ann. Appl. Probab., 2: , 21. [1] S. Drapeau, G. Heyne, and M. Kupper. Minimal Superoluion of Convex BSDE. Annal of Probabiliy, 41(6): ,

21 [11] N. El Karoui, S. Peng, and M. C. Quenez. Backward ochaic differenial equaion in finance. Mah. Finance, 1(1):1 71, January [12] C. Frei. Spliing mulidimenional BSDE and finding local equilibria. Soch. Proc. Appl., 124(8): , 214. [13] A. Fromm and P. Imkeller. Exience, uniquene and regulariy of decoupling field o mulidimenional fully coupled FBSDE. Preprin, 213. [14] A. Fromm, P. Imkeller, and D. J. Prömel. An FBSDE approach of he Skorokhod embedding problem for Gauian procee wih non-linear drif. Elec. J. Probab., 2(127):1 38, 215. [15] G. Heyne, M. Kupper, and L. angpi. Porfolio opimizaion under nonlinear uiliy. In. J. heor. Appl. Finance, 19(5), 216. [16] U. Hor, Y. Hu, P. Imkeller, A. Réveillac, and J. Zhang. Forward Backward Syem for Expeced Uiliy Maximizaion. Soch. Proc. Appl., 124(5): , 214. [17] Y. Hu and S. ang. Muli-dimenional backward ochaic differenial equaion of diagonally quadraic generaor. Soch. Proc. Appl., 126(4): , 216. ISSN [18] P. Imkeller and G. D. Rei. Pah regulariy and explici convergence rae for BSDE wih runcaed quadraic Growh. Soch. Proc. Appl., 12: , 21. [19] A. Jamnehan, M. Kupper, and P. Luo. Solvabiliy of mulidimenional quadraic BSDE. Preprin, 216. [2] M. Kobylanki. Backward ochaic differenial equaion and parial differenial equaion wih quadraic growh. Ann. Probab, 28(2):558 62, 2. [21] P. Luo. Eay on Mulidimenional BSDE and FBSDE. PhD hei, Univeriy of Konanz, 215. [22] P. Luo and L. angpi. Solvabiliy of coupled FBSDE wih diagonally quadraic generaor. Forhcoming in Sochaic and Dynamic, 215. [23] J. Ma, P. Proer, and J. Yong. Solving Forward-Backward Sochaic Differenial Equaion Explicily - A Four Sep Scheme. Probab. heory Rela. Field, 98: , [24] K. Nam. Backward Sochaic Differenial Equaion wih Superlinear Driver. PhD hei, Princeon Univeriy, 214. [25] D. Nualar. he Malliavin Calculu and Relaed opic. Probabiliy and i Applicaion (New York). Springer-Verlag, Berlin, econd ediion, 26. ISBN ; [26] R. evzadze. Solvabiliy of backward ochaic differenial equaion wih quadraic growh. Soch. Proc. Appl., 118:53 515, 28. [27] H. Xing and G. Žikovi`c. A cla of globally olvable markovian quadraic bde yem and applicaion. Preprin, 216. [28] J. Yong and X. Y. Zhou. Sochaic conrol, Hamilonian Syem and HJB equaion, volume 43. Springer-Verlag, New York,

Multidimensional Markovian FBSDEs with superquadratic

Multidimensional Markovian FBSDEs with superquadratic Mulidimenional Markovian FBSDE wih uperquadraic growh Michael Kupper a,1, Peng Luo b,, Ludovic angpi c,3 December 14, 17 ABSRAC We give local and global exience and uniquene reul for mulidimenional coupled

More information

ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS

ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS Elec. Comm. in Probab. 3 (998) 65 74 ELECTRONIC COMMUNICATIONS in PROBABILITY ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS L.A. RINCON Deparmen of Mahemaic Univeriy of Wale Swanea Singleon Par

More information

FULLY COUPLED FBSDE WITH BROWNIAN MOTION AND POISSON PROCESS IN STOPPING TIME DURATION

FULLY COUPLED FBSDE WITH BROWNIAN MOTION AND POISSON PROCESS IN STOPPING TIME DURATION J. Au. Mah. Soc. 74 (23), 249 266 FULLY COUPLED FBSDE WITH BROWNIAN MOTION AND POISSON PROCESS IN STOPPING TIME DURATION HEN WU (Received 7 Ocober 2; revied 18 January 22) Communicaed by V. Sefanov Abrac

More information

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance.

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance. 1 An Inroducion o Backward Sochasic Differenial Equaions (BSDEs) PIMS Summer School 2016 in Mahemaical Finance June 25, 2016 Chrisoph Frei cfrei@ualbera.ca This inroducion is based on Touzi [14], Bouchard

More information

Mathematische Annalen

Mathematische Annalen Mah. Ann. 39, 33 339 (997) Mahemaiche Annalen c Springer-Verlag 997 Inegraion by par in loop pace Elon P. Hu Deparmen of Mahemaic, Norhweern Univeriy, Evanon, IL 628, USA (e-mail: elon@@mah.nwu.edu) Received:

More information

Explicit form of global solution to stochastic logistic differential equation and related topics

Explicit form of global solution to stochastic logistic differential equation and related topics SAISICS, OPIMIZAION AND INFOMAION COMPUING Sa., Opim. Inf. Compu., Vol. 5, March 17, pp 58 64. Publihed online in Inernaional Academic Pre (www.iapre.org) Explici form of global oluion o ochaic logiic

More information

Essays on Multidimensional BSDEs and FBSDEs. Dissertation submitted for the degree of Doctor of Natural Sciences (Dr. Rer. Nat.) Presented by PENG LUO

Essays on Multidimensional BSDEs and FBSDEs. Dissertation submitted for the degree of Doctor of Natural Sciences (Dr. Rer. Nat.) Presented by PENG LUO Eay on Mulidimenional BSDE and FBSDE Dieraion ubmied for he degree of Docor of Naural Science (Dr. Rer. Na.) Preened by PENG LUO a he Faculy of Science Deparmen of Mahemaic and Saiic Acceped on he recommendaion

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

MALLIAVIN CALCULUS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND APPLICATION TO NUMERICAL SOLUTIONS

MALLIAVIN CALCULUS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND APPLICATION TO NUMERICAL SOLUTIONS The Annal of Applied Probabiliy 211, Vol. 21, No. 6, 2379 2423 DOI: 1.1214/11-AAP762 Iniue of Mahemaical Saiic, 211 MALLIAVIN CALCULUS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND APPLICATION TO

More information

Stability in Distribution for Backward Uncertain Differential Equation

Stability in Distribution for Backward Uncertain Differential Equation Sabiliy in Diribuion for Backward Uncerain Differenial Equaion Yuhong Sheng 1, Dan A. Ralecu 2 1. College of Mahemaical and Syem Science, Xinjiang Univeriy, Urumqi 8346, China heng-yh12@mail.inghua.edu.cn

More information

Research Article Existence and Uniqueness of Solutions for a Class of Nonlinear Stochastic Differential Equations

Research Article Existence and Uniqueness of Solutions for a Class of Nonlinear Stochastic Differential Equations Hindawi Publihing Corporaion Abrac and Applied Analyi Volume 03, Aricle ID 56809, 7 page hp://dx.doi.org/0.55/03/56809 Reearch Aricle Exience and Uniquene of Soluion for a Cla of Nonlinear Sochaic Differenial

More information

Fractional Ornstein-Uhlenbeck Bridge

Fractional Ornstein-Uhlenbeck Bridge WDS'1 Proceeding of Conribued Paper, Par I, 21 26, 21. ISBN 978-8-7378-139-2 MATFYZPRESS Fracional Ornein-Uhlenbeck Bridge J. Janák Charle Univeriy, Faculy of Mahemaic and Phyic, Prague, Czech Republic.

More information

Backward Stochastic Differential Equations and Applications in Finance

Backward Stochastic Differential Equations and Applications in Finance Backward Sochaic Differenial Equaion and Applicaion in Finance Ying Hu Augu 1, 213 1 Inroducion The aim of hi hor cae i o preen he baic heory of BSDE and o give ome applicaion in 2 differen domain: mahemaical

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

arxiv: v1 [math.pr] 2 Jan 2015

arxiv: v1 [math.pr] 2 Jan 2015 Mean-field backward ochaic differenial equaion on Markov chain arxiv:151.955v1 [mah.pr] 2 Jan 215 Wen Lu 1 Yong Ren 2 1. School of Mahemaic and Informaional Science, Yanai Univeriy, Yanai 2645, China 2.

More information

Dual Representation of Minimal Supersolutions of Convex BSDEs

Dual Representation of Minimal Supersolutions of Convex BSDEs Dual Repreenaion of Minimal Superoluion of Convex BSDE Samuel Drapeau a,1,, Michael Kupper b,2,, Emanuela Roazza Gianin c,3, Ludovic Tangpi a,4, December 15, 214 ABSTRACT We give a dual repreenaion of

More information

BSDE Approach to Non-Zero-Sum Stochastic Differential Games of Control and Stopping

BSDE Approach to Non-Zero-Sum Stochastic Differential Games of Control and Stopping BSDE Approach o Non-Zero-Sum Sochaic Differenial Game of Conrol and Sopping Ioanni Karaza INTECH Invemen Managemen One Palmer Square, Suie 441 Princeon, NJ 8542 ik@enhanced.com Qinghua Li Saiic Deparmen,

More information

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 3, March 28, Page 99 918 S 2-9939(7)989-2 Aricle elecronically publihed on November 3, 27 FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

Rough Paths and its Applications in Machine Learning

Rough Paths and its Applications in Machine Learning Pah ignaure Machine learning applicaion Rough Pah and i Applicaion in Machine Learning July 20, 2017 Rough Pah and i Applicaion in Machine Learning Pah ignaure Machine learning applicaion Hiory and moivaion

More information

Utility maximization in incomplete markets

Utility maximization in incomplete markets Uiliy maximizaion in incomplee markes Marcel Ladkau 27.1.29 Conens 1 Inroducion and general seings 2 1.1 Marke model....................................... 2 1.2 Trading sraegy.....................................

More information

Time discretization of quadratic and superquadratic Markovian BSDEs with unbounded terminal conditions

Time discretization of quadratic and superquadratic Markovian BSDEs with unbounded terminal conditions Time discreizaion of quadraic and superquadraic Markovian BSDEs wih unbounded erminal condiions Adrien Richou Universié Bordeaux 1, INRIA équipe ALEA Oxford framework Le (Ω, F, P) be a probabiliy space,

More information

Reflected Solutions of BSDEs Driven by G-Brownian Motion

Reflected Solutions of BSDEs Driven by G-Brownian Motion Refleced Soluion of BSDE Driven by G-Brownian Moion Hanwu Li Shige Peng Abdoulaye Soumana Hima Sepember 1, 17 Abrac In hi paper, we udy he refleced oluion of one-dimenional backward ochaic differenial

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

arxiv: v1 [math.pr] 23 Apr 2018

arxiv: v1 [math.pr] 23 Apr 2018 arxiv:184.8469v1 [mah.pr] 23 Apr 218 The Neumann Boundary Problem for Ellipic Parial ifferenial Equaion wih Nonlinear ivergence Term Xue YANG Tianjin Univeriy e-mail: xyang213@ju.edu.cn Jing ZHANG Fudan

More information

On the Malliavin differentiability of BSDEs

On the Malliavin differentiability of BSDEs On he Malliavin differeniabiliy of BSDE Thibau Marolia Dylan Poamaï Anhony Réveillac Univerié Pari-Dauphine CEREMADE UMR CNRS 7534 Place du Maréchal De Lare De Taigny 75775 Pari cedex 16 France April 3,

More information

Backward Stochastic Partial Differential Equations with Jumps and Application to Optimal Control of Random Jump Fields

Backward Stochastic Partial Differential Equations with Jumps and Application to Optimal Control of Random Jump Fields Backward Sochaic Parial Differenial Equaion wih Jump and Applicaion o Opimal Conrol of Random Jump Field Bern Økendal 1,2, Frank Proke 1, Tuheng Zhang 1,3 June 7, 25 Abrac We prove an exience and uniquene

More information

Measure-valued Diffusions and Stochastic Equations with Poisson Process 1

Measure-valued Diffusions and Stochastic Equations with Poisson Process 1 Publihed in: Oaka Journal of Mahemaic 41 (24), 3: 727 744 Meaure-valued Diffuion and Sochaic quaion wih Poion Proce 1 Zongfei FU and Zenghu LI 2 Running head: Meaure-valued Diffuion and Sochaic quaion

More information

Stochastic Optimal Control in Infinite Dimensions: Dynamic Programming and HJB Equations

Stochastic Optimal Control in Infinite Dimensions: Dynamic Programming and HJB Equations Sochaic Opimal Conrol in Infinie Dimenion: Dynamic Programming and HJB Equaion G. Fabbri 1 F. Gozzi 2 and A. Świe ch3 wih Chaper 6 by M. Fuhrman 4 and G. Teiore 5 1 Aix-Mareille Univeriy (Aix-Mareille

More information

An introduction to the (local) martingale problem

An introduction to the (local) martingale problem An inroducion o he (local) maringale problem Chri Janjigian Ocober 14, 214 Abrac Thee are my preenaion noe for a alk in he Univeriy of Wiconin - Madion graduae probabiliy eminar. Thee noe are primarily

More information

Approximation for Option Prices under Uncertain Volatility

Approximation for Option Prices under Uncertain Volatility Approximaion for Opion Price under Uncerain Volailiy Jean-Pierre Fouque Bin Ren February, 3 Abrac In hi paper, we udy he aympoic behavior of he wor cae cenario opion price a he volailiy inerval in an uncerain

More information

On the Benney Lin and Kawahara Equations

On the Benney Lin and Kawahara Equations JOURNAL OF MATEMATICAL ANALYSIS AND APPLICATIONS 11, 13115 1997 ARTICLE NO AY975438 On he BenneyLin and Kawahara Equaion A Biagioni* Deparmen of Mahemaic, UNICAMP, 1381-97, Campina, Brazil and F Linare

More information

BSDEs on finite and infinite horizon with timedelayed

BSDEs on finite and infinite horizon with timedelayed BSDEs on finie and infinie horizon wih imedelayed generaors Peng Luo a,b,1,, Ludovic Tangpi c,, June 1, 18 arxiv:159.1991v1 [mah.pr] 7 Sep 15 ABSTRACT We consider a backward sochasic differenial equaion

More information

Systems of nonlinear ODEs with a time singularity in the right-hand side

Systems of nonlinear ODEs with a time singularity in the right-hand side Syem of nonlinear ODE wih a ime ingulariy in he righ-hand ide Jana Burkoová a,, Irena Rachůnková a, Svaolav Saněk a, Ewa B. Weinmüller b, Sefan Wurm b a Deparmen of Mahemaical Analyi and Applicaion of

More information

A stability approach for solving multidimensional quadratic BSDES

A stability approach for solving multidimensional quadratic BSDES A abiliy approach for olving mulidimenional quadraic BSDES Jonahan Harer, Adrien Richou To cie hi verion: Jonahan Harer, Adrien Richou A abiliy approach for olving mulidimenional quadraic BSDES 17 HAL

More information

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER #A30 INTEGERS 10 (010), 357-363 FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER Nahan Kaplan Deparmen of Mahemaic, Harvard Univeriy, Cambridge, MA nkaplan@mah.harvard.edu Received: 7/15/09, Revied:

More information

On the Exponential Operator Functions on Time Scales

On the Exponential Operator Functions on Time Scales dvance in Dynamical Syem pplicaion ISSN 973-5321, Volume 7, Number 1, pp. 57 8 (212) hp://campu.m.edu/ada On he Exponenial Operaor Funcion on Time Scale laa E. Hamza Cairo Univeriy Deparmen of Mahemaic

More information

FUZZY n-inner PRODUCT SPACE

FUZZY n-inner PRODUCT SPACE Bull. Korean Mah. Soc. 43 (2007), No. 3, pp. 447 459 FUZZY n-inner PRODUCT SPACE Srinivaan Vijayabalaji and Naean Thillaigovindan Reprined from he Bullein of he Korean Mahemaical Sociey Vol. 43, No. 3,

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

Approximate Controllability of Fractional Stochastic Perturbed Control Systems Driven by Mixed Fractional Brownian Motion

Approximate Controllability of Fractional Stochastic Perturbed Control Systems Driven by Mixed Fractional Brownian Motion American Journal of Applied Mahemaic and Saiic, 15, Vol. 3, o. 4, 168-176 Available online a hp://pub.ciepub.com/ajam/3/4/7 Science and Educaion Publihing DOI:1.1691/ajam-3-4-7 Approximae Conrollabiliy

More information

On the Malliavin differentiability of BSDEs

On the Malliavin differentiability of BSDEs On he Malliavin differeniabiliy of BSDE Thibau Marolia Dylan Poamaï Anhony Réveillac Augu 25, 215 arxiv:144.126v4 [mah.pr 24 Aug 215 Abrac In hi paper we provide new condiion for he Malliavin differeniabiliy

More information

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions Generalized Orlicz Space and Waerein Diance for Convex-Concave Scale Funcion Karl-Theodor Surm Abrac Given a ricly increaing, coninuou funcion ϑ : R + R +, baed on he co funcional ϑ (d(x, y dq(x, y, we

More information

Uniqueness of solutions to quadratic BSDEs. BSDEs with convex generators and unbounded terminal conditions

Uniqueness of solutions to quadratic BSDEs. BSDEs with convex generators and unbounded terminal conditions Recalls and basic resuls on BSDEs Uniqueness resul Links wih PDEs On he uniqueness of soluions o quadraic BSDEs wih convex generaors and unbounded erminal condiions IRMAR, Universié Rennes 1 Châeau de

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THE BACKWARD STOCHASTIC LORENZ SYSTEM

EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THE BACKWARD STOCHASTIC LORENZ SYSTEM Communicaions on Sochasic Analysis Vol. 1, No. 3 (27) 473-483 EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THE BACKWARD STOCHASTIC LORENZ SYSTEM P. SUNDAR AND HONG YIN Absrac. The backward sochasic Lorenz

More information

Dynamic Systems and Applications 16 (2007) BACKWARD STOCHASTIC DIFFERENTIAL INCLUSIONS 1. INTRODUCTION. x t + t

Dynamic Systems and Applications 16 (2007) BACKWARD STOCHASTIC DIFFERENTIAL INCLUSIONS 1. INTRODUCTION. x t + t Dynamic Syem and Applicaion 16 (7) 11-14 BACKWARD STOCHASTIC DIFFERENTIAL INCLUSIONS MICHA L KISIELEWICZ Faculy of Mahemaic, Compuer Science and Economeric, Univeriy of Zielona Góra, Podgórna 5, 65 46

More information

On a Fractional Stochastic Landau-Ginzburg Equation

On a Fractional Stochastic Landau-Ginzburg Equation Applied Mahemaical Sciences, Vol. 4, 1, no. 7, 317-35 On a Fracional Sochasic Landau-Ginzburg Equaion Nguyen Tien Dung Deparmen of Mahemaics, FPT Universiy 15B Pham Hung Sree, Hanoi, Vienam dungn@fp.edu.vn

More information

Energy Equality and Uniqueness of Weak Solutions to MHD Equations in L (0,T; L n (Ω))

Energy Equality and Uniqueness of Weak Solutions to MHD Equations in L (0,T; L n (Ω)) Aca Mahemaica Sinica, Englih Serie May, 29, Vol. 25, No. 5, pp. 83 814 Publihed online: April 25, 29 DOI: 1.17/1114-9-7214-8 Hp://www.AcaMah.com Aca Mahemaica Sinica, Englih Serie The Ediorial Office of

More information

Quadratic Backward Stochastic Volterra Integral Equations

Quadratic Backward Stochastic Volterra Integral Equations Quadraic Backward Sochaic Volerra Inegral Equaion Hanxiao Wang Jingrui Sun Jiongmin Yong Ocober 25, 218 arxiv:181.1149v1 mah.pr 24 Oc 218 Abrac. Thi paper i concerned wih backward ochaic Volerra inegral

More information

Spectral gaps for the O-U/Stochastic heat processes on path space over a Riemannian manifold with boundary

Spectral gaps for the O-U/Stochastic heat processes on path space over a Riemannian manifold with boundary arxiv:181.186v1 [mah.pr] 5 Dec 18 ec1 Specral gap for he O-U/Sochaic hea procee on pah pace over a Riemannian manifold wih boundary Bo Wu School of Mahemaical Science, Fudan Univeriy, Shanghai 433, China

More information

REPRESENTATION THEOREMS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS. BY JIN MA 1 AND JIANFENG ZHANG Purdue University and University of Minnesota

REPRESENTATION THEOREMS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS. BY JIN MA 1 AND JIANFENG ZHANG Purdue University and University of Minnesota The Annal of Applied Probabiliy 22, Vol. 12, No. 4, 139 1418 REPRESENTATION THEOREMS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS BY JIN MA 1 AND JIANFENG ZHANG Purdue Univeriy and Univeriy of Minneoa

More information

Existence of Stepanov-like Square-mean Pseudo Almost Automorphic Solutions to Nonautonomous Stochastic Functional Evolution Equations

Existence of Stepanov-like Square-mean Pseudo Almost Automorphic Solutions to Nonautonomous Stochastic Functional Evolution Equations Exience of Sepanov-like Square-mean Peudo Almo Auomorphic Soluion o Nonauonomou Sochaic Funcional Evoluion Equaion Zuomao Yan Abrac We inroduce he concep of bi-quare-mean almo auomorphic funcion and Sepanov-like

More information

arxiv: v5 [math.pr] 6 Oct 2015

arxiv: v5 [math.pr] 6 Oct 2015 ON THE EXISTENCE AND UNIQUENESS OF SOLUTIONS TO STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY G-BROWNIAN MOTION WITH INTEGRAL-LIPSCHITZ COEFFICIENTS XUEPENG BAI AND YIQING LIN arxiv:12.146v5 mah.pr] 6 Oc

More information

BSDE's, Clark-Ocone formula, and Feynman-Kac formula for Lévy processes Nualart, D.; Schoutens, W.

BSDE's, Clark-Ocone formula, and Feynman-Kac formula for Lévy processes Nualart, D.; Schoutens, W. BSD', Clark-Ocone formula, and Feynman-Kac formula for Lévy procee Nualar, D.; Schouen, W. Publihed: 1/1/ Documen Verion Publiher PDF, alo known a Verion of ecord (include final page, iue and volume number)

More information

Simulation of BSDEs and. Wiener Chaos Expansions

Simulation of BSDEs and. Wiener Chaos Expansions Simulaion of BSDEs and Wiener Chaos Expansions Philippe Briand Céline Labar LAMA UMR 5127, Universié de Savoie, France hp://www.lama.univ-savoie.fr/ Workshop on BSDEs Rennes, May 22-24, 213 Inroducion

More information

On Delayed Logistic Equation Driven by Fractional Brownian Motion

On Delayed Logistic Equation Driven by Fractional Brownian Motion On Delayed Logiic Equaion Driven by Fracional Brownian Moion Nguyen Tien Dung Deparmen of Mahemaic, FPT Univeriy No 8 Ton Tha Thuye, Cau Giay, Hanoi, 84 Vienam Email: dungn@fp.edu.vn ABSTRACT In hi paper

More information

arxiv: v1 [math.pr] 25 Jul 2017

arxiv: v1 [math.pr] 25 Jul 2017 COUPLING AND A GENERALISED POLICY ITERATION ALGORITHM IN CONTINUOUS TIME SAUL D. JACKA, ALEKSANDAR MIJATOVIĆ, AND DEJAN ŠIRAJ arxiv:177.7834v1 [mah.pr] 25 Jul 217 Abrac. We analye a verion of he policy

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

A proof of Ito's formula using a di Title formula. Author(s) Fujita, Takahiko; Kawanishi, Yasuhi. Studia scientiarum mathematicarum H Citation

A proof of Ito's formula using a di Title formula. Author(s) Fujita, Takahiko; Kawanishi, Yasuhi. Studia scientiarum mathematicarum H Citation A proof of Io's formula using a di Tile formula Auhor(s) Fujia, Takahiko; Kawanishi, Yasuhi Sudia scieniarum mahemaicarum H Ciaion 15-134 Issue 8-3 Dae Type Journal Aricle Tex Version auhor URL hp://hdl.handle.ne/186/15878

More information

arxiv: v7 [q-fin.pm] 20 Mar 2019

arxiv: v7 [q-fin.pm] 20 Mar 2019 Porfolio choice, porfolio liquidaion, and porfolio raniion under drif uncerainy arxiv:161107843v7 [q-finpm] 20 Mar 2019 Alexi Bimuh, Olivier Guéan, Jiang Pu Abrac hi paper preen everal model addreing opimal

More information

Backward stochastic dynamics on a filtered probability space

Backward stochastic dynamics on a filtered probability space Backward sochasic dynamics on a filered probabiliy space Gechun Liang Oxford-Man Insiue, Universiy of Oxford based on join work wih Terry Lyons and Zhongmin Qian Page 1 of 15 gliang@oxford-man.ox.ac.uk

More information

Approximation for Option Prices under Uncertain Volatility

Approximation for Option Prices under Uncertain Volatility SIAM J. FINANCIAL MATH. Vol. 5, pp. 360 383 c 014 Sociey for Indurial and Applied Mahemaic Approximaion for Opion Price under Uncerain Volailiy Jean-Pierre Fouque and Bin Ren Abrac. In hi paper, we udy

More information

About the Pricing Equation in Finance

About the Pricing Equation in Finance Abou he Pricing Equaion in Finance Séphane Crépey Déparemen de Mahémaique Univerié d Évry Val d Eonne 91025 Évry Cedex, France Thi verion: July 10, 2007 1 Inroducion In [16], we conruced a raher generic

More information

SINGULAR FORWARD BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND EMISSIONS DERIVATIVES

SINGULAR FORWARD BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND EMISSIONS DERIVATIVES he Annal of Applied Probabiliy 213, Vol. 23, No. 3, 186 1128 DOI: 1.1214/12-AAP865 Iniue of Mahemaical Saiic, 213 SINGULAR FORWARD BACKWARD SOCHASIC DIFFERENIAL EQUAIONS AND EMISSIONS DERIVAIVES BY RENÉ

More information

Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes: Non-Ergodic Case

Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes: Non-Ergodic Case Parameer Eimaion for Fracional Ornein-Uhlenbeck Procee: Non-Ergodic Cae R. Belfadli 1, K. E-Sebaiy and Y. Ouknine 3 1 Polydiciplinary Faculy of Taroudan, Univeriy Ibn Zohr, Taroudan, Morocco. Iniu de Mahémaique

More information

An ergodic BSDE approach to forward entropic risk measures: representation and large-maturity behavior

An ergodic BSDE approach to forward entropic risk measures: representation and large-maturity behavior An ergodic BSDE approach o forward enropic rik meaure: repreenaion and large-mauriy behavior W. F. Chong Y. Hu G. Liang. Zariphopoulou Fir verion: January 2016; hi verion: November 30, 2016 Abrac Uing

More information

Elements of Mathematical Oncology. Franco Flandoli

Elements of Mathematical Oncology. Franco Flandoli Elemen of Mahemaical Oncology Franco Flandoli Conen Par. Sochaic Differenial Equaion, linear Parial Differenial Equaion and heir link 5 Chaper. Brownian moion and hea equaion 7. Inroducion 7. Simulaion

More information

Dual Representation as Stochastic Differential Games of Backward Stochastic Differential Equations and Dynamic Evaluations

Dual Representation as Stochastic Differential Games of Backward Stochastic Differential Equations and Dynamic Evaluations arxiv:mah/0602323v1 [mah.pr] 15 Feb 2006 Dual Represenaion as Sochasic Differenial Games of Backward Sochasic Differenial Equaions and Dynamic Evaluaions Shanjian Tang Absrac In his Noe, assuming ha he

More information

U T,0. t = X t t T X T. (1)

U T,0. t = X t t T X T. (1) Gauian bridge Dario Gabarra 1, ommi Soinen 2, and Eko Valkeila 3 1 Deparmen of Mahemaic and Saiic, PO Box 68, 14 Univeriy of Helinki,Finland dariogabarra@rnihelinkifi 2 Deparmen of Mahemaic and Saiic,

More information

Existence Theory of Second Order Random Differential Equations

Existence Theory of Second Order Random Differential Equations Global Journal of Mahemaical Sciences: Theory and Pracical. ISSN 974-32 Volume 4, Number 3 (22), pp. 33-3 Inernaional Research Publicaion House hp://www.irphouse.com Exisence Theory of Second Order Random

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms Chaper 6. Laplace Tranform Kreyzig by YHLee;45; 6- An ODE i reduced o an algebraic problem by operaional calculu. The equaion i olved by algebraic manipulaion. The reul i ranformed back for he oluion of

More information

Coupling Homogenization and Large Deviations. Principle in a Parabolic PDE

Coupling Homogenization and Large Deviations. Principle in a Parabolic PDE Applied Mahemaical Science, Vol. 9, 215, no. 41, 219-23 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/1.12988/am.215.5169 Coupling Homogenizaion and Large Deviaion Principle in a Parabolic PDE Alioune Coulibaly,

More information

Analysis of a Non-Autonomous Non-Linear Operator-Valued Evolution Equation to Diagonalize Quadratic Operators in Boson Quantum Field Theory

Analysis of a Non-Autonomous Non-Linear Operator-Valued Evolution Equation to Diagonalize Quadratic Operators in Boson Quantum Field Theory 1 Analyi of a Non-Auonomou Non-Linear Operaor-Valued Evoluion Equaion o Diagonalize Quadraic Operaor in Boon Quanum Field Theory Volker Bach and Jean-Bernard Bru Abrac. We udy a non auonomou, non-linear

More information

Simulation of BSDEs and. Wiener Chaos Expansions

Simulation of BSDEs and. Wiener Chaos Expansions Simulaion of BSDEs and Wiener Chaos Expansions Philippe Briand Céline Labar LAMA UMR 5127, Universié de Savoie, France hp://www.lama.univ-savoie.fr/ Sochasic Analysis Seminar Oxford, June 1, 213 Inroducion

More information

NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY

NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY Ian Crawford THE INSTITUTE FOR FISCAL STUDIES DEPARTMENT OF ECONOMICS, UCL cemmap working paper CWP02/04 Neceary and Sufficien Condiion for Laen

More information

The multisubset sum problem for finite abelian groups

The multisubset sum problem for finite abelian groups Alo available a hp://amc-journal.eu ISSN 1855-3966 (prined edn.), ISSN 1855-3974 (elecronic edn.) ARS MATHEMATICA CONTEMPORANEA 8 (2015) 417 423 The muliube um problem for finie abelian group Amela Muraović-Ribić

More information

arxiv:math/ v1 [math.pr] 6 Feb 2007

arxiv:math/ v1 [math.pr] 6 Feb 2007 Sochaic Differenial Game and Vicoiy Soluion of Hamilon-Jacobi-Bellman-Iaac Equaion arxiv:mah/0702131v1 [mah.pr] 6 Feb 2007 Rainer Buckdahn Déparemen de Mahémaique, Univerié de Breagne Occidenale, 6, avenue

More information

Introduction to Congestion Games

Introduction to Congestion Games Algorihmic Game Theory, Summer 2017 Inroducion o Congeion Game Lecure 1 (5 page) Inrucor: Thoma Keelheim In hi lecure, we ge o know congeion game, which will be our running example for many concep in game

More information

1 Motivation and Basic Definitions

1 Motivation and Basic Definitions CSCE : Deign and Analyi of Algorihm Noe on Max Flow Fall 20 (Baed on he preenaion in Chaper 26 of Inroducion o Algorihm, 3rd Ed. by Cormen, Leieron, Rive and Sein.) Moivaion and Baic Definiion Conider

More information

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann. Func. Anal. 2 2011, no. 2, 34 41 A nnals of F uncional A nalysis ISSN: 2008-8752 elecronic URL: www.emis.de/journals/afa/ CLASSIFICAION OF POSIIVE SOLUIONS OF NONLINEAR SYSEMS OF VOLERRA INEGRAL EQUAIONS

More information

Generalized Snell envelope and BSDE With Two general Reflecting Barriers

Generalized Snell envelope and BSDE With Two general Reflecting Barriers 1/22 Generalized Snell envelope and BSDE Wih Two general Reflecing Barriers EL HASSAN ESSAKY Cadi ayyad Universiy Poly-disciplinary Faculy Safi Work in progress wih : M. Hassani and Y. Ouknine Iasi, July

More information

arxiv: v1 [math.gm] 5 Jan 2019

arxiv: v1 [math.gm] 5 Jan 2019 A FUNCTION OBSTRUCTION TO THE EXISTENCE OF COMPLEX STRUCTURES arxiv:1901.05844v1 [mah.gm] 5 Jan 2019 JUN LING Abrac. We conruc a funcion for almo-complex Riemannian manifold. Non-vanihing of he funcion

More information

Local Strict Comparison Theorem and Converse Comparison Theorems for Reflected Backward Stochastic Differential Equations

Local Strict Comparison Theorem and Converse Comparison Theorems for Reflected Backward Stochastic Differential Equations arxiv:mah/07002v [mah.pr] 3 Dec 2006 Local Sric Comparison Theorem and Converse Comparison Theorems for Refleced Backward Sochasic Differenial Equaions Juan Li and Shanjian Tang Absrac A local sric comparison

More information

Backward doubly stochastic di erential equations with quadratic growth and applications to quasilinear SPDEs

Backward doubly stochastic di erential equations with quadratic growth and applications to quasilinear SPDEs Backward doubly sochasic di erenial equaions wih quadraic growh and applicaions o quasilinear SPDEs Badreddine MANSOURI (wih K. Bahlali & B. Mezerdi) Universiy of Biskra Algeria La Londe 14 sepember 2007

More information

Positive continuous solution of a quadratic integral equation of fractional orders

Positive continuous solution of a quadratic integral equation of fractional orders Mah. Sci. Le., No., 9-7 (3) 9 Mahemaical Sciences Leers An Inernaional Journal @ 3 NSP Naural Sciences Publishing Cor. Posiive coninuous soluion of a quadraic inegral equaion of fracional orders A. M.

More information

Semi-discrete semi-linear parabolic SPDEs

Semi-discrete semi-linear parabolic SPDEs Semi-dicree emi-linear parabolic SPDE Nico Georgiou Univeriy of Suex Davar Khohnevian Univeriy of Uah Mahew Joeph Univeriy of Sheffield Shang-Yuan Shiu Naional Cenral Univeriy La Updae: November 2, 213

More information

Research Article On Double Summability of Double Conjugate Fourier Series

Research Article On Double Summability of Double Conjugate Fourier Series Inernaional Journal of Mahemaic and Mahemaical Science Volume 22, Aricle ID 4592, 5 page doi:.55/22/4592 Reearch Aricle On Double Summabiliy of Double Conjugae Fourier Serie H. K. Nigam and Kuum Sharma

More information

arxiv:math/ v2 [math.fa] 30 Jul 2006

arxiv:math/ v2 [math.fa] 30 Jul 2006 ON GÂTEAUX DIFFERENTIABILITY OF POINTWISE LIPSCHITZ MAPPINGS arxiv:mah/0511565v2 [mah.fa] 30 Jul 2006 JAKUB DUDA Abrac. We prove ha for every funcion f : X Y, where X i a eparable Banach pace and Y i a

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms 6- Chaper 6. Laplace Tranform 6.4 Shor Impule. Dirac Dela Funcion. Parial Fracion 6.5 Convoluion. Inegral Equaion 6.6 Differeniaion and Inegraion of Tranform 6.7 Syem of ODE 6.4 Shor Impule. Dirac Dela

More information

Fractional Brownian Bridge Measures and Their Integration by Parts Formula

Fractional Brownian Bridge Measures and Their Integration by Parts Formula Journal of Mahemaical Reearch wih Applicaion Jul., 218, Vol. 38, No. 4, pp. 418 426 DOI:1.377/j.in:295-2651.218.4.9 Hp://jmre.lu.eu.cn Fracional Brownian Brige Meaure an Their Inegraion by Par Formula

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

A Stochastic Representation for Fully Nonlinear PDEs and Its Application to Homogenization

A Stochastic Representation for Fully Nonlinear PDEs and Its Application to Homogenization J. Mah. Sci. Univ. Tokyo 12 (2005), 467 492. A Sochaic Repreenaion for Fully Nonlinear PDE and I Applicaion o Homogenizaion By Naoyuki Ichihara Abrac. We eablih a ochaic repreenaion formula for oluion

More information

and Applications Alexander Steinicke University of Graz Vienna Seminar in Mathematical Finance and Probability,

and Applications Alexander Steinicke University of Graz Vienna Seminar in Mathematical Finance and Probability, Backward Sochasic Differenial Equaions and Applicaions Alexander Seinicke Universiy of Graz Vienna Seminar in Mahemaical Finance and Probabiliy, 6-20-2017 1 / 31 1 Wha is a BSDE? SDEs - he differenial

More information

Let. x y. denote a bivariate time series with zero mean.

Let. x y. denote a bivariate time series with zero mean. Linear Filer Le x y : T denoe a bivariae ime erie wih zero mean. Suppoe ha he ime erie {y : T} i conruced a follow: y a x The ime erie {y : T} i aid o be conruced from {x : T} by mean of a Linear Filer.

More information

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity ANNALES POLONICI MATHEMATICI LIV.2 99) L p -L q -Time decay esimae for soluion of he Cauchy problem for hyperbolic parial differenial equaions of linear hermoelasiciy by Jerzy Gawinecki Warszawa) Absrac.

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

DIMENSIONAL REDUCTION IN NONLINEAR FILTERING: A HOMOGENIZATION APPROACH

DIMENSIONAL REDUCTION IN NONLINEAR FILTERING: A HOMOGENIZATION APPROACH DIMNSIONAL RDUCION IN NONLINAR FILRING: A HOMOGNIZAION APPROACH PR IMKLLR 1, N. SRI NAMACHCHIVAYA 2, NICOLAS PRKOWSKI 1, AND HOONG C. YONG 2 Abrac. We propoe a homogenized filer for mulicale ignal, which

More information

PATHWISE UNIQUENESS FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH SINGULAR DRIFT AND NONCONSTANT DIFFUSION. Katharina von der Lühe

PATHWISE UNIQUENESS FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH SINGULAR DRIFT AND NONCONSTANT DIFFUSION. Katharina von der Lühe Dieraion PATHWISE UNIQUENESS FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH SINGULAR DRIFT AND NONCONSTANT DIFFUSION Kaharina on der Lühe Fakulä für Mahemaik Unieriä Bielefeld Augu 26 Conen Conen. Inroducion..

More information

Chapter 7: Inverse-Response Systems

Chapter 7: Inverse-Response Systems Chaper 7: Invere-Repone Syem Normal Syem Invere-Repone Syem Baic Sar ou in he wrong direcion End up in he original eady-ae gain value Two or more yem wih differen magniude and cale in parallel Main yem

More information

Additional Methods for Solving DSGE Models

Additional Methods for Solving DSGE Models Addiional Mehod for Solving DSGE Model Karel Meren, Cornell Univeriy Reference King, R. G., Ploer, C. I. & Rebelo, S. T. (1988), Producion, growh and buine cycle: I. he baic neoclaical model, Journal of

More information