PATHWISE UNIQUENESS FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH SINGULAR DRIFT AND NONCONSTANT DIFFUSION. Katharina von der Lühe

Size: px
Start display at page:

Download "PATHWISE UNIQUENESS FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH SINGULAR DRIFT AND NONCONSTANT DIFFUSION. Katharina von der Lühe"

Transcription

1 Dieraion PATHWISE UNIQUENESS FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH SINGULAR DRIFT AND NONCONSTANT DIFFUSION Kaharina on der Lühe Fakulä für Mahemaik Unieriä Bielefeld Augu 26

2

3 Conen Conen. Inroducion.. Brief urey of he problem in finie dimenion Mehod of E. Fedrizzi and F. Flandoli Aim and progre of he hei Fuure direcion Srucure Preliminarie and main reul 3. Tranformaion of he SDE Iô formula for mixed-norm Sobole funcion Tranformaion of he SDE Some helpful lemma Krylo-ype eimae for condiional expecaion Uniform exponenial eimae for he ranformed diffuion Conergence of he ranformed drif Bounded fir and econd momen Pahwie uniuene On mall ineral Exenion from mall o arbirarily large ineral A. Appendix 55 A.. Approximaion by coninuou funcion A.2. Mean-alue ineualiy for weakly differeniable funcion and Sobole embedding A.3. Krylo-ype eimae Reference 89

4

5 INTRODUCTION. Inroducion.. Brief urey of he problem in finie dimenion We conider he following ordinary ochaic differenial euaion SDE): X = x + b, X ) d + σ, X ) dw, [, T ], where x, b, σ are meaurable funcion from [, T ] o, repeciely m, and W i an m-dimenional andard Wiener proce. I i well known ha we hae rong exience and uniuene for hi euaion under Lipchiz coninuiy of he coefficien, which wa hown by K. Iô, ee [Iô46], who fir rigorouly deeloped he heory of ochaic inegraion. Since Lipchiz coninuiy i a raher rong aumpion and hi kind of SDE arie in many eing ha do no necearily proide Lipchiz coninuou coefficien, e.g. ineracing paricle, i i naural o ak if i i alo poible o ge a uniue rong oluion under weaker properie. I urn ou ha hi hold under much more general aumpion on he drif erm b, neiher coninuiy nor he abence of ingulariie i neceary. So wo ueion hae o be anwered, namely fir wheher here i a rong or a lea a weak oluion and econd if here i ome oluion wheher i i uniue a lea in ome ene. A grea ool in hi heory wa found by T. Yamada and S. Waanabe. They proed, ha exience of a weak oluion and pahwie uniuene imply he exience of a uniue rong oluion, ee [YW7]. There are many work which ineigae he problem of exience or uniuene under weaker aumpion han Lipchiz coninuiy. Beide [KR5], [FF] and [Zha] on which we will hae a cloer look laer, we wan o menion here ome of hee reul. Srong exience and uniuene could be obained for example under local weak monooniciy and weak coerciiy condiion on he coefficien. A proof can be found in he book Sochaic Parial Differenial Euaion: An Inroducion of W. Liu and M. Röckner [LR5], which i baed on [Kry99]. Furhermore, in heir work A udy of a cla of ochaic differenial euaion wih non-lipchizian coefficien, [FZ5], S. Fang and T. Zhang relaxed he Lipchizian condiion mainly by a logarihmic facor. Thi mean ha he Lipchiz conan i muliplied wih a funcion, depending on he diance, wih pecial properie which are ypically fulfilled by log/), log/) log log/) and o on. Moreoer, A. Yu. Vereenniko proed rong exience and uniuene for bounded meaurable coefficien if he diffuion marix i nondegeneraed, coninuou and Lipchiz coninuou in x, ee [Ver78]. In [GM] I. Gyöngy and T. Marínez relaxed hi o R + ) and b almo eerywhere bounded by a conan plu ome nonnegaie funcion in L d+ R + ). In heir work Srong oluion of ochaic euaion wih ingular ime dependen drif [KR5]) N. Krylo and M. Röckner proed he exience of a uniue rong oluion in he whie noie cae, i.e. he diffuion coefficien σ i he uni marix. The drif coeffi- locally unbounded drif, namely b L 2d+) loc

6 INTRODUCTION cien, defined on an open e Q +, i uppoed o fulfill n pn b, x) pn dx d < R {x :,x) Q n } for ome p n 2, n > 2 uch ha d p n + 2 n < and a euence Q n ) n of bounded open ube of Q wih Q n Q n+ and n Qn = Q. In 2 E. Fedrizzi and F. Flandoli, [FF], inroduced a new mehod o proe he pahwie uniuene under uch condiion. The aim of hi hei i o exend heir reul o nonconan diffuion. Therefore, we will hae a look on hi mehod in deail in he nex ecion. Alo if he diffuion i no conan i i poible o ge exience and uniuene reul under imilar condiion on he drif. The mo general reul can be found in he work of X. Zhang Sochaic homeomorphim flow of SDE wih ingular drif and Sobole diffuion coefficien [Zha], repeciely [Zha5] for he cae p =. There, he drif i in L loc R +, L p )) for ome p, >, fulfilling d p + 2 <. ) The diffuion coefficien i uniformly coninuou in x, locally uniformly wih repec o, nondegeneraed, bounded and he gradien i alo in L loc R +, L p )). The idea of he proof i o remoe he drif by he o-called Zonkin ranformaion, ee [Zo74], and ue known reul for SDE wih zero drif. Thi ranformaion i baed on he oluion u o he euaion d u + b i xi u + d d σσ ) ij x 2 2 i x j u =, ut, x) = x. i= i= j= One difficuly i o how ha hi i a diffeomorphim o ge a one-o-one correpondence beween he oluion X for he original SDE and he oluion u, X ) for he ranformed euaion. The mehod of E. Fedrizzi and F. Flandoli o proe pahwie uniuene for conan diffuion i more inuiie. A cenral poin of hi work i o exend hi proof and ome reul of [FF] o nonconan diffuion coefficien. Therefore, he following ecion i deoed o preen heir mehod in ome deail..2. Mehod of E. Fedrizzi and F. Flandoli Le X ), X 2) be wo rong oluion o he euaion X = x + b, X ) d + W, [, T ]. 2

7 INTRODUCTION For b L, T ), L p )) here exi a uniue oluion, ee [Kry], o he euaion u + u = b on [, T ], ut, x) =. 2) 2 Denoe hi oluion by U b and apply Iô formula o U b, X i) ). Since U b i a oluion o he aboe euaion we ge he following expreion for he drif erm: b, X i) ) d = U b, x) U b, X i) ) + x U b, X i) )b, X i) ) d + x U b, X i) ) dw. Now, he SDE may be rewrien by replacing he drif: X i) = x + U b, x) U b, X i) + ) x U b, X i) )b, X i) ) d + x U b, X i) ) + I dw. 3) The adanage of hi reformulaion i ha he new drif erm x U b b i in ome way more regular han before. The oluion U b of 2) i an elemen of he Sobole pace W,, T ), W 2,p )) and herefore ha nice properie, e.g. x U b i Hölder coninuou. If we define T b), x) := x U b, x)b, x),, x) [, T ], and ake a oluion U T b) of he euaion u + u = T b) on [, T ], ut, x) =, 2 an applicaion of Iô formula for U T b), yield an expreion for he ranformed drif erm: T b), X i) ) d = U T b), x) U T b), X i) ) + x U T b), X i) )b, X i) ) d + x U T b), X i) ) dw. 3

8 INTRODUCTION By replacing hi erm in euaion 3), we ge X i) = x + U b, x) + U T b), x) U b, X i) ) U T b), X i) + + x U T b), X i) x U T b), X i) )b, X i) ) d ) + x U b, X i) ) + I dw and by ieraion and he conenion T k+ b) = x U T k b) b, T b) = b, X i) + n k= U T k b), X i) ) } {{ } =:Y i,n) Then one can proe ha [ ] E X ) X 2) CE + E ] [e An) 2 e An) E = x + + n U T b), x) + k k= n k= x U T b), X i) k ) + I } {{ } =:σ n),x i) ) ) T n+ b), X i) ) d dw. X ) X 2) T n+ b), X ) ) T n+ b), X 2) ) d } {{ } I Y,n) Y 2,n), σ n), X ) ) σ n), X 2) ) ) dw } {{ } I 2 2, 4) where A n) := σ n), X ) Y,n) ) 2 ) σ n), X 2) Y 2,n) 2 {Y,n) Y 2,n) } d. By proing ha E[e An) ] i uniformly bounded in n, ha I conerge o for n and ha I 2 i a maringale, one ge pahwie uniuene. 4

9 INTRODUCTION.3. Aim and progre of he hei The aim of hi hei i o generalize he mehod of E. Fedrizzi and F. Flandoli o ime and pace dependen diffuion. Inead of one conider euaion of he form u + u = f 2 u + 2 d d σσ ) ij x 2 i x j u = f i= j= o ranform he SDE. Along wih ome oher echnical iue, he nonconan diffuion lead o addiional erm in he ochaic inegral of he reformulaed SDE. Neerhele he core of he proof remain he ame a in [FF] where we hae o handle he fac ha a oluion o he SDE i in general no a Brownian moion. Thi i he cae if σ = I and i wa a crucial poin in he proof of E. Fedrizzi and F. Flandoli. Thi propery enabled hem o ue Girano formula and exponenial eimae for Brownian moion which are no applicable in our generalizaion. A a compenaion, we uccefully ue Krylo eimae. We herefore proe a erion of Lemma 5. from [Kry86] for differen inegrabiliy in ime and pace aed a Lemma 3. and proed in Secion A.3. The price we hae o pay i ha we hae o aume p, > 2d + ). Since he eimae are baed on oluion o PDE i hould be poible o exend i, maybe up o he cae p, fulfilling condiion ), bu in hi hei we reric o hee onger aumpion on p and. Beide he ordinary Krylo-ype eimae we alo need imilar one on condiional expecaion, which we formulae and proe in Secion 4.. We only hae o aume ha he diffuion coefficien i bounded, nondegeneraed, he drif i in L, T ), L p )) and P T b, X ) d < =. Up o our knowledge hi ha no been done ye under hee general aumpion. For bounded b a erion can be found in [Kry9] and for σ uniformly coninuou in x, local uniformly coninuou wih repec o in [Zha]. Only for an eimae on he linear combinaion of wo oluion a in Propoiion 4.4 coninuiy of he diffuion erm i reuired. For impliciy we will ae our reul under global aumpion, bu here are no difficulie o exend i by localizaion echniue, e.g. in he ame way a in [Zha]. The reul of X. Zhang, [Zha], i cloe o our. The aumpion are more general wih repec o he inegrabiliy of b and x σ ince we hae o aume p, > 2d + ), which come from our Krylo eimae, bu could be poible exended o p, fulfilling ), which alo X. Zhang reuire. Furhermore, he aumpion on drif and diffuion coefficien are he ame excep he coninuiy condiion on σ. Inead of reuiring uniform 5

10 INTRODUCTION coninuiy in x, locally uniformly wih repec o, which gie direcly ee Remark.4 of [KR5]) he olabiliy of euaion of he form u + 2 d d σσ ) ij x 2 i x j u + i= j= d b i xi u = f, i= we aume σ o be coninuou and uch ha here exi a oluion o he euaion u + 2 d d σσ ) ij x 2 i x j u = f, i= j= ee Aumpion 2.2 and 2.3. Beide hee imilariie a far a aumpion are concerned, our mehod of proof i compleely differen and more probabiliic and alo much impler a lea from our poin of iew. We are able o proe pahwie uniuene direcly by eimaing E[ X ) X 2) ] in a imilar way a in 4)..4. Fuure direcion One ep in furher reearch could be an opimizaion of he proof mehod. Maybe i i poible o aoid he exponenial eimae on he ranformed diffuion by opping ime argumen. A echniue in hi direcion wa recenly deeloped by G. Da Prao, F. Flandoli, M. Röckner and A. Yu. Vereenniko in [DPFRV6]. Anoher ery inereing iue i he generalizaion o infinie dimenion. Thi wa a rong moiaion for hi hei, ince i eem achieable and would be a grea ep forward in he heory of ochaic parial differenial euaion. In conra o he finie dimenional cae we do no hae ellipic regulariy for parial differenial euaion on Hilber pace. To aoid difficulie i could be a good approach o ar wih exponenial inegrable coefficien..5. Srucure The econd chaper i deoed o baic definiion, epecially he inoled pace are inroduced. Then we ae our aumpion on he coefficien of he ochaic differenial euaion and he reul abou pahwie uniuene. The hird chaper deal wih he ranformaion of he SDE which i neceary o proe pahwie uniuene. Since he ranformaion i baed on Iô formula, we fir how ha under our aumpion i i applicable for funcion in he mixed norm Sobole pace W,, T ), W 2,p )) before we explain he ranformaion in deail. The fourh chaper ae all neceary ool o proe pahwie uniuene on a mall ineral. Fir we gie ome ueful fac of he inoled funcion and he relaion beween a oluion o he original SDE and he ranformed euaion. Then we proe he Krylo eimae for condiional expecaion, which hen gie u a uniform exponenial eimae for he ranformed diffuion. Afer hi we how he conergence of he difference beween he ranformed drif erm of wo oluion and in he end, we proe ha 6

11 INTRODUCTION under our aumpion oluion of 5) hae finie fir and econd momen. Chaper 5 i deoed o he proof of pahwie uniuene. Since we aed ome neceary ool only up o ome poible mall T, we fir proe i on [, T ], before we how ha i i exendable o arbirarily large ineral. Therefore, in he end we ge pahwie uniuene on he whole ineral of he original SDE. In he appendix we li ome mall lemma which we need in he proof before. For he ake of compleene hey are all gien wih proof alo if ome of hem are eay and ju lile generalizaion of well known reul. We ar wih ome fac abou our mixed norm pace, epecially approximaion by mooh funcion. I eem ha hi ha no been done ye rigorouly and herefore we proe hem in deail. Then we ae an eay mean-alue ineualiy and proe a Sobole embedding. In he end we gie ome Krylo eimae. The proof for he ineualiie of expecaion are ery imilar o he one for condiional expecaion. Bu ince we need ome of hee reul for he proof in he condiional cae, we alo gie here he proof in deail. 7

12

13 Acknowledgmen Fir and foremo, I hank Prof. Dr. Michael Röckner for uperiing hi work, for hi coninuou uppor and adice. Furhermore, I am graeful o Nora Müller and Daniel Alemeier for giing me ome aluable feedback on hi hei a well a o Sarah Gerz for her adice on grammar and phraing. I would alo like o hank my friend and family for heir uppor in he la few year. Financial uppor of he DFG hrough he IRTG 32 Sochaic and Real World Model and he CRC 7 Specral Srucure and Topological Mehod in Mahemaic i graefully acknowledged, a well a of he Bielefeld Young Reearcher Fund hrough he docorae compleion cholarhip.

14

15 2. Preliminarie and main reul 2 PRELIMINARIES AND MAIN RESULT In hi chaper, baic concep for hi hei a mixed-norm Sobole pace are inroduced. In paricular, we formulae he reuired aumpion on he coefficien of he SDE and preen our reul abou pahwie uniuene. Beide, here will be ome hor noaion inroduced which will be ued hroughou he hei. Definiion 2.. For p,, ) we define f L p T ) := T f, x) p dx p d, where denoe he Hilber-Schmid norm. We define L pt ) o be he pace of meaurable funcion f : [, T ] repeciely m ) uch ha f L p T ) <. Furhermore { } W,p,2 T ) := f : [, T ] f, f, x f, xf 2 L pt ), where, x, 2 x denoe weak deriaie wih repec o ime, repeciely pace. The aociaed norm i gien by f W,2,p T ) := f L p T ) + f L p T ) + x f L p T ) + 2 xf L p T ). If we omi he T, we mean ha we ake R + inead of [, T ]. We conider he SDE X = x + b, X ) d + σ, X ) dw, [, T ], 5) where W i an m-dimenional andard Wiener proce on a filered probabiliy pace Ω, F ), P), wih F ) fulfilling he uual condiion, x and b : [, T ], σ : [, T ] m are meaurable funcion wih he following properie: Aumpion 2.2. For ome p, > 2d + ) we hae c) b L pt ), c2) σ i coninuou in, x), c3) σ i nondegeneraed, i.e. here exi a conan c σ > uch ha σσ, x)ξ, ξ c σ Iξ, ξ ξ, x) [, T ], where σ denoe he ranpoed marix of σ,

16 2 PRELIMINARIES AND MAIN RESULT c4) σ i bounded by a conan c σ, c5) x σ L pt ). Aumpion 2.3. Le σ be uch ha for all f L pt ) here i a oluion u W,2,p T ) o he parial differenial euaion u + 2 d d σσ ) ij x 2 i x j u = f on [, T ], ut, x) =, i= j= uch ha u L p T ) C f L p T ), where C i independen of f and increaing in T. Remark 2.4. Aumpion 2.3 eem o be maie rericie, bu in fac i i proen for a large cla of funcion. If σ i independen of he reul can be found in [Kry]. Baed on hi one can proe ha i hold alo for σ uniformly coninuou in x, uniformly coninuou wih repec o, ee Remark.4 in [KR5]. If p and σ aifie a anihing mean ocillaion condiion he aumpion i alo fulfilled, ee [Kry7]. Definiion 2.5 weak/rong oluion). A weak oluion for euaion 5) i a pair X, W ) on a filered probabiliy pace Ω, F ), P) uch ha X i F -adaped, W i an F -Brownian moion and X, W ) ole euaion 5). Gien a Brownian moion W on a probabiliy pace, a rong oluion for euaion 5) i a coninuou proce which i adaped o he filraion generaed by W and ole euaion 5). Definiion 2.6 Pahwie Uniuene). We ay ha pahwie uniuene hold for euaion 5) if for wo weak oluion X, W ), X, W ), defined on he ame probabiliy pace, we hae ha X = X and W = W imply P X = X ) [, T ] =. Theorem 2.7 Main reul). Under Aumpion 2.2 and 2.3, we hae pahwie uniuene in he e of coninuou procee which fulfill P T b, X ) d < =. 6) Noaion 2.8. For wo oluion X ), X 2) o SDE 5), defined on he ame probabiliy pace, wih iniial alue x ), x 2) and he ame Brownian moion, we define for all 2

17 2 PRELIMINARIES AND MAIN RESULT λ [, ], R > and [, T ] X λ := λx ) + λ)x 2), x λ := λx ) + λ)x 2), b λ, X ), X 2) ) := λb, X ) ) + λ)b, X 2) ), σ λ, X ), X 2) ) := λσ, X ) ) + λ)σ, X 2) ), τ λ R := inf { : τ R := inf { : X ) X λ > R }, > R or X 2) } > R, and a λ := 2 ) λσ, X ) ) + λ)σ, X 2) ) λσ, X ) ) + λ)σ, X 2) )). In he following, wheneer we peak of wo oluion, we mean wo weak oluion defined on he ame probabiliy pace wih he ame Brownian moion. Furhermore by C > we alway denoe ariou finie conan, where we ofen indicae he dependence of parameer by wriing hem in bracke. 3

18

19 3. Tranformaion of he SDE 3 TRANSFORMATION OF THE SDE Thi chaper coni of a deailed udy of our before menioned ranformaion of he SDE. To hi end, an appropriae erion of Iô formula for funcion in W,p,2 T ) will be eablihed in he fir ecion. The econd coer he formulaion and udy of he ranformaion. 3.. Iô formula for mixed-norm Sobole funcion We formulae a erion of Iô formula for funcion in W,2,p T ) in Propoiion 3.3. The proof relie on wo auxiliarie a Krylo-ype eimae and a Sobole embedding. Thoe wo are formulaed a Lemma 3. and 3.2 wih boh proof deferred o he appendix. Lemma 3.. Le c), c3), c4) of Aumpion 2.2 be fulfilled and X be a oluion o 5) uch ha condiion 6) hold. Then we hae for eery, r d + and any nonnegaie meaurable funcion f : [, T ] R E T f, X ) d CT, d, p,,, r, c σ, c σ, b L p T )) f L r T ). Lemma 3.2. For all u W,2,p T ), here exi a erion of u uch ha up,x) [,T ] u, x) C u W,2,p T ), where C i independen of u. In paricular hi erion i coninuou. Propoiion 3.3. Iô formula) Le u W,2,p T ), c), c3), c4) of Aumpion 2.2 be fulfilled and X a oluion o 5) uch ha condiion 6) hold. Then here exi a erion of u uch ha for T we hae u, X ) = u, X ) + ur, X r ) dr + x ur, X r )br, X r ) dr + x ur, X r )σr, X r ) dw r + 2 d d σσ r, X r )) ij x 2 i x j ur, X r ) dr i= j= P-almo urely. Proof. By Lemma A.5 here exi a euence u n ) n in C, T ) ) which conerge 5

20 3 TRANSFORMATION OF THE SDE o u in W,2,p T ). Then Iô formula, ee e.g. [KS9] Chaper 3 Theorem 3.6, yield u n, X ) = u n, X ) + u n r, X r ) dr + x u n r, X r )br, X r ) dr + x u n r, X r )σr, X r ) dw r + 2 d d σσ r, X r )) ij x 2 i x j u n r, X r ) dr i= j= P-almo urely for eery n N. From Lemma 3.2 we know ha here exi a erion of u uch ha u, X ) u n, X ) C u u n W,2,p T ). Therefore, u n, X ) conerge P-almo urely o u, X ) a n. Wih Lemma 3. we obain E ur, X r ) dr u n r, X r ) dr E ur, X r ) u n r, X r ) dr C u u n L p T ). And uing Hölder ineualiy wice lead o E E x ur, X r )br, X r ) dr x u n r, X r )br, X r ) dr x ur, X r )br, X r ) x u n r, X r )br, X r ) dr E br, X r ) x ur, X r ) x u n r, X r ) dr E br, X r ) 2 dr 2 E x ur, X r ) x u n r, X r ) 2 dr 2. 6

21 3 TRANSFORMATION OF THE SDE One more applicaion of Lemma 3. yield hen E x ur, X r )br, X r ) dr C b 2 2 L /2 p/2 T ) xu x u n 2 2 C x u x u n L p T ). x u n r, X r )br, X r ) dr L /2 p/2 T ) For he la deerminiic inegral, we receie a imilar eimae: E 2 E 2 d d ) σσ r, X r )) ij x 2 i x j ur, X r ) x 2 i x j u n r, X r ) dr i= j= σr, X r ) 2 xur, 2 X r ) xu 2 n r, X r ) dr 2 c2 σe 2 xur, X r ) 2 xu n r, X r ) dr C 2 xu 2 xu n L p T ). Finally, for he ochaic inegral, we hae by imilar eimae and he Iô-Iomery E E = E x ur, X r ) x u n r, X r ))σr, X r ) dw r x ur, X r ) x u n r, X r ))σr, X r ) dw r x ur, X r ) x u n r, X r ))σr, X r ) 2 dr c 2 σe x ur, X r ) x u n r, X r ) 2 dr 2 C x u x u n 2 2 L /2 p/2 T ) = C x u x u n L p T ). 7

22 3 TRANSFORMATION OF THE SDE Therefore, here exi a ubeuence u nk ) k uch ha u nk r, X r ) dr + k + 2 d i= x u nk r, X r )br, X r ) dr + d σσ r, X r )) ij x 2 i x j u nk r, X r ) dr j= ur, X r ) dr + x ur, X r )br, X r ) dr + x u nk r, X r )σr, X r ) dw r x ur, X r )σr, X r ) dw r + 2 i= j= d d σσ r, X r )) ij x 2 i x j ur, X r ) dr P-a.. and herefore, we hae Iô formula for funcion in W,2,p T ) Tranformaion of he SDE We may ranform SDE 5) by mean of oluion o a paricular PDE, which i aed below in 7). Then an applicaion of Iô formula i ued o replace he drif erm. By ieraion, we are able o reformulae he euaion a aed in 4). Aume ha b and σ fulfill Aumpion 2.2 and 2.3, hen for eery f L pt ) here exi a oluion u W,p,2 T ) o he euaion u + 2 d d σσ ) ij x 2 i x j u = f, on [, T ], ut, x) = 7) i= j= uch ha u W,2,p T ) C f L pt ), 8) where C doe no depend on f and i increaing in T. Then we hae up x u, x) up x u, x) x ut, x) + x ut, x),x) [,T ],x) [,T ] = up,x) [,T ] x u, x) x ut, x). By he Hölder coninuiy of x u, ee [KR5] Lemma.2, hi ogeher wih 8) lead o up x u, x) up Cp,, ε) T ε 2 u W,2,x) [,T ],x) [,T ],p T ) Cp,, ε, T )T ε 2 f L p T ) 9) 8

23 3 TRANSFORMATION OF THE SDE for eery ε, ), which fulfill ε + d p + 2 <. Since Cp,, ε, T ) i increaing in T, we can aume he conan in fron of f L p T ) o be a mall a we wan by chooing T appropriae. Thi will be of imporance in Lemma 4.. Now, le U b a oluion o he euaion u + d d σσ ) ij x 2 2 i x j u = b on [, T ], ut, x) =. ) i= j= Uing Iô formula for funcion in W,2,p T ) Propoiion 3.3), we ge U b, X ) = U b, x) + + U b, X ) + 2 x U b, X )b, X ) d + d i= x U b, X )σ, X ) dw d σσ, X )) ij x 2 i x j U b, X ) d. j= Here, we ue ha U b i a oluion o PDE ), o obain U b, X ) = U b, x) + x U b, X )b, X ) d + x U b, X )σ, X ) dw b, X ) d. Tha implie b, X ) d = U b, x) U b, X ) + x U b, X )b, X ) d + x U b, X )σ, X ) dw. Now, we define T b) := x U b b and ranform SDE 5) by replacing he drif erm: X = x + U b, x) U b, X ) + T b), X ) d + x U b, X )σ, X ) + σ, X ) dw. ) 9

24 3 TRANSFORMATION OF THE SDE Noe, ha T b) L pt ) ince x U b i bounded and b L pt ). Nex, le U T b) be a oluion o he euaion u + 2 d d σσ ) ij x 2 i x j u = T b) on [, T ], ut, x) =. i= j= Uing again Iô formula Propoiion 3.3), we ge U T b), X ) = U T b), x) + x U T b), X )b, X ) d + x U T b), X )σ, X ) dw + U T b), X ) + 2 d d σσ, X )) ij x 2 i x j U T b), X ) d i= j= = U T b), x) + x U T b), X )b, X ) d + x U T b), X )σ, X ) dw T b), X ) d, and herefore T b), X ) d = U T b), x) U T b), X ) + x U T b), X )b, X ) d + x U T b), X )σ, X ) dw. Again, we define T 2 b) := x U T b) b and replace he drif in he ranformed SDE ): X = x + U b, x) + U T b), x) U b, X ) U T b), X ) + T 2 b), X ) d + x U b, X )σ, X ) + x U T b), X )σ, X ) + σ, X ) dw. 2

25 3 TRANSFORMATION OF THE SDE Ieraion yield afer n + ep n n X = x + U T b), x) U k T b), X k ) + + k= k= k= T n+ b), X ) d n x U T b), X k )σ, X ) + σ, X ) dw 2) wih he conenion T b) = b and T k+ b) = x U T k b) b. We define and herefore, SDE 2) become U n), x) := n U T b), x) k k= X = x + U n), x) U n), X ) + + For wo oluion X ), X 2) we define Then euaion 3) read Y i,n) T n+ b), X ) d x U n), X ) + I ) σ, X ) dw. 3) Y i,n) b n), X i) σ n), X i) ) := = Y i,n) + := X i) + U n), X i) ), ) := T n+ b), X i) ), x U n), X i) ) + I b n), X i) ) d + ) σ, X i) ). σ n), X i) ) dw. 4) 2

26

27 4 SOME HELPFUL LEMMAS 4. Some helpful lemma In hi chaper we preen he neceary ool o proe our main reul. Fir, we gie ome ueful properie of he inoled funcion and a conracion propery beween X i) and Y i,n) in Lemma 4.. Then we proe wo Krylo-ype eimae for condiional expecaion. A erion of Lemma 5. from [Kry86] i aed in Lemma 4.2 under ery general aumpion on he coefficien. I i ufficien o aume b L pt ) and σ o be bounded and nondegeneraed. The price we hae o pay i ha i i only applicable o funcion in L r T ) wih r, d +. The econd Krylo-ype eimae, namely Propoiion 4.4, reuire alo he coninuiy of he diffuion coefficien. Baed on hi ineualiy we proe an exponenial eimae for he ranformed diffuion before we how conergence of he difference beween he ranformed drif erm of wo oluion. In he end, we will proe ha under our condiion eery oluion o 5) ha finie fir and econd momen. The following Lemma i imilar o Lemma 7 in [FF] and o i he proof. Bu we gie i in deail o make clear ha i work in he ame way for our exended ranformaion. Lemma 4.. Le c), c3), c4) of Aumpion 2.2 and Aumpion 2.3 be fulfilled and X ), X 2) be wo oluion o 5) uch ha 6) hold. Then here exi T T uch ha for all T, T ] we hae i) T n b) L p T ) 2 n b L pt ), ii) n up x U T b), x) k,x) [,T ] R 2, d k= iii) 2 xu n) L p T ) C for ome conan C >, independen of n, and i) Y,n) Y 2,n) 3 2 X 2) 2 X ) X 2), Y 2,n) for all, T ]. X ) Y,n) Proof. i) Se and chooe T uch ha ε = 4 b L p T ) + ) up x U f, x) ε f L p T ) 5),x) [,T ] for all T, T ] and f L pt ), where U f denoe a oluion o u + 2 d d σσ ) ij x 2 i x j u = f on [, T ], ut, x) =. i= j= 23

28 4 SOME HELPFUL LEMMAS The poibiliy of chooing uch a T i gien by 9). The + in he denominaor of ε i ju o aoid iue in cae b =. Then we hae up x U b, x) ε b L p T ),,x) [,T ] T b) L p T ) up x U b, x) b L p T ) ε b 2 L pt ),,x) [,T ] up x U T b), x) ε T b) L p T ) ε 2 b 2 L pt ),,x) [,T ] and by ieraing T 2 b) L p T ) up,x) [,T ] x U T b), x) b L p T ) ε 2 b 3 L pt ) T k b) L p T ) ε k b k+ L pt ) 4 k b L p T ) + ) k b k+ L pt ) 4 k b L pt ) 6) which proe i). ii) Applying 5) and 6) yield up x U T b), x) ε T k b) k L p T ) ε,x) [,T ] R 4 b d k L pt ) 4. k+ Therefore, we ge n up x U T b), x) k,x) [,T ] k= and o he econd ineualiy i proed. iii) We hae wih 8) n k= 4 k+ = 4 n k= 4 k 4 k= 4 k 2 2 xu n) L p T ) n xu 2 T b) k L p T ) k= n k= U T k b) W,2,p T ) n C T k b) L p T ). k= And uing i) lead o 2 xu n) L p T ) C n k= for ome C >, independen of n. 2 k b L pt ) C b L p T ) n k= 2 C k 2 C k k= 24

29 4 SOME HELPFUL LEMMAS i) To proe he conracion beween X and Y we ue he mean-alue ineualiy from Lemma A.7 for U T k b). Thu Y,n) Y 2,n) = X ) + U n), X ) ) X 2) U n), X 2) ) X 2) n + U T b), X ) k ) U T b), X 2) k k= X 2) n + U T b), X ) k ) U T b), X 2) k X ) X ) X ) X 2) + k= n up x U T b), x) k,x) [,T ] k= ) ) X 2). X ) Then ii) proide Y,n) Y 2,n) 3 X ) X 2). 2 On he oher hand, we hae wih he ame argumen X ) X 2) = Y,n) U n), X ) ) Y 2,n) + U n), X 2) ) Y,n) Y 2,n) n + U T b), X ) k ) U T b), X 2) k ) k= Y,n) Y 2,n) + X ) X 2), 2 which i euialen o X ) X 2) 2 Y,n) Y 2,n). From now on we denoe T by T. 4.. Krylo-ype eimae for condiional expecaion To ge an exponenial eimae on he ranformed diffuion, which we are going o ae in he nex ecion, we need a Krylo-ype eimae on he linear combinaion of wo oluion of SDE 5) a aed in Propoiion 4.4. For he proof we hae o do ome preparaion, fir Lemma 4.2 which i a erion of Lemma 5. from [Kry86] for condiional expecaion and differen inegrabiliy in ime and pace, and econd Lemma 4.3, where we proe ha he erm on he righ-hand ide of he ineualiy are bounded. Lemma 4.2. Le he condiion c), c3), c4) of Aumpion 2.2 be fulfilled and X ), be wo oluion of 5) uch ha 6) hold. Then, for any nonnegaie funcion X 2) 25

30 4 SOME HELPFUL LEMMAS f : [, T ] R wih f L r T ) <, any opping ime γ, T, R > and r, d + he following hold: T τ R λ γ { τr λ γ} E dea λ ) d+ f, X λ ) d F { τ λ R γ} CT, d,, r)b 2 + A) d d+ d 2 f L r T ) P-a... Here we denoe B := E T τ λ R γ b λ, X ), X 2) ) d F, A := E T τ λ R γ ra λ ) d F. Noe, ha A and B depend on, T, R, λ, γ. We refrain from denoing hi in indice ince i will alway be clear wha we mean and hu, would be more confuing han helpful. The proof i rucured a follow. Fir we proe he ineualiy for nonnegaie funcion in C uch ha f > on [, T ] B R, B enoe here he open ball in around he origin wih radiu R and B R he cloure of i. Thi will be done by uing Lemma A.8, Iô formula and he maringale propery of he ochaic inegral. Then, we exend hi o nonnegaie funcion in C. Afer ha we proe ha for hee funcion he ineualiy hold alo for f. The aemen i exended o meaurable bounded funcion by a monoone cla argumen and finally alo o unbounded meaurable funcion. Proof. Noe, ha all he condiional expecaion exi, ince we alway inegrae nonnegaie funcion. Fix a µ > and ake a nonnegaie f C + ) wih f > on [, T ] B R. Obiouly here exi T, R uch ha f = for T or x > R. Then Lemma A.8 enure he exience of a nonnegaie funcion ϕ wih bounded weak deriaie ϕ, x ϕ, 2 xϕ uch ha for any ymmeric, poiie emidefinie d d marix α he following hold: ϕ + d i= d j= x ϕ µϕ, α ij 2 x i x j ϕ µ + rα))ϕ + deα) d+ fe µ, ϕ, x) Cd, )µ d 2 d d+ T ) d+ r e µ f L r. Define ψ := e µ ϕ. Then we hae ψ + d i= d j= α ij 2 x i x j ψ µ rα)ψ + deα) d+ f, 7) x ψ µψ, 8) ψ, x) Cd, )µ d 2 d d+ T ) d+ r f L r. 9) 26

31 4 SOME HELPFUL LEMMAS From [Kry87] Example 6.4.6, we know ha ψ, x ψ, 2 xψ are coninuou on [, T ] B R. Therefore, we may apply Iô formula and ge ψ, X λ ) ψ, x λ ) = ψ, X λ ) d + x ψ, X λ )b λ, X ), X 2) ) d + x ψ, X λ )σ λ, X ), X 2) ) dw + 2 d d σ λ σ λ, X ), X 2) )) ij x 2 i x j ψ, X λ ) d i= j= which how ha κ := ψ, X λ ) x ψ, X λ )b λ, X ), X 2) ) + ψ, X λ ) + d i= d a λ ) ij x 2 i x j ψ, X λ ) d j= i a maringale on [, T τr λ γ). Then, by applying ineualiy 7) we hae for all [, T τr λ γ) on he e { } E dea λ ) E = E d+ f, X λ ) d F µ ra λ )ψ, X λ ) ψ, X λ ) d i= d a λ ) ij x 2 i x j ψ, X λ ) d F j= µ ra λ )ψ, X λ ) d + κ κ ψ, X λ ) + ψ, X λ ) + x ψ, X λ )b λ, X ), X 2) ) d F P-a... 27

32 4 SOME HELPFUL LEMMAS Since ψ i nonnegaie and κ i a maringale, we obain E dea λ ) E d+ f, X λ ) d F µ ra λ )ψ, X λ ) d + κ κ + ψ, X λ ) + x ψ, X λ )b λ, X ), X 2) ) d F = E ψ, X λ ) + µ ra λ )ψ, X λ ) + x ψ, X λ )b λ, X ), X 2) ) d F E ψ, X λ ) + µ ra λ )ψ, X λ ) + x ψ, X λ ) b λ, X ), X 2) ) d F. Then wih 8), we receie ha E dea λ ) E ψ, X λ ) + E d+ f, X λ ) d F µ ra λ )ψ, X λ ) + µψ, X λ ) b λ, X ), X 2) ) d F ψ, X λ ) + up ψ, X λ ) µ ra λ ) + [,] Cd,, r, T ) f L r E µ d 2 d d+ µ b λ, X ), X 2) ) d F + µ ra λ ) + µ b λ, X ), X 2) ) d F, where he la ineualiy follow wih 9). Thi ineualiy i independen of ψ and hold for all µ >, herefore i i alo rue for µ := { A<B 2 }B 2 + {A>,A B 2 }A + {A=B=} c, c >. By Lemma A. A and B are P-almo urely finie, which preen u from echnical iue, e.g. diiding by infiniy. Since all he indicaor funcion and A, B are meaurable wih repec o F, we hae 28

33 4 SOME HELPFUL LEMMAS for he condiional expecaion E µ d 2 d d+ = E + E + E + µ { A<B 2 }B 2d d+ d b λ, X ), X 2) ) d + µ {A>,A B 2 }A d d+ d 2 {A=B=} c d 2 d d+ = { A<B 2 }B 2d d+ d + {A>,A B 2 }A d d+ d 2 + {A=B=} c d 2 d d+ + B + A 2 + c + B E b λ, X ), X 2) ) d + A 2 E + ce ra λ ) d F +B 2 b λ, X ), X 2) ) d +A b λ, X ), X 2) ) d ra λ ) d F ra λ ) d F +c ra λ ) d F b λ, X ), X 2) ) d F +B 2 E b λ, X ) ra λ ) d F, X 2) ) d F +A E ra λ ) d F b λ, X ), X 2) ) d F +ce ra λ ) d F. 29

34 4 SOME HELPFUL LEMMAS Thi lead o E µ d 2 d d+ + µ { A<B 2 }B 2d d+ d + {A=B=} c d 2 d d+ b λ, X ), X 2) ) d + µ 2 + B 2 A ) + {A>,A B 2 }A d d+ d 2 + cb + ca ) { A<B 2 }3B 2d d+ d + {A>,A B 2 }3A d d+ d 2 {A> or B>} 3B 2 + A) d d+ d 2 c 3B 2 + A) d d+ d 2. + {A=B=} c d 2 d d+ ra λ ) d F 2 + A 2 B ) + {A=B=} c d 2 d d+ So, we proed for [, T τr λ γ) { }E dea λ ) d+ f, X λ ) d F { }Cd,, r, T )B 2 + A) d d+ d 2 f L r P-a... Wih Faou Lemma for condiional expecaion, we ge for T T τ R λ γ { τr λ γ} E dea λ ) d+ f, X λ ) d F T τ R λ γ = E { T τr λ γ} dea λ ) d+ f, X λ ) d F = E lim inf { n T τr λ γ n } lim inf n E { T τr λ γ n } = lim inf { n T τr λ γ }E n lim inf n T τ R λ γ n dea λ ) T τ R λ γ n dea λ ) T τ R λ γ n dea λ ) d+ f, X λ ) d d+ f, X λ ) d d+ f, X λ ) d { T τ λ R γ n }Cd,, r, T )B 2 + A) d d+ d 2 f L r = { τ λ R γ} Cd,, r, T )B 2 + A) d d+ d 2 f L r P-a.. F F F 3

35 4 SOME HELPFUL LEMMAS for all nonnegaie f C + ) wih f > on [, T ] B R. Now, le f C + ) wih f. Take a mooh funcion χ : + [, ] wih χ > on [, T ] B R, for example χ from Lemma A.9. Then we hae on he e { τ λ R γ} E T τ R λ γ dea λ ) = E = lim ε E T τ R λ γ dea λ ) T τ R λ γ d+ f, X λ ) d d+ lim dea λ ) F f + εχ), X λ ) d ε F d+ f + εχ), X λ ) d F by dominaed conergence. A f + εχ i ricly poiie on [, T ] B R, we hae, for a uiable T > T τ R λ γ E dea λ ) d+ f, X λ ) d F lim Cd,, r, T )B 2 + A) d d+ d 2 f + εχ L r ε = Cd,, r, T )B 2 + A) d d+ d 2 f L r P-a... The nex ep i o ge rid of he dependence on T. To hi end, conider he mooh funcion { ) c exp g) := if <, ele, where c i choen uch ha g)d =. Then we hae for he conoluion R ) [ 2,T + 2 ] g ) = R [ 2,T + ] )g) d = [ 2,T + ] )g) d 2 which i for [, T ] and for / [, T + ]. Since [ 2,T + ] g) f i mooh and 2 3

36 4 SOME HELPFUL LEMMAS eual o f on [, T ], we hae on he e { τr λ γ} T τ R λ γ E dea λ ) d+ f, X λ ) d F T τ R λ γ ) = E d+ [ 2,T + 2 ] g )f, X λ ) d dea λ ) Cd,, r, T + )B 2 + A) d d+ d 2 Cd,, r, T )B 2 + A) d d+ d 2 f L r R + F ) [ 2,T + 2 ] g )f, x) dx P-a... r d r Now, le f C + ). Since f i coninuou and compacly uppored, here exi a euence f n ) n of nonnegaie funcion in C + ) which conerge uniformly o f le ψ be a mollifier on + and ake f n := ψ /n f, ee Appendix for he definiion of mollifier and ψ /n ). Therefore, on he e { τr λ γ} we hae E T τ R λ γ dea λ ) d+ f, X λ ) d F = lim n E T τ R λ γ dea λ ) d+ fn, X λ ) d and ince he ineualiy i rue for nonnegaie funcion in C + ) T τ R λ γ E dea λ ) d+ f, X λ ) d F lim Cd,, r, T )B 2 + A) d d+ d 2 fn L r n = Cd,, r, T )B 2 + A) d d+ d 2 f L r To proe ha he ineualiy i alo alid for bounded meaurable funcion, define X := f : Rd+ R f i meaurable, bounded and fulfill P-almo urely { τr λ γ} E T τ R λ γ dea λ ) d+ f, X λ ) d F F P-a... { τr λ γ} Cd,, r, T )B 2 + A) d d+ d 2 f L r. 32

37 4 SOME HELPFUL LEMMAS Noe, ha he lef-hand ide exi, ince we inegrae nonnegaie funcion. The righhand ide of he ineualiy maybe be infinie, which i feaible ince he ineualiy i hen riially fulfilled. Le f f 2... f n... in X wih f n f poinwie and f bounded, hen he ineualiy hold for f, becaue wih monoone conergence we obain E T τ R λ γ dea λ ) = E = lim n E T τ R λ γ dea λ ) T τ R λ γ d+ f, X λ ) d d+ lim dea λ ) F f n, X λ ) d n F d+ fn, X λ ) d lim Cd,, r, T )B 2 + A) d d+ d 2 fn L r n = Cd,, r, T )B 2 + A) d d+ d 2 lim n f n L r = Cd,, r, T )B 2 + A) d d+ d 2 f L r F P-almo urely on he e { τr λ γ}. Since f i again meaurable, we hae f X. Therefore X i cloed under bounded monoone conergence. And by imilar mean i can be alo hown ha X i cloed under uniform conergence. Since C + ) i an algebra and here exi a euence f n in C + ) uch ha f n, he monoone cla heorem i applicable in he erion of [Del78] 22.2) and hi yield ha X conain all meaurable bounded funcion. Now, le f be a nonnegaie meaurable funcion wih f L r T ) <. Since [,T ] f n) X we obain on he e { τr λ γ} wih monoone conergence E T τ R λ γ = lim dea λ ) n E T τ R λ γ d+ f, X λ ) d F dea λ ) d+ [,T ] )f n), X λ )d F lim Cd,, r, T )B 2 + A) d d+ d 2 f n L r n T ) = Cd,, r, T )B 2 + A) d d+ d 2 f L r T ) P-a... 33

38 4 SOME HELPFUL LEMMAS Lemma 4.3. Le c), c3), c4) of Aumpion 2.2 be fulfilled and X ), X 2) be wo oluion o 5) uch ha condiion 6) hold. Then we hae for all T, λ [, ], T E ra λ ) d F CT, c σ ) and E P-almo urely. T b λ, X ), X 2) ) d F Cd, p,, T, c σ, c σ, b L p T )) The idea of proing hi, epecially he econd eimae i aken from [GM], Proof of Corollary 3.2. Proof. Uing c4) we may eimae he race of a λ a in 4): ra λ ) 2 c 2 σ. Then, monooniciy of he condiional expecaion reul in T E ra λ ) d F 2 c 2 σt. To proe ha he econd condiional expecaion i P-almo urely finie, we will ue Lemma 4.2 for X ) and X 2). Noe ha all he eigenalue of σσ are bounded from below by c σ becaue of c3). Since a ymmeric marix ha only real eigenalue and he deerminan i he produc of hem, we hae in cae λ = And he ame hold for dea ). Define γ n := inf : E and dea ) = 2 d deσσ, X ) )) 2 d cd σ. B n) := E A n) := E T τ R γn T τ R γn b, X ) ) d F > n b, X ) ) d F, ra ) d F. 34

39 4 SOME HELPFUL LEMMAS Wih Jenen ineualiy for he condiional expecaion and he Lebegue meaure on [, T ], we receie on he e { τr γ n} ) T τ R γn 2 B n) 2 E b, X ) ) d F T E = T E 2 c σ T τ R γn T τ R γn b, X ) ) 2 d F ) dea d+ ) b, ) X dea ) ) d T τ R γn d+ T E dea ) d+ ) 2 d F b, X ) Applying he ineualiy from Lemma 4.2 wih = p 2, r = 2, proide ) 2 d F. B n) ) 2 2 c σ ) d d+ T Cd, p,, T ) B n) ) 2 + A n)) d d+ d p b 2 L pt ) 2 c σ ) d d+ B ) ) 2d T Cd, p,, T ) n) d+ 2d p + 2 c 2 σt ) d d+ d p b 2 L pt ) P-almo urely. Wih Young ineualiy we hae for ε > and z := B n) ) 2z = ε ε B n)) 2z z)ε z + zε z ε ) z + ε z B n) 2. B n) ) 2 Le ε be mall enough uch ha ) d 2 d+ T Cd, p,, T )ε z b 2 L pt ) <. c σ Noe, ha we may chooe ε independen of ω, n and R. Then we ge d d <, d+ p ) ) d B n) 2 2 d+ T Cd, p,, T ) 2 c 2 c σt ) d d+ d ) ) p + ε z + ε z B n) 2 b 2 L pt ) P-a.. σ which i euialen o ) 2 B n) 2 ) d d+ c σ T Cd, p,, T ) 2 c 2σT ) ) d d+ d p + ε z ) d 2 d+ c σ T Cd, p,, T )ε z b 2 L pt ) b 2 L pt ) P-a.. 35

40 4 SOME HELPFUL LEMMAS on he e { τ R γ n}, which i finie and independen of n and ω. If we ake he limi n we obain ha E T τ R b, X ) ) d F Cd, p,, T, c σ, c σ, b L p T )) P-a.. on he e { τr }. Analogouly, we can proe ha he ame hold for X2). Furhermore, he bound i alo independen of R. If we ake he limi R we ge E T Therefore, we obain E T λe b, X i) ) d F < Cd, p,, T, c σ, c σ, b L p T )) λb, X ) ) + λ)b, X 2) T b, X ) ) Cd, p,, T, c σ, c σ, b L p T )) P-almo urely, for eery λ [, ]. ) d F d F + λ)e T b, X 2) ) P-a... d F Propoiion 4.4. Le c)-c4) of Aumpion 2.2 be fulfilled and X ), X 2) be wo oluion o 5) uch ha 6) hold. Then for arbirary R > here exi an ε > uch ha for eery nonnegaie meaurable funcion f : [, T ] R wih f L r T ) <, r, d +, and eery T, λ [, ] we hae on he e { τ R τ ε } E T τ R τ ε f, X λ ) d F Cd, p,, r, T, b L p T ), c σ, c σ ) f L r T ) P-almo urely, where τ ε := inf { : X ) X 2) } > ε. Proof. Since σ i uniformly coninuou on [, T ] B R here exi an ε > uch ha σ, x) σ, y) < c σ 4 c σ, x),, y) [, T ] B R wih, x), y) ε. 36

41 4 SOME HELPFUL LEMMAS Tha implie for all ξ, T τ R τ ε ) σ, X ) ) σ, X 2) ) σ, X 2) )ξ, ξ ) σ, X ) ) σ, X 2) ) σ, X 2) )ξ ξ σ, X ) ) σ, X 2) ) σ, X 2) ) ξ 2 and herefore, σ λ σ λ, X ), X 2) c σ 4 c σ c σ ξ 2 = 4 c σ ξ 2 2) )ξ, ξ = λ 2 σσ, X ) )ξ, ξ + λ) 2 σσ, X 2) + 2λ λ) σ, X ) )σ, X 2) )ξ, ξ = λ 2 σσ, X ) )ξ, ξ + 2λ + λ 2 ) + 2λ λ) σ, X ) )σ, X 2) )ξ, ξ = λ 2 σσ, X ) )ξ, ξ + λ 2 ) σσ, X 2) + 2λ 2 2λ) σσ, X 2) )ξ, ξ + 2λ λ) σ, X ) )σ, X 2) )ξ, ξ = λ 2 σσ, X ) )ξ, ξ + λ 2 ) σσ, X 2) ) + 2λ λ) σ, X ) ) σ, X 2) ) Togeher wih eimae 2) and c3) we obain ha σ λ σ λ, X ), X 2) )ξ, ξ σσ, X 2) )ξ, ξ )ξ, ξ σ, X 2) )ξ, ξ )ξ, ξ )ξ, ξ λ 2 c σ ξ 2 + λ 2 )c σ ξ 2 2λ λ) 4 c σ ξ 2 2 c σ ξ 2.. Thi how ha for T τ R τ ε all he eigenalue of σ λ σ λ below by c 2 σ and herefore, we can eimae he deerminan: are bounded from dea λ ) = 2 d deσλ σ λ, X ), X 2) )) 2 2d cd σ. Noe, ha τ R τ λ R ince X) R and X 2) R imply ha λx ) + λ)x 2) λ X ) + λ) X 2) R. 37

42 4 SOME HELPFUL LEMMAS So, we obain on he e { τ R τ ε } T τ R τ ε E f, X λ ) d F = E 4 c σ 4 c σ T τ R τ ε ) dea λ d+ ) f, X λ dea λ ) ) d F d+ f, X λ ) d F ) d T τ R τ ε d+ E dea λ ) ) d T τ R λ τε d+ E dea λ ) d+ f, X λ ) d F P-a... Wih Lemma 4.2 and Lemma 4.3, we deduce ha T τ R τ ε E f, X λ ) d F Cd, p,,, r, T, b L p T ), c σ, c σ ) f L r T ) P-a.. on he e { τ R τ ε } Uniform exponenial eimae for he ranformed diffuion In hi ecion we proe ha for σ n), X ) A n) := Y,n) ) 2 ) σ n), X 2) Y 2,n) 2 {Y,n) Y 2,n) we hae ha E[e An) T ] i uniformly bounded in n. To hi end we need a Khaminkiype eimae, a aed in Lemma 4.5, o ge he exponenial eimae ia condiional expecaion. Thi i done in Propoiion 4.6. Lemma 4.5. Le f : [, T ] R be a nonnegaie meaurable funcion and γ an arbirary opping ime. Aume ha X i an adaped proce uch here exi a conan α < wih T γ { γ}e f, X ) d F α P-a.. T. Then we hae E exp T γ f, X ) d α. } d 38

43 4 SOME HELPFUL LEMMAS Proof. We hae E exp T γ f, X ) d = E n! n= T γ f, X ) d By inducion one can proe ha T n T T T f, X ) d = n!... f, X )f 2, X 2 )... f n, X n ) d n... d 2 d, n and hu E exp = = = = T γ E n= E n= n= n= f, X ) d T γ T γ T T T T T T T n 2 T γ n 2 T n 2 T γ n f, X )f 2, X 2 )... T n. f n, X n )f n, X n ) d n d n... d 2 d n { γ}f, X ) {2 γ}f 2, X 2 )... {n γ}f n, X n ) {n γ}f n, X n ) d n d n... d 2 d E { γ}f, X ) {2 γ}f 2, X 2 )... {n γ}f n, X n ) T n 2 {n γ}f n, X n ) T n {n γ}f n, X n ) d n d n... d 2 d E E { γ}f, X ) {2 γ}f 2, X 2 )... T n {n γ}f n, X n ) d n F n d n... d 2 d. 39

44 4 SOME HELPFUL LEMMAS Since all he erm excep for he la inegral are meaurable wih repec o F n hae T γ E exp f, X ) d we = n= n= T T T α T n 2 E { γ}f, X ) {2 γ}f 2, X 2 )... {n γ}f n, X n )E T T n 3 {n 2 γ}f n 2, X n 2 ) So, by ieraion we ge E exp T γ n f n, X n ) d n F n d n... d 2 d E { γ}f, X ) {2 γ}f 2, X 2 )... T γ T n 2 {n γ}f n, X n ) d n d n 2... d 2 d. f, X ) d n= α n = α. Propoiion 4.6. Le Aumpion 2.2, 2.3 be fulfilled and X ), X 2) o 5) uch ha 6) hold. For A n) := σ n), X ) ) σ n), X 2) Y,n) Y 2,n) 2 ) 2,n) {Y Y 2,n) } and ε from Propoiion 4.4, here exi a conan C > uch ha ] E [e An) T τ R τε C uniformly for all n N. Proof. Conidering σ n) we find ha: xi σ n) = xi x U n)) σ + x U n) xi σ + xi σ. be wo oluion We ue ha σ i bounded and x σ L pt ), ha x U n) i uniformly bounded by 2 and 2 xu n) i euibounded in L pt ) ee Lemma 4.) o deduce ha x σ n) L p T ) C uniformly in n. 4

45 4 SOME HELPFUL LEMMAS Addiionally, σ n) i coninuou, ince x U n) i Hölder coninuou. Then by Lemma A.6 here exi a euence of coninuou funcion u m ) m, which are differeniable wih repec o x in he ordinary ene, uch ha and u m σ n) uniformly on [, T ] B R x u m L p T ) x σ n) L p T ) m N. Then we hae wih Lemma 4. i) T τ R τ ε σ n), X ) ) σ n), X 2) E exp Y,n) Y 2,n) 2 E exp 4 T τ R τ ε ) 2 {Y,n) Y 2,n) σ n), X ) ) σ n), X 2) ) 2 X ) X 2) 2 ) {X X 2) d } d }. By uniform conergence, we receie ha T τ R τ ε σ n), X ) ) σ n), X 2) ) 2 E exp Y,n) Y 2,n) 2 d,n) {Y Y 2,n) } T τ R τ ε lim E u m, X ) ) u m, X 2) ) 2 exp 4 m X ) X 2) 2 d ) {X X 2) } T τ R τ ε 2 = lim E m exp x u m, X λ )X ) X 2) ) dλ 4 X ) X 2) 2 d ) {X X 2) } lim m E exp 4 T τ R τ ε x u m, X λ ) 2 dλ d. An applicaion of Fubini Theorem and Jenen ineualiy yield T τ R τ ε σ n), X ) ) σ n), X 2) ) 2 E exp Y,n) Y 2,n) 2,n) {Y lim m E exp 4 T τ R τ ε x u m, X λ ) 2 d dλ. Y 2,n) d } 4

46 4 SOME HELPFUL LEMMAS Now, chooe µ > o mall ha p, 2d + ) + µ) which exi ince p, > 2d + ). Then we hae for β > wih Young ineualiy T τ R τ ε σ n), X ) ) σ n), X 2) ) 2 E exp Y,n) Y 2,n) 2 d,n) {Y Y 2,n) } lim E exp 4β T τ R τ ε x u m, X λ ) 2 d dλ m β lim E exp T τ R τ +µ ε β x u m, X λ ) 2 d + µ ) +µ 4 µ dλ. m µ + + µ β And wih Hölder ineualiy T τ R τ ε σ n), X ) ) σ n), X 2) E exp Y,n) Y 2,n) 2 ) +µ ) 4 µ exp µ + µ lim m β E exp T τ R τ ε β +µ + µ T µ ) 2 {Y,n) Y 2,n) d } +µ x u m, X λ ) 2+µ) d dλ. Furhermore, we hae wih Propoiion 4.4 for all T on he e { τ R τ ε } T τ R τ ε E β +µ + µ T µ +µ x u m, X λ ) 2+µ) d F Cd, p,, µ, T, c σ, c σ, b L p T )) β+µ + µ T µ +µ x u m 2+µ) = Cd, p,, µ, T, c σ, c σ, b L p T ))β +µ x u m 2+µ) L pt ) Cd, p,, µ, T, c σ, c σ, b L p T ))β +µ x σ n) 2+µ) L pt ) =: α. 2+µ) L p T ) 2+µ) Since x σ n) L p T ) i euibounded, we can chooe β o mall ha hi i le han for all n N. Then we hae by Lemma 4.5 and ineualiy 2) ha ] ) +µ ) µ E [e An) T τ R τε 4 µ exp + µ β α C, 2) 42

47 4 SOME HELPFUL LEMMAS where C doe no depend on n Conergence of he ranformed drif In he following we proe ha E T b n), X ) ) b n), X 2) ) 2 d conerge o for n. The proof i much impler han in [FF] ince we are able o apply Krylo eimae. The price o pay i ha we hae o aume p, > 2d + ). Lemma 4.7. Le c), c3), c4) of Aumpion 2.2 and Aumpion 2.3 be fulfilled and X ), X 2) be wo oluion of 5) uch ha condiion 6) hold. Then we hae T lim b n), X ) ) b n), X 2) ) 2 d =. n E Proof. Young ineualiy, Lemma 3. wih = p, r = and an applicaion of Lemma on he ariing T n+ b) 2 erm yield E T 2E b n), X ) ) b n), X 2) T b n), X ) ) ) 2 d 2 d + 2E T Cd, p,, T, c σ, c σ, b L p T )) b n) 2 L pt ) b n), X 2) = Cd, p,, T, c σ, c σ, b L p T )) T n+ b) 2 L pt ) Cd, p,, T, c σ, c σ, b L p T )) 2 2n+) b 2 L pt ) n. ) 2 d 4.4. Bounded fir and econd momen In hi ecion we how ha X and X 2 are inegrable which i he la neceary ool o proe pahwie uniuene. Furhermore, we alo obain he finiene of E[up [,T ] X ] and herefore, here i no exploion for our SDE. All we need i Lemma 3. and he ineualiy of Burkholder, Dai and Gundy. 43

48 4 SOME HELPFUL LEMMAS Lemma 4.8. Le c), c3) and c4) of Aumpion 2.2 be fulfilled. If X i a oluion o SDE 5) uch ha condiion 6) hold, we hae [ ] E up X [,T ] < and up E [ X 2] <. [,T ] Proof. We hae [ ] E up X = E up [,T ] [,T ] x + b, X ) d + σ, X ) dw x + E up b, X ) d + E up σ, X ) dw [,T ] [,T ] T x + E b, X ) d + E up σ, X ) dw. [,T ] Then applicaion of Lemma 3. o he fir expecaion erm and of he ineualiy of Burkholder, Dai and Gundy ee e.g. [RY5] Corollary IV.4.2) o he econd yield [ ] T 2 E up X x + C b L p T ) + CE σ, X ) 2 d. [,T ] Since σ i bounded and b L pt ), hi i finie. Furhermore, up E [ X 2] [,T ] = up E [,T ] 2 x + b, X ) d + σ, X ) dw 2 b, X ) d + σ, X ) dw 2 2 E b, X ) d + 4 up E σ, X ) dw. [,T ] 2 x up E [,T ] 2 x up [,T ] We apply Hölder ineualiy o he fir expecaion and he mulidimenional Iô Iomery o he econd one o receie up [,T ] E [ X 2] 2 x 2 + 4T E T b, X ) 2 d + 4 up E [,T ] σ, X ) 2 d. 44

49 4 SOME HELPFUL LEMMAS Again, we ue Lemma 3., c4) and c) o obain up E [ X 2] 2 x 2 + 4T C b 2 L pt ) + 4T c2 σ <. [,T ] 45

50

51 5 PATHWISE UNIQUENESS 5. Pahwie uniuene Thi ecion i deoed o he proof of Theorem 2.7. We ar on a mall ineral [, T ] which i gien by Lemma 4. and how pahwie uniuene up o hi T ju by eimaing he difference of wo oluion wih he ame iniial alue. In he econd par we hen conclude ha i i poible o exend hi o arbirarily large T. 5.. On mall ineral To proe pahwie uniuene we how ha he expecaion of he difference of wo oluion wih he ame iniial alue i zero. Afer he preparaion in he preiou ecion hi can be done eaily, when we pa oer from X o Y n), which i gien by our ranformaion. Uing Iô formula, Lemma 4. and Propoiion 4.6 we find ha he expecaion of he difference of wo oluion i bounded by a erm depending on n. By aking he limi n and applying Lemma 4.7 and Lemma 4.8 we hen finally conclude ha pahwie uniuene hold. Proof of Theorem 2.7 for mall T. In he following, we denoe by x i he i-h enry of a ecor x. Le Aumpion 2.2 and 2.3 be fulfilled and X ), X 2) be wo oluion o 5), uch ha condiion 6) hold. Furhermore, le T := T from Lemma 4. and gien by 4) in Secion 3.2. By Iô formula we hen hae Y i,n) d Y,n) Y 2,n) 2 = = 2 d i= = Y,n) d i= i= d i= ) i Y 2,n) d Y,n) 2 d Y,n) Y,n) d i= Y,n) j= ) ) i 2 Y 2,n) ) i Y 2,n) ) i i Y 2,n) b n), X ) ) b n), X 2) )) d ) i ) ) i Y 2,n) σ n), X ) ) σ n), X 2) ) dw d m ) σ n), X ) ) σ n), X 2) ) ij d i= Y,n) Y,n) Y 2,n), d m i= j= dw j ) 2 ) i i Y 2,n) b n), X ) ) b n), X 2) )) d ) σ n), X ) ) σ n), X 2) ) dw ) 2 σ n), X ) ) σ n), X 2) ) ij d, 47

52 5 PATHWISE UNIQUENESS and herefore d Y,n) Y 2,n) 2 = d i= Y,n) Y,n) Y 2,n), ) i i Y 2,n) b n), X ) ) b n), X 2) )) d σ n), X ) ) σ n), X 2) σ n), X ) ) σ n), X 2) ) 2 d. ) ) dw Applying he ineualiy of Cauchy and Schwarz yield d Y,n) Y 2,n) 2 2 Y,n) Y 2,n) b n), X ) ) b n), X 2) ) d ) + 2 Y,n) Y 2,n), σ n), X ) ) σ 2), X 2) ) dw + σ n), X ) ) σ n), X 2) ) 2 d. 22) Moreoer, wih A n) = σ n), X ) ) σ n), X 2) Y,n) from Propoiion 4.6, we hae d e An) Y,n) Y 2,n) 2) = e An) d + d Y 2,n) 2 ) 2 {Y,n) Y 2,n) Y,n) Y 2,n) 2 + Y,n) [ ] e An). ) Y,n),. ) Y. 2,n) 2 ), } d, Y 2,n) 2 de An) where [, ] denoe he uadraic coariaion which i zero due o he monooniciy of e An). So, we deduce ha d e An) Y,n) Y 2,n) 2) = e An) d Y,n) Y 2,n) 2 Y,n) Y 2,n) 2 e An) da n). Now, we ue ineualiy 22) o conclude ha d e An) Y,n) Y 2,n) 2) 2e An) Y,n) Y 2,n) b n), X ) ) b n), X 2) ) d ) + 2e An) Y,n) Y 2,n), σ n), X ) ) σ n), X 2) ) dw + e An) σ n), X ) ) σ n), X 2) ) 2 d e An) Y,n) Y 2,n) 2 da n). 48

53 5 PATHWISE UNIQUENESS For he la erm we find ha e An) Y,n) Y 2,n) 2 da n) = e An) = e An) Therefore, we ge d e An) 2e An) Y,n) Y 2,n) 2 σ n), X ) ) σ n), X 2) Y 2,n) 2 2 d. Y,n) σ n), X ) ) σ n), X 2) Y,n) + 2e An) Y,n) Y 2,n) 2) Y 2,n) Y,n) Y 2,n), and hu, [ E e An) Y,n) Y 2,n) 2] [ Y,n) E Y 2,n) 2] + 2E + 2E e An) e An) Y,n) Y,n) Wih he help of Lemma 4., we ge [ E e An) Y,n) Y 2,n) 2] 9 4 x ) x 2) 2 + 3E + 2E ) ) 2 { Y,n) Y 2,n) b n), X ) ) b n), X 2) ) d ) σ n), X ) ) σ n), X 2) ) dw Y 2,n) b n), X ) ) b n), X 2) ) d Y 2,n), σ n), X ) ) σ n), X 2) ) ) dw. } d X ) X 2) b n), X ) ) b n), X 2) ) d 23) e An) Y,n) Y 2,n), σ n), X ) ) σ n), X 2) ) ) dw. 49

54 5 PATHWISE UNIQUENESS Summarizing, for wo oluion wih he ame iniial alue, R >, and ε from Propoiion 4.4, we hae for all T [ ] [ ] X ) E τ R τ ε X 2) τ R τ ε E 2 Y,n) τ R τ ε Y 2,n) τ R τ ε = 2E [e 2 An) τ R τε e 2 An) τ R τε ] 2E [e An) 2 τ R τε E [ e An) τ R τε Wih Propoiion 4.6 and ineualiy 23) we obain [ ] X ) E τ R τ ε X 2) τ R τ ε T C E X ) X 2) b n), X ) ) b n), X 2) ) d + E τ R τ ε e An) Y,n) ] Y,n) τ R τ ε Y 2,n) τ R τ ε ] Y,n) τ R τ ε Y 2,n) 2 2 τ R τ ε. Y 2,n), σ n), X ) ) σ n), X 2) ) ) dw The econd expecaion erm anihe due o he maringale propery of he ochaic inegral which i well defined a σ n) i bounded and Y,n) Y 2,n) 2 i inegrable by Lemma 4.8. Tha lead o [ ] X ) E τ R τ ε X 2) τ R τ ε T CE X ) X 2) b n), X ) ) b n), X 2) ) 2 d n N. And herefore, [ ] X ) E τ R τ ε X 2) τ R τ ε T X ) C lim up n CE T lim up n E X ) X 2) 2 d E T X 2) b n), X ) ) b n) X 2) ) d 4 b n), X ) ) b n), X 2) ) 2 d

55 5 PATHWISE UNIQUENESS Wih Fubini Theorem, we hen obain [ ] X ) E τ R τ ε X 2) τ R τ ε T [ X C ) E X 2) 2] d = lim up n E T 4 b n), X ) ) b n), X 2) ) 2 d ince by Lemma 4.8 he fir erm i bounded and by Lemma 4.7 he econd one i zero. So, we hae X ) = X 2) P-a.. T τ R τ ε. By he definiion of τ ε, he eualiy hold rue for all T τ R. Since we can ake R arbirarily large, we hae Thu, X ) = X 2) P-a.. [, T ]. ) P X ) = X 2) Q [, T ] = and by coninuiy of he oluion ) P X ) = X 2) [, T ] = Exenion from mall o arbirarily large ineral Unil now, we only proed pahwie uniuene up o ome poibly mall T. Now, le T be arbirarily large and ake T from Lemma 4.. Le u horly remind how T wa choen. We aumed ha σ i uch ha for all f L pt ) he euaion u + 2 d d σσ ) ij x 2 i x j u = f, ut, x) = i= j= ha a oluion u W,2,p T ) uch ha u W,2,p T ) C f L pt ), 24) where C i independen of f and increaing in T. In paricular, we can find a uniform upper bound for C for all T T. By Hölder coninuiy of x u we ge up x u, x) Cd, p, ε)t ) ε 2 u W,2,x) [,T ],p T ) 5

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

Fractional Ornstein-Uhlenbeck Bridge

Fractional Ornstein-Uhlenbeck Bridge WDS'1 Proceeding of Conribued Paper, Par I, 21 26, 21. ISBN 978-8-7378-139-2 MATFYZPRESS Fracional Ornein-Uhlenbeck Bridge J. Janák Charle Univeriy, Faculy of Mahemaic and Phyic, Prague, Czech Republic.

More information

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions Generalized Orlicz Space and Waerein Diance for Convex-Concave Scale Funcion Karl-Theodor Surm Abrac Given a ricly increaing, coninuou funcion ϑ : R + R +, baed on he co funcional ϑ (d(x, y dq(x, y, we

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

Mathematische Annalen

Mathematische Annalen Mah. Ann. 39, 33 339 (997) Mahemaiche Annalen c Springer-Verlag 997 Inegraion by par in loop pace Elon P. Hu Deparmen of Mahemaic, Norhweern Univeriy, Evanon, IL 628, USA (e-mail: elon@@mah.nwu.edu) Received:

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

Stability in Distribution for Backward Uncertain Differential Equation

Stability in Distribution for Backward Uncertain Differential Equation Sabiliy in Diribuion for Backward Uncerain Differenial Equaion Yuhong Sheng 1, Dan A. Ralecu 2 1. College of Mahemaical and Syem Science, Xinjiang Univeriy, Urumqi 8346, China heng-yh12@mail.inghua.edu.cn

More information

CHAPTER 7: SECOND-ORDER CIRCUITS

CHAPTER 7: SECOND-ORDER CIRCUITS EEE5: CI RCUI T THEORY CHAPTER 7: SECOND-ORDER CIRCUITS 7. Inroducion Thi chaper conider circui wih wo orage elemen. Known a econd-order circui becaue heir repone are decribed by differenial equaion ha

More information

ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS

ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS Elec. Comm. in Probab. 3 (998) 65 74 ELECTRONIC COMMUNICATIONS in PROBABILITY ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS L.A. RINCON Deparmen of Mahemaic Univeriy of Wale Swanea Singleon Par

More information

Main Reference: Sections in CLRS.

Main Reference: Sections in CLRS. Maximum Flow Reied 09/09/200 Main Reference: Secion 26.-26. in CLRS. Inroducion Definiion Muli-Source Muli-Sink The Ford-Fulkeron Mehod Reidual Nework Augmening Pah The Max-Flow Min-Cu Theorem The Edmond-Karp

More information

Research Article Existence and Uniqueness of Solutions for a Class of Nonlinear Stochastic Differential Equations

Research Article Existence and Uniqueness of Solutions for a Class of Nonlinear Stochastic Differential Equations Hindawi Publihing Corporaion Abrac and Applied Analyi Volume 03, Aricle ID 56809, 7 page hp://dx.doi.org/0.55/03/56809 Reearch Aricle Exience and Uniquene of Soluion for a Cla of Nonlinear Sochaic Differenial

More information

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER #A30 INTEGERS 10 (010), 357-363 FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER Nahan Kaplan Deparmen of Mahemaic, Harvard Univeriy, Cambridge, MA nkaplan@mah.harvard.edu Received: 7/15/09, Revied:

More information

Notes on cointegration of real interest rates and real exchange rates. ρ (2)

Notes on cointegration of real interest rates and real exchange rates. ρ (2) Noe on coinegraion of real inere rae and real exchange rae Charle ngel, Univeriy of Wiconin Le me ar wih he obervaion ha while he lieraure (mo prominenly Meee and Rogoff (988) and dion and Paul (993))

More information

Explicit form of global solution to stochastic logistic differential equation and related topics

Explicit form of global solution to stochastic logistic differential equation and related topics SAISICS, OPIMIZAION AND INFOMAION COMPUING Sa., Opim. Inf. Compu., Vol. 5, March 17, pp 58 64. Publihed online in Inernaional Academic Pre (www.iapre.org) Explici form of global oluion o ochaic logiic

More information

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship Laplace Tranform (Lin & DeCarlo: Ch 3) ENSC30 Elecric Circui II The Laplace ranform i an inegral ranformaion. I ranform: f ( ) F( ) ime variable complex variable From Euler > Lagrange > Laplace. Hence,

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms Chaper 6. Laplace Tranform Kreyzig by YHLee;45; 6- An ODE i reduced o an algebraic problem by operaional calculu. The equaion i olved by algebraic manipulaion. The reul i ranformed back for he oluion of

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

Chapter 7: Inverse-Response Systems

Chapter 7: Inverse-Response Systems Chaper 7: Invere-Repone Syem Normal Syem Invere-Repone Syem Baic Sar ou in he wrong direcion End up in he original eady-ae gain value Two or more yem wih differen magniude and cale in parallel Main yem

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

Rough Paths and its Applications in Machine Learning

Rough Paths and its Applications in Machine Learning Pah ignaure Machine learning applicaion Rough Pah and i Applicaion in Machine Learning July 20, 2017 Rough Pah and i Applicaion in Machine Learning Pah ignaure Machine learning applicaion Hiory and moivaion

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms 6- Chaper 6. Laplace Tranform 6.4 Shor Impule. Dirac Dela Funcion. Parial Fracion 6.5 Convoluion. Inegral Equaion 6.6 Differeniaion and Inegraion of Tranform 6.7 Syem of ODE 6.4 Shor Impule. Dirac Dela

More information

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details!

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details! MAT 257, Handou 6: Ocober 7-2, 20. I. Assignmen. Finish reading Chaper 2 of Spiva, rereading earlier secions as necessary. handou and fill in some missing deails! II. Higher derivaives. Also, read his

More information

On the Benney Lin and Kawahara Equations

On the Benney Lin and Kawahara Equations JOURNAL OF MATEMATICAL ANALYSIS AND APPLICATIONS 11, 13115 1997 ARTICLE NO AY975438 On he BenneyLin and Kawahara Equaion A Biagioni* Deparmen of Mahemaic, UNICAMP, 1381-97, Campina, Brazil and F Linare

More information

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 3, March 28, Page 99 918 S 2-9939(7)989-2 Aricle elecronically publihed on November 3, 27 FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL

More information

Note on Matuzsewska-Orlich indices and Zygmund inequalities

Note on Matuzsewska-Orlich indices and Zygmund inequalities ARMENIAN JOURNAL OF MATHEMATICS Volume 3, Number 1, 21, 22 31 Noe on Mauzewka-Orlic indice and Zygmund inequaliie N. G. Samko Univeridade do Algarve, Campu de Gambela, Faro,85 139, Porugal namko@gmail.com

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

Chapter 6. Systems of First Order Linear Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations Chaper 6 Sysems of Firs Order Linear Differenial Equaions We will only discuss firs order sysems However higher order sysems may be made ino firs order sysems by a rick shown below We will have a sligh

More information

18.03SC Unit 3 Practice Exam and Solutions

18.03SC Unit 3 Practice Exam and Solutions Sudy Guide on Sep, Dela, Convoluion, Laplace You can hink of he ep funcion u() a any nice mooh funcion which i for < a and for > a, where a i a poiive number which i much maller han any ime cale we care

More information

PHYSICS 151 Notes for Online Lecture #4

PHYSICS 151 Notes for Online Lecture #4 PHYSICS 5 Noe for Online Lecure #4 Acceleraion The ga pedal in a car i alo called an acceleraor becaue preing i allow you o change your elociy. Acceleraion i how fa he elociy change. So if you ar fro re

More information

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution Physics 7b: Saisical Mechanics Fokker-Planck Equaion The Langevin equaion approach o he evoluion of he velociy disribuion for he Brownian paricle migh leave you uncomforable. A more formal reamen of his

More information

FUZZY n-inner PRODUCT SPACE

FUZZY n-inner PRODUCT SPACE Bull. Korean Mah. Soc. 43 (2007), No. 3, pp. 447 459 FUZZY n-inner PRODUCT SPACE Srinivaan Vijayabalaji and Naean Thillaigovindan Reprined from he Bullein of he Korean Mahemaical Sociey Vol. 43, No. 3,

More information

4 Sequences of measurable functions

4 Sequences of measurable functions 4 Sequences of measurable funcions 1. Le (Ω, A, µ) be a measure space (complee, afer a possible applicaion of he compleion heorem). In his chaper we invesigae relaions beween various (nonequivalen) convergences

More information

Network Flow. Data Structures and Algorithms Andrei Bulatov

Network Flow. Data Structures and Algorithms Andrei Bulatov Nework Flow Daa Srucure and Algorihm Andrei Bulao Algorihm Nework Flow 24-2 Flow Nework Think of a graph a yem of pipe We ue hi yem o pump waer from he ource o ink Eery pipe/edge ha limied capaciy Flow

More information

EE202 Circuit Theory II

EE202 Circuit Theory II EE202 Circui Theory II 2017-2018, Spring Dr. Yılmaz KALKAN I. Inroducion & eview of Fir Order Circui (Chaper 7 of Nilon - 3 Hr. Inroducion, C and L Circui, Naural and Sep epone of Serie and Parallel L/C

More information

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov)

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov) Algorihm and Daa Srucure 2011/ Week Soluion (Tue 15h - Fri 18h No) 1. Queion: e are gien 11/16 / 15/20 8/13 0/ 1/ / 11/1 / / To queion: (a) Find a pair of ube X, Y V uch ha f(x, Y) = f(v X, Y). (b) Find

More information

An introduction to the (local) martingale problem

An introduction to the (local) martingale problem An inroducion o he (local) maringale problem Chri Janjigian Ocober 14, 214 Abrac Thee are my preenaion noe for a alk in he Univeriy of Wiconin - Madion graduae probabiliy eminar. Thee noe are primarily

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

Research Article On Double Summability of Double Conjugate Fourier Series

Research Article On Double Summability of Double Conjugate Fourier Series Inernaional Journal of Mahemaic and Mahemaical Science Volume 22, Aricle ID 4592, 5 page doi:.55/22/4592 Reearch Aricle On Double Summabiliy of Double Conjugae Fourier Serie H. K. Nigam and Kuum Sharma

More information

CHAPTER 7. Definition and Properties. of Laplace Transforms

CHAPTER 7. Definition and Properties. of Laplace Transforms SERIES OF CLSS NOTES FOR 5-6 TO INTRODUCE LINER ND NONLINER PROBLEMS TO ENGINEERS, SCIENTISTS, ND PPLIED MTHEMTICINS DE CLSS NOTES COLLECTION OF HNDOUTS ON SCLR LINER ORDINRY DIFFERENTIL EQUTIONS (ODE")

More information

Introduction to Congestion Games

Introduction to Congestion Games Algorihmic Game Theory, Summer 2017 Inroducion o Congeion Game Lecure 1 (5 page) Inrucor: Thoma Keelheim In hi lecure, we ge o know congeion game, which will be our running example for many concep in game

More information

EE Control Systems LECTURE 2

EE Control Systems LECTURE 2 Copyrigh F.L. Lewi 999 All righ reerved EE 434 - Conrol Syem LECTURE REVIEW OF LAPLACE TRANSFORM LAPLACE TRANSFORM The Laplace ranform i very ueful in analyi and deign for yem ha are linear and ime-invarian

More information

Lecture 10: The Poincaré Inequality in Euclidean space

Lecture 10: The Poincaré Inequality in Euclidean space Deparmens of Mahemaics Monana Sae Universiy Fall 215 Prof. Kevin Wildrick n inroducion o non-smooh analysis and geomery Lecure 1: The Poincaré Inequaliy in Euclidean space 1. Wha is he Poincaré inequaliy?

More information

Network Flows: Introduction & Maximum Flow

Network Flows: Introduction & Maximum Flow CSC 373 - lgorihm Deign, nalyi, and Complexiy Summer 2016 Lalla Mouaadid Nework Flow: Inroducion & Maximum Flow We now urn our aenion o anoher powerful algorihmic echnique: Local Search. In a local earch

More information

NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY

NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY Ian Crawford THE INSTITUTE FOR FISCAL STUDIES DEPARTMENT OF ECONOMICS, UCL cemmap working paper CWP02/04 Neceary and Sufficien Condiion for Laen

More information

u(t) Figure 1. Open loop control system

u(t) Figure 1. Open loop control system Open loop conrol v cloed loop feedbac conrol The nex wo figure preen he rucure of open loop and feedbac conrol yem Figure how an open loop conrol yem whoe funcion i o caue he oupu y o follow he reference

More information

Stochastic Optimal Control in Infinite Dimensions: Dynamic Programming and HJB Equations

Stochastic Optimal Control in Infinite Dimensions: Dynamic Programming and HJB Equations Sochaic Opimal Conrol in Infinie Dimenion: Dynamic Programming and HJB Equaion G. Fabbri 1 F. Gozzi 2 and A. Świe ch3 wih Chaper 6 by M. Fuhrman 4 and G. Teiore 5 1 Aix-Mareille Univeriy (Aix-Mareille

More information

arxiv: v1 [math.pr] 19 Feb 2011

arxiv: v1 [math.pr] 19 Feb 2011 A NOTE ON FELLER SEMIGROUPS AND RESOLVENTS VADIM KOSTRYKIN, JÜRGEN POTTHOFF, AND ROBERT SCHRADER ABSTRACT. Various equivalen condiions for a semigroup or a resolven generaed by a Markov process o be of

More information

Physics 240: Worksheet 16 Name

Physics 240: Worksheet 16 Name Phyic 4: Workhee 16 Nae Non-unifor circular oion Each of hee proble involve non-unifor circular oion wih a conan α. (1) Obain each of he equaion of oion for non-unifor circular oion under a conan acceleraion,

More information

Discussion Session 2 Constant Acceleration/Relative Motion Week 03

Discussion Session 2 Constant Acceleration/Relative Motion Week 03 PHYS 100 Dicuion Seion Conan Acceleraion/Relaive Moion Week 03 The Plan Today you will work wih your group explore he idea of reference frame (i.e. relaive moion) and moion wih conan acceleraion. You ll

More information

INSTANTANEOUS VELOCITY

INSTANTANEOUS VELOCITY INSTANTANEOUS VELOCITY I claim ha ha if acceleraion is consan, hen he elociy is a linear funcion of ime and he posiion a quadraic funcion of ime. We wan o inesigae hose claims, and a he same ime, work

More information

Exponential Sawtooth

Exponential Sawtooth ECPE 36 HOMEWORK 3: PROPERTIES OF THE FOURIER TRANSFORM SOLUTION. Exponenial Sawooh: The eaie way o do hi problem i o look a he Fourier ranform of a ingle exponenial funcion, () = exp( )u(). From he able

More information

Multidimensional Markovian FBSDEs with superquadratic

Multidimensional Markovian FBSDEs with superquadratic Mulidimenional Markovian FBSDE wih uperquadraic growh Michael Kupper a,1, Peng Luo b,, Ludovic angpi c,3 December 14, 17 ABSRAC We give local and global exience and uniquene reul for mulidimenional coupled

More information

On the Exponential Operator Functions on Time Scales

On the Exponential Operator Functions on Time Scales dvance in Dynamical Syem pplicaion ISSN 973-5321, Volume 7, Number 1, pp. 57 8 (212) hp://campu.m.edu/ada On he Exponenial Operaor Funcion on Time Scale laa E. Hamza Cairo Univeriy Deparmen of Mahemaic

More information

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

CHAPTER. Forced Equations and Systems { } ( ) ( ) 8.1 The Laplace Transform and Its Inverse. Transforms from the Definition.

CHAPTER. Forced Equations and Systems { } ( ) ( ) 8.1 The Laplace Transform and Its Inverse. Transforms from the Definition. CHAPTER 8 Forced Equaion and Syem 8 The aplace Tranform and I Invere Tranform from he Definiion 5 5 = b b {} 5 = 5e d = lim5 e = ( ) b {} = e d = lim e + e d b = (inegraion by par) = = = = b b ( ) ( )

More information

Example on p. 157

Example on p. 157 Example 2.5.3. Le where BV [, 1] = Example 2.5.3. on p. 157 { g : [, 1] C g() =, g() = g( + ) [, 1), var (g) = sup g( j+1 ) g( j ) he supremum is aken over all he pariions of [, 1] (1) : = < 1 < < n =

More information

Solution of Integro-Differential Equations by Using ELzaki Transform

Solution of Integro-Differential Equations by Using ELzaki Transform Global Journal of Mahemaical Sciences: Theory and Pracical. Volume, Number (), pp. - Inernaional Research Publicaion House hp://www.irphouse.com Soluion of Inegro-Differenial Equaions by Using ELzaki Transform

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Let. x y. denote a bivariate time series with zero mean.

Let. x y. denote a bivariate time series with zero mean. Linear Filer Le x y : T denoe a bivariae ime erie wih zero mean. Suppoe ha he ime erie {y : T} i conruced a follow: y a x The ime erie {y : T} i aid o be conruced from {x : T} by mean of a Linear Filer.

More information

arxiv: v1 [math.pr] 25 Jul 2017

arxiv: v1 [math.pr] 25 Jul 2017 COUPLING AND A GENERALISED POLICY ITERATION ALGORITHM IN CONTINUOUS TIME SAUL D. JACKA, ALEKSANDAR MIJATOVIĆ, AND DEJAN ŠIRAJ arxiv:177.7834v1 [mah.pr] 25 Jul 217 Abrac. We analye a verion of he policy

More information

18 Extensions of Maximum Flow

18 Extensions of Maximum Flow Who are you?" aid Lunkwill, riing angrily from hi ea. Wha do you wan?" I am Majikhie!" announced he older one. And I demand ha I am Vroomfondel!" houed he younger one. Majikhie urned on Vroomfondel. I

More information

FULLY COUPLED FBSDE WITH BROWNIAN MOTION AND POISSON PROCESS IN STOPPING TIME DURATION

FULLY COUPLED FBSDE WITH BROWNIAN MOTION AND POISSON PROCESS IN STOPPING TIME DURATION J. Au. Mah. Soc. 74 (23), 249 266 FULLY COUPLED FBSDE WITH BROWNIAN MOTION AND POISSON PROCESS IN STOPPING TIME DURATION HEN WU (Received 7 Ocober 2; revied 18 January 22) Communicaed by V. Sefanov Abrac

More information

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

Undetermined coefficients for local fractional differential equations

Undetermined coefficients for local fractional differential equations Available online a www.isr-publicaions.com/jmcs J. Mah. Compuer Sci. 16 (2016), 140 146 Research Aricle Undeermined coefficiens for local fracional differenial equaions Roshdi Khalil a,, Mohammed Al Horani

More information

1 Motivation and Basic Definitions

1 Motivation and Basic Definitions CSCE : Deign and Analyi of Algorihm Noe on Max Flow Fall 20 (Baed on he preenaion in Chaper 26 of Inroducion o Algorihm, 3rd Ed. by Cormen, Leieron, Rive and Sein.) Moivaion and Baic Definiion Conider

More information

as representing the flow of information over time, with

as representing the flow of information over time, with [Alraheed 4(4): April 15] ISSN: 77-9655 Scienific Journal Impac Facor: 3.449 (ISRA) Impac Facor:.114 IJSR INRNAIONAL JOURNAL OF NGINRING SCINCS & RSARCH CHNOLOGY H FINANCIAL APPLICAIONS OF RANDOM CONROL

More information

Math 2214 Solution Test 1 B Spring 2016

Math 2214 Solution Test 1 B Spring 2016 Mah 14 Soluion Te 1 B Spring 016 Problem 1: Ue eparaion of ariable o ole he Iniial alue DE Soluion (14p) e =, (0) = 0 d = e e d e d = o = ln e d uing u-du b leing u = e 1 e = + where C = for he iniial

More information

The multisubset sum problem for finite abelian groups

The multisubset sum problem for finite abelian groups Alo available a hp://amc-journal.eu ISSN 1855-3966 (prined edn.), ISSN 1855-3974 (elecronic edn.) ARS MATHEMATICA CONTEMPORANEA 8 (2015) 417 423 The muliube um problem for finie abelian group Amela Muraović-Ribić

More information

MALLIAVIN CALCULUS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND APPLICATION TO NUMERICAL SOLUTIONS

MALLIAVIN CALCULUS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND APPLICATION TO NUMERICAL SOLUTIONS The Annal of Applied Probabiliy 211, Vol. 21, No. 6, 2379 2423 DOI: 1.1214/11-AAP762 Iniue of Mahemaical Saiic, 211 MALLIAVIN CALCULUS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND APPLICATION TO

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

Utility maximization in incomplete markets

Utility maximization in incomplete markets Uiliy maximizaion in incomplee markes Marcel Ladkau 27.1.29 Conens 1 Inroducion and general seings 2 1.1 Marke model....................................... 2 1.2 Trading sraegy.....................................

More information

U T,0. t = X t t T X T. (1)

U T,0. t = X t t T X T. (1) Gauian bridge Dario Gabarra 1, ommi Soinen 2, and Eko Valkeila 3 1 Deparmen of Mahemaic and Saiic, PO Box 68, 14 Univeriy of Helinki,Finland dariogabarra@rnihelinkifi 2 Deparmen of Mahemaic and Saiic,

More information

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes Half-Range Series 2.5 Inroducion In his Secion we address he following problem: Can we find a Fourier series expansion of a funcion defined over a finie inerval? Of course we recognise ha such a funcion

More information

Identification of the Solution of the Burgers. Equation on a Finite Interval via the Solution of an. Appropriate Stochastic Control Problem

Identification of the Solution of the Burgers. Equation on a Finite Interval via the Solution of an. Appropriate Stochastic Control Problem Ad. heor. Al. Mech. Vol. 3 no. 37-44 Idenificaion of he oluion of he Burger Equaion on a Finie Ineral ia he oluion of an Aroriae ochaic Conrol roblem Arjuna I. Ranainghe Dearmen of Mahemaic Alabama A &

More information

Systems of nonlinear ODEs with a time singularity in the right-hand side

Systems of nonlinear ODEs with a time singularity in the right-hand side Syem of nonlinear ODE wih a ime ingulariy in he righ-hand ide Jana Burkoová a,, Irena Rachůnková a, Svaolav Saněk a, Ewa B. Weinmüller b, Sefan Wurm b a Deparmen of Mahemaical Analyi and Applicaion of

More information

1 CHAPTER 14 LAPLACE TRANSFORMS

1 CHAPTER 14 LAPLACE TRANSFORMS CHAPTER 4 LAPLACE TRANSFORMS 4 nroducion f x) i a funcion of x, where x lie in he range o, hen he funcion p), defined by p) px e x) dx, 4 i called he Laplace ranform of x) However, in hi chaper, where

More information

Mon Apr 2: Laplace transform and initial value problems like we studied in Chapter 5

Mon Apr 2: Laplace transform and initial value problems like we studied in Chapter 5 Mah 225-4 Week 2 April 2-6 coninue.-.3; alo cover par of.4-.5, EP 7.6 Mon Apr 2:.-.3 Laplace ranform and iniial value problem like we udied in Chaper 5 Announcemen: Warm-up Exercie: Recall, The Laplace

More information

Elements of Mathematical Oncology. Franco Flandoli

Elements of Mathematical Oncology. Franco Flandoli Elemen of Mahemaical Oncology Franco Flandoli Conen Par. Sochaic Differenial Equaion, linear Parial Differenial Equaion and heir link 5 Chaper. Brownian moion and hea equaion 7. Inroducion 7. Simulaion

More information

Additional Methods for Solving DSGE Models

Additional Methods for Solving DSGE Models Addiional Mehod for Solving DSGE Model Karel Meren, Cornell Univeriy Reference King, R. G., Ploer, C. I. & Rebelo, S. T. (1988), Producion, growh and buine cycle: I. he baic neoclaical model, Journal of

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Convergence of the Neumann series in higher norms

Convergence of the Neumann series in higher norms Convergence of he Neumann series in higher norms Charles L. Epsein Deparmen of Mahemaics, Universiy of Pennsylvania Version 1.0 Augus 1, 003 Absrac Naural condiions on an operaor A are given so ha he Neumann

More information

ON FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES

ON FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES Communicaion on Sochaic Analyi Vol. 5, No. 1 211 121-133 Serial Publicaion www.erialpublicaion.com ON FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES TERHI KAARAKKA AND PAAVO SALMINEN Abrac. In hi paper we udy

More information

Syntactic Complexity of Suffix-Free Languages. Marek Szykuła

Syntactic Complexity of Suffix-Free Languages. Marek Szykuła Inroducion Upper Bound on Synacic Complexiy of Suffix-Free Language Univeriy of Wrocław, Poland Join work wih Januz Brzozowki Univeriy of Waerloo, Canada DCFS, 25.06.2015 Abrac Inroducion Sae and ynacic

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

6. Stochastic calculus with jump processes

6. Stochastic calculus with jump processes A) Trading sraegies (1/3) Marke wih d asses S = (S 1,, S d ) A rading sraegy can be modelled wih a vecor φ describing he quaniies invesed in each asse a each insan : φ = (φ 1,, φ d ) The value a of a porfolio

More information

TP B.2 Rolling resistance, spin resistance, and "ball turn"

TP B.2 Rolling resistance, spin resistance, and ball turn echnical proof TP B. olling reiance, pin reiance, and "ball urn" upporing: The Illuraed Principle of Pool and Billiard hp://billiard.coloae.edu by Daid G. Alciaore, PhD, PE ("Dr. Dae") echnical proof originally

More information

Approximation for Option Prices under Uncertain Volatility

Approximation for Option Prices under Uncertain Volatility Approximaion for Opion Price under Uncerain Volailiy Jean-Pierre Fouque Bin Ren February, 3 Abrac In hi paper, we udy he aympoic behavior of he wor cae cenario opion price a he volailiy inerval in an uncerain

More information

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER John Riley 6 December 200 NWER TO ODD NUMBERED EXERCIE IN CHPTER 7 ecion 7 Exercie 7-: m m uppoe ˆ, m=,, M (a For M = 2, i i eay o how ha I implie I From I, for any probabiliy vecor ( p, p 2, 2 2 ˆ ( p,

More information

Chapter 9 - The Laplace Transform

Chapter 9 - The Laplace Transform Chaper 9 - The Laplace Tranform Selece Soluion. Skech he pole-zero plo an region of convergence (if i exi) for hee ignal. ω [] () 8 (a) x e u = 8 ROC σ ( ) 3 (b) x e co π u ω [] ( ) () (c) x e u e u ROC

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

Existence of Stepanov-like Square-mean Pseudo Almost Automorphic Solutions to Nonautonomous Stochastic Functional Evolution Equations

Existence of Stepanov-like Square-mean Pseudo Almost Automorphic Solutions to Nonautonomous Stochastic Functional Evolution Equations Exience of Sepanov-like Square-mean Peudo Almo Auomorphic Soluion o Nonauonomou Sochaic Funcional Evoluion Equaion Zuomao Yan Abrac We inroduce he concep of bi-quare-mean almo auomorphic funcion and Sepanov-like

More information

7 The Itô/Stratonovich dilemma

7 The Itô/Stratonovich dilemma 7 The Iô/Sraonovich dilemma The dilemma: wha does he idealizaion of dela-funcion-correlaed noise mean? ẋ = f(x) + g(x)η() η()η( ) = κδ( ). (1) Previously, we argued by a limiing procedure: aking noise

More information

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems Sample Final Exam Covering Chaper 9 (final04) Sample Final Exam (final03) Covering Chaper 9 of Fundamenal of Signal & Syem Problem (0 mar) Conider he caual opamp circui iniially a re depiced below. I LI

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

Spectral gaps for the O-U/Stochastic heat processes on path space over a Riemannian manifold with boundary

Spectral gaps for the O-U/Stochastic heat processes on path space over a Riemannian manifold with boundary arxiv:181.186v1 [mah.pr] 5 Dec 18 ec1 Specral gap for he O-U/Sochaic hea procee on pah pace over a Riemannian manifold wih boundary Bo Wu School of Mahemaical Science, Fudan Univeriy, Shanghai 433, China

More information

T-Rough Fuzzy Subgroups of Groups

T-Rough Fuzzy Subgroups of Groups Journal of mahemaic and compuer cience 12 (2014), 186-195 T-Rough Fuzzy Subgroup of Group Ehagh Hoeinpour Deparmen of Mahemaic, Sari Branch, Ilamic Azad Univeriy, Sari, Iran. hoienpor_a51@yahoo.com Aricle

More information

Linear Algebra Primer

Linear Algebra Primer Linear Algebra rimer And a video dicuion of linear algebra from EE263 i here (lecure 3 and 4): hp://ee.anford.edu/coure/ee263 lide from Sanford CS3 Ouline Vecor and marice Baic Mari Operaion Deerminan,

More information