Mitigating Multi-Target-Attacks in Hash-based Signatures. Andreas Hülsing joint work with Joost Rijneveld, Fang Song

Size: px
Start display at page:

Download "Mitigating Multi-Target-Attacks in Hash-based Signatures. Andreas Hülsing joint work with Joost Rijneveld, Fang Song"

Transcription

1 Mitigating Multi-Target-Attacks in Hash-based Signatures Andreas Hülsing joint work with Joost Rijneveld, Fang Song

2 A brief motivation

3 Trapdoor- / Identification Scheme-based (PQ-)Signatures Lattice, MQ, Coding Signature and/or key sizes Runtimes Secure parameters PAGE y x x x x x x y x x x x x x y

4 Hash-based Signature Schemes [Mer89] Post quantum Only secure hash function Security well understood Fast PAGE 4

5 RSA DSA EC-DSA... Intractability Assumption Cryptographic hash function RSA, DH, SVP, MQ, Digital signature scheme PAGE 5

6 Basic Construction PAGE 6

7 Lamport-Diffie OTS [Lam79] Message M = b1,,bm, OWF H * = n bit SK PK sk 1,0 sk 1,1 sk m,0 sk m,1 H H H H H H pk 1,0 pk 1,1 pk m,0 pk m,1 b1 Mux b2 Mux bm Mux Sig sk 1,b1 sk m,bm PAGE 7

8 Merkle s Hash-based Signatures PK H SIG = (i=2,,,,, ) H OTS H H H H H H H H H H H H H OTS OTS OTS OTS OTS OTS OTS OTS SK PAGE 8

9 Minimizing security assumptions... [BHH+15,BDE+11,BDH11, DOTV08,Hül13,HRB13]

10 Assumption / Attacks Hash-function properties stronger / easier to break Collision-Resistance 2 nd -Preimage- Resistance weaker / harder to break One-way Pseudorandom PAGE 10

11 Attacks on Hash Functions MD5 Collisions (theo.) MD5 Collisions (practical!) SHA-1 Collisions (theo.) MD5 & SHA-1 No (Second-) Preimage Attacks! PAGE 11

12 ...and dealing with the consequences [HRS16]

13 Multi-target attacks What is the bit security of a protocol using a n = 256 bit hash function that requires one-wayness? 256 bit? Not necessarily!

14 Multi-target attacks Consider H n {h k : 0,1 m 0,1 n k 0,1 n } Assume protocol Π that uses h k p times Break Π invert h k on one out of p different values. Attack complexity: Θ(2 n log p ) (generic attacks) Bit security: n log p Similar problem applies for SPR, etcr,...

15 Formalizing the issue One-wayness: for any classical q-query A Single-function, multi-target one-wayness

16 Solution? Use different elements from function family for each hash. - Makes problems independent - Each hash query can only be used for one target!

17 Multi-function, multi-target OW Seems trivial, right? What about the quantum case? Still trivial?

18 Results

19 Implications Tight security for MSS that rely on multi-function properties. New function (key) for each call. New bitmask too for SPR No solution for message digest, yet (see etcr)

20 Part II: Details on Hashbased signatures

21 Winternitz-OTS [Mer90,BDE+11,Hül13]

22 Recap LD-OTS [Lam79] Message M = b1,,bm, OWF H * = n bit SK sk 1,0 sk 1,1 sk m,0 sk m,1 H H H H H H PK pk 1,0 pk 1,1 pk m,0 pk m,1 b1 Mux b2 Mux bn Mux Sig sk 1,b1 sk m,bm

23 LD-OTS in MSS SIG = (i=2,,,,, ) Verification: 1. Verify 2. Verify authenticity of We can do better!

24 Trivial Optimization Message M = b1,,bm, OWF H * = n bit SK sk 1,0 sk 1,1 sk m,0 sk m,1 H H H H H H PK pk 1,0 pk 1,1 pk m,0 pk m,1 b1 Mux Mux b1 bm Mux Mux bm Sig sig 1,0 sig 1,1 sig m,0 sig m,1

25 Optimized LD-OTS in MSS Verification: X SIG = (i=2,,,,, ) 1. Compute from 2. Verify authenticity of Steps together verify

26 Let s sort this! Message M = b 1,,b m, OWF H SK: sk 1,,sk m,sk m+1,,sk 2m PK: H(sk 1 ),,H(sk m ),H(sk m+1 ),,H(sk 2m ) Encode M: M = M M = b 1,,b m, b 1,, b m (instead of b 1, b 1,,b m, b m ) Sig: sig i = sk i, if b i = 1 H(sk i ), otherwise Checksum with bad performance!

27 Optimized LD-OTS [Mer90] Message M = b 1,,b m, OWF H SK: sk 1,,sk m,sk m+1,,sk m+1+log m PK: H(sk 1 ),,H(sk m ),H(sk m+1 ),,H(sk m+1+log m ) Encode M: M = b 1,,b m, 1 m b i Sig: sig i = sk i, if b i = 1 H(sk i ), otherwise IF one b i is flipped from 1 to 0, another b j will flip from 0 to 1

28 Function chains Function family: H n h k : {0,1} n {0,1} n h k $ H n Parameter w Chain: c i ( x) i 1 h k ( c ( x)) hk hk hk ( x) i times c 0 (x) = x c 1 (x) = h k (x) c w 1 (x)

29 WOTS Winternitz parameter w, security parameter n, message length m, function family H n c 0 (sk 1 ) = sk 1 Key Generation: Compute l, sample h k pk 1 = c w-1 (sk 1 ) c 1 (sk 1 ) c 1 (sk l ) pk l = c w-1 (sk l ) c 0 (sk l ) = sk l

30 WOTS Signature generation M b 1 b 2 b 3 b 4 b m b m +1 b m +2 b l c 0 (sk 1 ) = sk 1 pk 1 = c w-1 (sk 1 ) C σ 1 =c b 1(sk 1 ) Signature: σ = (σ 1,, σ l ) pk l = c w-1 (sk l ) c 0 (sk l ) = sk l σ l =c b l (sk l )

31 WOTS Signature Verification Verifier knows: M, w b 1 b 2 b 3 b 4 b m b m +1 b l 1+2 b l σ 1 Signature: σ = (σ 1,, σ l ) c 1 (σ 1 ) c 2 (σ 1 ) c 3 (σ 1 ) σ l pk 1 =? c w 1 b 1 (σ 1 ) pk l =? c w 1 b l (σ l )

32 WOTS Function Chains For x 0,1 n define c 0 x = x and WOTS: c i x = h k (c i 1 x ) WOTS $ : c i x = h c i 1 x (r) WOTS + : c i x = h k (c i 1 x r i )

33 WOTS Security Theorem (informally): W-OTS is strongly unforgeable under chosen message attacks if H n is a collision resistant family of undetectable one-way functions. W-OTS $ is existentially unforgeable under chosen message attacks if H n is a pseudorandom function family. W-OTS + is strongly unforgeable under chosen message attacks if H n is a 2 nd -preimage resistant family of undetectable one-way functions.

34 extended Merkle Signature Scheme (XMSS) joint work with Johannes Buchmann, Erik Dahmen

35 XMSS Tree: Uses bitmasks Leafs: Use binary tree with bitmasks OTS: WOTS + Mesage digest: Randomized hashing Collision-resilient -> signature size halved H b i H

36 Multi-Tree XMSS Uses multiple layers of trees -> Key generation (= Building first tree on each layer) Θ(2 h ) Θ(d*2 h/d ) -> Allows to reduce worst-case signing times Θ(h/2) Θ(h/2d)

37 XMSS-Draft since -01 Each hash function call (excl. message hash) takes now a key and a bitmask. Issue: Order of N w l keys and bitmasks that have to be published. Put them into PK? Impractical Solution: PRG + Seed in PK

38 XMSS-Draft since -01 Solution: PRG + Seed in PK Security: - Not really standard model. - Natural but new assumption ( Generating the public values using a PRG, the scheme does not get less secure if seed is published. ), - Or ROM

39 SPHINCS: practical stateless hashbased signatures joint work with Daniel J. Bernstein, Daira Hopwood, Tanja Lange, Ruben Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, Zooko Wilcox O Hearn

40 How to Eliminate the State

41 Protest? PAGE

42 Few-Time Signature Schemes PAGE 42

43 Recap LD-OTS Message M = b1,,bn, OWF H * = n bit SK PK sk 1,0 sk 1,1 sk n,0 sk n,1 H H H H H H pk 1,0 pk 1,1 pk n,0 pk n,1 b1 Mux b2 Mux bn Mux Sig sk 1,b1 sk n,bn PAGE 43

44 HORS [RR02] Message M, OWF H, CRHF H = n bit Parameters t=2 a,k, with m = ka (typical a=16, k=32) * SK sk 1 sk 2 sk t-1 sk t H H H H H H PK pk 1 pk 1 pk t-1 pk t PAGE 44

45 HORS mapping function Message M, OWF H, CRHF H = n bit Parameters t=2 a,k, with m = ka (typical a=16, k=32) * M H b 1 b 2 b a b ar i 1 i k PAGE 45

46 HORS Message M, OWF H, CRHF H * = n bit Parameters t=2 a,k, with m = ka (typical a=16, k=32) SK sk 1 sk 2 sk t-1 sk t H H H H H H PK pk 1 pk 1 pk t-1 pk t H (M) b 1 b 2 b a b a+1 b ka-2 b ka-1 b ka i 1 Mux Mux i k sk i1 sk ik PAGE 46

47 HORS Security M mapped to k element index set M i {1,, t} k Each signature publishes k out of t secrets Either break one-wayness or r-subset-resilience: After seeing index sets M i j for r messages msg j, 1 j r, hard to find msg r+1 i msg j such that M r+1 1 j r M i j. Best generic attack: Succ r-ssr (A, q) = q rk t Security shrinks with each signature! k PAGE 47

48 HORST Using HORS with MSS requires adding PK (tn) to MSS signature. HORST: Merkle Tree on top of HORS-PK New PK = Root Publish Authentication Paths for HORS signature values PK can be computed from Sig With optimizations: tn (k(log t x + 1) + 2 x )n E.g. SPHINCS-256: 2 MB 16 KB Use randomized message hash PAGE 48

49 SPHINCS Stateless Scheme XMSS MT + HORST + (pseudo-)random index Collision-resilient Deterministic signing SPHINCS-256: 128-bit post-quantum secure Hundrest of signatures / sec 41 kb signature 1 kb keys

50 Thank you! Questions? For references & further literature see PAGE 50

51 (Hash) function families H n h k : {0,1} m n {0,1} n m(n) n efficient {0,1} n h k m n {0,1}

52 One-wayness H n h k : {0,1} m n {0,1} n y c, k h $ k H n x $ {0,1} h k x y c m n Success if h k x = y c x

53 Collision resistance H n h k : {0,1} m n {0,1} n k h k $ H n Success if h k x 1 = h k x 2 (x 1, x 2 )

54 Second-preimage resistance H n h k : {0,1} m n {0,1} n x c, k h $ k H n x $ m n c {0,1} Success if h k x c = h k x x

55 Undetectability H n h k : {0,1} m n {0,1} n h k $ H n b $ {0,1} If b = 1 else x $ m n {0,1} y c h k (x) y c $ {0,1} n y c, k b*

56 Pseudorandomness H n h k : {0,1} m n {0,1} n 1 n b x y = g(x) g If b = 1 g $ H n else g $ U m n,n b*

An update on Hash-based Signatures. Andreas Hülsing

An update on Hash-based Signatures. Andreas Hülsing An update on Hash-based Signatures Andreas Hülsing Trapdoor- / Identification Scheme-based (PQ-)Signatures Lattice, MQ, Coding Signature and/or key sizes Runtimes Secure parameters 9-9-2015 PAGE 2... 1

More information

Hash-based Signatures. Andreas Hülsing

Hash-based Signatures. Andreas Hülsing Hash-based Signatures Andreas Hülsing Post-Quantum Signatures Lattice, MQ, Coding Signature and/or key sizes Runtimes Secure parameters 23-2-2016 PAGE 2... 1 3 1 4 2 3 2 2 3 2 3 4 1 2 1 2 1 1 y x x x x

More information

Hash-based signatures & Hash-and-sign without collision-resistance

Hash-based signatures & Hash-and-sign without collision-resistance Hash-based signatures & Hash-and-sign without collision-resistance Andreas Hülsing 22.12.2016 Hash-based Signature Schemes [Mer89] Post quantum Only secure hash function Security well understood Fast 22-12-2016

More information

Hash-based Signatures

Hash-based Signatures Hash-based Signatures Andreas Hülsing Summer School on Post-Quantum Cryptography June 2017, TU Eindhoven Post-Quantum Signatures Lattice, MQ, Coding Signature and/or key sizes Runtimes Secure parameters

More information

SPHINCS: practical stateless hash-based signatures

SPHINCS: practical stateless hash-based signatures SPHINCS: practical stateless hash-based signatures D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L. Papachristodoulou, P. Schwabe, and Z. Wilcox O'Hearn Digital Signatures are Important!

More information

Mitigating Multi-Target Attacks in Hash-based Signatures

Mitigating Multi-Target Attacks in Hash-based Signatures Mitigating Multi-Target Attacks in Hash-based Signatures Andreas Hülsing 1, Joost Rijneveld 2, and Fang Song 3 1 Department of Mathematics and Computer Science Technische Universiteit Eindhoven P.O. Box

More information

XMSS A Practical Forward Secure Signature Scheme based on Minimal Security Assumptions

XMSS A Practical Forward Secure Signature Scheme based on Minimal Security Assumptions XMSS A Practical Forward Secure Signature Scheme based on Minimal Security Assumptions Johannes Buchmann and Andreas Hülsing {buchmann,huelsing}@cdc.informatik.tu-darmstadt.de Cryptography and Computeralgebra

More information

Post-Quantum Cryptography & Privacy. Andreas Hülsing

Post-Quantum Cryptography & Privacy. Andreas Hülsing Post-Quantum Cryptography & Privacy Andreas Hülsing Privacy? Too abstract? How to achieve privacy? Under the hood... Public-key crypto ECC RSA DSA Secret-key crypto AES SHA2 SHA1... Combination of both

More information

Optimal Parameters for XMSS MT

Optimal Parameters for XMSS MT Optimal Parameters for XMSS MT Andreas Hülsing, Lea Rausch, and Johannes Buchmann Cryptography and Computeralgebra Department of Computer Science TU Darmstadt, Germany huelsing@cdc.informatik.tu-darmstadt.de

More information

Quantum-Safe Crypto Why & How? JP Aumasson, Kudelski Security

Quantum-Safe Crypto Why & How? JP Aumasson, Kudelski Security Quantum-Safe Crypto Why & How? JP Aumasson, Kudelski Security Flight plan What s a quantum computer? How broken are your public keys? AES vs. quantum search Hidden quantum powers Defeating quantum computing

More information

Improving Stateless Hash-Based Signatures

Improving Stateless Hash-Based Signatures Improving Stateless Hash-Based Signatures Jean-Philippe Aumasson 1 and Guillaume Endignoux 2 1 Kudelski Security, Switzerland 2 Google, Switzerland Abstract. We present several optimizations to SPHINCS,

More information

Reassessing Grover s Algorithm

Reassessing Grover s Algorithm Reassessing Grover s Algorithm Scott Fluhrer Cisco Systems, USA sfluhrer@cisco.com Abstract. We note that Grover s algorithm (and any other quantum algorithm that does a search using an oracle) does not

More information

Digital Signature Schemes and the Random Oracle Model. A. Hülsing

Digital Signature Schemes and the Random Oracle Model. A. Hülsing Digital Signature Schemes and the Random Oracle Model A. Hülsing Today s goal Review provable security of in use signature schemes. (PKCS #1 v2.x) PAGE 1 Digital Signature Source: http://hari-cio-8a.blog.ugm.ac.id/files/2013/03/dsa.jpg

More information

Authentication. Chapter Message Authentication

Authentication. Chapter Message Authentication Chapter 5 Authentication 5.1 Message Authentication Suppose Bob receives a message addressed from Alice. How does Bob ensure that the message received is the same as the message sent by Alice? For example,

More information

From 5-pass MQ-based identification to MQ-based signatures

From 5-pass MQ-based identification to MQ-based signatures From 5-pass MQ-based identification to MQ-based signatures Ming-Shing Chen 1,2, Andreas Hülsing 3, Joost Rijneveld 4, Simona Samardjiska 5, Peter Schwabe 4 National Taiwan University 1 / Academia Sinica

More information

From 5-pass MQ-based identification to MQ-based signatures

From 5-pass MQ-based identification to MQ-based signatures From 5-pass MQ-based identification to MQ-based signatures Ming-Shing Chen 1,2, Andreas Hülsing 3, Joost Rijneveld 4, Simona Samardjiska 5, Peter Schwabe 4 National Taiwan University 1 / Academia Sinica

More information

Post-Quantum Cryptography & Privacy. Andreas Hülsing

Post-Quantum Cryptography & Privacy. Andreas Hülsing Post-Quantum Cryptography & Privacy Andreas Hülsing Privacy? Too abstract? How to achieve privacy? Under the hood... Asymmetric Crypto ECC RSA DSA Symmetric Crypto AES SHA2 SHA1... Combination of both

More information

FPGA-BASED ACCELERATOR FOR POST-QUANTUM SIGNATURE SCHEME SPHINCS-256

FPGA-BASED ACCELERATOR FOR POST-QUANTUM SIGNATURE SCHEME SPHINCS-256 IMES FPGA-BASED ACCELERATOR FOR POST-QUANTUM SIGNATURE SCHEME SPHINCS-256 Dorian Amiet 1, Andreas Curiger 2 and Paul Zbinden 1 1 HSR Hochschule für Technik, Rapperswil, Switzerland 2 Securosys SA, Zürich,

More information

The Random Oracle Paradigm. Mike Reiter. Random oracle is a formalism to model such uses of hash functions that abound in practical cryptography

The Random Oracle Paradigm. Mike Reiter. Random oracle is a formalism to model such uses of hash functions that abound in practical cryptography 1 The Random Oracle Paradigm Mike Reiter Based on Random Oracles are Practical: A Paradigm for Designing Efficient Protocols by M. Bellare and P. Rogaway Random Oracles 2 Random oracle is a formalism to

More information

Optimal Parameters for XMSSMT

Optimal Parameters for XMSSMT Optimal Parameters for XMSSMT Andreas Hülsing, Lea Rausch, Johannes Buchmann To cite this version: Andreas Hülsing, Lea Rausch, Johannes Buchmann. Optimal Parameters for XMSSMT. Alfredo Cuzzocrea; Christian

More information

A survey on quantum-secure cryptographic systems

A survey on quantum-secure cryptographic systems A survey on quantum-secure cryptographic systems Tomoka Kan May 24, 2018 1 Abstract Post-quantum cryptography refers to the search for classical cryptosystems which remain secure in the presence of a quantum

More information

Clarifying the subset-resilience problem

Clarifying the subset-resilience problem Clarifying the subset-resilience problem Jean-Philippe Aumasson 1 and Guillaume Endignoux 2 1 Kudelski Security, Switzerland 2 firstname.surname@m4x.org Abstract. We investigate the subset-resilience problem,

More information

Katz, Lindell Introduction to Modern Cryptrography

Katz, Lindell Introduction to Modern Cryptrography Katz, Lindell Introduction to Modern Cryptrography Slides Chapter 12 Markus Bläser, Saarland University Digital signature schemes Goal: integrity of messages Signer signs a message using a private key

More information

Practice Final Exam Winter 2017, CS 485/585 Crypto March 14, 2017

Practice Final Exam Winter 2017, CS 485/585 Crypto March 14, 2017 Practice Final Exam Name: Winter 2017, CS 485/585 Crypto March 14, 2017 Portland State University Prof. Fang Song Instructions This exam contains 7 pages (including this cover page) and 5 questions. Total

More information

From 5-pass MQ-based identification to MQ-based signatures

From 5-pass MQ-based identification to MQ-based signatures From 5-pass MQ-based identification to MQ-based signatures Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter Schwabe 30 June 2016 1 / 31 Our take on PQ-Crypto Prepare for actual use Reliable

More information

How to Use Short Basis : Trapdoors for Hard Lattices and new Cryptographic Constructions

How to Use Short Basis : Trapdoors for Hard Lattices and new Cryptographic Constructions Presentation Article presentation, for the ENS Lattice Based Crypto Workgroup http://www.di.ens.fr/~pnguyen/lbc.html, 30 September 2009 How to Use Short Basis : Trapdoors for http://www.cc.gatech.edu/~cpeikert/pubs/trap_lattice.pdf

More information

Notes for Lecture 9. 1 Combining Encryption and Authentication

Notes for Lecture 9. 1 Combining Encryption and Authentication U.C. Berkeley CS276: Cryptography Handout N9 Luca Trevisan February 17, 2009 Notes for Lecture 9 Notes scribed by Joel Weinberger, posted March 1, 2009 Summary Last time, we showed that combining a CPA-secure

More information

Digital Signatures. Adam O Neill based on

Digital Signatures. Adam O Neill based on Digital Signatures Adam O Neill based on http://cseweb.ucsd.edu/~mihir/cse207/ Signing by hand COSMO ALICE ALICE Pay Bob $100 Cosmo Alice Alice Bank =? no Don t yes pay Bob Signing electronically SIGFILE

More information

W-OTS + Shorter Signatures for Hash-Based Signature Schemes

W-OTS + Shorter Signatures for Hash-Based Signature Schemes W-OTS + Shorter Signatures for Hash-Based Signature Schemes Andreas Hülsing huelsing@cdc.informati.tu-darmstadt.de Cryptography and Computeralgebra Department of Computer Science TU Darmstadt Abstract.

More information

MQDSS signatures: construction

MQDSS signatures: construction MQDSS signatures: construction Ming-Shing Chen 1,2, Andreas Hülsing 3, Joost Rijneveld 4, Simona Samardjiska 5, Peter Schwabe 4 National Taiwan University 1 / Academia Sinica 2, Taipei, Taiwan Eindhoven

More information

Lecture 16 Chiu Yuen Koo Nikolai Yakovenko. 1 Digital Signature Schemes. CMSC 858K Advanced Topics in Cryptography March 18, 2004

Lecture 16 Chiu Yuen Koo Nikolai Yakovenko. 1 Digital Signature Schemes. CMSC 858K Advanced Topics in Cryptography March 18, 2004 CMSC 858K Advanced Topics in Cryptography March 18, 2004 Lecturer: Jonathan Katz Lecture 16 Scribe(s): Chiu Yuen Koo Nikolai Yakovenko Jeffrey Blank 1 Digital Signature Schemes In this lecture, we introduce

More information

Technische Universität München (I7) Winter 2013/14 Dr. M. Luttenberger / M. Schlund SOLUTION. Cryptography Endterm

Technische Universität München (I7) Winter 2013/14 Dr. M. Luttenberger / M. Schlund SOLUTION. Cryptography Endterm Technische Universität München (I7) Winter 2013/14 Dr. M. Luttenberger / M. Schlund SOLUTION Cryptography Endterm Exercise 1 One Liners 1.5P each = 12P For each of the following statements, state if it

More information

Lecture 18: Message Authentication Codes & Digital Signa

Lecture 18: Message Authentication Codes & Digital Signa Lecture 18: Message Authentication Codes & Digital Signatures MACs and Signatures Both are used to assert that a message has indeed been generated by a party MAC is the private-key version and Signatures

More information

ECS 189A Final Cryptography Spring 2011

ECS 189A Final Cryptography Spring 2011 ECS 127: Cryptography Handout F UC Davis Phillip Rogaway June 9, 2011 ECS 189A Final Cryptography Spring 2011 Hints for success: Good luck on the exam. I don t think it s all that hard (I do believe I

More information

Lecture 14 More on Digital Signatures and Variants. COSC-260 Codes and Ciphers Adam O Neill Adapted from

Lecture 14 More on Digital Signatures and Variants. COSC-260 Codes and Ciphers Adam O Neill Adapted from Lecture 14 More on Digital Signatures and Variants COSC-260 Codes and Ciphers Adam O Neill Adapted from http://cseweb.ucsd.edu/~mihir/cse107/ Setting the Stage We will cover in more depth some issues for

More information

Message Authentication Codes (MACs)

Message Authentication Codes (MACs) Message Authentication Codes (MACs) Tung Chou Technische Universiteit Eindhoven, The Netherlands October 8, 2015 1 / 22 About Me 2 / 22 About Me Tung Chou (Tony) 2 / 22 About Me Tung Chou (Tony) Ph.D.

More information

CRYSTALS Kyber and Dilithium. Peter Schwabe February 7, 2018

CRYSTALS Kyber and Dilithium. Peter Schwabe   February 7, 2018 CRYSTALS Kyber and Dilithium Peter Schwabe peter@cryptojedi.org https://cryptojedi.org February 7, 2018 Crypto today 5 building blocks for a secure channel Symmetric crypto Block or stream cipher (e.g.,

More information

ENEE 459-C Computer Security. Message authentication (continue from previous lecture)

ENEE 459-C Computer Security. Message authentication (continue from previous lecture) ENEE 459-C Computer Security Message authentication (continue from previous lecture) Last lecture Hash function Cryptographic hash function Message authentication with hash function (attack?) with cryptographic

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017 COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Previously Digital Signatures Algorithms: Gen() à (sk,pk) Sign(sk,m) à σ Ver(pk,m,σ) à 0/1 Correctness: Pr[Ver(pk,m,Sign(sk,m))=1:

More information

1 Cryptographic hash functions

1 Cryptographic hash functions CSCI 5440: Cryptography Lecture 6 The Chinese University of Hong Kong 24 October 2012 1 Cryptographic hash functions Last time we saw a construction of message authentication codes (MACs) for fixed-length

More information

Number Theory: Applications. Number Theory Applications. Hash Functions II. Hash Functions III. Pseudorandom Numbers

Number Theory: Applications. Number Theory Applications. Hash Functions II. Hash Functions III. Pseudorandom Numbers Number Theory: Applications Number Theory Applications Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Results from Number Theory have many applications

More information

Introduction to Information Security

Introduction to Information Security Introduction to Information Security Lecture 4: Hash Functions and MAC 2007. 6. Prof. Byoungcheon Lee sultan (at) joongbu. ac. kr Information and Communications University Contents 1. Introduction - Hash

More information

1 Number Theory Basics

1 Number Theory Basics ECS 289M (Franklin), Winter 2010, Crypto Review 1 Number Theory Basics This section has some basic facts about number theory, mostly taken (or adapted) from Dan Boneh s number theory fact sheets for his

More information

Practice Exam Winter 2018, CS 485/585 Crypto March 14, 2018

Practice Exam Winter 2018, CS 485/585 Crypto March 14, 2018 Practice Exam Name: Winter 2018, CS 485/585 Crypto March 14, 2018 Portland State University Prof. Fang Song Instructions This exam contains 8 pages (including this cover page) and 5 questions. Total of

More information

A Composition Theorem for Universal One-Way Hash Functions

A Composition Theorem for Universal One-Way Hash Functions A Composition Theorem for Universal One-Way Hash Functions Victor Shoup IBM Zurich Research Lab, Säumerstr. 4, 8803 Rüschlikon, Switzerland sho@zurich.ibm.com Abstract. In this paper we present a new scheme

More information

1 Cryptographic hash functions

1 Cryptographic hash functions CSCI 5440: Cryptography Lecture 6 The Chinese University of Hong Kong 23 February 2011 1 Cryptographic hash functions Last time we saw a construction of message authentication codes (MACs) for fixed-length

More information

Hash Functions. Ali El Kaafarani. Mathematical Institute Oxford University. 1 of 34

Hash Functions. Ali El Kaafarani. Mathematical Institute Oxford University. 1 of 34 Hash Functions Ali El Kaafarani Mathematical Institute Oxford University 1 of 34 Outline 1 Definition and Notions of Security 2 The Merkle-damgård Transform 3 MAC using Hash Functions 4 Cryptanalysis:

More information

An introduction to Hash functions

An introduction to Hash functions An introduction to Hash functions Anna Rimoldi eriscs - Universitée de la Méditerranée, Marseille Secondo Workshop di Crittografia BunnyTN 2011 A. Rimoldi (eriscs) Hash function 12 September 2011 1 / 27

More information

Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller

Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller Daniele Micciancio 1 Chris Peikert 2 1 UC San Diego 2 Georgia Tech April 2012 1 / 16 Lattice-Based Cryptography y = g x mod p m e mod N e(g a,

More information

Post-Quantum Cryptography

Post-Quantum Cryptography Post-Quantum Cryptography Prof. Dr. J. Buchmann Written by: P. Schmidt Last updated: February 25, 2010 1 Contents 1. Introduction 5 2. Motivation 5 3. Quantum Algorithms and Quantum Computers 6 3.1. The

More information

Analysis of Random Oracle Instantiation Scenarios for OAEP and other Practical Schemes

Analysis of Random Oracle Instantiation Scenarios for OAEP and other Practical Schemes Analysis of Random Oracle Instantiation Scenarios for OAEP and other Practical Schemes Alexandra Boldyreva 1 and Marc Fischlin 2 1 College of Computing, Georgia Institute of Technology, 801 Atlantic Drive,

More information

CLASSICAL CRYPTOSYSTEMS IN A QUANTUM WORLD

CLASSICAL CRYPTOSYSTEMS IN A QUANTUM WORLD CLASSICAL CRYPTOSYSTEMS IN A QUANTUM WORLD Mark Zhandry Stanford University * Joint work with Dan Boneh But First: My Current Work Indistinguishability Obfuscation (and variants) Multiparty NIKE without

More information

Cryptographic Hash Functions

Cryptographic Hash Functions Cryptographic Hash Functions Çetin Kaya Koç koc@ece.orst.edu Electrical & Computer Engineering Oregon State University Corvallis, Oregon 97331 Technical Report December 9, 2002 Version 1.5 1 1 Introduction

More information

Notes for Lecture A can repeat step 3 as many times as it wishes. We will charge A one unit of time for every time it repeats step 3.

Notes for Lecture A can repeat step 3 as many times as it wishes. We will charge A one unit of time for every time it repeats step 3. COS 533: Advanced Cryptography Lecture 2 (September 18, 2017) Lecturer: Mark Zhandry Princeton University Scribe: Mark Zhandry Notes for Lecture 2 1 Last Time Last time, we defined formally what an encryption

More information

Lecture 1: Introduction to Public key cryptography

Lecture 1: Introduction to Public key cryptography Lecture 1: Introduction to Public key cryptography Thomas Johansson T. Johansson (Lund University) 1 / 44 Key distribution Symmetric key cryptography: Alice and Bob share a common secret key. Some means

More information

Lecture 1. Crypto Background

Lecture 1. Crypto Background Lecture 1 Crypto Background This lecture Crypto background hash functions random oracle model digital signatures and applications Cryptographic Hash Functions Hash function takes a string of arbitrary

More information

Public-Seed Pseudorandom Permutations

Public-Seed Pseudorandom Permutations Public-Seed Pseudorandom Permutations Stefano Tessaro UCSB Joint work with Pratik Soni (UCSB) DIMACS Workshop New York June 8, 2017 We look at existing class of cryptographic primitives and introduce/study

More information

Foundations of Cryptography

Foundations of Cryptography - 111 - Foundations of Cryptography Notes of lecture No. 10B & 11 (given on June 11 & 18, 1989) taken by Sergio Rajsbaum Summary In this lecture we define unforgeable digital signatures and present such

More information

BEYOND POST QUANTUM CRYPTOGRAPHY

BEYOND POST QUANTUM CRYPTOGRAPHY BEYOND POST QUANTUM CRYPTOGRAPHY Mark Zhandry Stanford University Joint work with Dan Boneh Classical Cryptography Post-Quantum Cryptography All communication stays classical Beyond Post-Quantum Cryptography

More information

Lecture 14: Cryptographic Hash Functions

Lecture 14: Cryptographic Hash Functions CSE 599b: Cryptography (Winter 2006) Lecture 14: Cryptographic Hash Functions 17 February 2006 Lecturer: Paul Beame Scribe: Paul Beame 1 Hash Function Properties A hash function family H = {H K } K K is

More information

High-speed cryptography, part 3: more cryptosystems. Daniel J. Bernstein University of Illinois at Chicago & Technische Universiteit Eindhoven

High-speed cryptography, part 3: more cryptosystems. Daniel J. Bernstein University of Illinois at Chicago & Technische Universiteit Eindhoven High-speed cryptography, part 3: more cryptosystems Daniel J. Bernstein University of Illinois at Chicago & Technische Universiteit Eindhoven Cryptographers Working systems Cryptanalytic algorithm designers

More information

Introduction to cryptology (GBIN8U16) More on discrete-logarithm based schemes

Introduction to cryptology (GBIN8U16) More on discrete-logarithm based schemes Introduction to cryptology (GBIN8U16) More on discrete-logarithm based schemes Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/pierre.karpman/tea.html 2018 03 13 More

More information

Transitive Signatures Based on Non-adaptive Standard Signatures

Transitive Signatures Based on Non-adaptive Standard Signatures Transitive Signatures Based on Non-adaptive Standard Signatures Zhou Sujing Nanyang Technological University, Singapore, zhousujing@pmail.ntu.edu.sg Abstract. Transitive signature, motivated by signing

More information

Digital signature schemes

Digital signature schemes Digital signature schemes Martin Stanek Department of Computer Science Comenius University stanek@dcs.fmph.uniba.sk Cryptology 1 (2017/18) Content Introduction digital signature scheme security of digital

More information

Lecture 11: Key Agreement

Lecture 11: Key Agreement Introduction to Cryptography 02/22/2018 Lecture 11: Key Agreement Instructor: Vipul Goyal Scribe: Francisco Maturana 1 Hardness Assumptions In order to prove the security of cryptographic primitives, we

More information

II. Digital signatures

II. Digital signatures II. Digital signatures Alice m Bob Eve 1. Did Bob send message m, or was it Eve? 2. Did Eve modify the message m, that was sent by Bob? 1 Digital signatures Digital signature - are equivalent of handwritten

More information

Higher Order Universal One-Way Hash Functions from the Subset Sum Assumption

Higher Order Universal One-Way Hash Functions from the Subset Sum Assumption Higher Order Universal One-Way Hash Functions from the Subset Sum Assumption Ron Steinfeld, Josef Pieprzyk, Huaxiong Wang Dept. of Computing, Macquarie University, Australia {rons, josef, hwang}@ics.mq.edu.au

More information

SIGNATURE SCHEMES & CRYPTOGRAPHIC HASH FUNCTIONS. CIS 400/628 Spring 2005 Introduction to Cryptography

SIGNATURE SCHEMES & CRYPTOGRAPHIC HASH FUNCTIONS. CIS 400/628 Spring 2005 Introduction to Cryptography SIGNATURE SCHEMES & CRYPTOGRAPHIC HASH FUNCTIONS CIS 400/628 Spring 2005 Introduction to Cryptography This is based on Chapter 8 of Trappe and Washington DIGITAL SIGNATURES message sig 1. How do we bind

More information

Ex1 Ex2 Ex3 Ex4 Ex5 Ex6

Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Technische Universität München (I7) Winter 2012/13 Dr. M. Luttenberger / M. Schlund Cryptography Endterm Last name: First name: Student ID no.: Signature: If you feel ill, let us know immediately. Please,

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 16 October 30, 2017 CPSC 467, Lecture 16 1/52 Properties of Hash Functions Hash functions do not always look random Relations among

More information

Sampling Lattice Trapdoors

Sampling Lattice Trapdoors Sampling Lattice Trapdoors November 10, 2015 Today: 2 notions of lattice trapdoors Efficient sampling of trapdoors Application to digital signatures Last class we saw one type of lattice trapdoor for a

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017 COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Authenticated Encryption Syntax Syntax: Enc: K M à C Dec: K C à M { } Correctness: For all k K, m M, Dec(k, Enc(k,m) ) = m Unforgeability

More information

Understanding Cryptography A Textbook for Students and Practitioners by Christof Paar and Jan Pelzl. Chapter 11 Hash Functions ver.

Understanding Cryptography A Textbook for Students and Practitioners by Christof Paar and Jan Pelzl. Chapter 11 Hash Functions ver. Understanding Cryptography A Textbook for Students and Practitioners by Christof Paar and Jan Pelzl www.crypto-textbook.com Chapter 11 Hash Functions ver. October 29, 2009 These slides were prepared by

More information

Perfectly-Crafted Swiss Army Knives in Theory

Perfectly-Crafted Swiss Army Knives in Theory Perfectly-Crafted Swiss Army Knives in Theory Workshop Hash Functions in Cryptology * supported by Emmy Noether Program German Research Foundation (DFG) Hash Functions as a Universal Tool collision resistance

More information

6.080/6.089 GITCS Apr 15, Lecture 17

6.080/6.089 GITCS Apr 15, Lecture 17 6.080/6.089 GITCS pr 15, 2008 Lecturer: Scott aronson Lecture 17 Scribe: dam Rogal 1 Recap 1.1 Pseudorandom Generators We will begin with a recap of pseudorandom generators (PRGs). s we discussed before

More information

Week 12: Hash Functions and MAC

Week 12: Hash Functions and MAC Week 12: Hash Functions and MAC 1. Introduction Hash Functions vs. MAC 2 Hash Functions Any Message M Hash Function Generate a fixed length Fingerprint for an arbitrary length message. No Key involved.

More information

Cryptographic Solutions for Data Integrity in the Cloud

Cryptographic Solutions for Data Integrity in the Cloud Cryptographic Solutions for Stanford University, USA Stanford Computer Forum 2 April 2012 Homomorphic Encryption Homomorphic encryption allows users to delegate computation while ensuring secrecy. Homomorphic

More information

CRYPTANALYSIS OF COMPACT-LWE

CRYPTANALYSIS OF COMPACT-LWE SESSION ID: CRYP-T10 CRYPTANALYSIS OF COMPACT-LWE Jonathan Bootle, Mehdi Tibouchi, Keita Xagawa Background Information Lattice-based cryptographic assumption Based on the learning-with-errors (LWE) assumption

More information

Uninstantiability of Full-Domain Hash

Uninstantiability of Full-Domain Hash Uninstantiability of based on On the Generic Insecurity of, Crypto 05, joint work with Y.Dodis and R.Oliveira Krzysztof Pietrzak CWI Amsterdam June 3, 2008 Why talk about this old stuff? Why talk about

More information

Lecture 15 & 16: Trapdoor Permutations, RSA, Signatures

Lecture 15 & 16: Trapdoor Permutations, RSA, Signatures CS 7810 Graduate Cryptography October 30, 2017 Lecture 15 & 16: Trapdoor Permutations, RSA, Signatures Lecturer: Daniel Wichs Scribe: Willy Quach & Giorgos Zirdelis 1 Topic Covered. Trapdoor Permutations.

More information

A brief survey of post-quantum cryptography. D. J. Bernstein University of Illinois at Chicago

A brief survey of post-quantum cryptography. D. J. Bernstein University of Illinois at Chicago A brief survey of post-quantum cryptography D. J. Bernstein University of Illinois at Chicago Once the enormous energy boost that quantum computers are expected to provide hits the street, most encryption

More information

Enforcing honesty of certification authorities: Tagged one-time signature schemes

Enforcing honesty of certification authorities: Tagged one-time signature schemes Enforcing honesty of certification authorities: Tagged one-time signature schemes Information Security Group Royal Holloway, University of London bertram.poettering@rhul.ac.uk Stanford, January 11, 2013

More information

From Fixed-Length Messages to Arbitrary-Length Messages Practical RSA Signature Padding Schemes

From Fixed-Length Messages to Arbitrary-Length Messages Practical RSA Signature Padding Schemes From Fixed-Length Messages to Arbitrary-Length Messages Practical RSA Signature Padding Schemes [Published in D. Naccache, Ed., Topics in Cryptology CT-RSA 2001, vol. 2020 of Lecture Notes in Computer

More information

Foundations of Network and Computer Security

Foundations of Network and Computer Security Foundations of Network and Computer Security John Black Lecture #5 Sep 7 th 2004 CSCI 6268/TLEN 5831, Fall 2004 Announcements Please sign up for class mailing list by end of today Quiz #1 will be on Thursday,

More information

5199/IOC5063 Theory of Cryptology, 2014 Fall

5199/IOC5063 Theory of Cryptology, 2014 Fall 5199/IOC5063 Theory of Cryptology, 2014 Fall Homework 2 Reference Solution 1. This is about the RSA common modulus problem. Consider that two users A and B use the same modulus n = 146171 for the RSA encryption.

More information

Hashes and Message Digests Alex X. Liu & Haipeng Dai

Hashes and Message Digests Alex X. Liu & Haipeng Dai Hashes and Message Digests Alex X. Liu & Haipeng Dai haipengdai@nju.edu.cn 313 CS Building Department of Computer Science and Technology Nanjing University Integrity vs. Secrecy Integrity: attacker cannot

More information

Digital Signatures. p1.

Digital Signatures. p1. Digital Signatures p1. Digital Signatures Digital signature is the same as MAC except that the tag (signature) is produced using the secret key of a public-key cryptosystem. Message m MAC k (m) Message

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 11 October 7, 2015 CPSC 467, Lecture 11 1/37 Digital Signature Algorithms Signatures from commutative cryptosystems Signatures from

More information

Information Security

Information Security SE 4472 / ECE 9064 Information Security Week 12: Random Number Generators and Picking Appropriate Key Lengths Fall 2015 Prof. Aleksander Essex Random Number Generation Where do keys come from? So far we

More information

Higher Order Universal One-Way Hash Functions

Higher Order Universal One-Way Hash Functions Higher Order Universal One-Way Hash Functions Deukjo Hong 1, Bart Preneel 2, and Sangjin Lee 1 1 Center for Information Security Technologies(CIST), Korea University, Seoul, Korea {hongdj,sangjin}@cist.korea.ac.kr

More information

Towards Tightly Secure Lattice Short Signature and Id-Based Encryption

Towards Tightly Secure Lattice Short Signature and Id-Based Encryption Towards Tightly Secure Lattice Short Signature and Id-Based Encryption Xavier Boyen Qinyi Li QUT Asiacrypt 16 2016-12-06 1 / 19 Motivations 1. Short lattice signature with tight security reduction w/o

More information

From Fixed-Length to Arbitrary-Length RSA Encoding Schemes Revisited

From Fixed-Length to Arbitrary-Length RSA Encoding Schemes Revisited From Fixed-Length to Arbitrary-Length RSA Encoding Schemes Revisited Julien Cathalo 1, Jean-Sébastien Coron 2, and David Naccache 2,3 1 UCL Crypto Group Place du Levant 3, Louvain-la-Neuve, B-1348, Belgium

More information

Homework 7 Solutions

Homework 7 Solutions Homework 7 Solutions Due: March 22, 2018 CS 151: Intro. to Cryptography and Computer Security 1 Fun with PRFs a. F a s = F 0 k(x) F s (x) is not a PRF, for any choice of F. Consider a distinguisher D a

More information

2: Iterated Cryptographic Hash Functions

2: Iterated Cryptographic Hash Functions 2: Iterated ryptographic Hash Functions we want hash function H : ({0, 1} n ) {0, 1} n of potentially infinite input size instead we have compression function F : {0, 1} m {0, 1} n {0, 1} n and define

More information

Leftovers from Lecture 3

Leftovers from Lecture 3 Leftovers from Lecture 3 Implementing GF(2^k) Multiplication: Polynomial multiplication, and then remainder modulo the defining polynomial f(x): (1,1,0,1,1) *(0,1,0,1,1) = (1,1,0,0,1) For small size finite

More information

Secure Signatures and Chosen Ciphertext Security in a Post-Quantum World

Secure Signatures and Chosen Ciphertext Security in a Post-Quantum World Secure Signatures and Chosen Ciphertext Security in a Post-Quantum World Dan Boneh Mark Zhandry Stanford University {dabo,zhandry}@cs.stanford.edu Abstract We initiate the study of quantum-secure digital

More information

Cryptographical Security in the Quantum Random Oracle Model

Cryptographical Security in the Quantum Random Oracle Model Cryptographical Security in the Quantum Random Oracle Model Center for Advanced Security Research Darmstadt (CASED) - TU Darmstadt, Germany June, 21st, 2012 This work is licensed under a Creative Commons

More information

DTTF/NB479: Dszquphsbqiz Day 26

DTTF/NB479: Dszquphsbqiz Day 26 DTTF/NB479: Dszquphsbqiz Day 26 Announceents:. HW6 due now 2. HW7 posted 3. Will pick pres dates Friday Questions? This week: Discrete Logs, Diffie-Hellan, ElGaal Hash Functions, SHA, Birthday attacks

More information

https://www.microsoft.com/en-us/research/people/plonga/ Outline Motivation recap Isogeny-based cryptography The SIDH key exchange protocol The SIKE protocol Authenticated key exchange from supersingular

More information

Solution of Exercise Sheet 7

Solution of Exercise Sheet 7 saarland Foundations of Cybersecurity (Winter 16/17) Prof. Dr. Michael Backes CISPA / Saarland University university computer science Solution of Exercise Sheet 7 1 Variants of Modes of Operation Let (K,

More information