DTTF/NB479: Dszquphsbqiz Day 26

Size: px
Start display at page:

Download "DTTF/NB479: Dszquphsbqiz Day 26"

Transcription

1 DTTF/NB479: Dszquphsbqiz Day 26 Announceents:. HW6 due now 2. HW7 posted 3. Will pick pres dates Friday Questions? This week: Discrete Logs, Diffie-Hellan, ElGaal Hash Functions, SHA, Birthday attacks

2 ElGaal Bob publishes (α, p, β), where < < p and β=α a Alice chooses secret k, coputes and sends to Bob the pair (r,t) where r=α k (od p) t = β k (od p) Bob finds: tr -a = (od p) Notes:. Show that Bob s decryption works Plug in values for t, r, and β. Nae: 2. Eve would like to know k. Show that knowing k allows decrpytion. Why? =β -k t 3. Why can t Eve copute k fro r or t? Need to calculate a discrete log to do so, which is hard when p is large 4. Challenge: Alice should randoize k each tie. If not, and Eve gets hold of a plaintext / ciphertext (, r, t ), she can decrypt other ciphertexts ( 2, r 2, t 2 ). Show how. Use, t to solve for β k. Then use β -k and t 2 to find 2 5. If Eve says she found fro (r,t), can we verify that she really found it, using only the public key (and not k or a)? Explain. Not easily (see next slide)

3 Known plaintext attack Bob publishes (α, p, β), where < < p and β=α a Alice chooses secret k, coputes and sends to Bob the pair (r,t) where r=α k (od p) t = β k (od p) Bob finds: tr -a = (od p) Why does this work? If Eve got hold of a plaintext/ciphertext (, r, t ), she can decrypt other ciphertexts ( 2, r 2, t 2 ): Answer: r=α k (od p), t = β k (od p), t 2 = β k 2 (od p) So t t2 β k (od p) You can solve for 2, since everything else in the proportion is known. 2 Alice should randoize k each tie.

4 Tying everything together Bob publishes (α, p, β), where < < p and β=α a Alice chooses secret k, coputes and sends to Bob the pair (r,t) where r=α k (od p) t = β k (od p) Bob finds: tr -a = (od p) Why does this work? If Eve says she found fro (r,t), can we verify that she really found it, using just,r,t and the public key? Not easily! Decision D-H Validity of (od p) ElGaal ciphertexts. Coputational D-H Decrypting (od p) ElGaal ciphertexts.

5 Cryptographic hash functions shrink essages into a digest Message (long) Cryptographic hash Function, h Message digest, y (Shorter fixed length) Shrinks data, so 2 essages can have the sae digest:!= 2, but h( ) = h( 2 ) Goal: to provide a unique fingerprint of the essage.

6 Cryptographic hash functions ust satisfy three properties to be useful and secure 2 Message (long) Cryptographic hash Function, h Message digest, y (Shorter fixed length) Shrinks data, so 2 essages can have the sae digest:!= 2, but h( ) = h( 2 ). Fast to copute y fro. 2. One-way: given y = h(), can t find any satisfying h( ) = y easily. 3. Strongly collision-free: Can t find any pair 2 such that h( )=h( 2 ) easily 4. (Soeties we can settle for weakly collision-free: given, can t find with h() = h( ).

7 Hash functions can be used for digital signatures and error detection 3 3 properties:. Fast to copute 2. One-way: given y = h(), can t find any satisfying h( ) = y easily. 3. Strongly collisionfree: Can t find 2 such that h( )=h( 2 ) Why do we care about these properties? Use #: Digital signatures If Alice signs h(), what if Bob could find, such that h() = h( )? He could clai Alice signed! Consider two contracts Use #2: Error detection siple exaple: Alice sends (, h()), Bob receives (M, H). Bob checks if H=h(M). If not, there s an error.

8 Hash function exaples 4a-b 3 properties:. Fast to copute 2. One-way: given y = h(), can t find any satisfying h( ) = y easily. 3. Strongly collision-free: Can t find 2 such that h( )=h( 2 ) Exaples:. h() = (od n) 2. h() = α (od p) for large prie p, which doesn t divide α 3. Discrete log hash Given large prie p, such that q=(p-)/2 is also prie, and EHA (next) priitive roots α and β for p: β h ) α ( where = 0 + q SHA- (toorrow) (od 0 p MD4, MD5 (weaker than SHA; won t discuss) ) For first 2 exaples, please check properties 2-3.

9 Easy Hash Algorith (EHA) isn t very secure! Break into n-bit blocks, append zeros to get a ultiple of n. There are L of the, where L = /n Fast! But not very secure. Does perforing a left shift on the rows first help? Define y as leftshifting by y bits Then = ( i ) i i 2 2 = =... l l 2 22 l 2 n 2n ln [ c c... ] 22 ll c n n 2 l, l+ l, l =h()

10 Easy Hash Algorith (EHA) isn t very secure! 4c 3 properties:. Fast to copute 2. One-way: given y = h(), can t find any satisfying h( ) = y easily. 3. Strongly collisionfree: Can t find 2 such that h( )=h( 2 ) 2 =... l = l 2 [ c c... ] 2 22 l 2 2 n 2n ln c n =h() Exercise:. Show that the basic (unrotated) version doesn t satisfy properties 2 and What about the version that uses rotations?

DTTF/NB479: Dszquphsbqiz Day 27

DTTF/NB479: Dszquphsbqiz Day 27 DTTF/NB479: Dszquphsbqiz Day 27 Announceents: Questions? This week: Discrete Logs, Diffie-Hellan, ElGaal Hash Functions and SHA-1 Birthday attacks Hash Functions Message (long) Cryptographic hash Function,

More information

Problem 1. k zero bits. n bits. Block Cipher. Block Cipher. Block Cipher. Block Cipher. removed

Problem 1. k zero bits. n bits. Block Cipher. Block Cipher. Block Cipher. Block Cipher. removed Problem 1 n bits k zero bits IV Block Block Block Block removed January 27, 2011 Practical Aspects of Modern Cryptography 2 Problem 1 IV Inverse Inverse Inverse Inverse Missing bits January 27, 2011 Practical

More information

SIGNATURE SCHEMES & CRYPTOGRAPHIC HASH FUNCTIONS. CIS 400/628 Spring 2005 Introduction to Cryptography

SIGNATURE SCHEMES & CRYPTOGRAPHIC HASH FUNCTIONS. CIS 400/628 Spring 2005 Introduction to Cryptography SIGNATURE SCHEMES & CRYPTOGRAPHIC HASH FUNCTIONS CIS 400/628 Spring 2005 Introduction to Cryptography This is based on Chapter 8 of Trappe and Washington DIGITAL SIGNATURES message sig 1. How do we bind

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 11 October 7, 2015 CPSC 467, Lecture 11 1/37 Digital Signature Algorithms Signatures from commutative cryptosystems Signatures from

More information

Network Security Technology Spring, 2018 Tutorial 3, Week 4 (March 23) Due Date: March 30

Network Security Technology Spring, 2018 Tutorial 3, Week 4 (March 23) Due Date: March 30 Network Security Technology Spring, 2018 Tutorial 3, Week 4 (March 23) LIU Zhen Due Date: March 30 Questions: 1. RSA (20 Points) Assume that we use RSA with the prime numbers p = 17 and q = 23. (a) Calculate

More information

9 Knapsack Cryptography

9 Knapsack Cryptography 9 Knapsack Cryptography In the past four weeks, we ve discussed public-key encryption systems that depend on various problems that we believe to be hard: prime factorization, the discrete logarithm, and

More information

Chapter 8 Public-key Cryptography and Digital Signatures

Chapter 8 Public-key Cryptography and Digital Signatures Chapter 8 Public-key Cryptography and Digital Signatures v 1. Introduction to Public-key Cryptography 2. Example of Public-key Algorithm: Diffie- Hellman Key Exchange Scheme 3. RSA Encryption and Digital

More information

s = (Y Q Y P)/(X Q - X P)

s = (Y Q Y P)/(X Q - X P) Elliptic Curves and their Applications in Cryptography Preeti Shara M.Tech Student Mody University of Science and Technology, Lakshangarh Abstract This paper gives an introduction to elliptic curves. The

More information

Hashes and Message Digests Alex X. Liu & Haipeng Dai

Hashes and Message Digests Alex X. Liu & Haipeng Dai Hashes and Message Digests Alex X. Liu & Haipeng Dai haipengdai@nju.edu.cn 313 CS Building Department of Computer Science and Technology Nanjing University Integrity vs. Secrecy Integrity: attacker cannot

More information

Question: Total Points: Score:

Question: Total Points: Score: University of California, Irvine COMPSCI 134: Elements of Cryptography and Computer and Network Security Midterm Exam (Fall 2016) Duration: 90 minutes November 2, 2016, 7pm-8:30pm Name (First, Last): Please

More information

b = 10 a, is the logarithm of b to the base 10. Changing the base to e we obtain natural logarithms, so a = ln b means that b = e a.

b = 10 a, is the logarithm of b to the base 10. Changing the base to e we obtain natural logarithms, so a = ln b means that b = e a. INTRODUCTION TO CRYPTOGRAPHY 5. Discrete Logarithms Recall the classical logarithm for real numbers: If we write b = 10 a, then a = log 10 b is the logarithm of b to the base 10. Changing the base to e

More information

Lecture V : Public Key Cryptography

Lecture V : Public Key Cryptography Lecture V : Public Key Cryptography Internet Security: Principles & Practices John K. Zao, PhD (Harvard) SMIEEE Amir Rezapoor Computer Science Department, National Chiao Tung University 2 Outline Functional

More information

March 19: Zero-Knowledge (cont.) and Signatures

March 19: Zero-Knowledge (cont.) and Signatures March 19: Zero-Knowledge (cont.) and Signatures March 26, 2013 1 Zero-Knowledge (review) 1.1 Review Alice has y, g, p and claims to know x such that y = g x mod p. Alice proves knowledge of x to Bob w/o

More information

ECS 189A Final Cryptography Spring 2011

ECS 189A Final Cryptography Spring 2011 ECS 127: Cryptography Handout F UC Davis Phillip Rogaway June 9, 2011 ECS 189A Final Cryptography Spring 2011 Hints for success: Good luck on the exam. I don t think it s all that hard (I do believe I

More information

Lecture 1: Introduction to Public key cryptography

Lecture 1: Introduction to Public key cryptography Lecture 1: Introduction to Public key cryptography Thomas Johansson T. Johansson (Lund University) 1 / 44 Key distribution Symmetric key cryptography: Alice and Bob share a common secret key. Some means

More information

CIS 6930/4930 Computer and Network Security. Topic 5.2 Public Key Cryptography

CIS 6930/4930 Computer and Network Security. Topic 5.2 Public Key Cryptography CIS 6930/4930 Computer and Network Security Topic 5.2 Public Key Cryptography 1 Diffie-Hellman Key Exchange 2 Diffie-Hellman Protocol For negotiating a shared secret key using only public communication

More information

Overview. Public Key Algorithms II

Overview. Public Key Algorithms II Public Key Algorithms II Dr. Arjan Durresi Louisiana State University Baton Rouge, LA 70810 Durresi@csc.lsu.Edu These slides are available at: http://www.csc.lsu.edu/~durresi/csc4601-04/ Louisiana State

More information

Public Key Cryptography

Public Key Cryptography Public Key Cryptography Introduction Public Key Cryptography Unlike symmetric key, there is no need for Alice and Bob to share a common secret Alice can convey her public key to Bob in a public communication:

More information

Asymmetric Encryption

Asymmetric Encryption -3 s s Encryption Comp Sci 3600 Outline -3 s s 1-3 2 3 4 5 s s Outline -3 s s 1-3 2 3 4 5 s s Function Using Bitwise XOR -3 s s Key Properties for -3 s s The most important property of a hash function

More information

Cryptography and Security Final Exam

Cryptography and Security Final Exam Cryptography and Security Final Exam Serge Vaudenay 17.1.2017 duration: 3h no documents allowed, except one 2-sided sheet of handwritten notes a pocket calculator is allowed communication devices are not

More information

8 Elliptic Curve Cryptography

8 Elliptic Curve Cryptography 8 Elliptic Curve Cryptography 8.1 Elliptic Curves over a Finite Field For the purposes of cryptography, we want to consider an elliptic curve defined over a finite field F p = Z/pZ for p a prime. Given

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 14 October 16, 2013 CPSC 467, Lecture 14 1/45 Message Digest / Cryptographic Hash Functions Hash Function Constructions Extending

More information

ENEE 457: Computer Systems Security 09/19/16. Lecture 6 Message Authentication Codes and Hash Functions

ENEE 457: Computer Systems Security 09/19/16. Lecture 6 Message Authentication Codes and Hash Functions ENEE 457: Computer Systems Security 09/19/16 Lecture 6 Message Authentication Codes and Hash Functions Charalampos (Babis) Papamanthou Department of Electrical and Computer Engineering University of Maryland,

More information

Practice Assignment 2 Discussion 24/02/ /02/2018

Practice Assignment 2 Discussion 24/02/ /02/2018 German University in Cairo Faculty of MET (CSEN 1001 Computer and Network Security Course) Dr. Amr El Mougy 1 RSA 1.1 RSA Encryption Practice Assignment 2 Discussion 24/02/2018-29/02/2018 Perform encryption

More information

Goals of Cryptography. Definition of a Cryptosystem. Security Kerckhoff's Requirements

Goals of Cryptography. Definition of a Cryptosystem. Security Kerckhoff's Requirements Goals of Cryptography Chapter : Security Techniques Background Secret Key Cryptography Public Key Cryptography Hash Functions Authentication Chapter 3: Security on Network Transport Layer Chapter 4: Security

More information

Introduction to Modern Cryptography. Benny Chor

Introduction to Modern Cryptography. Benny Chor Introduction to Modern Cryptography Benny Chor RSA Public Key Encryption Factoring Algorithms Lecture 7 Tel-Aviv University Revised March 1st, 2008 Reminder: The Prime Number Theorem Let π(x) denote the

More information

Number theory (Chapter 4)

Number theory (Chapter 4) EECS 203 Spring 2016 Lecture 12 Page 1 of 8 Number theory (Chapter 4) Review Compute 6 11 mod 13 in an efficient way What is the prime factorization of 100? 138? What is gcd(100, 138)? What is lcm(100,138)?

More information

Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World. Dan Boneh and Mark Zhandry Stanford University

Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World. Dan Boneh and Mark Zhandry Stanford University Secure Signatures and Chosen Ciphertext Security in a Quantu Coputing World Dan Boneh and Mark Zhandry Stanford University Classical Chosen Message Attack (CMA) σ = S(sk, ) signing key sk Classical CMA

More information

Information Security

Information Security SE 4472 / ECE 9064 Information Security Week 12: Random Number Generators and Picking Appropriate Key Lengths Fall 2015 Prof. Aleksander Essex Random Number Generation Where do keys come from? So far we

More information

CHALMERS GÖTEBORGS UNIVERSITET. TDA352 (Chalmers) - DIT250 (GU) 11 April 2017, 8:30-12:30

CHALMERS GÖTEBORGS UNIVERSITET. TDA352 (Chalmers) - DIT250 (GU) 11 April 2017, 8:30-12:30 CHALMERS GÖTEBORGS UNIVERSITET CRYPTOGRAPHY TDA35 (Chalmers) - DIT50 (GU) 11 April 017, 8:30-1:30 No extra material is allowed during the exam except for pens and a simple calculator (not smartphones).

More information

Notes for Lecture 9. 1 Combining Encryption and Authentication

Notes for Lecture 9. 1 Combining Encryption and Authentication U.C. Berkeley CS276: Cryptography Handout N9 Luca Trevisan February 17, 2009 Notes for Lecture 9 Notes scribed by Joel Weinberger, posted March 1, 2009 Summary Last time, we showed that combining a CPA-secure

More information

Exam Security January 19, :30 11:30

Exam Security January 19, :30 11:30 Exam Security January 19, 2016. 8:30 11:30 You can score a maximum of 100. Each question indicates how many it is worth. You are NOT allowed to use books or notes, or a (smart) phone. You may answer in

More information

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Friday 25 January 2019

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Friday 25 January 2019 Faculty of Mathematics and Computer Science Exam Cryptology, Friday 25 January 2019 Name : TU/e student number : Exercise 1 2 3 4 5 total points Notes: Please hand in all sheets at the end of the exam.

More information

Hash Functions. A hash function h takes as input a message of arbitrary length and produces as output a message digest of fixed length.

Hash Functions. A hash function h takes as input a message of arbitrary length and produces as output a message digest of fixed length. Hash Functions 1 Hash Functions A hash function h takes as input a message of arbitrary length and produces as output a message digest of fixed length. 0 1 1 0 1 0 0 1 Long Message Hash Function 1 1 1

More information

U.C. Berkeley CS276: Cryptography Luca Trevisan February 5, Notes for Lecture 6

U.C. Berkeley CS276: Cryptography Luca Trevisan February 5, Notes for Lecture 6 U.C. Berkeley CS276: Cryptography Handout N6 Luca Trevisan February 5, 2009 Notes for Lecture 6 Scribed by Ian Haken, posted February 8, 2009 Summary The encryption scheme we saw last time, based on pseudorandom

More information

Intro to Public Key Cryptography Diffie & Hellman Key Exchange

Intro to Public Key Cryptography Diffie & Hellman Key Exchange Introduction to Modern Cryptography Lecture 5 Number Theory: 1. Quadratic residues. 2. The discrete log problem. Intro to Public Key Cryptography Diffie & Hellman Key Exchange Course Summary - Math Part

More information

Lecture Notes, Week 6

Lecture Notes, Week 6 YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467b: Cryptography and Computer Security Week 6 (rev. 3) Professor M. J. Fischer February 15 & 17, 2005 1 RSA Security Lecture Notes, Week 6 Several

More information

Foundations of Network and Computer Security

Foundations of Network and Computer Security Foundations of Network and Computer Security John Black Lecture #6 Sep 8 th 2005 CSCI 6268/TLEN 5831, Fall 2005 Announcements Quiz #1 later today Still some have not signed up for class mailing list Perhaps

More information

Leftovers from Lecture 3

Leftovers from Lecture 3 Leftovers from Lecture 3 Implementing GF(2^k) Multiplication: Polynomial multiplication, and then remainder modulo the defining polynomial f(x): (1,1,0,1,1) *(0,1,0,1,1) = (1,1,0,0,1) For small size finite

More information

Cryptography. Lecture 2: Perfect Secrecy and its Limitations. Gil Segev

Cryptography. Lecture 2: Perfect Secrecy and its Limitations. Gil Segev Cryptography Lecture 2: Perfect Secrecy and its Limitations Gil Segev Last Week Symmetric-key encryption (KeyGen, Enc, Dec) Historical ciphers that are completely broken The basic principles of modern

More information

Multiparty Computation

Multiparty Computation Multiparty Computation Principle There is a (randomized) function f : ({0, 1} l ) n ({0, 1} l ) n. There are n parties, P 1,...,P n. Some of them may be adversarial. Two forms of adversarial behaviour:

More information

Security Issues in Cloud Computing Modern Cryptography II Asymmetric Cryptography

Security Issues in Cloud Computing Modern Cryptography II Asymmetric Cryptography Security Issues in Cloud Computing Modern Cryptography II Asymmetric Cryptography Peter Schwabe October 21 and 28, 2011 So far we assumed that Alice and Bob both have some key, which nobody else has. How

More information

CHAPTER 6: OTHER CRYPTOSYSTEMS, PSEUDO-RANDOM NUMBER GENERATORS and HASH FUNCTIONS. Part VI

CHAPTER 6: OTHER CRYPTOSYSTEMS, PSEUDO-RANDOM NUMBER GENERATORS and HASH FUNCTIONS. Part VI CHAPTER 6: OTHER CRYPTOSYSTEMS, PSEUDO-RANDOM NUMER GENERATORS and HASH FUNCTIONS Part VI Public-key cryptosystems, II. Other cryptosystems, security, PRG, hash functions A large number of interesting

More information

Overview. Background / Context. CSC 580 Cryptography and Computer Security. March 21, 2017

Overview. Background / Context. CSC 580 Cryptography and Computer Security. March 21, 2017 CSC 580 Cryptography and Computer Security Math for Public Key Crypto, RSA, and Diffie-Hellman (Sections 2.4-2.6, 2.8, 9.2, 10.1-10.2) March 21, 2017 Overview Today: Math needed for basic public-key crypto

More information

ENEE 457: Computer Systems Security 10/3/16. Lecture 9 RSA Encryption and Diffie-Helmann Key Exchange

ENEE 457: Computer Systems Security 10/3/16. Lecture 9 RSA Encryption and Diffie-Helmann Key Exchange ENEE 457: Computer Systems Security 10/3/16 Lecture 9 RSA Encryption and Diffie-Helmann Key Exchange Charalampos (Babis) Papamanthou Department of Electrical and Computer Engineering University of Maryland,

More information

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Tuesday 30 October 2018

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Tuesday 30 October 2018 Faculty of Mathematics and Computer Science Exam Cryptology, Tuesday 30 October 2018 Name : TU/e student number : Exercise 1 2 3 4 5 total points Notes: Please hand in all sheets at the end of the exam.

More information

Public Key Cryptography

Public Key Cryptography Public Key Cryptography Spotlight on Science J. Robert Buchanan Department of Mathematics 2011 What is Cryptography? cryptography: study of methods for sending messages in a form that only be understood

More information

Lecture 28: Public-key Cryptography. Public-key Cryptography

Lecture 28: Public-key Cryptography. Public-key Cryptography Lecture 28: Recall In private-key cryptography the secret-key sk is always established ahead of time The secrecy of the private-key cryptography relies on the fact that the adversary does not have access

More information

Lecture 10 - MAC s continued, hash & MAC

Lecture 10 - MAC s continued, hash & MAC Lecture 10 - MAC s continued, hash & MAC Boaz Barak March 3, 2010 Reading: Boneh-Shoup chapters 7,8 The field GF(2 n ). A field F is a set with a multiplication ( ) and addition operations that satisfy

More information

Attacks on hash functions. Birthday attacks and Multicollisions

Attacks on hash functions. Birthday attacks and Multicollisions Attacks on hash functions Birthday attacks and Multicollisions Birthday Attack Basics In a group of 23 people, the probability that there are at least two persons on the same day in the same month is greater

More information

Solutions for week 1, Cryptography Course - TDA 352/DIT 250

Solutions for week 1, Cryptography Course - TDA 352/DIT 250 Solutions for week, Cryptography Course - TDA 352/DIT 250 In this weekly exercise sheet: you will use some historical ciphers, the OTP, the definition of semantic security and some combinatorial problems.

More information

Lecture 7: ElGamal and Discrete Logarithms

Lecture 7: ElGamal and Discrete Logarithms Lecture 7: ElGamal and Discrete Logarithms Johan Håstad, transcribed by Johan Linde 2006-02-07 1 The discrete logarithm problem Recall that a generator g of a group G is an element of order n such that

More information

RSA RSA public key cryptosystem

RSA RSA public key cryptosystem RSA 1 RSA As we have seen, the security of most cipher systems rests on the users keeping secret a special key, for anyone possessing the key can encrypt and/or decrypt the messages sent between them.

More information

Notes for Lecture 17

Notes for Lecture 17 U.C. Berkeley CS276: Cryptography Handout N17 Luca Trevisan March 17, 2009 Notes for Lecture 17 Scribed by Matt Finifter, posted April 8, 2009 Summary Today we begin to talk about public-key cryptography,

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security Outline Authentication CPSC 467b: Cryptography and Computer Security Lecture 18 Michael J. Fischer Department of Computer Science Yale University March 29, 2010 Michael J. Fischer CPSC 467b, Lecture 18

More information

Digital Signatures. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay

Digital Signatures. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay Digital Signatures Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay July 24, 2018 1 / 29 Group Theory Recap Groups Definition A set

More information

MATH 158 FINAL EXAM 20 DECEMBER 2016

MATH 158 FINAL EXAM 20 DECEMBER 2016 MATH 158 FINAL EXAM 20 DECEMBER 2016 Name : The exam is double-sided. Make sure to read both sides of each page. The time limit is three hours. No calculators are permitted. You are permitted one page

More information

ID-based Encryption Scheme Secure against Chosen Ciphertext Attacks

ID-based Encryption Scheme Secure against Chosen Ciphertext Attacks ID-based Encryption Scheme Secure against Chosen Ciphertext Attacks ongxing Lu and Zhenfu Cao Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, P.. China {cao-zf,

More information

Public Key Cryptography. All secret key algorithms & hash algorithms do the same thing but public key algorithms look very different from each other.

Public Key Cryptography. All secret key algorithms & hash algorithms do the same thing but public key algorithms look very different from each other. Public Key Cryptography All secret key algorithms & hash algorithms do the same thing but public key algorithms look very different from each other. The thing that is common among all of them is that each

More information

CIS 551 / TCOM 401 Computer and Network Security

CIS 551 / TCOM 401 Computer and Network Security CIS 551 / TCOM 401 Computer and Network Security Spring 2008 Lecture 15 3/20/08 CIS/TCOM 551 1 Announcements Project 3 available on the web. Get the handout in class today. Project 3 is due April 4th It

More information

Final Exam Math 105: Topics in Mathematics Cryptology, the Science of Secret Writing Rhodes College Tuesday, 30 April :30 11:00 a.m.

Final Exam Math 105: Topics in Mathematics Cryptology, the Science of Secret Writing Rhodes College Tuesday, 30 April :30 11:00 a.m. Final Exam Math 10: Topics in Mathematics Cryptology, the Science of Secret Writing Rhodes College Tuesday, 0 April 2002 :0 11:00 a.m. Instructions: Please be as neat as possible (use a pencil), and show

More information

RSA. Ramki Thurimella

RSA. Ramki Thurimella RSA Ramki Thurimella Public-Key Cryptography Symmetric cryptography: same key is used for encryption and decryption. Asymmetric cryptography: different keys used for encryption and decryption. Public-Key

More information

ENEE 459-C Computer Security. Message authentication (continue from previous lecture)

ENEE 459-C Computer Security. Message authentication (continue from previous lecture) ENEE 459-C Computer Security Message authentication (continue from previous lecture) Last lecture Hash function Cryptographic hash function Message authentication with hash function (attack?) with cryptographic

More information

Introduction to Elliptic Curve Cryptography

Introduction to Elliptic Curve Cryptography Indian Statistical Institute Kolkata May 19, 2017 ElGamal Public Key Cryptosystem, 1984 Key Generation: 1 Choose a suitable large prime p 2 Choose a generator g of the cyclic group IZ p 3 Choose a cyclic

More information

Public-Key Cryptography. Lecture 9 Public-Key Encryption Diffie-Hellman Key-Exchange

Public-Key Cryptography. Lecture 9 Public-Key Encryption Diffie-Hellman Key-Exchange Public-Key Cryptography Lecture 9 Public-Key Encryption Diffie-Hellman Key-Exchange Shared/Symmetric-Key Encryption (a.k.a. private-key encryption) SKE: Syntax KeyGen outputs K K E scheme E Syntax a.k.a.

More information

Identity-Based Key Aggregate Cryptosystem from Multilinear Maps

Identity-Based Key Aggregate Cryptosystem from Multilinear Maps Identity-Based Key Aggregate Cryptosyste fro Multilinear Maps Sikhar Patranabis and Debdeep Mukhopadhyay Departent of Coputer Science and Engineering Indian Institute of Technology Kharagpur {sikhar.patranabis,

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 16 October 30, 2017 CPSC 467, Lecture 16 1/52 Properties of Hash Functions Hash functions do not always look random Relations among

More information

10 Modular Arithmetic and Cryptography

10 Modular Arithmetic and Cryptography 10 Modular Arithmetic and Cryptography 10.1 Encryption and Decryption Encryption is used to send messages secretly. The sender has a message or plaintext. Encryption by the sender takes the plaintext and

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017 COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Previously on COS 433 Takeaway: Crypto is Hard Designing crypto is hard, even experts get it wrong Just because I don t know

More information

Introduction to Cryptography. Lecture 8

Introduction to Cryptography. Lecture 8 Introduction to Cryptography Lecture 8 Benny Pinkas page 1 1 Groups we will use Multiplication modulo a prime number p (G, ) = ({1,2,,p-1}, ) E.g., Z 7* = ( {1,2,3,4,5,6}, ) Z p * Z N * Multiplication

More information

Definition: For a positive integer n, if 0<a<n and gcd(a,n)=1, a is relatively prime to n. Ahmet Burak Can Hacettepe University

Definition: For a positive integer n, if 0<a<n and gcd(a,n)=1, a is relatively prime to n. Ahmet Burak Can Hacettepe University Number Theory, Public Key Cryptography, RSA Ahmet Burak Can Hacettepe University abc@hacettepe.edu.tr The Euler Phi Function For a positive integer n, if 0

More information

Foundations of Network and Computer Security

Foundations of Network and Computer Security Foundations of Network and Computer Security John Black Lecture #5 Sep 7 th 2004 CSCI 6268/TLEN 5831, Fall 2004 Announcements Please sign up for class mailing list by end of today Quiz #1 will be on Thursday,

More information

Question 1. The Chinese University of Hong Kong, Spring 2018

Question 1. The Chinese University of Hong Kong, Spring 2018 CSCI 5440: Cryptography The Chinese University of Hong Kong, Spring 2018 Homework 2 Solutions Question 1 Consider the following encryption algorithm based on the shortlwe assumption. The secret key is

More information

Addition. Ch1 - Algorithms with numbers. Multiplication. al-khwārizmī. al-khwārizmī. Division 53+35=88. Cost? (n number of bits) 13x11=143. Cost?

Addition. Ch1 - Algorithms with numbers. Multiplication. al-khwārizmī. al-khwārizmī. Division 53+35=88. Cost? (n number of bits) 13x11=143. Cost? Ch - Algorithms with numbers Addition Basic arithmetic Addition ultiplication Division odular arithmetic factoring is hard Primality testing 53+35=88 Cost? (n number of bits) O(n) ultiplication al-khwārizmī

More information

Cryptography IV: Asymmetric Ciphers

Cryptography IV: Asymmetric Ciphers Cryptography IV: Asymmetric Ciphers Computer Security Lecture 7 David Aspinall School of Informatics University of Edinburgh 31st January 2011 Outline Background RSA Diffie-Hellman ElGamal Summary Outline

More information

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 33 The Diffie-Hellman Problem

More information

1 Recommended Reading 1. 2 Public Key/Private Key Cryptography Overview RSA Algorithm... 2

1 Recommended Reading 1. 2 Public Key/Private Key Cryptography Overview RSA Algorithm... 2 Contents 1 Recommended Reading 1 2 Public Key/Private Key Cryptography 1 2.1 Overview............................................. 1 2.2 RSA Algorithm.......................................... 2 3 A Number

More information

Foundations of Network and Computer Security

Foundations of Network and Computer Security Foundations of Network and Computer Security John Black Lecture #4 Sep 2 nd 2004 CSCI 6268/TLEN 5831, Fall 2004 Announcements Please sign up for class mailing list Quiz #1 will be on Thursday, Sep 9 th

More information

dit-upm RSA Cybersecurity Cryptography

dit-upm RSA Cybersecurity Cryptography -upm Cybersecurity Cryptography José A. Mañas < http://www.dit.upm.es/~pepe/> Information Technology Department Universidad Politécnica de Madrid 4 october 2018 public key (asymmetric) public key secret

More information

Public-Key Cryptosystems CHAPTER 4

Public-Key Cryptosystems CHAPTER 4 Public-Key Cryptosystems CHAPTER 4 Introduction How to distribute the cryptographic keys? Naïve Solution Naïve Solution Give every user P i a separate random key K ij to communicate with every P j. Disadvantage:

More information

Chapter 4 Asymmetric Cryptography

Chapter 4 Asymmetric Cryptography Chapter 4 Asymmetric Cryptography Introduction Encryption: RSA Key Exchange: Diffie-Hellman [NetSec/SysSec], WS 2008/2009 4.1 Asymmetric Cryptography General idea: Use two different keys -K and +K for

More information

Asymmetric Cryptography

Asymmetric Cryptography Asymmetric Cryptography Chapter 4 Asymmetric Cryptography Introduction Encryption: RSA Key Exchange: Diffie-Hellman General idea: Use two different keys -K and +K for encryption and decryption Given a

More information

Crypto math II. Alin Tomescu May 27, Abstract A quick overview on group theory from Ron Rivest s course in Spring 2015.

Crypto math II. Alin Tomescu May 27, Abstract A quick overview on group theory from Ron Rivest s course in Spring 2015. Crypto math II Alin Tomescu alinush@mit.edu May 7, 015 Abstract A quick overview on group theory from Ron Rivest s 6.857 course in Spring 015. 1 Overview Group theory review Diffie-Hellman (DH) key exchange

More information

How to Use Short Basis : Trapdoors for Hard Lattices and new Cryptographic Constructions

How to Use Short Basis : Trapdoors for Hard Lattices and new Cryptographic Constructions Presentation Article presentation, for the ENS Lattice Based Crypto Workgroup http://www.di.ens.fr/~pnguyen/lbc.html, 30 September 2009 How to Use Short Basis : Trapdoors for http://www.cc.gatech.edu/~cpeikert/pubs/trap_lattice.pdf

More information

Introduction to Cryptography Lecture 4

Introduction to Cryptography Lecture 4 Data Integrity, Message Authentication Introduction to Cryptography Lecture 4 Message authentication Hash functions Benny Pinas Ris: an active adversary might change messages exchanged between and M M

More information

Quantum public-key cryptosystems based on induced trapdoor one-way transformations

Quantum public-key cryptosystems based on induced trapdoor one-way transformations Quantu public-key cryptosystes based on induced trapdoor one-way transforations Li Yang a, Min Liang a, Bao Li a, Lei Hu a, Deng-Guo Feng b arxiv:1012.5249v2 [quant-ph] 12 Jul 2011 a State Key Laboratory

More information

Digital Signatures. p1.

Digital Signatures. p1. Digital Signatures p1. Digital Signatures Digital signature is the same as MAC except that the tag (signature) is produced using the secret key of a public-key cryptosystem. Message m MAC k (m) Message

More information

5199/IOC5063 Theory of Cryptology, 2014 Fall

5199/IOC5063 Theory of Cryptology, 2014 Fall 5199/IOC5063 Theory of Cryptology, 2014 Fall Homework 2 Reference Solution 1. This is about the RSA common modulus problem. Consider that two users A and B use the same modulus n = 146171 for the RSA encryption.

More information

Cryptographical Security in the Quantum Random Oracle Model

Cryptographical Security in the Quantum Random Oracle Model Cryptographical Security in the Quantum Random Oracle Model Center for Advanced Security Research Darmstadt (CASED) - TU Darmstadt, Germany June, 21st, 2012 This work is licensed under a Creative Commons

More information

Digital Signatures. Adam O Neill based on

Digital Signatures. Adam O Neill based on Digital Signatures Adam O Neill based on http://cseweb.ucsd.edu/~mihir/cse207/ Signing by hand COSMO ALICE ALICE Pay Bob $100 Cosmo Alice Alice Bank =? no Don t yes pay Bob Signing electronically SIGFILE

More information

Foundations of Network and Computer Security

Foundations of Network and Computer Security Foundations of Network and Computer Security John Black Lecture #9 Sep 22 nd 2005 CSCI 6268/TLEN 5831, Fall 2005 Announcements Midterm #1, next class (Tues, Sept 27 th ) All lecture materials and readings

More information

Cryptographic Hashes. Yan Huang. Credits: David Evans, CS588

Cryptographic Hashes. Yan Huang. Credits: David Evans, CS588 Cryptographic Hashes Yan Huang Credits: David Evans, CS588 Recap: CPA 1. k KeyGen(1 n ). b {0,1}. Give Enc(k, ) to A. 2. A chooses as many plaintexts as he wants, and receives the corresponding ciphertexts

More information

Elliptic Curve Cryptography

Elliptic Curve Cryptography Elliptic Curve Cryptography Elliptic Curves An elliptic curve is a cubic equation of the form: y + axy + by = x 3 + cx + dx + e where a, b, c, d and e are real numbers. A special addition operation is

More information

Cryptography. Course 1: Remainder: RSA. Jean-Sébastien Coron. September 21, Université du Luxembourg

Cryptography. Course 1: Remainder: RSA. Jean-Sébastien Coron. September 21, Université du Luxembourg Course 1: Remainder: RSA Université du Luxembourg September 21, 2010 Public-key encryption Public-key encryption: two keys. One key is made public and used to encrypt. The other key is kept private and

More information

Homework 4 for Modular Arithmetic: The RSA Cipher

Homework 4 for Modular Arithmetic: The RSA Cipher Homework 4 for Modular Arithmetic: The RSA Cipher Gregory V. Bard April 25, 2018 This is a practice workbook for the RSA cipher. It is not suitable for learning the RSA cipher from scratch. However, there

More information

2: Iterated Cryptographic Hash Functions

2: Iterated Cryptographic Hash Functions 2: Iterated ryptographic Hash Functions we want hash function H : ({0, 1} n ) {0, 1} n of potentially infinite input size instead we have compression function F : {0, 1} m {0, 1} n {0, 1} n and define

More information

Introduction to Cryptography

Introduction to Cryptography B504 / I538: Introduction to Cryptography Spring 2017 Lecture 12 Recall: MAC existential forgery game 1 n Challenger (C) k Gen(1 n ) Forger (A) 1 n m 1 m 1 M {m} t 1 MAC k (m 1 ) t 1 m 2 m 2 M {m} t 2

More information

Public Key Algorithms

Public Key Algorithms 1 Public Key Algorithms ffl hash: irreversible transformation(message) ffl secret key: reversible transformation(block) encryption digital signatures authentication RSA yes yes yes El Gamal no yes no Zero-knowledge

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 9 February 6, 2012 CPSC 467b, Lecture 9 1/53 Euler s Theorem Generating RSA Modulus Finding primes by guess and check Density of

More information

A Key Recovery Attack on MDPC with CCA Security Using Decoding Errors

A Key Recovery Attack on MDPC with CCA Security Using Decoding Errors A Key Recovery Attack on MDPC with CCA Security Using Decoding Errors Qian Guo Thomas Johansson Paul Stankovski Dept. of Electrical and Information Technology, Lund University ASIACRYPT 2016 Dec 8th, 2016

More information