SPHINCS: practical stateless hash-based signatures

Size: px
Start display at page:

Download "SPHINCS: practical stateless hash-based signatures"

Transcription

1 SPHINCS: practical stateless hash-based signatures D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L. Papachristodoulou, P. Schwabe, and Z. Wilcox O'Hearn

2 Digital Signatures are Important! Software updates E-Commerce and many others PAGE 1

3 What if PAGE 2

4 Problem? RSA DL Pairings DH PAGE 3

5 IBM 2012: optimism about superconducting qubits and the possibilities for a future quantum computer are rapidely growing. PAGE 4

6 Post-Quantum Signatures PAGE 5 Lattice, MQ, Coding Signature and/or key sizes Runtimes Secure parameters y x x x x x x y x x x x x x y

7 Hash-based Signature Schemes [Mer89] Post quantum Only secure hash function Security well understood Fast Stateful PAGE 6

8 Lamport-Diffie OTS [Lam79] Message M = b1,,bn, OWF H * = n bit SK sk 1,0 sk 1,1 sk n,0 sk n,1 H H H H H H PK pk 1,0 pk 1,1 pk n,0 pk n,1 b1 Mux b2 Mux bn Mux Sig sk 1,b1 sk n,bn PAGE 7

9 Merkle s Hash-based Signatures Encryption H Digital Signature PK H Cryptography OTS Hash Function SIG = (i=2,,,,, ) H H H H Legality H H H H H H H H H OTS MAC OTS OTS OTS OTS OTS OTS OTS SK PAGE 8

10 Known Improvements [BGD + 06] Pseudorandom Key Generation: h SK 2 n n F F F F F F Hypertree: Key generation (== Building Trees on one path) O(2 h ) O(d2 h/d ) PAGE 9

11 Known Improvements, cont d Winternitz OTS [Mer 89,, BDE + 11,Hül13] Smaller Sigs Minimum Security Assumptions Minimum Security Assumptions / Collision-Resilient Scheme [BDH11] XMSS requires only PRF & SPR PAGE 10

12 SPHINCS: Stateless Practical Hash-based Incredibly Nice Cryptographic Signatures PAGE 11

13 Goals Stateless 128bit Quantum Security Practical Speed Practical Signature Size PAGE 12

14 How to Eliminate the State PAGE 13

15 Trial & Error: Run MSS without State Encryption H Digital Signature PK SIG = (i=2,,,,, ) Cryptography Hash Function Legality H H H H H H H H H H H H H H OTS MAC OTS OTS OTS OTS OTS OTS OTS SK PAGE 14

16 Approach 1: Goldreich i = Integer.getValue(Hash(Message)); 128bit Quantum Sec. n = 256 bit Hash [Ber09] #Indices = h depends on n! h = n = 256 PAGE 15

17 Approach 1, cont d d > 1, otherwise t Sign = exp(n) PAGE 16

18 Approach 1, cont d i = Integer.getValue(Hash(Message)); h = n = 256 Impossible to make this efficient: t Sign d2 n/d (t Hash + t OTS_KeyGen ) d2 n/d n t Hash Sig d OTS_Sig (+ n 2, if d<n) dn 2 E.g. d = n / log n: t Sign n 3 / log n t Hash ; Sig n3 / log n Goldreich: d = n t Sign 2n 2 t Hash ; Sig n3 Sig > 1MB for n = 256 PAGE 17

19 Approach 2: Random Index I $ U #Indices 128bit Quantum Sec. Sampled by Signer #Indices determined by collision prob. #Indices = h = 256 Impossible to make this efficient, again BUT h independent of n Statistical collision probability NOT collision resistance PAGE 18

20 Sphincs Approach 2 + Few-Time Signature Scheme (FTS) Next: Introduce new FTS HORS with Trees (HORST) Preview: Allows h = 60 for any n t Sign d2 60/d (t Hash + t OTS_KeyGen ) d2 60/d n t Hash Sig d OTS_Sig (+ n 2, if d<n) dn 2 E.g. d = 12: t Sign 384n t Hash ; Sig 12n2 (without HORST) PAGE 19

21 Few-Time Signature Schemes PAGE 20

22 Recap LD-OTS Message M = b1,,bn, OWF H * = n bit SK sk 1,0 sk 1,1 sk n,0 sk n,1 H H H H H H PK pk 1,0 pk 1,1 pk n,0 pk n,1 b1 Mux b2 Mux bn Mux Sig sk 1,b1 sk n,bn PAGE 21

23 HORS [RR02] Message M = b 1,,b m, OWF H = n bit Parameters t=2 a,k, with m = ka (typical a=16, k=32) * SK sk 1 sk 2 sk t-1 sk t H H H H H H PK pk 1 pk 1 pk t-1 pk t M b 1 b 2 b a b a+1 b ka-2 b ka-1 b ka i 1 Mux Mux i k Sig sk i1 sk ik PAGE 22

24 HORS Security Message M = Hash(msg) M mapped to k element index set M i є {1,..,t} k Each signature publishes k out of t secrets Either break one-wayness or r-subset-resilience: After seeing index sets M i j for r messages msg j, 1 <= j <= r, hard to find msg r+1 msg j such that M i r+1 є U 1<=j<=r M i j. Best generic attack: Succ r-ssr (A,q) = q(rk / t) k Security shrinks with each signature! PAGE 23

25 HORST Using HORS with MSS requires adding PK (tn) to MSS signature. HORST: Build a Merkle Tree on top of PK PK = Root Publish Authentication Paths for HORS signature values PK can be computed from Sig With optimizations: tn (k(log t x + 1) + 2 x )n E.g. SPHINCS-256: 2 MB 16 KB PAGE 24

26 SPHINCS PAGE 25

27 SPHINCS Signature PAGE 26

28 SPHINCS Key Ideas Use HORST key pairs to sign messages Authenticate HORST key pairs using hypertree (of MSS trees) Use random index Select h,k,t,m such that sum r є [0, ) (Pr[r-times index collision] * Succ r-ssr (A)) = negl(n) PAGE 27

29 SPHINCS-256 PAGE 28

30 SPHINCS-256 Speed Key generation: Verification: Signature: 3,051,562 cycles 1,369,060 cycles 47,466,005 cycles Still hundreds of messages per second on a modern 4-core 3.5GHz Intel CPU (13ms / Sig) PAGE 29

31 In Paper (online soon) + Standard model security reduction without collision resistance + Complexity of generic quantum attacks + Efficient fixed-input length hashing + Optimized implementation PAGE 30

32 Conclusion Stateless Hash-based Signatures Performance like RSA or BLISS? No! First stateless signature scheme with post-quantum secure parameters Practical Speed and Sizes PAGE 31

33 Thank you! Questions? PAGE 32

An update on Hash-based Signatures. Andreas Hülsing

An update on Hash-based Signatures. Andreas Hülsing An update on Hash-based Signatures Andreas Hülsing Trapdoor- / Identification Scheme-based (PQ-)Signatures Lattice, MQ, Coding Signature and/or key sizes Runtimes Secure parameters 9-9-2015 PAGE 2... 1

More information

Mitigating Multi-Target-Attacks in Hash-based Signatures. Andreas Hülsing joint work with Joost Rijneveld, Fang Song

Mitigating Multi-Target-Attacks in Hash-based Signatures. Andreas Hülsing joint work with Joost Rijneveld, Fang Song Mitigating Multi-Target-Attacks in Hash-based Signatures Andreas Hülsing joint work with Joost Rijneveld, Fang Song A brief motivation Trapdoor- / Identification Scheme-based (PQ-)Signatures Lattice, MQ,

More information

Hash-based Signatures. Andreas Hülsing

Hash-based Signatures. Andreas Hülsing Hash-based Signatures Andreas Hülsing Post-Quantum Signatures Lattice, MQ, Coding Signature and/or key sizes Runtimes Secure parameters 23-2-2016 PAGE 2... 1 3 1 4 2 3 2 2 3 2 3 4 1 2 1 2 1 1 y x x x x

More information

Hash-based Signatures

Hash-based Signatures Hash-based Signatures Andreas Hülsing Summer School on Post-Quantum Cryptography June 2017, TU Eindhoven Post-Quantum Signatures Lattice, MQ, Coding Signature and/or key sizes Runtimes Secure parameters

More information

Hash-based signatures & Hash-and-sign without collision-resistance

Hash-based signatures & Hash-and-sign without collision-resistance Hash-based signatures & Hash-and-sign without collision-resistance Andreas Hülsing 22.12.2016 Hash-based Signature Schemes [Mer89] Post quantum Only secure hash function Security well understood Fast 22-12-2016

More information

Post-Quantum Cryptography & Privacy. Andreas Hülsing

Post-Quantum Cryptography & Privacy. Andreas Hülsing Post-Quantum Cryptography & Privacy Andreas Hülsing Privacy? Too abstract? How to achieve privacy? Under the hood... Public-key crypto ECC RSA DSA Secret-key crypto AES SHA2 SHA1... Combination of both

More information

Quantum-Safe Crypto Why & How? JP Aumasson, Kudelski Security

Quantum-Safe Crypto Why & How? JP Aumasson, Kudelski Security Quantum-Safe Crypto Why & How? JP Aumasson, Kudelski Security Flight plan What s a quantum computer? How broken are your public keys? AES vs. quantum search Hidden quantum powers Defeating quantum computing

More information

Lecture 18: Message Authentication Codes & Digital Signa

Lecture 18: Message Authentication Codes & Digital Signa Lecture 18: Message Authentication Codes & Digital Signatures MACs and Signatures Both are used to assert that a message has indeed been generated by a party MAC is the private-key version and Signatures

More information

XMSS A Practical Forward Secure Signature Scheme based on Minimal Security Assumptions

XMSS A Practical Forward Secure Signature Scheme based on Minimal Security Assumptions XMSS A Practical Forward Secure Signature Scheme based on Minimal Security Assumptions Johannes Buchmann and Andreas Hülsing {buchmann,huelsing}@cdc.informatik.tu-darmstadt.de Cryptography and Computeralgebra

More information

FPGA-BASED ACCELERATOR FOR POST-QUANTUM SIGNATURE SCHEME SPHINCS-256

FPGA-BASED ACCELERATOR FOR POST-QUANTUM SIGNATURE SCHEME SPHINCS-256 IMES FPGA-BASED ACCELERATOR FOR POST-QUANTUM SIGNATURE SCHEME SPHINCS-256 Dorian Amiet 1, Andreas Curiger 2 and Paul Zbinden 1 1 HSR Hochschule für Technik, Rapperswil, Switzerland 2 Securosys SA, Zürich,

More information

Improving Stateless Hash-Based Signatures

Improving Stateless Hash-Based Signatures Improving Stateless Hash-Based Signatures Jean-Philippe Aumasson 1 and Guillaume Endignoux 2 1 Kudelski Security, Switzerland 2 Google, Switzerland Abstract. We present several optimizations to SPHINCS,

More information

Post-Quantum Cryptography & Privacy. Andreas Hülsing

Post-Quantum Cryptography & Privacy. Andreas Hülsing Post-Quantum Cryptography & Privacy Andreas Hülsing Privacy? Too abstract? How to achieve privacy? Under the hood... Asymmetric Crypto ECC RSA DSA Symmetric Crypto AES SHA2 SHA1... Combination of both

More information

Optimal Parameters for XMSS MT

Optimal Parameters for XMSS MT Optimal Parameters for XMSS MT Andreas Hülsing, Lea Rausch, and Johannes Buchmann Cryptography and Computeralgebra Department of Computer Science TU Darmstadt, Germany huelsing@cdc.informatik.tu-darmstadt.de

More information

Clarifying the subset-resilience problem

Clarifying the subset-resilience problem Clarifying the subset-resilience problem Jean-Philippe Aumasson 1 and Guillaume Endignoux 2 1 Kudelski Security, Switzerland 2 firstname.surname@m4x.org Abstract. We investigate the subset-resilience problem,

More information

Reassessing Grover s Algorithm

Reassessing Grover s Algorithm Reassessing Grover s Algorithm Scott Fluhrer Cisco Systems, USA sfluhrer@cisco.com Abstract. We note that Grover s algorithm (and any other quantum algorithm that does a search using an oracle) does not

More information

Katz, Lindell Introduction to Modern Cryptrography

Katz, Lindell Introduction to Modern Cryptrography Katz, Lindell Introduction to Modern Cryptrography Slides Chapter 12 Markus Bläser, Saarland University Digital signature schemes Goal: integrity of messages Signer signs a message using a private key

More information

Mitigating Multi-Target Attacks in Hash-based Signatures

Mitigating Multi-Target Attacks in Hash-based Signatures Mitigating Multi-Target Attacks in Hash-based Signatures Andreas Hülsing 1, Joost Rijneveld 2, and Fang Song 3 1 Department of Mathematics and Computer Science Technische Universiteit Eindhoven P.O. Box

More information

Practice Final Exam Winter 2017, CS 485/585 Crypto March 14, 2017

Practice Final Exam Winter 2017, CS 485/585 Crypto March 14, 2017 Practice Final Exam Name: Winter 2017, CS 485/585 Crypto March 14, 2017 Portland State University Prof. Fang Song Instructions This exam contains 7 pages (including this cover page) and 5 questions. Total

More information

Message Authentication Codes (MACs)

Message Authentication Codes (MACs) Message Authentication Codes (MACs) Tung Chou Technische Universiteit Eindhoven, The Netherlands October 8, 2015 1 / 22 About Me 2 / 22 About Me Tung Chou (Tony) 2 / 22 About Me Tung Chou (Tony) Ph.D.

More information

CRYPTANALYSIS OF COMPACT-LWE

CRYPTANALYSIS OF COMPACT-LWE SESSION ID: CRYP-T10 CRYPTANALYSIS OF COMPACT-LWE Jonathan Bootle, Mehdi Tibouchi, Keita Xagawa Background Information Lattice-based cryptographic assumption Based on the learning-with-errors (LWE) assumption

More information

BEYOND POST QUANTUM CRYPTOGRAPHY

BEYOND POST QUANTUM CRYPTOGRAPHY BEYOND POST QUANTUM CRYPTOGRAPHY Mark Zhandry Stanford University Joint work with Dan Boneh Classical Cryptography Post-Quantum Cryptography All communication stays classical Beyond Post-Quantum Cryptography

More information

Practice Exam Winter 2018, CS 485/585 Crypto March 14, 2018

Practice Exam Winter 2018, CS 485/585 Crypto March 14, 2018 Practice Exam Name: Winter 2018, CS 485/585 Crypto March 14, 2018 Portland State University Prof. Fang Song Instructions This exam contains 8 pages (including this cover page) and 5 questions. Total of

More information

https://www.microsoft.com/en-us/research/people/plonga/ Outline Motivation recap Isogeny-based cryptography The SIDH key exchange protocol The SIKE protocol Authenticated key exchange from supersingular

More information

How to Use Short Basis : Trapdoors for Hard Lattices and new Cryptographic Constructions

How to Use Short Basis : Trapdoors for Hard Lattices and new Cryptographic Constructions Presentation Article presentation, for the ENS Lattice Based Crypto Workgroup http://www.di.ens.fr/~pnguyen/lbc.html, 30 September 2009 How to Use Short Basis : Trapdoors for http://www.cc.gatech.edu/~cpeikert/pubs/trap_lattice.pdf

More information

From 5-pass MQ-based identification to MQ-based signatures

From 5-pass MQ-based identification to MQ-based signatures From 5-pass MQ-based identification to MQ-based signatures Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter Schwabe 30 June 2016 1 / 31 Our take on PQ-Crypto Prepare for actual use Reliable

More information

Post-quantum key exchange for the Internet based on lattices

Post-quantum key exchange for the Internet based on lattices Post-quantum key exchange for the Internet based on lattices Craig Costello Talk at MSR India Bangalore, India December 21, 2016 Based on J. Bos, C. Costello, M. Naehrig, D. Stebila Post-Quantum Key Exchange

More information

A survey on quantum-secure cryptographic systems

A survey on quantum-secure cryptographic systems A survey on quantum-secure cryptographic systems Tomoka Kan May 24, 2018 1 Abstract Post-quantum cryptography refers to the search for classical cryptosystems which remain secure in the presence of a quantum

More information

The Random Oracle Paradigm. Mike Reiter. Random oracle is a formalism to model such uses of hash functions that abound in practical cryptography

The Random Oracle Paradigm. Mike Reiter. Random oracle is a formalism to model such uses of hash functions that abound in practical cryptography 1 The Random Oracle Paradigm Mike Reiter Based on Random Oracles are Practical: A Paradigm for Designing Efficient Protocols by M. Bellare and P. Rogaway Random Oracles 2 Random oracle is a formalism to

More information

Post-Quantum Cryptography

Post-Quantum Cryptography Post-Quantum Cryptography Prof. Dr. J. Buchmann Written by: P. Schmidt Last updated: February 25, 2010 1 Contents 1. Introduction 5 2. Motivation 5 3. Quantum Algorithms and Quantum Computers 6 3.1. The

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017 COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Previously Digital Signatures Algorithms: Gen() à (sk,pk) Sign(sk,m) à σ Ver(pk,m,σ) à 0/1 Correctness: Pr[Ver(pk,m,Sign(sk,m))=1:

More information

Authentication. Chapter Message Authentication

Authentication. Chapter Message Authentication Chapter 5 Authentication 5.1 Message Authentication Suppose Bob receives a message addressed from Alice. How does Bob ensure that the message received is the same as the message sent by Alice? For example,

More information

CLASSICAL CRYPTOSYSTEMS IN A QUANTUM WORLD

CLASSICAL CRYPTOSYSTEMS IN A QUANTUM WORLD CLASSICAL CRYPTOSYSTEMS IN A QUANTUM WORLD Mark Zhandry Stanford University * Joint work with Dan Boneh But First: My Current Work Indistinguishability Obfuscation (and variants) Multiparty NIKE without

More information

A brief survey of post-quantum cryptography. D. J. Bernstein University of Illinois at Chicago

A brief survey of post-quantum cryptography. D. J. Bernstein University of Illinois at Chicago A brief survey of post-quantum cryptography D. J. Bernstein University of Illinois at Chicago Once the enormous energy boost that quantum computers are expected to provide hits the street, most encryption

More information

From 5-pass MQ-based identification to MQ-based signatures

From 5-pass MQ-based identification to MQ-based signatures From 5-pass MQ-based identification to MQ-based signatures Ming-Shing Chen 1,2, Andreas Hülsing 3, Joost Rijneveld 4, Simona Samardjiska 5, Peter Schwabe 4 National Taiwan University 1 / Academia Sinica

More information

SPCS Cryptography Homework 13

SPCS Cryptography Homework 13 1 1.1 PRP For this homework, use the ollowing PRP: E(k, m) : {0, 1} 3 {0, 1} 3 {0, 1} 3 000 001 010 011 100 101 110 111 m 000 011 001 111 010 000 101 110 100 001 101 110 010 000 111 100 001 011 010 001

More information

1 Number Theory Basics

1 Number Theory Basics ECS 289M (Franklin), Winter 2010, Crypto Review 1 Number Theory Basics This section has some basic facts about number theory, mostly taken (or adapted) from Dan Boneh s number theory fact sheets for his

More information

Quantum-resistant cryptography

Quantum-resistant cryptography Quantum-resistant cryptography Background: In quantum computers, states are represented as vectors in a Hilbert space. Quantum gates act on the space and allow us to manipulate quantum states with combination

More information

W-OTS + Shorter Signatures for Hash-Based Signature Schemes

W-OTS + Shorter Signatures for Hash-Based Signature Schemes W-OTS + Shorter Signatures for Hash-Based Signature Schemes Andreas Hülsing huelsing@cdc.informati.tu-darmstadt.de Cryptography and Computeralgebra Department of Computer Science TU Darmstadt Abstract.

More information

ECS 189A Final Cryptography Spring 2011

ECS 189A Final Cryptography Spring 2011 ECS 127: Cryptography Handout F UC Davis Phillip Rogaway June 9, 2011 ECS 189A Final Cryptography Spring 2011 Hints for success: Good luck on the exam. I don t think it s all that hard (I do believe I

More information

CIS 6930/4930 Computer and Network Security. Topic 5.2 Public Key Cryptography

CIS 6930/4930 Computer and Network Security. Topic 5.2 Public Key Cryptography CIS 6930/4930 Computer and Network Security Topic 5.2 Public Key Cryptography 1 Diffie-Hellman Key Exchange 2 Diffie-Hellman Protocol For negotiating a shared secret key using only public communication

More information

Optimal Parameters for XMSSMT

Optimal Parameters for XMSSMT Optimal Parameters for XMSSMT Andreas Hülsing, Lea Rausch, Johannes Buchmann To cite this version: Andreas Hülsing, Lea Rausch, Johannes Buchmann. Optimal Parameters for XMSSMT. Alfredo Cuzzocrea; Christian

More information

Introduction to Cryptography. Susan Hohenberger

Introduction to Cryptography. Susan Hohenberger Introduction to Cryptography Susan Hohenberger 1 Cryptography -- from art to science -- more than just encryption -- essential today for non-military applications 2 Symmetric Crypto Shared secret K =>

More information

Ex1 Ex2 Ex3 Ex4 Ex5 Ex6

Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Technische Universität München (I7) Winter 2012/13 Dr. M. Luttenberger / M. Schlund Cryptography Endterm Last name: First name: Student ID no.: Signature: If you feel ill, let us know immediately. Please,

More information

From 5-pass MQ-based identification to MQ-based signatures

From 5-pass MQ-based identification to MQ-based signatures From 5-pass MQ-based identification to MQ-based signatures Ming-Shing Chen 1,2, Andreas Hülsing 3, Joost Rijneveld 4, Simona Samardjiska 5, Peter Schwabe 4 National Taiwan University 1 / Academia Sinica

More information

ENEE 457: Computer Systems Security 09/19/16. Lecture 6 Message Authentication Codes and Hash Functions

ENEE 457: Computer Systems Security 09/19/16. Lecture 6 Message Authentication Codes and Hash Functions ENEE 457: Computer Systems Security 09/19/16 Lecture 6 Message Authentication Codes and Hash Functions Charalampos (Babis) Papamanthou Department of Electrical and Computer Engineering University of Maryland,

More information

Lecture 1: Introduction to Public key cryptography

Lecture 1: Introduction to Public key cryptography Lecture 1: Introduction to Public key cryptography Thomas Johansson T. Johansson (Lund University) 1 / 44 Key distribution Symmetric key cryptography: Alice and Bob share a common secret key. Some means

More information

Understanding Cryptography A Textbook for Students and Practitioners by Christof Paar and Jan Pelzl. Chapter 11 Hash Functions ver.

Understanding Cryptography A Textbook for Students and Practitioners by Christof Paar and Jan Pelzl. Chapter 11 Hash Functions ver. Understanding Cryptography A Textbook for Students and Practitioners by Christof Paar and Jan Pelzl www.crypto-textbook.com Chapter 11 Hash Functions ver. October 29, 2009 These slides were prepared by

More information

Notes for Lecture A can repeat step 3 as many times as it wishes. We will charge A one unit of time for every time it repeats step 3.

Notes for Lecture A can repeat step 3 as many times as it wishes. We will charge A one unit of time for every time it repeats step 3. COS 533: Advanced Cryptography Lecture 2 (September 18, 2017) Lecturer: Mark Zhandry Princeton University Scribe: Mark Zhandry Notes for Lecture 2 1 Last Time Last time, we defined formally what an encryption

More information

Secure Signatures and Chosen Ciphertext Security in a Post-Quantum World

Secure Signatures and Chosen Ciphertext Security in a Post-Quantum World Secure Signatures and Chosen Ciphertext Security in a Post-Quantum World Dan Boneh Mark Zhandry Stanford University {dabo,zhandry}@cs.stanford.edu Abstract We initiate the study of quantum-secure digital

More information

March 19: Zero-Knowledge (cont.) and Signatures

March 19: Zero-Knowledge (cont.) and Signatures March 19: Zero-Knowledge (cont.) and Signatures March 26, 2013 1 Zero-Knowledge (review) 1.1 Review Alice has y, g, p and claims to know x such that y = g x mod p. Alice proves knowledge of x to Bob w/o

More information

Notes for Lecture 9. 1 Combining Encryption and Authentication

Notes for Lecture 9. 1 Combining Encryption and Authentication U.C. Berkeley CS276: Cryptography Handout N9 Luca Trevisan February 17, 2009 Notes for Lecture 9 Notes scribed by Joel Weinberger, posted March 1, 2009 Summary Last time, we showed that combining a CPA-secure

More information

Asymmetric Encryption

Asymmetric Encryption -3 s s Encryption Comp Sci 3600 Outline -3 s s 1-3 2 3 4 5 s s Outline -3 s s 1-3 2 3 4 5 s s Function Using Bitwise XOR -3 s s Key Properties for -3 s s The most important property of a hash function

More information

Digital Signatures. p1.

Digital Signatures. p1. Digital Signatures p1. Digital Signatures Digital signature is the same as MAC except that the tag (signature) is produced using the secret key of a public-key cryptosystem. Message m MAC k (m) Message

More information

Lecture V : Public Key Cryptography

Lecture V : Public Key Cryptography Lecture V : Public Key Cryptography Internet Security: Principles & Practices John K. Zao, PhD (Harvard) SMIEEE Amir Rezapoor Computer Science Department, National Chiao Tung University 2 Outline Functional

More information

Intro to Public Key Cryptography Diffie & Hellman Key Exchange

Intro to Public Key Cryptography Diffie & Hellman Key Exchange Introduction to Modern Cryptography Lecture 5 Number Theory: 1. Quadratic residues. 2. The discrete log problem. Intro to Public Key Cryptography Diffie & Hellman Key Exchange Course Summary - Math Part

More information

CHALMERS GÖTEBORGS UNIVERSITET. TDA352 (Chalmers) - DIT250 (GU) 11 April 2017, 8:30-12:30

CHALMERS GÖTEBORGS UNIVERSITET. TDA352 (Chalmers) - DIT250 (GU) 11 April 2017, 8:30-12:30 CHALMERS GÖTEBORGS UNIVERSITET CRYPTOGRAPHY TDA35 (Chalmers) - DIT50 (GU) 11 April 017, 8:30-1:30 No extra material is allowed during the exam except for pens and a simple calculator (not smartphones).

More information

Towards Tightly Secure Lattice Short Signature and Id-Based Encryption

Towards Tightly Secure Lattice Short Signature and Id-Based Encryption Towards Tightly Secure Lattice Short Signature and Id-Based Encryption Xavier Boyen Qinyi Li QUT Asiacrypt 16 2016-12-06 1 / 19 Motivations 1. Short lattice signature with tight security reduction w/o

More information

Digital Signatures. Adam O Neill based on

Digital Signatures. Adam O Neill based on Digital Signatures Adam O Neill based on http://cseweb.ucsd.edu/~mihir/cse207/ Signing by hand COSMO ALICE ALICE Pay Bob $100 Cosmo Alice Alice Bank =? no Don t yes pay Bob Signing electronically SIGFILE

More information

Foundations of Network and Computer Security

Foundations of Network and Computer Security Foundations of Network and Computer Security John Black Lecture #5 Sep 7 th 2004 CSCI 6268/TLEN 5831, Fall 2004 Announcements Please sign up for class mailing list by end of today Quiz #1 will be on Thursday,

More information

Leftovers from Lecture 3

Leftovers from Lecture 3 Leftovers from Lecture 3 Implementing GF(2^k) Multiplication: Polynomial multiplication, and then remainder modulo the defining polynomial f(x): (1,1,0,1,1) *(0,1,0,1,1) = (1,1,0,0,1) For small size finite

More information

CS 4770: Cryptography. CS 6750: Cryptography and Communication Security. Alina Oprea Associate Professor, CCIS Northeastern University

CS 4770: Cryptography. CS 6750: Cryptography and Communication Security. Alina Oprea Associate Professor, CCIS Northeastern University CS 4770: Cryptography CS 6750: Cryptography and Communication Security Alina Oprea Associate Professor, CCIS Northeastern University February 5 2018 Review Relation between PRF and PRG Construct PRF from

More information

Digital Signature Schemes and the Random Oracle Model. A. Hülsing

Digital Signature Schemes and the Random Oracle Model. A. Hülsing Digital Signature Schemes and the Random Oracle Model A. Hülsing Today s goal Review provable security of in use signature schemes. (PKCS #1 v2.x) PAGE 1 Digital Signature Source: http://hari-cio-8a.blog.ugm.ac.id/files/2013/03/dsa.jpg

More information

High-speed cryptography, part 3: more cryptosystems. Daniel J. Bernstein University of Illinois at Chicago & Technische Universiteit Eindhoven

High-speed cryptography, part 3: more cryptosystems. Daniel J. Bernstein University of Illinois at Chicago & Technische Universiteit Eindhoven High-speed cryptography, part 3: more cryptosystems Daniel J. Bernstein University of Illinois at Chicago & Technische Universiteit Eindhoven Cryptographers Working systems Cryptanalytic algorithm designers

More information

Problem 1. k zero bits. n bits. Block Cipher. Block Cipher. Block Cipher. Block Cipher. removed

Problem 1. k zero bits. n bits. Block Cipher. Block Cipher. Block Cipher. Block Cipher. removed Problem 1 n bits k zero bits IV Block Block Block Block removed January 27, 2011 Practical Aspects of Modern Cryptography 2 Problem 1 IV Inverse Inverse Inverse Inverse Missing bits January 27, 2011 Practical

More information

Introduction to cryptology (GBIN8U16) More on discrete-logarithm based schemes

Introduction to cryptology (GBIN8U16) More on discrete-logarithm based schemes Introduction to cryptology (GBIN8U16) More on discrete-logarithm based schemes Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/pierre.karpman/tea.html 2018 03 13 More

More information

Picnic Post-Quantum Signatures from Zero Knowledge Proofs

Picnic Post-Quantum Signatures from Zero Knowledge Proofs Picnic Post-Quantum Signatures from Zero Knowledge Proofs MELISSA CHASE, MSR THE PICNIC TEAM DAVID DERLER STEVEN GOLDFEDER JONATHAN KATZ VLAD KOLESNIKOV CLAUDIO ORLANDI SEBASTIAN RAMACHER CHRISTIAN RECHBERGER

More information

Introduction to Cybersecurity Cryptography (Part 4)

Introduction to Cybersecurity Cryptography (Part 4) Introduction to Cybersecurity Cryptography (Part 4) Review of Last Lecture Blockciphers Review of DES Attacks on Blockciphers Advanced Encryption Standard (AES) Modes of Operation MACs and Hashes Message

More information

Practical Verifiable Encryption and Decryption of Discrete Logarithms

Practical Verifiable Encryption and Decryption of Discrete Logarithms Practical Verifiable Encryption and Decryption of Discrete Logarithms Jan Camenisch IBM Zurich Research Lab Victor Shoup New York University p.1/27 Verifiable encryption of discrete logs Three players:

More information

Lattice-Based Cryptography. Chris Peikert University of Michigan. QCrypt 2016

Lattice-Based Cryptography. Chris Peikert University of Michigan. QCrypt 2016 Lattice-Based Cryptography Chris Peikert University of Michigan QCrypt 2016 1 / 24 Agenda 1 Foundations: lattice problems, SIS/LWE and their applications 2 Ring-Based Crypto: NTRU, Ring-SIS/LWE and ideal

More information

CHAPMAN & HALL/CRC CRYPTOGRAPHY AND NETWORK SECURITY ALGORITHMIC CR YPTAN ALY51S. Ant nine J aux

CHAPMAN & HALL/CRC CRYPTOGRAPHY AND NETWORK SECURITY ALGORITHMIC CR YPTAN ALY51S. Ant nine J aux CHAPMAN & HALL/CRC CRYPTOGRAPHY AND NETWORK SECURITY ALGORITHMIC CR YPTAN ALY51S Ant nine J aux (g) CRC Press Taylor 8* Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor &

More information

A Note on Quantum Security for Post-Quantum Cryptography

A Note on Quantum Security for Post-Quantum Cryptography A Note on Quantum Security for Post-Quantum Cryptography Fang Song Department of Combinatorics & Optimization and Institute for Quantum Computing University of Waterloo Abstract Shor s quantum factoring

More information

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Tuesday 30 October 2018

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Tuesday 30 October 2018 Faculty of Mathematics and Computer Science Exam Cryptology, Tuesday 30 October 2018 Name : TU/e student number : Exercise 1 2 3 4 5 total points Notes: Please hand in all sheets at the end of the exam.

More information

THE RANK METHOD AND APPLICATIONS TO POST- QUANTUM CRYPTOGRAPHY

THE RANK METHOD AND APPLICATIONS TO POST- QUANTUM CRYPTOGRAPHY THE RANK METHOD AND APPLICATIONS TO POST- QUANTUM CRYPTOGRAPHY Mark Zhandry - Stanford University Joint work with Dan Boneh Classical Cryptography Post-Quantum Cryptography All communication stays classical

More information

POST-QUANTUM CRYPTOGRAPHY HOW WILL WE ENCRYPT TOMORROW?

POST-QUANTUM CRYPTOGRAPHY HOW WILL WE ENCRYPT TOMORROW? POST-QUANTUM CRYPTOGRAPHY HOW WILL WE ENCRYPT TOMORROW? Hanno Böck https://hboeck.de 1 INTRODUCTION Hanno Böck, freelance journalist and hacker. Writing for Golem.de and others. Fuzzing Project, funded

More information

Logic gates. Quantum logic gates. α β 0 1 X = 1 0. Quantum NOT gate (X gate) Classical NOT gate NOT A. Matrix form representation

Logic gates. Quantum logic gates. α β 0 1 X = 1 0. Quantum NOT gate (X gate) Classical NOT gate NOT A. Matrix form representation Quantum logic gates Logic gates Classical NOT gate Quantum NOT gate (X gate) A NOT A α 0 + β 1 X α 1 + β 0 A N O T A 0 1 1 0 Matrix form representation 0 1 X = 1 0 The only non-trivial single bit gate

More information

The quantum threat to cryptography

The quantum threat to cryptography The quantum threat to cryptography Ashley Montanaro School of Mathematics, University of Bristol 20 October 2016 Quantum computers University of Bristol IBM UCSB / Google University of Oxford Experimental

More information

Technische Universität München (I7) Winter 2013/14 Dr. M. Luttenberger / M. Schlund SOLUTION. Cryptography Endterm

Technische Universität München (I7) Winter 2013/14 Dr. M. Luttenberger / M. Schlund SOLUTION. Cryptography Endterm Technische Universität München (I7) Winter 2013/14 Dr. M. Luttenberger / M. Schlund SOLUTION Cryptography Endterm Exercise 1 One Liners 1.5P each = 12P For each of the following statements, state if it

More information

Introduction to Cybersecurity Cryptography (Part 4)

Introduction to Cybersecurity Cryptography (Part 4) Introduction to Cybersecurity Cryptography (Part 4) Review of Last Lecture Blockciphers Review of DES Attacks on Blockciphers Advanced Encryption Standard (AES) Modes of Operation MACs and Hashes Message

More information

Question: Total Points: Score:

Question: Total Points: Score: University of California, Irvine COMPSCI 134: Elements of Cryptography and Computer and Network Security Midterm Exam (Fall 2016) Duration: 90 minutes November 2, 2016, 7pm-8:30pm Name (First, Last): Please

More information

Asymptotically Efficient Lattice-Based Digital Signatures

Asymptotically Efficient Lattice-Based Digital Signatures Asymptotically Efficient Lattice-Based Digital Signatures Vadim Lyubashevsky and Daniele Micciancio University of California, San Diego La Jolla, CA 92093-0404, USA {vlyubash,daniele}@cs.ucsd.edu Abstract.

More information

On Post-Quantum Cryptography

On Post-Quantum Cryptography On Post-Quantum Cryptography Ehsan Ebrahimi Quantum Cryptography Group University of Tartu, Estonia 15 March 2018 Information Security and Cryptography Group Seminar Post-Quantum Cryptography Users intend

More information

Short Signatures From Diffie-Hellman: Realizing Short Public Key

Short Signatures From Diffie-Hellman: Realizing Short Public Key Short Signatures From Diffie-Hellman: Realizing Short Public Key Jae Hong Seo Department of Mathematics, Myongji University Yongin, Republic of Korea jaehongseo@mju.ac.kr Abstract. Efficient signature

More information

CRYSTALS Kyber and Dilithium. Peter Schwabe February 7, 2018

CRYSTALS Kyber and Dilithium. Peter Schwabe   February 7, 2018 CRYSTALS Kyber and Dilithium Peter Schwabe peter@cryptojedi.org https://cryptojedi.org February 7, 2018 Crypto today 5 building blocks for a secure channel Symmetric crypto Block or stream cipher (e.g.,

More information

Code-based post-quantum cryptography. D. J. Bernstein University of Illinois at Chicago

Code-based post-quantum cryptography. D. J. Bernstein University of Illinois at Chicago Code-based post-quantum cryptography D. J. Bernstein University of Illinois at Chicago Once the enormous energy boost that quantum computers are expected to provide hits the street, most encryption security

More information

SIGNATURE SCHEMES & CRYPTOGRAPHIC HASH FUNCTIONS. CIS 400/628 Spring 2005 Introduction to Cryptography

SIGNATURE SCHEMES & CRYPTOGRAPHIC HASH FUNCTIONS. CIS 400/628 Spring 2005 Introduction to Cryptography SIGNATURE SCHEMES & CRYPTOGRAPHIC HASH FUNCTIONS CIS 400/628 Spring 2005 Introduction to Cryptography This is based on Chapter 8 of Trappe and Washington DIGITAL SIGNATURES message sig 1. How do we bind

More information

Post-Quantum Cryptography

Post-Quantum Cryptography Post-Quantum Cryptography Sebastian Schmittner Institute for Theoretical Physics University of Cologne 2015-10-26 Talk @ U23 @ CCC Cologne This work is licensed under a Creative Commons Attribution-ShareAlike

More information

5199/IOC5063 Theory of Cryptology, 2014 Fall

5199/IOC5063 Theory of Cryptology, 2014 Fall 5199/IOC5063 Theory of Cryptology, 2014 Fall Homework 2 Reference Solution 1. This is about the RSA common modulus problem. Consider that two users A and B use the same modulus n = 146171 for the RSA encryption.

More information

How to Use Linear Homomorphic Signature in Network Coding

How to Use Linear Homomorphic Signature in Network Coding How to Use Linear Homomorphic Signature in Network Coding Li Chen lichen.xd at gmail.com Xidian University September 28, 2013 How to Use Linear Homomorphic Signature in Network Coding Outline 1 Linear

More information

1 Cryptographic hash functions

1 Cryptographic hash functions CSCI 5440: Cryptography Lecture 6 The Chinese University of Hong Kong 23 February 2011 1 Cryptographic hash functions Last time we saw a construction of message authentication codes (MACs) for fixed-length

More information

Introduction to Modern Cryptography. Lecture RSA Public Key CryptoSystem 2. One way Trapdoor Functions

Introduction to Modern Cryptography. Lecture RSA Public Key CryptoSystem 2. One way Trapdoor Functions Introduction to Modern Cryptography Lecture 7 1. RSA Public Key CryptoSystem 2. One way Trapdoor Functions Diffie and Hellman (76) New Directions in Cryptography Split the Bob s secret key K to two parts:

More information

1 What are Physical Attacks. 2 Physical Attacks on RSA. Today:

1 What are Physical Attacks. 2 Physical Attacks on RSA. Today: Today: Introduction to the class. Examples of concrete physical attacks on RSA A computational approach to cryptography Pseudorandomness 1 What are Physical Attacks Tampering/Leakage attacks Issue of how

More information

Foundations of Network and Computer Security

Foundations of Network and Computer Security Foundations of Network and Computer Security John Black Lecture #6 Sep 8 th 2005 CSCI 6268/TLEN 5831, Fall 2005 Announcements Quiz #1 later today Still some have not signed up for class mailing list Perhaps

More information

II. Digital signatures

II. Digital signatures II. Digital signatures Alice m Bob Eve 1. Did Bob send message m, or was it Eve? 2. Did Eve modify the message m, that was sent by Bob? 1 Digital signatures Digital signature - are equivalent of handwritten

More information

Foundations of Network and Computer Security

Foundations of Network and Computer Security Foundations of Network and Computer Security John Black Lecture #9 Sep 22 nd 2005 CSCI 6268/TLEN 5831, Fall 2005 Announcements Midterm #1, next class (Tues, Sept 27 th ) All lecture materials and readings

More information

Lecture 11: Key Agreement

Lecture 11: Key Agreement Introduction to Cryptography 02/22/2018 Lecture 11: Key Agreement Instructor: Vipul Goyal Scribe: Francisco Maturana 1 Hardness Assumptions In order to prove the security of cryptographic primitives, we

More information

Lecture 10: HMAC and Number Theory

Lecture 10: HMAC and Number Theory CS 6903 Modern Cryptography April 15, 2010 Lecture 10: HMAC and Number Theory Instructor: Nitesh Saxena Scribes: Anand Bidla, Samiksha Saxena,Varun Sanghvi 1 HMAC A Hash-based Message Authentication Code

More information

Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World. Dan Boneh and Mark Zhandry Stanford University

Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World. Dan Boneh and Mark Zhandry Stanford University Secure Signatures and Chosen Ciphertext Security in a Quantu Coputing World Dan Boneh and Mark Zhandry Stanford University Classical Chosen Message Attack (CMA) σ = S(sk, ) signing key sk Classical CMA

More information

Security Issues in Cloud Computing Modern Cryptography II Asymmetric Cryptography

Security Issues in Cloud Computing Modern Cryptography II Asymmetric Cryptography Security Issues in Cloud Computing Modern Cryptography II Asymmetric Cryptography Peter Schwabe October 21 and 28, 2011 So far we assumed that Alice and Bob both have some key, which nobody else has. How

More information

Counterexamples to Hardness Amplification Beyond Negligible

Counterexamples to Hardness Amplification Beyond Negligible Counterexamples to Hardness Amplification Beyond Negligible Yevgeniy Dodis Abhishek Jain Tal Moran Daniel Wichs January 31, 2012 Abstract If we have a problem that is mildly hard, can we create a problem

More information

CS 4770: Cryptography. CS 6750: Cryptography and Communication Security. Alina Oprea Associate Professor, CCIS Northeastern University

CS 4770: Cryptography. CS 6750: Cryptography and Communication Security. Alina Oprea Associate Professor, CCIS Northeastern University CS 4770: Cryptography CS 6750: Cryptography and Communication Security Alina Oprea Associate Professor, CCIS Northeastern University March 26 2017 Outline RSA encryption in practice Transform RSA trapdoor

More information