Electric Dipole Moment

Size: px
Start display at page:

Download "Electric Dipole Moment"

Transcription

1 Electric Dipole Moment Joshua Kames-King / 36

2 1 2 Standard Model CP / 36

3 The EDM and CP-Violation EDM: d = d 3 x x ρ( x) CPT T viol. CP viol. Non-zero EDM d 0 = CP 3 / 36

4 CP viol. in the SM CP-sources in SM Non-Pert.: θ-term in Pert.:CKM-matrix in 4 / 36

5 θ-term U(1) A -anomaly Massless limit: U L (N f ) U R (N f ) SU A (N f ) SU V (N f ) U V (1) U A (1) U V (1) : Symm. Bary.Numb.consv. observed SU V (3) : Symm. eightfoldway observed SU A (3) : SSB. GoldstoneBos. observed U A (1) Symm. : doubling of multiplets SSB. : pseudoscalar meson 5 / 36

6 θ-term U(1) A -anomaly Broken on QM-level at 1-loop: U(1)-Problem µ j µ 5 = N f /2 g 2 8π 2 GµνG a aµν However: µ K µ non-perturbative! Also: j µ 5 = j µ 5 2N g 2 f 16π 2 K µ 6 / 36

7 θ-term Instantons and -vacuum Consider: Demand finite energy: S E = 1 2g 2 d 4 x E Tr[F µν F µν ] F µν (x) r 0 = A µ (x) r U 1 µ U Euclidean space inf. S 3 ;also SU(2)(groupspace) S 3 since: U = u 0 + u σ = 1 u0 2 + u u = 1 S 3 S 3 n given by: n = d 4 xa w/a = 1 16π 2 Tr[ F µν F µν ] 7 / 36

8 Solutions action is finite: S E 8πn2 g 2 w/ F µν = ± F µν instanton solutions: A µ = ( r 2 r 2 +γ 2 )U µ U 1 U 1 ( r) = 1 r (x 0 + i x ) σ) w/ U n ( r) = (U 1 ( r)) n -vacuum Infinite number of vacua characterized by homotopy. True vacuum state: θ >= Σ n e inθ n > Have to include: L θ = θ 16π 2 Tr[ F µν F µν ] Breaks CP! 8 / 36

9 Handshaking: & Mass Matrix L Mq = ψ R Mψ L + ψ L M ψ R Now chiral trafo: ψ R(L) = U R(L)ψ R(L) gives: M ab = m a δ ab e iρ Now chiral trafo. : e iα Q 5 with α = θ/(2n f ): ρ = ρ θ N f Effective θ-vacuum θ = θ Arg Det[M] 9 / 36

10 CKM-matrix -Lagrangian L(f, φ) SSB quarks = Σ3 j,k=1 ( (m jk ) U ū j L uk R +(m jk) D d j L d k R with fermion mass matrices in flavour space: (m jk ) U/D = (Y U/D v ) jk 2 Diagonalization: V up L m UV up R = (m diag. ) U & VL down Charged current interaction: µ = ( u c t ) L γ µ V up J CC L V down L } {{ } :=V CKM m D V down R = (m diag. ) D d s b L ) ( 1+ φ ) +h.c. v 10 / 36

11 CKM-Matrix The charged current lagrangian: L cc Σ 3 i=1(ū i L γµ W + µ (V CKM ) ij d j L + d i L γµ W µ (V CKM ) iju j L ) CP d i L γµ W µ (V CKM ) ij u j L ) + ūi L γµ W + µ (V CKM ) ijd j L CKM-Matrix CP cons. would require V to be real Not the case for 3 families or more V CKM parametrized: 3 angles, 1 complex phase 11 / 36

12 Effective Lagrangian Other Techniques Need δl CP for pert.th.! Eff. Lagrangian for CP-violation Due to SU A (3)-SSB vacuum degenerate. = have to select from: L M = ψ R U R MU Lψ L + H.C. Demand: < Ω δl Ω >= min U R,L < Ω L M (U R,L ) Ω > Assume: 1 pure chiral: U R = U L 2 δl flavor-diagonal 12 / 36

13 Effective Lagrangian Other Techniques δl = ψ a R (µ a + iω)ψ a L e iδ m 2 a = µ 2 a + ω 2 θ = 1 3 Π a(µ a + iω) CP-Langrangian In the limit θ << 1: δl(cp) = Source of CP-effects in hadr. int. 3m u m d m s m u m d + m u m s + m d m s θ( ψiγ 5 ψ) 13 / 36

14 Calculation Other Techniques Idea: CP-pion-nucleon coupling ḡ πnn generates contribution to EDM N via π-loop: Correlator: T < n(p f ) J em. µ (0)i d 4 xδl CP n(p i ) >= d n (0)ū f σ µν k ν γ 5 u i +O(k 2 ) 14 / 36

15 Calculation Other Techniques Calc. of correlator: Σ X < n(p f ) J µ X > < X δl CP n(p i ) > with X >= { N >, πn >, ππn >,...} = πn > Full pion-nucleon eff. interactions: L πnn = π N σ(ig πnn γ 5 + ḡ πnn )N Determine ḡ πnn directly by < π a N δl CP N >: ḡ πnn θ = d n (0) = ḡπnng πnn ln( M 4π 2 N M N M π ) θ ecm 15 / 36

16 Other Techniques Techniques Quark models: 1 Bag model of confinement 2 Constituent quark model: 3 constituent q with 2 spin states Lattice : Compute EDM form factor in leading non-triv. θ-order Chiral pert. th.: chiral symmetry for low energies Naive dimensional analysis(nda): match loop corrections to tree level at Λ coeff. of operators sum rules 16 / 36

17 Sum Rules Other Techniques Idea Calculate hadronic correlator at high virtuality with OPE and match with phenomenological ansatz for low virtuality Relevant correlator: Π(Q 2 ) = i d 4 xe ipx < 0 T (η N (x) η N (0)) 0 > CP,F,π w/ linear comb. of two sources : η N = η 1 + βη 2 η 1 = 2ɛ abc (d T a Cγ 5 u b )d c & η 1 = 2ɛ abc (d T a Cu b )γ 5 d c η 1 dominant projection on neutron state. 17 / 36

18 Sum Rules Other Techniques Chiral inv. implies ansatz: Π(Q 2 ) pheno = 1 2 f d(q 2 ){ F σ, /q} f π(q 2 )/q Have to match w/ OPE evaluation: Π(q 2 ) = Σ d C d (q 2 ) < 0 O d 0 > CP,F,π Calculate generalized q-propagator in terms of: background field, CP-odd sources, vacuum condensates Compute relevant contractions d n = θecm 18 / 36

19 Strong CP-problem Other Techniques Discussion d n,exp ecm θ < Requires finetuning: θ and M q Possible Solutions Relaxation: θ dynamically zero Cancellation: Appropriate choice of M q,s.t. Det[M u M d ] real Handshaking lost Θ 0 19 / 36

20 Calculation Other Techniques Idea 1 Calculate Quark EDM at W-boson level 2 Move to nucleon level by RGE Figure: 1-loop and 2-loop level However: No contribution to quark EDM up to 3-loop level Need realistic approach 20 / 36

21 Diquark Moment Consider all 3 quarks simultaneously: 2 interacting q and 1 spectator quark Other Techniques 21 / 36

22 Calculation Other Techniques All 3 diagrams give amp.s of the form: (formfactor) ( /Qγ µ /p /pγ µ /Q)P L = Get 5-particle amplitude Γ µ ((V ) dt V ts (V ) su V ud ) }{{} :=V 22 / 36

23 Calculation Other Techniques EDM EDM given by: Γ 0 QA 0 Q 0 A using non-rel. formalism of 2 comp. spin states and sph. symm. of nucleon wf: Γ 0 2iIm(V) Integrating over quark phase space :d n (2iIm(V )) From Kaon-system: c 1 s 2 1 c 2s 2 c 3 s 3 sinδ CKM Therefore: d n ecm 10 6 smaller than exp. upper bound 23 / 36

24 Discussion Other Techniques Discussion rough estimates like hadron wf. However: gap of 10 6! strong exp. constraints can t be closed in SM 24 / 36

25 Experimental procedure General Procedure Larmor precession: hν = 2µ n B + 2d n E hν = 2µ n B 2d n E = ν = 4dE h 25 / 36

26 Ramsey Technique General Procedure 1 Inject polarized neutrons 2 Spin flip π/2 3 Free precession 4 Spin flip π/2 For d n 0 : = spin not flipped over. Count: n &n for E &E 26 / 36

27 Ultracold Neutrons General Procedure Why UCN? T ande Creation of UCN: Neutron turbine Polarization: magnetically saturated 1µm iron-cobalt foil. Filling chambers: 40s Confinement: 100s Discharge and counting: 40s E-polarity switched in 40s interval betweeen storage times 27 / 36

28 Atomic EDMs General Procedure Schiff s Theorem In neutral atomic system of,charged nonrel. point particles interacting (only) electromagnetically the shielding of the nucleus is complete, such that the net atomic EDM is zero Figure: Charged constituent particles rearrange 28 / 36

29 BUT General Procedure Loopholes relativistic effects for electrons finite size of nucleus magnetic interactions (primarily nucleus-electron) Paramag. Atoms: heavily enhanced atomic EDM by d e due to magnetic effects Z Diamag. Atoms: rel. and finite size effects weaken shielding; EDM associated with nuclear spin 29 / 36

30 SUSY SUSY Additional Dimensions Splitting of SM and sup.part masses: L soft = 1 2 (M 3 g g + M 2 W W + M 3 B B) + c.c. ( ūa u QHu dad QHd ēa e QHe ) + c.c. Q m 2 Q Q L m 2 L L ū m 2 ū ū d m 2 d d ē m 2 ē ē m H 2 u H uh u m H 2 d H d H d (bh u H d + c.c.) CPV a f = A F Y f suppresses FCNC L soft and µ-term give 40(!) CPV-phases not suppressed by Jarlskog invariant 30 / 36

31 SUSY CP-Problem SUSY Additional Dimensions Solutions Heavy sfermions: 1-loop EDMs suppressed by M ferm.sup.partners > 1TeV Cancellation: different CPV phases from different CPV ops. cancel CP-nonviolating SUSY-breaking: (approximate)cp symm. of soft-breaking sector 31 / 36

32 Additional Dimensions RS1 SUSY Additional Dimensions Solve hierarchy problem: 2 (3+1)branes of different energy Higgs located at TeV-brane gravity at Planck-brane Only gravity can propagate in bulk of 5th dim. between branes (ds) 2 = 1 (kz) 2 [η µν x µ x ν (dz) 2 ] 32 / 36

33 Additonal Dimensions SUSY Additional Dimensions CPV 5-dim. Yukawa int.: L = hδ(z z 0 )λ 5D Q(u, u,d d) 4-dim eff. theory on Tev-brane: m q vf Q λ 5D u,d F u.d Coupling of KK and fermions: λ 5D u,d F Q doesn t align with m q CPV contributions 33 / 36

34 Additional Dimensions-EDM SUSY Additional Dimensions EDM d d (gluon, KK) kv[d L F Qλ 5D d F dd R ] 11 [diag(m d, m s, m b )] 23 = 0 d d (Higgs, KK) 2k 3 v[f Q (λ 5D u λ 5D u + λ 5D d λ5d d )λ 5D d d n = (10 11 efm)( 2kλ5D 4 ) 2 ( 3TeV m kk ) 2 34 / 36 Fd]

35 35 / 36

36 G. Hooft, Phys. Rev. Lett. 37 (1976) 8; Phys. Rev. D 14 (1976) 3432, [Erratum Phys. Rev. D 18 (1978) 2199]; Phys. Rep. 142 (1986) 357. M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49 (1973) 652. E. Witten, Nucl. Phys. B 156 (1979) 269 Roger Dashen Phys. Rev. D3,1879(1971) M. Pospelov, A. Ritz / Annals of Physics 318(2005) V. Baluni, Phys. Rev. D 19 (1979) / 36

37 J. Engel,M. J. Ramsey-Musolf, U. van Kolck;Electric dipole moments of nucleons, nuclei, and atoms: The Standard Model and beyond D. V. NANOPOULOS, A.YILDIZANNALS OF PHYSICS 127, ( 1980) I.B. KHRIPLOVICH; THE QUARK ELECTRIC DIPOLE MOMENT AND THE INDUCED 0-TERM IN THE KOBAYASHI-MASKAWA MODEL 37 / 36

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31 1 / 31 Axions Kerstin Helfrich Seminar on Theoretical Particle Physics, 06.07.06 2 / 31 Structure 1 Introduction 2 Repetition: Instantons Formulae The θ-vacuum 3 The U(1) and the strong CP problem The

More information

EDMs from the QCD θ term

EDMs from the QCD θ term ACFI EDM School November 2016 EDMs from the QCD θ term Vincenzo Cirigliano Los Alamos National Laboratory 1 Lecture II outline The QCD θ term Toolbox: chiral symmetries and their breaking Estimate of the

More information

EDMs at Dimension Six

EDMs at Dimension Six EDMs at Dimension Six M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear, Particle, Astrophysics & Cosmology http://www.physics.wisc.edu/groups/particle-theory/ EDMs 13, FNAL, February 2013

More information

Electric Dipole Moments I. M.J. Ramsey-Musolf

Electric Dipole Moments I. M.J. Ramsey-Musolf Electric Dipole Moments I M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear, Particle, Astrophysics & Cosmology http://www.physics.wisc.edu/groups/particle-theory/ TUM Excellence Cluster, May

More information

Dynamical supersymmetry breaking, with Flavor

Dynamical supersymmetry breaking, with Flavor Dynamical supersymmetry breaking, with Flavor Cornell University, November 2009 Based on arxiv: 0911.2467 [Craig, Essig, Franco, Kachru, GT] and arxiv: 0812.3213 [Essig, Fortin, Sinha, GT, Strassler] Flavor

More information

Charm CP Violation and the electric dipole moment of the neutron

Charm CP Violation and the electric dipole moment of the neutron and the electric dipole moment of the neutron Thomas Mannel (with N. Uraltsev, arxiv:1202.6270 and arxiv:1205.0233) Theoretische Physik I Universität Siegen Seminar at TUM, 14.1.2013 Contents Introduction

More information

Electric Dipole Moments and the strong CP problem

Electric Dipole Moments and the strong CP problem Electric Dipole Moments and the strong CP problem We finally understand CP viola3on.. QCD theta term Jordy de Vries, Nikhef, Amsterdam Topical Lectures on electric dipole moments, Dec. 14-16 Introductory

More information

Dipole operator constraints on composite Higgs models

Dipole operator constraints on composite Higgs models Matthias König May 27th, 2014 Dipole operators: emerge from one-loop correction to fermion-photon coupling f i R f j L γ/g. Various observables are governed by dipole operatores such as electric dipole

More information

Theory and Phenomenology of CP Violation

Theory and Phenomenology of CP Violation Theory and Phenomenology of CP Violation Thomas Mannel a a Theretische Physik I, University of Siegen, 57068 Siegen, Germany In this talk I summarize a few peculiar features of CP violation in the Standard

More information

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector - Boson - May 7, 2017 - Boson - The standard model of particle physics is the state of the art in quantum field theory All the knowledge we have developed so far in this field enters in its definition:

More information

Lecture 12 Holomorphy: Gauge Theory

Lecture 12 Holomorphy: Gauge Theory Lecture 12 Holomorphy: Gauge Theory Outline SUSY Yang-Mills theory as a chiral theory: the holomorphic coupling and the holomorphic scale. Nonrenormalization theorem for SUSY YM: the gauge coupling runs

More information

Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn. Tuesday group seminar 17/03/15 University of Liverpool

Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn. Tuesday group seminar 17/03/15 University of Liverpool Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn Tuesday group seminar 17/03/15 University of Liverpool 1 Introduction Outline The SM & SUSY Flavour Problem. Solving it by imposing a

More information

Bounds on new physics from EDMs. Martin Jung

Bounds on new physics from EDMs. Martin Jung Bounds on new physics from EDMs Martin Jung Seminar at the Institute for Nuclear and Particle Physics 6th of July 2017 Motivation Quark-flavour and CP violation in the SM: CKM describes flavour and CP

More information

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments)

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) T Symmetry EDM s Octupole Deformation Other Nuclei Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) J. Engel University of North Carolina June 16, 2005 T

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

Beyond Standard Model Effects in Flavour Physics: p.1

Beyond Standard Model Effects in Flavour Physics: p.1 Beyond Standard Model Effects in Flavour Physics: Alakabha Datta University of Mississippi Feb 13, 2006 Beyond Standard Model Effects in Flavour Physics: p.1 OUTLINE Standard Model (SM) and its Problems.

More information

Electric Dipole Moment of Neutron, Deuteron and Mercury in Supersymmetry w/o R-parity

Electric Dipole Moment of Neutron, Deuteron and Mercury in Supersymmetry w/o R-parity Electric Dipole Moment of Neutron, Deuteron and Mercury in Supersymmetry w/o R-parity Phys. Rev. D 76:013003,2007 C.C. Chiou, O.C.W. Kong and RV PCPV-2013@Mahabaleshwar Feb. 19-23 2013 R I S H I K E S

More information

Extra-d geometry might also explain flavor

Extra-d geometry might also explain flavor Flavor and CP Solutions via~gim in Bulk RS LR with Liam Fitzpatrick, Gilad Perez -w/ Liam Fitzpatrick, Clifford Cheung Introduction Lots of attention devoted to weak scale Flavor and CP remain outstanding

More information

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model TIT/HEP-38/NP INS-Rep.-3 η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model arxiv:hep-ph/96053v 8 Feb 996 Y.Nemoto, M.Oka Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 5,

More information

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State QCD and Instantons: 12 Years Later Thomas Schaefer North Carolina State 1 ESQGP: A man ahead of his time 2 Instanton Liquid: Pre-History 1975 (Polyakov): The instanton solution r 2 2 E + B A a µ(x) = 2

More information

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) 1 m N m ρ Λ QCD 0 m π m u,d In a generic physical system, there are often many scales involved. However, for a specific

More information

Antonio Pich. IFIC, CSIC Univ. Valencia.

Antonio Pich. IFIC, CSIC Univ. Valencia. Antonio Pich IFIC, CSIC Univ. alencia Antonio.Pich@cern.ch Fermion Masses Fermion Generations Quark Mixing Lepton Mixing Standard Model Parameters CP iolation Quarks Leptons Bosons up down electron neutrino

More information

EDMs and flavor violation in SUSY models

EDMs and flavor violation in SUSY models EDMs and flavor violation in SUSY models Junji Hisano Institute for Cosmic Ray Research (ICRR), University of Tokyo The 3rd International Symposium on LEPTON MOMENTS Cape Cod, June 2006 Contents of my

More information

Effective Field Theory and EDMs

Effective Field Theory and EDMs ACFI EDM School November 2016 Effective Field Theory and EDMs Vincenzo Cirigliano Los Alamos National Laboratory 1 Lecture III outline EFT approach to physics beyond the Standard Model Standard Model EFT

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

Electric Dipole Moments: Phenomenology & Implications

Electric Dipole Moments: Phenomenology & Implications Electric Dipole Moments: Phenomenology & Implications M.J. Ramsey-Musolf U Mass Amherst http://www.physics.umass.edu/acfi/ ACFI Workshop, Amherst May 015! 1 Outline I. Experimental situation II. Effective

More information

Spontaneous symmetry breaking in particle physics: a case of cross fertilization. Giovanni Jona-Lasinio

Spontaneous symmetry breaking in particle physics: a case of cross fertilization. Giovanni Jona-Lasinio Spontaneous symmetry breaking in particle physics: a case of cross fertilization Giovanni Jona-Lasinio QUARK MATTER ITALIA, 22-24 aprile 2009 1 / 38 Spontaneous (dynamical) symmetry breaking Figure: Elastic

More information

Electric dipole moment: theory for experimentalists on the physics of atomic and nuclear EDMs

Electric dipole moment: theory for experimentalists on the physics of atomic and nuclear EDMs Electric dipole moment: theory for experimentalists on the physics of atomic and nuclear EDMs Should every physicists be measuring the neutron EDM? Can the neutron EDM save the world? Why are so many experiments

More information

Unitary Triangle Analysis: Past, Present, Future

Unitary Triangle Analysis: Past, Present, Future Unitarity Triangle Analysis: Past, Present, Future INTRODUCTION: quark masses, weak couplings and CP in the Standard Model Unitary Triangle Analysis: PAST PRESENT FUTURE Dipartimento di Fisica di Roma

More information

The Higgs Mechanism and the Higgs Particle

The Higgs Mechanism and the Higgs Particle The Higgs Mechanism and the Higgs Particle Heavy-Ion Seminar... or the Anderson-Higgs-Brout-Englert-Guralnik-Hagen-Kibble Mechanism Philip W. Anderson Peter W. Higgs Tom W. B. Gerald Carl R. François Robert

More information

Theories with Compact Extra Dimensions

Theories with Compact Extra Dimensions Instituto de Física USP PASI 2012 UBA Theories with Compact Extra dimensions Part II Generating Large Hierarchies with ED Theories Warped Extra Dimensions Warped Extra Dimensions One compact extra dimension.

More information

Phenomenology of the flavour messenger sector

Phenomenology of the flavour messenger sector ULB, Bruxelles October 12th 2012 Phenomenology of the flavour messenger sector Lorenzo Calibbi ULB based on: L.C., Z. Lalak, S. Pokorski, R. Ziegler, arxiv:1203.1489 [hep-ph] & arxiv:1204.1275 [hep-ph]

More information

The Anomalous Magnetic Moment of the Muon in the Minimal Supersymmetric Standard Model for tan β =

The Anomalous Magnetic Moment of the Muon in the Minimal Supersymmetric Standard Model for tan β = The Anomalous Magnetic Moment of the Muon in the Minimal Supersymmetric Standard Model for tan β = Markus Bach Institut für Kern- und Teilchenphysik Technische Universität Dresden IKTP Institute Seminar

More information

Anomalies and discrete chiral symmetries

Anomalies and discrete chiral symmetries Anomalies and discrete chiral symmetries Michael Creutz BNL & U. Mainz Three sources of chiral symmetry breaking in QCD spontaneous breaking ψψ 0 explains lightness of pions implicit breaking of U(1) by

More information

String/gauge theory duality and QCD

String/gauge theory duality and QCD String/gauge theory duality and QCD M. Kruczenski Purdue University ASU 009 Summary Introduction String theory Gauge/string theory duality. AdS/CFT correspondence. Mesons in AdS/CFT Chiral symmetry breaking

More information

Axions Theory SLAC Summer Institute 2007

Axions Theory SLAC Summer Institute 2007 Axions Theory p. 1/? Axions Theory SLAC Summer Institute 2007 Helen Quinn Stanford Linear Accelerator Center Axions Theory p. 2/? Lectures from an Axion Workshop Strong CP Problem and Axions Roberto Peccei

More information

Lepton Flavor Violation

Lepton Flavor Violation Lepton Flavor Violation I. The (Extended) Standard Model Flavor Puzzle SSI 2010 : Neutrinos Nature s mysterious messengers SLAC, 9 August 2010 Yossi Nir (Weizmann Institute of Science) LFV 1/39 Lepton

More information

FLAVOUR IN WARPED EXTRA DIMENSIONS

FLAVOUR IN WARPED EXTRA DIMENSIONS FLAVOUR IN WARPED EXTRA DIMENSIONS G. CACCIAPAGLIA Institut de Physique Nucléaire de Lyon, Université Lyon, CNRS/IN2P3, F-69622 Villeurbanne Cedex, France Models in warped extra dimensions are very attractive

More information

Nuclear electric dipole moment in the Gaussian expansion method

Nuclear electric dipole moment in the Gaussian expansion method Nuclear electric dipole moment in the Gaussian expansion method Nodoka Yamanaka (ithes Group, RIKEN) In collaboration with E. Hiyama (RIKEN), T. Yamada (Kanto-Gakuin Univ.), Y. Funaki (RIKEN) 2015/10/12

More information

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures)

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures) STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT (Two lectures) Lecture 1: Mass scales in particle physics - naturalness in QFT Lecture 2: Renormalisable or non-renormalisable effective electroweak

More information

arxiv:hep-ph/ v1 29 Aug 1996

arxiv:hep-ph/ v1 29 Aug 1996 YCTP-P14-96 QCD at Large θ Angle and Axion Cosmology Nick Evans, Stephen D.H. Hsu, Andreas Nyffeler and Myckola Schwetz arxiv:hep-ph/9608490v1 9 Aug 1996 Sloane Physics Laboratory, Yale University, New

More information

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006 Anomaly Kenichi KONISHI University of Pisa College de France, 14 February 2006 Abstract Symmetry and quantization U A (1) anomaly and π 0 decay Origin of anomalies Chiral and nonabelian anomaly Anomally

More information

Flavor Physics Part 2

Flavor Physics Part 2 Flavor Physics Part 2 Wolfgang Altmannshofer altmanwg@ucmail.uc.edu Summer School on Symmetries, Fundamental Interactions and Cosmology 2016, Abtei Frauenwörth, September 20, 2016 Wolfgang Altmannshofer

More information

Electric Dipole Moments and New Physics

Electric Dipole Moments and New Physics Electric Dipole Moments and New Physics Maxim Pospelov Perimeter Institute/University of Victoria for a recent review, see M. Pospelov and A. Ritz, Annals of Physics 2005 Plan 1. Introduction. Current

More information

Flavor in the scalar sector of Warped Extra Dimensions a. Manuel Toharia

Flavor in the scalar sector of Warped Extra Dimensions a. Manuel Toharia Flavor in the scalar sector of Warped Extra Dimensions a by Manuel Toharia (University of Maryland) at the University of Virginia, Dec. 2, 2009 a Based on PRD80:03506( 09) A.Azatov, M.T., L.Zhu PRD80:0370(

More information

Discrete Transformations: Parity

Discrete Transformations: Parity Phy489 Lecture 8 0 Discrete Transformations: Parity Parity operation inverts the sign of all spatial coordinates: Position vector (x, y, z) goes to (-x, -y, -z) (eg P(r) = -r ) Clearly P 2 = I (so eigenvalues

More information

Elementary Particles, Flavour Physics and all that...

Elementary Particles, Flavour Physics and all that... Elementary Particles, Flavour Physics and all that... 1 Flavour Physics The term Flavour physics was coined in 1971 by Murray Gell-Mann and his student at the time, Harald Fritzsch, at a Baskin-Robbins

More information

Perspectives Flavor Physics beyond the Standard Model

Perspectives Flavor Physics beyond the Standard Model Perspectives Flavor Physics beyond the Standard Model Invited Talk at FLASY13 (Jul 2013) OTTO C. W. KONG Nat l Central U, Taiwan Personal :- PhD. dissertation on horizontal/family symmetry Frampton & O.K.

More information

The Higgs Boson and Electroweak Symmetry Breaking

The Higgs Boson and Electroweak Symmetry Breaking The Higgs Boson and Electroweak Symmetry Breaking 1. Minimal Standard Model M. E. Peskin Chiemsee School September 2014 The Higgs boson has an odd position in the Standard Model of particle physics. On

More information

Electroweak Theory: 2

Electroweak Theory: 2 Electroweak Theory: 2 Introduction QED The Fermi theory The standard model Precision tests CP violation; K and B systems Higgs physics Prospectus STIAS (January, 2011) Paul Langacker (IAS) 31 References

More information

Overview of low energy NN interaction and few nucleon systems

Overview of low energy NN interaction and few nucleon systems 1 Overview of low energy NN interaction and few nucleon systems Renato Higa Theory Group, Jefferson Lab Cebaf Center, A3 (ext6363) higa@jlaborg Lecture II Basics on chiral EFT π EFT Chiral effective field

More information

The symmetries of QCD (and consequences)

The symmetries of QCD (and consequences) The symmetries of QCD (and consequences) Sinéad M. Ryan Trinity College Dublin Quantum Universe Symposium, Groningen, March 2018 Understand nature in terms of fundamental building blocks The Rumsfeld

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Notes on EDMs. Matt Reece. October 20, 2013

Notes on EDMs. Matt Reece. October 20, 2013 Notes on EDMs Matt Reece October 20, 2013 EDMs and the mass scale of new physics The electron EDM in QED is the dimension 5 operator L = d e i 2 ψσ µν γ 5 ψf µν, (1) where ψ is the electron field and F

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

Aspetti della fisica oltre il Modello Standard all LHC

Aspetti della fisica oltre il Modello Standard all LHC Aspetti della fisica oltre il Modello Standard all LHC (con enfasi sulla verificabilità sperimentale in gruppo I e II) Andrea Romanino SISSA e INFN TS Giornata di Seminari, INFN TS, 07.07.09 The Standard

More information

Is there a Scalar Sector?

Is there a Scalar Sector? Is there a Scalar Sector? Roberto Peccei Cornwall Symposium UCLA November 2009 Is there a Scalar Sector? The Cornwall Norton Paper Technicolor and its Troubles Difficulties with CP Concluding Remarks The

More information

Lepton flavour violation in RS models

Lepton flavour violation in RS models Lepton flavour violation in RS models P. Moch with M. Beneke and J. Rohrwild Theoretische Physik 1 Uni Siegen Outline: Introduction Strategy and formalism Results P. Moch (Uni Siegen LVF in RS PSI, Oktober

More information

The electron EDM and EDMs in Two-Higgs-Doublet Models

The electron EDM and EDMs in Two-Higgs-Doublet Models The electron EDM and EDMs in Two-Higgs-Doublet Models Martin Jung Recontres de Moriond EW 2014 March 21st 2014 Based on: A robust limit for the EDM of the electron, MJ, JHEP 1305 (2013) 168, EDMs in Two-Higgs-Doublet

More information

The scalar meson puzzle from a linear sigma model perspective

The scalar meson puzzle from a linear sigma model perspective Montpellier, December 009 The scalar meson puzzle from a linear sigma model perspective Renata Jora (Grup de Fisica Teorica and IFAE, Universitat Autonoma de Barcelona) Collaborators: Amir Fariborz(SUNY

More information

Two models with extra Higgs doublets and Axions

Two models with extra Higgs doublets and Axions Two models with extra Higgs doublets and Axions H Serôdio (KAIST) 4 th KIAS Workshop Particle Physics and Cosmology, 30 October 2014 In collaboration with: Alejandro Celis, Javier Fuentes-Martin Works:

More information

On Consistency in the Skyrme Topological Model

On Consistency in the Skyrme Topological Model On Consistency in the Skyrme Topological Model Syed Afsar Abbas Centre for Theoretical Physics, JMI University, New Delhi - 11005, India and Jafar Sadiq Research Institute AzimGreenHome, NewSirSyed Nagar,

More information

Probing the TeV scale and beyond with EDMs

Probing the TeV scale and beyond with EDMs Probing the TeV scale and beyond with EDMs Junji Hisano (Nagoya Univ./IPMU) 4th KIAS Workshop on parkcle physics and cosmology 5 th floor conference hall, KIAS From Oct 27 to 31, 2014 Contents IntroducKon

More information

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry Yoshihiro Shigekami KEK HUST ( 華中科技大学 ), Wuhan ( 武漢 ) Syuhei Iguro (Nagoya U.), Yu Muramatsu (CCNU), Yuji Omura (Nagoya

More information

Probing Two Higgs Doublet Models with LHC and EDMs

Probing Two Higgs Doublet Models with LHC and EDMs Probing Two Higgs Doublet Models with LHC and EDMs Satoru Inoue, w/ M. Ramsey-Musolf and Y. Zhang (Caltech) ACFI LHC Lunch, March 13, 2014 Outline 1 Motivation for 2HDM w/ CPV 2 Introduction to 2HDM 3

More information

Particules Élémentaires, Gravitation et Cosmologie Année Le Modèle Standard et ses extensions. The Flavour Sector

Particules Élémentaires, Gravitation et Cosmologie Année Le Modèle Standard et ses extensions. The Flavour Sector Particules Élémentaires, Gravitation et Cosmologie Année 2007-08 08 Le Modèle Standard et ses extensions Cours VIII: 29 février f 2008 The Flavour Sector Particle Physics in one page L SM = 1 4 Fa µνf

More information

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013 Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013 Rogerio Rosenfeld IFT-UNESP Lecture 1: Motivation/QFT/Gauge Symmetries/QED/QCD Lecture 2: QCD tests/electroweak

More information

Introduction to flavour physics

Introduction to flavour physics Introduction to flavour physics Y. Grossman Cornell University, Ithaca, NY 14853, USA Abstract In this set of lectures we cover the very basics of flavour physics. The lectures are aimed to be an entry

More information

Yuhsin Tsai Cornell/Fermilab Warped Penguins 1/38

Yuhsin Tsai Cornell/Fermilab Warped Penguins 1/38 Warped Penguins Yuhsin Tsai Fermilab / Cornell Fermilab Theory Seminar, 18 Aug 2011 BG: Wall paper from www.layoutsparks.com 1 / Yuhsin Tsai Cornell/Fermilab Warped Penguins 1/38 38 This talk includes

More information

Effective Theories are Dimensional Analysis

Effective Theories are Dimensional Analysis Effective Theories are Dimensional Analysis Sourendu Gupta SERC Main School 2014, BITS Pilani Goa, India Effective Field Theories December, 2014 Outline Outline The need for renormalization Three simple

More information

Introduction to Operator Product Expansion

Introduction to Operator Product Expansion Introduction to Operator Product Expansion (Effective Hamiltonians, Wilson coefficients and all that... ) Thorsten Feldmann Neckarzimmern, March 2008 Th. Feldmann (Uni Siegen) Introduction to OPE March

More information

Matter vs Anti-matter

Matter vs Anti-matter Baryogenesis Matter vs Anti-matter Earth, Solar system made of baryons B Our Galaxy Anti-matter in cosmic rays p/p O(10 4 ) secondary Our Galaxy is made of baryons p galaxy p + p p + p + p + p galaxy γ

More information

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Jürgen Reuter Albert-Ludwigs-Universität Freiburg W. Kilian, JR, PLB B642 (2006), 81; and work in progress (with F. Deppisch, W. Kilian)

More information

Split Supersymmetry A Model Building Approach

Split Supersymmetry A Model Building Approach Split Supersymmetry A Model Building Approach Kai Wang Phenomenology Institute Department of Physics the University of Wisconsin Madison UC Riverside HEP Seminar In Collaboration with Ilia Gogoladze (Notre

More information

Transport theory and low energy properties of colour superconductors

Transport theory and low energy properties of colour superconductors 1 Transport theory and low energy properties of colour superconductors Daniel F. Litim Theory Group, CERN, CH 1211 Geneva 23, Switzerland. CERN-TH-2001-315 The one-loop polarisation tensor and the propagation

More information

Lecture 12 Weak Decays of Hadrons

Lecture 12 Weak Decays of Hadrons Lecture 12 Weak Decays of Hadrons π + and K + decays Semileptonic decays Hyperon decays Heavy quark decays Rare decays The Cabibbo-Kobayashi-Maskawa Matrix 1 Charged Pion Decay π + decay by annihilation

More information

Recent CP violation measurements

Recent CP violation measurements Recent CP violation measurements 1/38 Recap of last week What we have learned last week: Indirect searches (CP violation and rare decays) are good places to search for effects from new, unknown particles.

More information

Theory overview on rare eta decays

Theory overview on rare eta decays Theory overview on rare eta decays WASA Jose L. Goity Hampton/JLab BES III KLOE Hadronic Probes of Fundamental Symmetries Joint ACFI-Jefferson Lab Workshop March 6-8, 2014!UMass Amherst Motivation Main

More information

How nucleon gets its mass

How nucleon gets its mass Fiz-Tech, Dec 05, 2006 How nucleon gets its mass Dmitri Diakonov Petersburg Nuclear Physics Institute 1. Quantum Chromodynamics: the theory of strong interactions 2. Chiral symmetry of strong interactions

More information

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature.

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. N.O. Agasian and I.A. Shushpanov Institute of Theoretical and Experimental Physics 117218 Moscow, Russia Abstract In the first

More information

Use of a non-relativistic basis for describing the low energy meson spectrum

Use of a non-relativistic basis for describing the low energy meson spectrum Use of a non-relativistic basis for describing the low energy meson spectrum in collaboration with Dr. Peter O. Hess Dr. Tochtli Yépez-Martínez Dr. Osvaldo Civitarese Dr. Adam Szczepaniak Instituto de

More information

Universal Extra Dimensions

Universal Extra Dimensions Universal Extra Dimensions Add compact dimension(s) of radius R ~ ant crawling on tube Kaluza-Klein tower of partners to SM particles due to curled-up extra dimensions of radius R n = quantum number for

More information

Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1 - Francesco Giacosa

Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1 - Francesco Giacosa Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1-55 Cracow School of Theoretical Physics 20 28/6/2015, Zakopane, Poland Outline The Lagrangian of QCD and its symmetries

More information

Electroweak Physics: Lecture V

Electroweak Physics: Lecture V Electroweak Physics Lecture V: Survey of Low Energy Electroweak Physics (other than neutral current interactions) Acknowledgements: Slides from D. DeMille, G. Gratta, D. Hertzog, B. Kayser, D. Kawall,

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

Hadronic Weak Interactions

Hadronic Weak Interactions 1 / 44 Hadronic Weak Interactions Matthias R. Schindler Fundamental Neutron Physics Summer School 2015 Some slides courtesy of N. Fomin 2 / 44 Weak interactions - One of fundamental interactions - Component

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group CP3 Origins, September 16 th, 2013 At this seminar I will touch upon... σ 2 Issues of the Standard Model Dramatically

More information

Lecture 9 Valence Quark Model of Hadrons

Lecture 9 Valence Quark Model of Hadrons Lecture 9 Valence Quark Model of Hadrons Isospin symmetry SU(3) flavour symmetry Meson & Baryon states Hadronic wavefunctions Masses and magnetic moments Heavy quark states 1 Isospin Symmetry Strong interactions

More information

Dynamical SUSY Breaking with Anomalous U(1) and the SUSY Flavor Problem

Dynamical SUSY Breaking with Anomalous U(1) and the SUSY Flavor Problem Dynamical SUSY Breaking with Anomalous U(1) and the SUSY Flavor Problem Wang Kai DEPARTMENT OF PHYSICS OKLAHOMA STATE UNIVERSITY In Collaboration with Dr. K.S. Babu and Ts. Enkhbat November 25, 2003 1

More information

Automatic CP Invariance and Flavor Symmetry

Automatic CP Invariance and Flavor Symmetry PRL-TH-95/21 Automatic CP Invariance and Flavor Symmetry arxiv:hep-ph/9602228v1 6 Feb 1996 Gautam Dutta and Anjan S. Joshipura Theory Group, Physical Research Laboratory Navrangpura, Ahmedabad 380 009,

More information

Standard Model & Beyond

Standard Model & Beyond XI SERC School on Experimental High-Energy Physics National Institute of Science Education and Research 13 th November 2017 Standard Model & Beyond Lecture III Sreerup Raychaudhuri TIFR, Mumbai 2 Fermions

More information

Aharonov-Bohm Effect and Unification of Elementary Particles. Yutaka Hosotani, Osaka University Warsaw, May 2006

Aharonov-Bohm Effect and Unification of Elementary Particles. Yutaka Hosotani, Osaka University Warsaw, May 2006 Aharonov-Bohm Effect and Unification of Elementary Particles Yutaka Hosotani, Osaka University Warsaw, May 26 - Part 1 - Aharonov-Bohm effect Aharonov-Bohm Effect! B)! Fµν = (E, vs empty or vacuum!= Fµν

More information

String / gauge theory duality and ferromagnetic spin chains

String / gauge theory duality and ferromagnetic spin chains String / gauge theory duality and ferromagnetic spin chains M. Kruczenski Princeton Univ. In collaboration w/ Rob Myers, David Mateos, David Winters Arkady Tseytlin, Anton Ryzhov Summary Introduction mesons,,...

More information

Quark Model of Hadrons

Quark Model of Hadrons Quark Model of Hadrons mesons baryons symmetric antisymmetric mixed symmetry Quark Model of Hadrons 2 Why do quarks have color? ground state baryons orbital wave function = symmetic with L=0 SU(3) f x

More information

SYMMETRY BEHIND FLAVOR PHYSICS: THE STRUCTURE OF MIXING MATRIX. Min-Seok Seo (Seoul National University)

SYMMETRY BEHIND FLAVOR PHYSICS: THE STRUCTURE OF MIXING MATRIX. Min-Seok Seo (Seoul National University) SYMMETRY BEHIND FLAVOR PHYSICS: THE STRUCTURE OF MIXING MATRIX Min-Seok Seo (Seoul National University) INTRODUCTION Flavor Issues in Standard Model: 1. Mass hierarchy of quarks and leptons 2. Origin of

More information

Lecture II. QCD and its basic symmetries. Renormalisation and the running coupling constant

Lecture II. QCD and its basic symmetries. Renormalisation and the running coupling constant Lecture II QCD and its basic symmetries Renormalisation and the running coupling constant Experimental evidence for QCD based on comparison with perturbative calculations The road to QCD: SU(3) quark model

More information

Beyond the Standard Model

Beyond the Standard Model Beyond the Standard Model The Standard Model Problems with the Standard Model New Physics Supersymmetry Extended Electroweak Symmetry Grand Unification References: 2008 TASI lectures: arxiv:0901.0241 [hep-ph]

More information

A Two Higgs Doublet Model for the Top Quark

A Two Higgs Doublet Model for the Top Quark UR 1446 November 1995 A Two Higgs Doublet Model for the Top Quark Ashok Das and Chung Kao 1 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA Abstract A two Higgs doublet

More information

EDMs, CP-odd Nucleon Correlators & QCD Sum Rules

EDMs, CP-odd Nucleon Correlators & QCD Sum Rules Hadronic Matrix Elements for Probes of CP Violation - ACFI, UMass Amherst - Jan 2015 EDMs, CP-odd Nucleon Correlators & QCD Sum Rules Adam Ritz University of Victoria Based on (older) work with M. Pospelov,

More information