The Anomalous Magnetic Moment of the Muon in the Minimal Supersymmetric Standard Model for tan β =

Size: px
Start display at page:

Download "The Anomalous Magnetic Moment of the Muon in the Minimal Supersymmetric Standard Model for tan β ="

Transcription

1 The Anomalous Magnetic Moment of the Muon in the Minimal Supersymmetric Standard Model for tan β = Markus Bach Institut für Kern- und Teilchenphysik Technische Universität Dresden IKTP Institute Seminar February 6, / 40

2 Outline 1 Anomalous Magnetic Moment of the Muon Minimal Supersymmetric Standard Model for tan β = 3 Calculation and Approximation 4 Identification of Viable Parameter Regions / 40

3 Outline 1 Anomalous Magnetic Moment of the Muon Minimal Supersymmetric Standard Model for tan β = 3 Calculation and Approximation 4 Identification of Viable Parameter Regions 3 / 40

4 Definition magn. moment of a fermion: µ = g Q e s (g - gyromagn. ratio) m c interaction with an external photon: A ρ (q) decomposition: f (p) f (p ) = i Q e ū(p ) Λ ρ u(p) ū(p ) Λ ρ u(p) = ū(p ) [ γ ρ ( FE (q ) m F M (q ) ) + (p + p ) ρ F M (q ) +... ] u(p) classical limit: g = ( 1 m F M (0) ) anomalous magnetic moment: a := g = m F M (0) 4 / 40

5 Experimental Determination muons from pion decay in a storage ring spin precession in magnetic field B relative to the momentum with ω = e ( [a µ B a µ 1 ) ] β E γ 1 c m µ vanishes for magic momentum p = 3,094 GeV detection of electrons from muon decay result from E81 experiment at Brookhaven National Laboratory: a exp µ = ( ,9 ± 6,3) / 40

6 Standard Model Prediction different kinds of contributions QED: massless class, massive class hadronic: vacuum polarization, light-by-light scattering electroweak combined result [Davier et al., arxiv: ]: a SM µ = ( , ± 4,9) discrepancy between experiment and theory: a µ = a exp µ a SM µ = (8,7 ± 8,0) new physics? 6 / 40

7 Contributions from New Physics a µ not only points to BSM physics but also restricts it close connection between Feynman diagrams for a µ and self energy: aµ NP mµ = O(1) M NP mµ (NP) m µ [Czarnecki, Marciano, arxiv:hep-ph/0101] m µ (NP) m µ is promising MSSM one-loop result for common sparticle mass M S : a MSSM,1L µ 1, sgn(µm ) tan β What happens for tan β? ( 100 GeV M S ) 7 / 40

8 Outline 1 Anomalous Magnetic Moment of the Muon Minimal Supersymmetric Standard Model for tan β = 3 Calculation and Approximation 4 Identification of Viable Parameter Regions 8 / 40

9 Vector Superfields keep Standard Model gauge group SU (3) c SU () L U (1) Y Group Generators Coupling Superfields Component Fields Spin 1 Spin 1 U (1) Y Ŷ g 1 V λ B µ SU () L T a g V a λ a W a µ SU (3) c T d s g 3 V d s λ d s G d µ total gauge multiplet: V g := g 1 Ŷ V + g T a V a + g 3 T d s V d s 9 / 40

10 Chiral Superfields Superfield L i = ( Lνi L ei ) Component Fields Spin 0 Spin 1 ) ( νil νil l il = l ẽ il = il e il SU (3) c I 3 Y 1 1/ 1/ 1/ E i ẽ ir e ir ) Qui (ũil uil 1/ Q i = q Q il = q il = 3 1/6 di d il d il 1/ U i ũ ir u ir 3 0 /3 D i H u = ( H + u H 0 u H d = ( H 0 d H d ) ) d ir d ir 3 0 1/3 h + h u = u ψ + hu 0 H ψ Hu = u 1/ ψh 0 1 1/ u 1/ h d = ( h 0 d h d ) ψ 0 ψ Hd = Hd ψ H d 1 1/ 1/ 1/ 10 / 40

11 Supersymmetric Lagrangian R-parity conserving superpotential (no generation mixing): W MSSM = 3 (y ei H d L i E i + y ui H u Q i U i + y di H d Q i D i) µ H d H u i=1 supersymmetric, gauge invariant and renormalizable Lagrangian: L susy = d 4 θ ( L i e Vg L i + E i e Vg E i + Q i e Vg Q i + U i e Vg U i + D i e Vg D i ) + H u e Vg H u + H d evg H d [ ( + d 1 θ W α W 16g1 α g [ ] + d θ W MSSM θ=0 + h. c. W aα W a α g 3 ) ] Ws dα Wsα d + h. c. θ=0 11 / 40

12 Soft Supersymmetry Breaking up to now: sparticles have same mass as corresponding particles supersymmetry breaking realized through additional terms: L soft = 3 ( m l li il + mẽ i ẽ ir + m q i q il + mũ i ũ ir + m di d ir ) i=1 mh u h u mh d h d + 1 ( M1 λ λ + M λ a λ a + M 3 λ d s λ d s + h. c. ) [ 3 ( Aei y ei h d l il ẽ ir + A u i y ui h u q il ũ ir + A ) d i y di h d q il d ir i=1 ] Bµ h d h u + h. c. 1 / 40

13 Electroweak Symmetry Breaking vacuum expectation values for the Higgs doublets: 0 0 h u 0 =, 0 h d 0 = important parameter: gauge boson masses: v u tan β := v u v d M W = g v u + v d, M Z = vd 0 g1 + g vu + vd = M W c W 13 / 40

14 Electroweak Symmetry Breaking vacuum expectation values for the Higgs doublets: 0 0 h u 0 =, 0 h d 0 = important parameter: gauge boson masses: v u tan β := v u v d M W = g v u + v d, M Z = vd 0 g1 + g vu + vd = M W c W tan β = implies: v u = MW g, v d = 0 13 / 40

15 Fermion Masses at tree level: m 0 e i = y ei v d, m 0 u i = y ui v u, m 0 d i = y di v d usual constraint: tan β 50 such that the Yukawa couplings remain perturbative if mass is created at tree-level tan β 50 is possible if one considers loop corrections which are tan β-enhanced [Dobrescu, Fox, arxiv: ] e.g. muon mass: m µ = m 0 µ Σ µ = m 0 µ (1 + µ ) = y µ v d (1 + µ ) 14 / 40

16 Fermion Masses at tree level: m 0 e i = y ei v d, m 0 u i = y ui v u, m 0 d i = y di v d usual constraint: tan β 50 such that the Yukawa couplings remain perturbative if mass is created at tree-level tan β 50 is possible if one considers loop corrections which are tan β-enhanced [Dobrescu, Fox, arxiv: ] e.g. muon mass: m µ = m 0 µ Σ µ = m 0 µ (1 + µ ) = y µ v d (1 + µ ) tan β = implies: m 0 µ = 0 m µ = Σ µ 14 / 40

17 Muon Sneutrino and Smuon Masses muon sneutrino mass: m ν µ = m L + 1 M Z cos β smuon mass matrix: ( (m 0 M µ µ ) + ml + MZ (sw 1 = ) cos β ) m0 µ (A µ µ tan β) mµ 0 (A µ µ tan β) (mµ) 0 + mr MZ sw cos β diagonalization: U µ M µ U µ = diag(m µ 1, m µ ) 15 / 40

18 Muon Sneutrino and Smuon Masses muon sneutrino mass: m ν µ = m L 1 M Z smuon mass matrix: ( M µ ml MZ (sw 1 = ) m0 µ (A µ µ tan β) mµ 0 (A µ µ tan β) mr + MZ sw ) diagonalization: U µ M µ U µ = diag(m µ 1, m µ ) 15 / 40

19 Muon Sneutrino and Smuon Masses muon sneutrino mass: m ν µ = m L 1 M Z smuon mass matrix: ( M µ ml MZ (sw 1 = ) y µ µ M W /g y µ µ M W /g mr + MZ sw ) diagonalization: U µ M µ U µ = diag(m µ 1, m µ ) smuon masses: ( m µ 1/ = 1 m L + m R + 1 M Z [ ] 1 ± ml m R + M Z s W + 8 yµ µ M W g ) 15 / 40

20 Chargino Masses chargino mass matrix: X = diagonalization: ( M U X V 1 = diag(m χ 1 MW cos β µ, m χ ) Hermitian form: V X X V 1 = diag(m χ, m 1 χ ) ) MW sin β 16 / 40

21 Chargino Masses chargino mass matrix: X = ( M MW 0 µ ) diagonalization: U X V 1 = diag(m χ 1, m χ ) Hermitian form: V X X V 1 = diag(m χ, m 1 χ ) chargino masses: m χ 1/ = 1 ( µ + M + M W ) ( µ ± + M + MW ) 4 µ M 16 / 40

22 Neutralino Masses neutralino mass matrix: M 1 0 M Z s W cos β M Z s W sin β 0 M M Z c W cos β M Z c W sin β Y = M Z s W cos β M Z c W cos β 0 µ M Z s W sin β M Z c W sin β µ 0 diagonalization: N Y N 1 = diag(m χ 0 1, m χ 0, m χ 0 3, m χ 0 4 ) Hermitian form: N Y Y N 1 = diag(m χ 0, m 1 χ 0, m χ 0, m 3 χ 0 4) 17 / 40

23 Neutralino Masses neutralino mass matrix: M M Z s W 0 M 0 M Z c W Y = µ M Z s W M Z c W µ 0 diagonalization: N Y N 1 = diag(m χ 0 1, m χ 0, m χ 0 3, m χ 0 4 ) Hermitian form: N Y Y N 1 = diag(m χ 0, m 1 χ 0, m χ 0, m 3 χ 0 4) 17 / 40

24 Outline 1 Anomalous Magnetic Moment of the Muon Minimal Supersymmetric Standard Model for tan β = 3 Calculation and Approximation 4 Identification of Viable Parameter Regions 18 / 40

25 Parameters and Feynman Diagrams relevant free MSSM parameters: y µ, µ, M 1, M, m L, m R approximation: m µ µ, M 1, M, m L, m R one-loop calculation sufficient calculation with mass eigenstates diagonal propagators Feynman Diagrams for muon self energy: χ l µ k µ µ µ µ ν µ χ 0 m 19 / 40

26 Parameters and Feynman Diagrams relevant free MSSM parameters: y µ, µ, M 1, M, m L, m R approximation: m µ µ, M 1, M, m L, m R one-loop calculation sufficient calculation with mass eigenstates diagonal propagators Feynman Diagrams for muon anomalous magnetic moment: χ l A ρ µ k A ρ µ µ ν µ µ µ χ 0 m 19 / 40

27 Auxiliary and Loop Functions expressions with sparticle mixing matrices occur: m χ U l l V l1 (U µ k1 ) U µ k1 m χ 0 m N m1 N m3 substitution introduces different functions auxiliary functions: x 1,J = A J q q 3 q 4 + B J (q q 3 + q q 4 + q 3 q 4 ) C J (q + q 3 + q 4 ) + D J (q 1 q ) (q 1 q 3 ) (q 1 q 4 ) y 1,J = q 3 q 4 (B J q 3 q 4 C J (q 3 + q 4 ) + D J ) (q 1 q 3 ) (q 1 q 4 ) (q q 3 ) (q q 4 ) loop function for muon self energy: I (q a, q b, q c ) = q a q b ln q a + q q b q c ln q b + q b q c q a ln q c c q a (q a q b ) (q b q c ) (q a q c ) 0 / 40

28 Auxiliary and Loop Functions expressions with sparticle mixing matrices occur: m χ U l l V l1 (U µ k1 ) U µ k1 m χ 0 m N m1 N m3 substitution introduces different functions auxiliary functions: x 1,J = A J q q 3 q 4 + B J (q q 3 + q q 4 + q 3 q 4 ) C J (q + q 3 + q 4 ) + D J (q 1 q ) (q 1 q 3 ) (q 1 q 4 ) y 1,J = q 3 q 4 (B J q 3 q 4 C J (q 3 + q 4 ) + D J ) (q 1 q 3 ) (q 1 q 4 ) (q q 3 ) (q q 4 ) loop functions for muon anomalous magnetic moment: K C/N (q a, q b, q c ) = G C/N(q a, q c ) G C/N (q a, q b ) q b q c with: G C (q a, q b ) = 3 q a + 4 q a q b q b + q a ln q a q b (q a q b ) 3 G N (q a, q b ) = q a + q b + q a q b ln q a q b (q a q b ) 3 0 / 40

29 Contribution to the Muon Self Energy Σ MSSM µ = 16π yµ { g Re(µ M ) M W I (m ν µ, m χ, m χ ) I (m χ 0, m µ m 1, m µ ) m=1 [ g Re µ M 1 W x g m,11 + g 1 x m,1 + 4 n,p=1 n p + y µ µ M g W x m,33 + g 1 x m,13 m µ mr MZ sw 1 ( ) ] g1 x m,13 + g x m,3 m µ 1 ml MZ 1 s W [ 1 Re(g 4 1 y np,13 + g y np,3 ) I (m µ 1, m χ 0, m n χ 0) p ] } g 1 Re(y np,13 ) I (m µ, m χ 0, m n χ 0) p 1 / 40

30 Contribution to the Muon Anomalous Magnetic Moment a MSSM µ = yµ mµ 16π { g Re(µ M ) M W K C (m ν µ, m χ, m χ ) K N (m χ 0, m µ m 1, m µ ) m=1 [ g Re µ M 1 W x g m,11 + g 1 x m,1 + 4 n,p=1 n p + y µ µ M g W x m,33 + g 1 x m,13 m µ mr MZ sw 1 ( ) ] g1 x m,13 + g x m,3 m µ 1 ml MZ 1 s W [ 1 Re(g 4 1 y np,13 + g y np,3 ) K N (m µ 1, m χ 0, m n χ 0) p ] } g 1 Re(y np,13 ) K N (m µ, m χ 0, m n χ 0) p / 40

31 Properties of the Results direct dependency on parameters y µ, µ, M 1, M, m L, m R symmetries: Σ MSSM µ Σ MSSM µ and aµ MSSM aµ MSSM if y µ y µ or µ µ or (M 1, M ) ( M 1, M ) m µ = Σ MSSM µ can be used to determine y µ numerically a MSSM µ only depends on µ, M 1, M, m L, m R if y µ is eliminated from the formula via the self energy: a MSSM µ invariant under µ µ and (M 1, M ) ( M 1, M ) Which sign is usual for a MSSM µ? 3 / 40

32 Start of the Approximation relevant MSSM mass parameters assumed to be real w.l.o.g.: µ, M 1, m L and m R positive; M positive or negative approximation: M Z µ, M 1, M, m L, m R sparticle masses: m ν µ = m µ 1 = m L m µ = m R m χ 1 = µ m χ = M m χ 0 1 = m χ 0 = µ m χ 0 3 = M 1 m χ 0 4 = M 4 / 40

33 Approximation for the Self Energy I dimensionless loop function: ( ma Î, m ) b := m m c m a m b I (ma, mb, mc) c v a, v b : 0 < Î (v a, v b ) < 1 5 / 40

34 Approximation for the Self Energy II [ ( Σ MSSM y µ µ M 3π g W sgn(m ) 3 g µ Î, M ) m L m L g1 µ Î, M 1 m L m L + g1 µ Î, M 1 m R m R ] g1 Î M1, m L µ m R m R m L [ ( µ y µ sgn(m ) 0,705 GeV Î, M ) m L m L µ 0,067 GeV Î, M 1 m L m L µ + 0,135 GeV Î, M 1 m R m R ] 0,135 GeV Î M1, m L µ m R m R m L 6 / 40

35 Approximation for the Self Energy II [ ( Σ MSSM y µ µ M 3π g W sgn(m ) 3 g µ Î, M ) m L m L g1 µ Î, M 1 m L m L + g1 µ Î, M 1 m R m R g 1 Î ( M1 m R, m L m R ) µ m L ] W H u HW1: W H d µ L µ R ν µ 6 / 40

36 Approximation for the Self Energy II [ ( Σ MSSM y µ µ M 3π g W sgn(m ) 3 g µ Î, M ) m L m L g1 µ Î, M 1 m L m L + g1 µ Î, M 1 m R m R g 1 Î ( M1 m R, m L m R ) µ m L ] W 0 H 0 u HW: W 0 H 0 d µ L µ R µ L 6 / 40

37 Approximation for the Self Energy II [ ( Σ MSSM y µ µ M 3π g W sgn(m ) 3 g µ Î, M ) m L m L g1 µ Î, M 1 m L m L + g1 µ Î, M 1 m R m R g 1 Î ( M1 m R, m L m R ) µ m L ] B 0 H 0 u HBL: B 0 H 0 d µ L µ R µ L 6 / 40

38 Approximation for the Self Energy II [ ( Σ MSSM y µ µ M 3π g W sgn(m ) 3 g µ Î, M ) m L m L g1 µ Î, M 1 m L m L + g1 µ Î, M 1 m R m R g 1 Î ( M1 m R, m L m R ) µ m L ] H 0 u B 0 HBR: H 0 d B 0 µ L µ R µ R 6 / 40

39 Approximation for the Self Energy II [ ( Σ MSSM y µ µ M 3π g W sgn(m ) 3 g µ Î, M ) m L m L g1 µ Î, M 1 m L m L + g1 µ Î, M 1 m R m R g 1 Î ( M1 m R, m L m R ) µ m L ] BLR: B 0 B 0 µ L µ R µ L µ R 6 / 40

40 Approximation for the Anomalous Magnetic Moment I dimensionless loop function: ( qa ˆK N, q ) b := q q c q a q b K N (q c, q a, q b ) c w a, w b : 0 < ˆK N (w a, w b ) < 1 7 / 40

41 Approximation for the Anomalous Magnetic Moment I dimensionless loop function: ( qa ˆK W, q ) b := q q c q a q b [ K C (q c, q a, q b ) + K N (q c, q a, q b ) ] c w a, w b : 0 < ˆK W (w a, w b ) < 1,155 7 / 40

42 Approximation for the Anomalous Magnetic Moment II [ aµ MSSM y µ m 3π µ M g W sgn(m ) g 1 µ ˆK W, M µ M ml ml + g1 1 µ ˆK N, M 1 µ M 1 ml ml g1 1 µ ˆK N, M 1 µ M 1 mr mr ] + g1 µ M 1 m ˆK L ml N, m R m R M1 M1 [ y µ sgn(m ), (1000 GeV) µ ˆK W, M µ M ml ml + 0, (1000 GeV) µ ˆK N, M 1 µ M 1 ml ml 1, (1000 GeV) µ M 1 ˆK N ( µ + 1, µ M 1 (1000 GeV) m L m R m R ), M 1 m R ( m ˆK L N, m R M1 M1 ) ] 8 / 40

43 Result for Common Sparticle Mass special case: µ = M 1 = M = m L = m R = M S M Z approximation for Σ MSSM µ is linear in y µ y µ 3π g g 1 sgn(m ) 3 g m µ M W insertion yields: a MSSM µ 1 3 m µ M S g1 + sgn(m ) 5 g g1 sgn(m ) 3 g (1000 GeV) M S { 7, für M > 0 5, für M < 0 How can a positive sign be achieved? 9 / 40

44 Outline 1 Anomalous Magnetic Moment of the Muon Minimal Supersymmetric Standard Model for tan β = 3 Calculation and Approximation 4 Identification of Viable Parameter Regions 30 / 40

45 Scaling Behavior rescaling of the mass parameters by common factor k > 0 leads to: y µ (k µ, k M 1, k M, k m L, k m R ) y µ (µ, M 1, M, m L, m R ) a MSSM µ (k µ, k M 1, k M, k m L, k m R ) 1 k amssm µ (µ, M 1, M, m L, m R ) main task: generate a positive a MSSM µ 31 / 40

46 Possible Parameter Scenarios reminder: a MSSM µ 3π y µ g m µ M W [ sgn(m ) g 1 µ ˆK W, M µ M ml ml + g1 1 µ ˆK N, M 1 µ M 1 ml ml g1 1 µ ˆK N, M 1 µ M 1 mr mr ) ] + g1 µ M 1 m L m R ( m ˆK L N, m R M1 M1 y µ > 0 y µ < 0 M < 0 scenario 1 scenario M > 0 scenario 4 scenario 3 3 / 40

47 Benchmark Point for Scenario 1 µ M 1, m L, m R for dominance of BLR contribution m L = m R for symmetry reasons P1b : (µ, M 1, M, m L, m R ) = (3000, 600, 3000, 600, 600) GeV with y µ (P1b) 0,11, a MSSM µ (P1b) 3, a Μ MSSM BLR HW HBL & HBR total / 40

48 Restrictions from the Tau Sector requirement for non tachyonic staus: yτ < g µ MW ( 0 < 0,397 Î ( m L,τ + M Z ( 1 s W ) µ, M + 0,038 m L,τ m Î L,τ )) (m R,τ + M Z s W µ M, 1 m L,τ m L,τ + µ m L,τ [ 0,076 Î ( ) ml,τ m R,τ (174,1 GeV) µ ( 0,076 Î µ, m R,τ ) M 1, m L,τ m R,τ m R,τ ) M 1 m R,τ ] 174,1 GeV m R,τ 34 / 40

49 Restrictions from the Tau Sector requirement for perturbation theory: 0 < 1,407 Î ( yτ < 4 π ( ) µ, M + 0,134 m L,τ m Î L,τ µ m L,τ, ) ( M 1 0,69 m Î L,τ ( µ + 0,69 Î m L,τ µ m R,τ, ) M 1, m L,τ 1 m R,τ m R,τ ) M 1 m R,τ 34 / 40

50 Parameter Dependency: µ-m 1 -Plane a MSSM µ regions for M = 3000 GeV, m L = m R m L = 600 GeV : 35 / 40

51 Parameter Dependency: µ-m L -Plane a MSSM µ regions for M = 3000 GeV, m L = m R M 1 = 600 GeV : 36 / 40

52 Parameter Dependency: M 1 -m L -Plane a MSSM µ regions for M = 3000 GeV, m L = m R µ = 3000 GeV : 37 / 40

53 Maximization of Sparticle Masses limit case: µ while M 1 = m L = m R benchmark point: P1c : a MSSM µ 1 3 m µ m L 9 (1000 GeV) 3,7 10 ml (µ, M 1, M, m L, m R ) = (40 000, 1000, , 1000, 1000) GeV 38 / 40

54 Benchmark Points for All Scenarios µ/gev M 1 /GeV M /GeV m L /GeV m R /GeV y µ P1a ,18 P1b ,11 P1c ,03 P ,86 P ,75 P4a ,3 large mass splittings large masses compared to the normal MSSM huge y µ values compared to the Standard Model 39 / 40

55 Conclusion and Outlook MSSM for tan β = is capable of explaining the a µ discrepancy large Yukawa couplings diagrams with Higgs boson loops relevant? analysis of other observables to further constrain or exclude this model 40 / 40

56 Conclusion and Outlook MSSM for tan β = is capable of explaining the a µ discrepancy large Yukawa couplings diagrams with Higgs boson loops relevant? analysis of other observables to further constrain or exclude this model Thanks for your attention! 40 / 40

+ µ 2 ) H (m 2 H 2

+ µ 2 ) H (m 2 H 2 I. THE HIGGS POTENTIAL AND THE LIGHT HIGGS BOSON In the previous chapter, it was demonstrated that a negative mass squared in the Higgs potential is generated radiatively for a large range of boundary

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

Two-Loop Corrections to the Muon Magnetic Moment from Fermion/Sfermion Loops in the MSSM

Two-Loop Corrections to the Muon Magnetic Moment from Fermion/Sfermion Loops in the MSSM Two-Loop Corrections to the Muon Magnetic Moment from Fermion/Sfermion Loops in the MSSM Sebastian Paßehr a in collaboration with Helvecio Fargnoli b, Christoph Gnendiger c, Dominik Stöckinger c and Hyejung

More information

Models of Neutrino Masses

Models of Neutrino Masses Models of Neutrino Masses Fernando Romero López 13.05.2016 1 Introduction and Motivation 3 2 Dirac and Majorana Spinors 4 3 SU(2) L U(1) Y Extensions 11 4 Neutrino masses in R-Parity Violating Supersymmetry

More information

Supersymmetry at the LHC

Supersymmetry at the LHC Supersymmetry at the LHC What is supersymmetry? Present data & SUSY SUSY at the LHC C. Balázs, L. Cooper, D. Carter, D. Kahawala C. Balázs, Monash U. Melbourne SUSY@LHC.nb Seattle, 23 Sep 2008 page 1/25

More information

Yukawa and Gauge-Yukawa Unification

Yukawa and Gauge-Yukawa Unification Miami 2010, Florida Bartol Research Institute Department Physics and Astronomy University of Delaware, USA in collaboration with Ilia Gogoladze, Rizwan Khalid, Shabbar Raza, Adeel Ajaib, Tong Li and Kai

More information

Electroweak and Higgs Physics

Electroweak and Higgs Physics Electroweak and Higgs Physics Lecture 2 : Higgs Mechanism in the Standard and Supersymmetric Models Alexei Raspereza DESY Summer Student Program Hamburg August 2017 Standard Model (Summary) Building blocks

More information

tan(beta) Enhanced Yukawa Couplings for Supersymmetric Higgs

tan(beta) Enhanced Yukawa Couplings for Supersymmetric Higgs tan(beta) Enhanced Yukawa Couplings for Supersymmetric Higgs Singlets at One-Loop Theoretical Particle Physics University of Manchester 5th October 2006 Based on RNH, A. Pilaftsis hep-ph/0612188 Outline

More information

Inverse See-saw in Supersymmetry

Inverse See-saw in Supersymmetry Inverse See-saw in Supersymmetry Kai Wang IPMU, the University of Tokyo Cornell Particle Theory Seminar September 15, 2010 hep-ph/10xx.xxxx with Seong-Chan Park See-saw is perhaps the most elegant mechanism

More information

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1 Physics 662 Particle Physics Phenomenology February 21, 2002 Physics 662, lecture 13 1 Physics Beyond the Standard Model Supersymmetry Grand Unified Theories: the SU(5) GUT Unification energy and weak

More information

U(1) Gauge Extensions of the Standard Model

U(1) Gauge Extensions of the Standard Model U(1) Gauge Extensions of the Standard Model Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA U(1) Gauge Extensions of the Standard Model (int08) back to start

More information

Lecture 16 V2. October 24, 2017

Lecture 16 V2. October 24, 2017 Lecture 16 V2 October 24, 2017 Recap: gamma matrices Recap: pion decay properties Unifying the weak and electromagnetic interactions Ø Recap: QED Lagrangian for U Q (1) gauge symmetry Ø Introduction of

More information

Higher dimensional operators. in supersymmetry

Higher dimensional operators. in supersymmetry I. Antoniadis CERN Higher dimensional operators in supersymmetry with E. Dudas, D. Ghilencea, P. Tziveloglou Planck 2008, Barcelona Outline Effective operators from new physics integrating out heavy states

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

A light singlet at the LHC and DM

A light singlet at the LHC and DM A light singlet at the LHC and DM of the R-symmetric supersymmetric model Jan Kalinowski University of Warsaw in collaboration with P.Diessner, W. Kotlarski and D.Stoeckinger Supported in part by Harmonia

More information

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea mued mass spectrum Figure 3.2: (Taken from [46]). The full spectrum of the UED model at the first KK level,

More information

Lecture 7 SUSY breaking

Lecture 7 SUSY breaking Lecture 7 SUSY breaking Outline Spontaneous SUSY breaking in the WZ-model. The goldstino. Goldstino couplings. The goldstino theorem. Reading: Terning 5.1, 5.3-5.4. Spontaneous SUSY Breaking Reminder:

More information

Patrick Kirchgaeßer 07. Januar 2016

Patrick Kirchgaeßer 07. Januar 2016 Patrick Kirchgaeßer 07. Januar 2016 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

More information

Implication of Higgs at 125 GeV within Stochastic Superspace Framework

Implication of Higgs at 125 GeV within Stochastic Superspace Framework Implication of Higgs at 125 GeV within Stochastic Superspace Framework Department of Theoretical Physics Indian Association for the Cultivation of Science [ With U.Chattopadhyay and R.M.Godbole Phys.Rev.

More information

The Higgs discovery - a portal to new physics

The Higgs discovery - a portal to new physics The Higgs discovery - a portal to new physics Department of astronomy and theoretical physics, 2012-10-17 1 / 1 The Higgs discovery 2 / 1 July 4th 2012 - a historic day in many ways... 3 / 1 July 4th 2012

More information

Supersymmetry Highlights. Kevin Hambleton

Supersymmetry Highlights. Kevin Hambleton Supersymmetry Highlights Kevin Hambleton Outline SHO Example Why SUSY? SUSY Fields Superspace Lagrangians SUSY QED MSSM i Warm Up A Hint Of SUSY... Remember Quantum Simple Harmonic Oscillator... Canonical

More information

Minimal Supersymmetric Standard Model (MSSM). Nausheen R. Shah

Minimal Supersymmetric Standard Model (MSSM). Nausheen R. Shah Minimal Supersymmetric Standard Model (MSSM). Nausheen R. Shah June 8, 2003 1 Introduction Even though the Standard Model has had years of experimental success, it has been known for a long time that it

More information

Introduction to the SM (5)

Introduction to the SM (5) Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 1 Introduction to the SM (5) Yuval Grossman Cornell Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 2 Yesterday... Yesterday: Symmetries Today SSB the

More information

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia . Introduction to SUSY Giacomo Polesello INFN, Sezione di Pavia Why physics beyond the Standard Model? Gravity is not yet incorporated in the Standard Model Hierarchy/Naturalness problem Standard Model

More information

BSM physics and Dark Matter

BSM physics and Dark Matter BSM physics and Dark Matter Andrea Mammarella University of Debrecen 26-11-2013 1 Introduction and motivation 2 Dark Matter 3 MiAUMSSM 4 Dark Matter in the MiAUMSSM 5 Conclusion Introduction and motivation

More information

(Non-minimal) SUSY Phenomenology of the minimal R-symmetric SUSY model

(Non-minimal) SUSY Phenomenology of the minimal R-symmetric SUSY model (Non-minimal) SUSY Phenomenology of the minimal R-symmetric SUSY model Dominik Stöckinger TU Dresden KIAS Workshop, October 2016 based on work with: [Philip Diessner, Jan Kalinowski, Wojciech Kotlarski,

More information

The Standard Model and Beyond

The Standard Model and Beyond The Standard Model and Beyond Nobuchika Okada Department of Physics and Astronomy The University of Alabama 2011 BCVSPIN ADVANCED STUDY INSTITUTE IN PARTICLE PHYSICS AND COSMOLOGY Huê, Vietnam, 25-30,

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

Probing SUSY Contributions to Muon g-2 at LHC and ILC

Probing SUSY Contributions to Muon g-2 at LHC and ILC Probing SUSY Contributions to Muon g-2 at LHC and ILC Motoi Endo (Tokyo) Based on papers in collaborations with ME, Hamaguchi, Iwamoto, Yoshinaga ME, Hamaguchi, Kitahara, Yoshinaga ME, Hamaguchi, Iwamoto,

More information

Neutrino Masses in the MSSM

Neutrino Masses in the MSSM Neutrino Masses in the MSSM Steven Rimmer Supervisor: Dr. Athanasios Dedes Institute of Particle Physics Phenomenology, University of Durham A supersymmetric standard model Find the most general Lagrangian

More information

Updates in the Finite N=1 SU(5) Model

Updates in the Finite N=1 SU(5) Model Updates in the Finite N=1 SU(5) Model Gregory Patellis Physics Department, NTUA Sven Heinemeyer, Myriam Mondragon, Nicholas Tracas, George Zoupanos arxiv:1802.04666 March 31, 2018 Updates in the Finite

More information

Searching for sneutrinos at the bottom of the MSSM spectrum

Searching for sneutrinos at the bottom of the MSSM spectrum Searching for sneutrinos at the bottom of the MSSM spectrum Arindam Chatterjee Harish-Chandra Research Insitute, Allahabad In collaboration with Narendra Sahu; Nabarun Chakraborty, Biswarup Mukhopadhyay

More information

Stau Pair Production At The ILC Tohoku University Senior Presentation Tran Vuong Tung

Stau Pair Production At The ILC Tohoku University Senior Presentation Tran Vuong Tung e + Z*/γ τ + e - τ Stau Pair Production At The ILC Tohoku University Senior Presentation Tran Vuong Tung 1 Outline Introduction of the International Linear Collider (ILC) Introduction of (g μ -2) in the

More information

How high could SUSY go?

How high could SUSY go? How high could SUSY go? Luc Darmé LPTHE (Paris), UPMC November 24, 2015 Based on works realised in collaboration with K. Benakli, M. Goodsell and P. Slavich (1312.5220, 1508.02534 and 1511.02044) Introduction

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries Fermion Mixing ngles and the Connection to Non-Trivially Broken Flavor Symmetries C. Hagedorn hagedorn@mpi-hd.mpg.de Max-Planck-Institut für Kernphysik, Heidelberg, Germany. Blum, CH, M. Lindner numerics:.

More information

Beyond the SM: SUSY. Marina Cobal University of Udine

Beyond the SM: SUSY. Marina Cobal University of Udine Beyond the SM: SUSY Marina Cobal University of Udine Why the SM is not enough The gauge hierarchy problem Characteristic energy of the SM: M W ~100 GeV Characteristic energy scale of gravity: M P ~ 10

More information

Full electroweak one loop corrections to

Full electroweak one loop corrections to Full electroweak one loop corrections to f i fj Christian Weber, Helmut Eberl, and Walter Majerotto Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften A 1050 Vienna, Austria

More information

The Higgs Mechanism and the Higgs Particle

The Higgs Mechanism and the Higgs Particle The Higgs Mechanism and the Higgs Particle Heavy-Ion Seminar... or the Anderson-Higgs-Brout-Englert-Guralnik-Hagen-Kibble Mechanism Philip W. Anderson Peter W. Higgs Tom W. B. Gerald Carl R. François Robert

More information

A realistic model of gauge-mediated SUSY-breaking scenario with superconformal hidden sector

A realistic model of gauge-mediated SUSY-breaking scenario with superconformal hidden sector A realistic model of gauge-mediated SUSY-breaking scenario with superconformal hidden sector Masaki Asano (ICRR, Univ. of Tokyo) arxiv:08104601 Collaborator: Junji Hisano (ICRR), Takashi Okada (ICRR),

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

E 6 Spectra at the TeV Scale

E 6 Spectra at the TeV Scale E 6 Spectra at the TeV Scale Instituts-Seminar Kerne und Teilchen, TU Dresden Alexander Knochel Uni Freiburg 24.06.2010 Based on: F. Braam, AK, J. Reuter, arxiv:1001.4074 [hep-ph], JHEP06(2010)013 Outline

More information

Muon g 2 through a flavor structure on soft SUSY terms

Muon g 2 through a flavor structure on soft SUSY terms arxiv:151.0090v3 hep-ph] 1 Nov 016 Muon g through a flavor structure on soft SUSY terms F.V. Flores-Baez 1 M. Gómez Bock M. Mondragón 3 July 6, 018 1 FCFM, Universidad Autónoma de Nuevo León, UANL. Ciudad

More information

Crosschecks for Unification

Crosschecks for Unification Crosschecks for Unification Hans Peter Nilles Physikalisches Institut Universität Bonn Crosschecks for Unification, Planck09, Padova, May 2009 p. 1/39 Questions Do present observations give us hints for

More information

Phenomenology of new neutral gauge bosons in an extended MSSM

Phenomenology of new neutral gauge bosons in an extended MSSM Phenomenology of new neutral gauge bosons in an extended MSSM Gennaro Corcella 1, Simonetta Gentile 2 1. Laboratori Nazionali di Frascati, INFN 2. Università di oma, La Sapienza, INFN Outline Motivation

More information

Supersymmetry II. Hitoshi Murayama (Berkeley) PiTP 05, IAS

Supersymmetry II. Hitoshi Murayama (Berkeley) PiTP 05, IAS Supersymmetry II Hitoshi Murayama (Berkeley) PiTP 05, IAS Plan Mon: Non-technical Overview what SUSY is supposed to give us Tue: From formalism to the MSSM Global SUSY formalism, Feynman rules, soft SUSY

More information

The Story of Wino Dark matter

The Story of Wino Dark matter The Story of Wino Dark matter Varun Vaidya Dept. of Physics, CMU DIS 2015 Based on the work with M. Baumgart and I. Rothstein, 1409.4415 (PRL) & 1412.8698 (JHEP) Evidence for dark matter Rotation curves

More information

2 Induced LFV in the SUSY see-saw framework

2 Induced LFV in the SUSY see-saw framework LFV Constraints on the Majorana Mass Scale in msugra Frank Deppisch, Heinrich Päs, Andreas Redelbach, Reinhold Rückl Institut für Theoretische Physik und Astrophysik Universität Würzburg D-97074 Würzburg,

More information

SUSY models of neutrino masses and mixings: the left-right connection

SUSY models of neutrino masses and mixings: the left-right connection SUSY models of neutrino masses and mixings: the left-right connection GK Workshop Bad Liebenzell Wolfgang Gregor Hollik October 10, 2012 INSTITUT FÜR THEORETISCHE TEILCHENPHYSIK KIT CAMPUS SÜD KIT University

More information

Lectures on Standard Model Effective Field Theory

Lectures on Standard Model Effective Field Theory Lectures on Standard Model Effective Field Theory Yi Liao Nankai Univ SYS Univ, July 24-28, 2017 Page 1 Outline 1 Lecture 4: Standard Model EFT: Dimension-six Operators SYS Univ, July 24-28, 2017 Page

More information

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry Yoshihiro Shigekami KEK HUST ( 華中科技大学 ), Wuhan ( 武漢 ) Syuhei Iguro (Nagoya U.), Yu Muramatsu (CCNU), Yuji Omura (Nagoya

More information

Supersymmetry at the LHC

Supersymmetry at the LHC Supersymmetry at the LHC What is supersymmetry? Present data & SUSY SUSY at the LHC C. Balázs L. Cooper D. Carter D. Kahawala C. Balázs, Monash U. Melbourne SUSY@LHC.nb Beijing, 8 Oct 2008 page 1/25 What

More information

Dark Matter Implications for SUSY

Dark Matter Implications for SUSY Dark Matter Implications for SUSY Sven Heinemeyer, IFCA (CSIC, Santander) Madrid, /. Introduction and motivation. The main idea 3. Some results 4. Future plans Sven Heinemeyer, First MultiDark workshop,

More information

Spectral Triples and Supersymmetry

Spectral Triples and Supersymmetry Ma148b Spring 2016 Topics in Mathematical Physics Reference: Wim Beenakker, Thijs van den Broek, Walter van Suijlekom, Supersymmetry and Noncommutative Geometry, Springer, 2015 (also all images in this

More information

SU(3)-Flavons and Pati-Salam-GUTs

SU(3)-Flavons and Pati-Salam-GUTs SU(3)-Flavons and Pati-Salam-GUTs Florian Hartmann in collaboration with Wolfgang Kilian and Karsten Schnitter Universität Siegen Theoretische Physik I Dortmund, 03.07.2012 Outline 1 Running couplings

More information

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector - Boson - May 7, 2017 - Boson - The standard model of particle physics is the state of the art in quantum field theory All the knowledge we have developed so far in this field enters in its definition:

More information

Particle Physics I Lecture Exam Question Sheet

Particle Physics I Lecture Exam Question Sheet Particle Physics I Lecture Exam Question Sheet Five out of these 16 questions will be given to you at the beginning of the exam. (1) (a) Which are the different fundamental interactions that exist in Nature?

More information

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises SM, EWSB & Higgs MITP Summer School 017 Joint Challenges for Cosmology and Colliders Homework & Exercises Ch!"ophe Grojean Ch!"ophe Grojean DESY (Hamburg) Humboldt University (Berlin) ( christophe.grojean@desy.de

More information

Taus and theory. Patrick Fox. with Bogdan Dobrescu and Adam Martin (arxiv: ) with Bogdan Dobrescu (arxiv: )

Taus and theory. Patrick Fox. with Bogdan Dobrescu and Adam Martin (arxiv: ) with Bogdan Dobrescu (arxiv: ) Taus and theory Patrick ox with Bogdan Dobrescu arxiv:1001.3147 with Bogdan Dobrescu and Adam Martin arxiv:1005.438 Why study taus? Tests of SM 3rd generation lepton, largest lepton Yukawa Couples more

More information

arxiv: v2 [hep-ph] 9 Jul 2013

arxiv: v2 [hep-ph] 9 Jul 2013 SISSA 45/01/EP Phenomenology of Minimal Unified Tree Level Gauge Mediation at the LHC arxiv:130.1305v [hep-ph] 9 Jul 013 Maurizio Monaco a, Maurizio Pierini b, Andrea Romanino a and Martin Spinrath a a

More information

Life beyond the minimal supersymmetry

Life beyond the minimal supersymmetry Life beyond the minimal supersymmetry Wojciech Kotlarski Technische Universität Dresden April 27, 2017, Dresden, Germany Intro: SUSY is not hip anymore more conservative approach - move from speculation

More information

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Radovan Dermíšek Institute for Advanced Study, Princeton R.D. and J. F. Gunion, hep-ph/0502105 R.D. and J. F. Gunion, hep-ph/0510322

More information

Introduction to particle physics Lecture 6

Introduction to particle physics Lecture 6 Introduction to particle physics Lecture 6 Frank Krauss IPPP Durham U Durham, Epiphany term 2009 Outline 1 Fermi s theory, once more 2 From effective to full theory: Weak gauge bosons 3 Massive gauge bosons:

More information

Early SUSY Searches in Events with Leptons with the ATLAS-Detector

Early SUSY Searches in Events with Leptons with the ATLAS-Detector Early SUSY Searches in Events with Leptons with the ATLAS-Detector Timo Müller Johannes Gutenberg-Universität Mainz 2010-29-09 EMG Annual Retreat 2010 Timo Müller (Universität Mainz) Early SUSY Searches

More information

Magnetic moment (g 2) µ and new physics

Magnetic moment (g 2) µ and new physics Dresden Lepton Moments, July 2010 Introduction A 3σ deviation for a exp µ a SM µ has been established! Currently: a exp µ a SM µ = (255 ± 63 ± 49) 10 11 Expected with new Fermilab exp. (and th. progress):

More information

The Tiny Muon versus the Standard Model. Paul Debevec Physics 403 November 14 th, 2017

The Tiny Muon versus the Standard Model. Paul Debevec Physics 403 November 14 th, 2017 The Tiny Muon versus the Standard Model Paul Debevec Physics 403 November 14 th, 2017 BNL E821 Muon g-2 Collaboration Standard Model of Particle Physics Components of the Standard Model of Particle Physics

More information

Effective Theory for Electroweak Doublet Dark Matter

Effective Theory for Electroweak Doublet Dark Matter Effective Theory for Electroweak Doublet Dark Matter University of Ioannina, Greece 3/9/2016 In collaboration with Athanasios Dedes and Vassilis Spanos ArXiv:1607.05040 [submitted to PhysRevD] Why dark

More information

SUPERSYMETRY FOR ASTROPHYSICISTS

SUPERSYMETRY FOR ASTROPHYSICISTS Dark Matter: From the Cosmos to the Laboratory SUPERSYMETRY FOR ASTROPHYSICISTS Jonathan Feng University of California, Irvine 29 Jul 1 Aug 2007 SLAC Summer Institute 30 Jul 1 Aug 07 Feng 1 Graphic: N.

More information

(Lifetime and) Dipole Moments

(Lifetime and) Dipole Moments Precision Measurements with the Muon: (Lifetime and) Dipole Moments B.L. Roberts Department of Physics Boston University roberts @bu.edu http://physics.bu.edu/roberts.html B. Lee Roberts, APPEAL07, CAST,

More information

Lecture 7: N = 2 supersymmetric gauge theory

Lecture 7: N = 2 supersymmetric gauge theory Lecture 7: N = 2 supersymmetric gauge theory José D. Edelstein University of Santiago de Compostela SUPERSYMMETRY Santiago de Compostela, November 22, 2012 José D. Edelstein (USC) Lecture 7: N = 2 supersymmetric

More information

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G and Signatures of D-Type Gauge Mediation Ken Hsieh Michigan State Univeristy KH, Ph. D. Thesis (2007) ArXiv:0708.3970 [hep-ph] Other works with M. Luty and Y. Cai (to appear) MSU HEP Seminar November 6,

More information

Universal Extra Dimensions

Universal Extra Dimensions Universal Extra Dimensions Add compact dimension(s) of radius R ~ ant crawling on tube Kaluza-Klein tower of partners to SM particles due to curled-up extra dimensions of radius R n = quantum number for

More information

Search for Supersymmetry at LHC

Search for Supersymmetry at LHC Horváth Dezső: SUSY Search at LHC PBAR-11, Matsue, 2011.11.29 p. 1/40 Search for Supersymmetry at LHC PBAR-11, Matsue, 2011.11.29 Dezső Horváth KFKI Research Institute for Particle and Nuclear Physics,

More information

Triplet Higgs Scenarios

Triplet Higgs Scenarios Triplet Higgs Scenarios Jack Gunion U.C. Davis Grenoble Higgs Workshop, March 2, 203 Higgs-like LHC Signal Fits with MVA CMS suggest we are heading towards the SM, but it could simply be a decoupling limit

More information

Implications of Dark Matter in Supersymmetric Models

Implications of Dark Matter in Supersymmetric Models HELSINKI INSTITUTE OF PHYSICS INTERNAL REPORT SERIES HIP-2014-04 Implications of Dark Matter in Supersymmetric Models Lasse Leinonen Helsinki Institute of Physics University of Helsinki Finland ACADEMIC

More information

Outline: Introduction Search for new Physics Model driven Signature based General searches. Search for new Physics at CDF

Outline: Introduction Search for new Physics Model driven Signature based General searches. Search for new Physics at CDF PE SU Outline: Introduction Search for new Physics Model driven Signature based General searches R Search for new Physics at CDF SUperSYmmetry Standard Model is theoretically incomplete SUSY: spin-based

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

Beyond the SM, Supersymmetry

Beyond the SM, Supersymmetry Beyond the SM, 1/ 44 Beyond the SM, A. B. Lahanas University of Athens Nuclear and Particle Physics Section Athens - Greece Beyond the SM, 2/ 44 Outline 1 Introduction 2 Beyond the SM Grand Unified Theories

More information

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004 Searches at LEP Moriond Electroweak 2004 Ivo van Vulpen CERN On behalf of the LEP collaborations LEP and the LEP data LEP: e + e - collider at s m Z (LEP1) and s = 130-209 GeV (LEP2) Most results (95%

More information

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model Scalar from November 24, 2014 1 2 3 4 5 What is the? Gauge theory that explains strong weak, and electromagnetic forces SU(3) C SU(2) W U(1) Y Each generation (3) has 2 quark flavors (each comes in one

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Instituto Superior Técnico Introduction to Supersymmetry Jorge C. Romão Instituto Superior Técnico, Departamento de Física & CFTP A. Rovisco Pais 1, 1049-001 Lisboa, Portugal December 16, 2008 Jorge C.

More information

SUSY Phenomenology & Experimental searches

SUSY Phenomenology & Experimental searches SUSY Phenomenology & Experimental searches Slides available at: Alex Tapper http://www.hep.ph.ic.ac.uk/~tapper/lecture.html Objectives - Know what Supersymmetry (SUSY) is - Understand qualitatively the

More information

Particle Spectrum in the Modified Nonminimal Supersymmetric Standard Model in the Strong Yukawa Coupling Regime

Particle Spectrum in the Modified Nonminimal Supersymmetric Standard Model in the Strong Yukawa Coupling Regime Journal of Experimental and Theoretical Physics, Vol. 9, No. 6,, pp. 79 97. Translated from Zhurnal Éksperimental noœ i Teoreticheskoœ Fiziki, Vol. 8, No. 6,, pp. 5 7. Original Russian Text Copyright by

More information

The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation

The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation Stefano Scopel Korea Institute of Advanced Study (based on: J. S. Lee, S. Scopel, PRD75, 075001 (2007)) PPP7, Taipei, Taiwan,

More information

Supersymmetry, Dark Matter, and Neutrinos

Supersymmetry, Dark Matter, and Neutrinos Supersymmetry, Dark Matter, and Neutrinos The Standard Model and Supersymmetry Dark Matter Neutrino Physics and Astrophysics The Physics of Supersymmetry Gauge Theories Gauge symmetry requires existence

More information

Two-Higgs-Doublet Model

Two-Higgs-Doublet Model Two-Higgs-Doublet Model Logan A. Morrison University of California, Santa Cruz loanmorr@ucsc.edu March 18, 016 Logan A. Morrison (UCSC) HDM March 18, 016 1 / 7 Overview 1 Review of SM HDM Formalism HDM

More information

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab The Standard Model of Electroweak Physics Christopher T. Hill Head of Theoretical Physics Fermilab Lecture I: Incarnations of Symmetry Noether s Theorem is as important to us now as the Pythagorean Theorem

More information

Lectures on Supersymmetry I

Lectures on Supersymmetry I I Carlos E.M. Wagner HEP Division, Argonne National Laboratory Enrico Fermi Institute, University of Chicago Ecole de Physique de Les Houches, France, August 5, 005. PASI 006, Puerto Vallarta, Mexico,

More information

Lecture 10. September 28, 2017

Lecture 10. September 28, 2017 Lecture 10 September 28, 2017 The Standard Model s QCD theory Comments on QED calculations Ø The general approach using Feynman diagrams Ø Example of a LO calculation Ø Higher order calculations and running

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Monday 7 June, 004 1.30 to 4.30 PAPER 48 THE STANDARD MODEL Attempt THREE questions. There are four questions in total. The questions carry equal weight. You may not start

More information

Koji TSUMURA (NTU à Nagoya U.)

Koji TSUMURA (NTU à Nagoya U.) Koji TSUMURA (NTU à Nagoya U.) Toyama mini WS 20-21/2/2012 S. Kanemura, K. Tsumura and H. Yokoya, arxiv:1111.6089 M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Phys. Rev. D80 015017 (2009) Outline The

More information

Koji TSUMURA (NTU Nagoya U.) KEK 16-18/2/2012

Koji TSUMURA (NTU Nagoya U.) KEK 16-18/2/2012 Koji TSUMURA (NTU Nagoya U.) @ KEK 16-18/2/2012 Outline: -Two-Higgs-doublet model -Leptophilic Higgs boson S. Kanemura, K. Tsumura and H. Yokoya, arxiv:1111.6089 M. Aoki, S. Kanemura, K. Tsumura and K.

More information

S 3 Symmetry as the Origin of CKM Matrix

S 3 Symmetry as the Origin of CKM Matrix S 3 Symmetry as the Origin of CKM Matrix Ujjal Kumar Dey Physical Research Laboratory October 25, 2015 Based on: PRD 89, 095025 and arxiv:1507.06509 Collaborators: D. Das and P. B. Pal 1 / 25 Outline 1

More information

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Solutions to gauge hierarchy problem. SS 10, Uli Haisch Solutions to gauge hierarchy problem SS 10, Uli Haisch 1 Quantum instability of Higgs mass So far we considered only at RGE of Higgs quartic coupling (dimensionless parameter). Higgs mass has a totally

More information

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures)

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures) STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT (Two lectures) Lecture 1: Mass scales in particle physics - naturalness in QFT Lecture 2: Renormalisable or non-renormalisable effective electroweak

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Instituto Superior Técnico Introduction to Supersymmetry Jorge C. Romão Instituto Superior Técnico, Departamento de Física & CFTP A. Rovisco Pais 1, 1049-001 Lisboa, Portugal 29 de Novembro de 2011 Jorge

More information

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC Wei Chao (IHEP) Outline Brief overview of neutrino mass models. Introduction to a TeV-scale type-i+ii seesaw model. EW precision

More information

Discovery potential of toppartners in a realistic composite Higgs model with early LHC data

Discovery potential of toppartners in a realistic composite Higgs model with early LHC data Discovery potential of toppartners in a realistic composite Higgs model with early LHC data Günther Dissertori, Elisabetta Furlan, Filip Moortgat, JHEP09(20)019 Kick-off Meeting Of The LHCPhenoNet Initial

More information

SUSY PHENOMENOLOGY. A Dissertation BO HU

SUSY PHENOMENOLOGY. A Dissertation BO HU SUSY PHENOMENOLOGY A Dissertation by BO HU Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2004

More information

A SUPERSYMMETRIC VIEW OF THE HIGGS HUNTING

A SUPERSYMMETRIC VIEW OF THE HIGGS HUNTING UC @ Santa Barbara Feb. 2nd, 2011 A SUPERSYMMETRIC VIEW OF THE HIGGS HUNTING Tao Liu UC @ Santa Barbara Higgs Boson And Particle Physics The Standard Model (SM) is a successful theory of describing the

More information