Theories with Compact Extra Dimensions

Size: px
Start display at page:

Download "Theories with Compact Extra Dimensions"

Transcription

1 Instituto de Física USP PASI 2012 UBA

2 Theories with Compact Extra dimensions Part II Generating Large Hierarchies with ED Theories Warped Extra Dimensions

3 Warped Extra Dimensions One compact extra dimension. Non-trivial metric induces small energy scale from Planck scale! (L. Randall, R. Sundrum). AdS 5 k Planck TeV ke k L L Geometry of extra dimension generates hierarchy exponentially! Λ TeV M Planck e k L with k the curvature

4 Warped Extra Dimensions Warped 5D metric in RS ds 2 = e 2κ y η µν dx µ dx ν dy 2 Compactified on S 1 /Z 2 with L = πr AdS 5 κ κ e κ π R and k < M P, AdS 5 curvature. For kr (11 12) κ e κπr O(TeV). 0 y πr

5 Warped Extra Dimensions Solving the Hierarchy Problem: If Higgs localized at y = πr S H = d 4 x πr 0 dy g δ(y πr) [ g µν µ H ν H λ ( H 2 v0 2 ) ] 2 Warp factors e ky appear in g µν and g. [ S H = d 4 x e 2kπR η µν µ H ν H e 4kπR λ ( H 2 v0 2 ) ] 2 Canonically normalize H e kπr H H

6 Warped Extra Dimensions What we get now is [ ( ) ] 2 S H = d 4 x η µν µ H ν H λ H 2 e 2kπR v0 2 If v 0 M P, then new scale in exponentially suppressed v = e kπr v 0 Choosing kr O(10) gets us v weak scale.

7 Solving the Hierarchy Problem in AdS 5 Metric in extra dimension small energy scale from M P (Randall-Sundrum) ds 2 = e 2κ y η µν dx µ dx ν dy 2 AdS 5 Corrections to m h OK If Higgs close to TeV brane M P Planck TeV M P _ kl e Need Higgs IR localization L

8 Warped Extra Dimensions If only gravity propagates in the bulk (SM fields on TeV brane): = Kaluza-Klein graviton tower Zero-mode graviton G (0) localized toward the Planck brane. This is why gravity is weak! G (0) couples to SM fields as 1/M 2 P First few KK graviton excitations localized toward TeV brane They couple strongly (as (1/TeV) 2 to fields there. E.g.: Drell-Yan at hadron colliders q G (n) e+ q e

9 The Origin of Flavor In the SM, flavor comes from dim-4 ops. For instance for quarks L Y = Y U ij Q i Hu j + Y D ij Q i Hd j, and similarly for leptons. Masses arise after EWSB: H = v/ 2 m ij D = Y D ij v 2 But what is the origin of the Yukawa couplings Y U, Y D, etc.?

10 The Origin of Flavor Building a theory of flavor in extensions of the SM is not easy. Scale of EWSB is TeV scale separation of scales with flavor. Supersymetry: Flavor is generated at very high scale, possibly GUT scale. (Avoiding flavor vioation from running effects is hard!) Technicolor: TC gets strong at TeV EWSB. Flavor comes from ETC gauge bosons, with M ( ) TeV. In all cases, is very hard to accommodate the spectrum of fermion masses naturally.

11 Bulk Life in WED In original proposal, only gravity propagates in 5D bulk. Allowing gauge fields and matter to propagate in the bulk opens many possibilities: models of EWSB, flavor, GUTs, etc. Bulk Randall-Sundrum models: Choose the gauge symmetry in the bulk: The electroweak SM gauge group has to be enlarged to avoid large corrections to EWP observables: SU(2) L SU(2) R U(1) X Write theory in the bulk and expand in Kaluza-Klein modes to get the effective 4D description.

12 Gauge Fields in the 5D bulk A gauge field A M (x µ, y) propagating in the extra dimensional bulk: S A = 1 d 4 xdy g F MN F MN, 4 with g = det[g MN ] = e 4σ, σ k y. Field strength defined as F MN M A N N A M + ig 5 [A M, A N ] The KK decomposition is A µ (x, y) = 1 A (n) µ (x)χ (n) (y) 2πR n=0

13 Gauge Fields in the 5D bulk χ (n) (y): wave-function of the n-th KK mode in the extra dimension. Imposing the EoM (Eüler-Lagrange) on A M (x µ, y) we get ( y e 2σ y χ (n)) = mnχ 2 (n) They satisfy the ortho-normality condition 1 πr dy χ (m) χ (n) = δ mn 2πR πr Solving this differential equation gives χ (n) (y).

14 Gauge Fields in the 5D bulk The solutions are of the form χ (n) (y) = eσ [ J 1 ( m n N n κ eσ ) + α n Y 1 ( m ] n κ eσ ) where N n is a normalization factor, and again σ = k y. In the interval [0, πr], χ (n) peaks πr for low values of n. first few KK modes of gauge bosons are localized near the TeV brane.

15 Gauge Fields in the bulk - KK Masses The constants α n, and the KK masses are determined by the boundary conditions on the Planck and TeV branes. The masses of the first few KK modes are m n (n O(1)) πκe κπr I.e. for appropriate choice of κr 1st KK excitations are O(TeV). To be expected: what is localized near the TeV brane has TeV-like masses!

16 Fermions in Warped Extra Dimensions The action for fermion fields Ψ(x µ, y) in the bulk S f = d 4 x dy { i g 2 Ψˆγ [ M D M D ] } M Ψ sgn(y)m f ΨΨ with the covariant derivative given by D M M [γα, γ β ] V N α V βn;m and ˆγ M V M α γ α, with V M α = diag(e σ, e σ, e σ, e σ, 1) the inverse vierbein. To be natural, we need M f O(1)k, with k M Planck, the only scale.

17 Fermions in Warped Extra Dimensions Although Ψ(x µ, y) is not a chiral fermion, we can still write Then the KK expansion is Ψ L,R 1 2 (1 γ 5) Ψ L,R (x, y) = 1 2πR n=0 ψ L,R n (x)e 2σ fn L,R (y) with fn L,R (y) the wave-function of the n-th KK fermion in the extra dimension.

18 Fermions in Warped Extra Dimensions Demanding that ψn L,R (x) be usual 4D fermions, we obtain ( y M f ) fn L (y) = M n e σ fn R (y) ( y + M f ) fn R (y) = M n e σ fn L (y) Zero mode fermions: M 0 = 0. Solving the differential eqns. we get: f R,L kπr (1 ± 2c L,R ) 0 (y) = e kπr(1±2cl,r) 1 e±c L,R k y where we defined M f = c f k. the bulk mass parameter c f O(1), defines the localization of the fermion in the extra dimension.

19 Fermions in Warped Extra Dimensions To see how the localization depends on c we need to normalize the fermions canonically. Then the zero-mode fermion wave-function is F L ZM(y) = 1 2πR f L 0 (0)e ( 1 2 c L) ky If c L > 1/2 fermion localized near y = 0, Planck brane. If c L < 1/2 fermion localized near y = πr, TeV brane.

20 Flavor Models in WED O(1) flavor breaking in bulk can generate fermion mass hierarchy: C>1/2 C<1/2 Higgs C=1/2 0 Fermions localized toward the TeV brane can have larger Yukawas, Those localized toward the Planck brane have highly suppressed ones. πr

21 Yukawa Couplings For instance, assuming a TeV-brane localized Higgs, the Yukawa couplings are S Y = d 4 x dy g λ5d ij Ψ i (x, y)δ(y πr)h(x)ψ j (x, y) 2 M 5 Then, the 4D Yukawa couplings are ( ) λ 5D ij k (1/2 c L ) (1/2 c R ) Y ij = e kπr(1 2cL) 1 e kπr(1 2cR) 1 ekπr(1 c L c R ) M 5

22 Yukawa Couplings The Yukawa couplings as a function of c L, assuming c R = 0.4 (i.e. TeV localized right-handed fermion):

23 The Bulk RS Picture SU(2) SU(2) L x R x U(1) Light Fermions t b L t R Higgs or Higgless Models of EWSB and Flavor 0 L EWPC: T OK, but S N/π at tree-level M KK > (2 3) TeV Z bb require discrete symmetry (L R) (Agashe, Contino, Da Rold, Pomarol) Potentially important bounds and/or effects from flavor violation

24 Dynamical Origin of the Higgs Sector What localizes the Higgs to/near the IR/TeV brane? Gauge-Higgs Unification Zero-mode Fermion Condensation Higgsless

25 Gauge-Higgs Unification in AdS 5 If there is a Higgs: what is its dynamical origin? Or why is it localized towards the TeV brane? Gauge field in 5D has scalar A 5 To extract H from A 5 need to enlarge SM gauge symmetry. E.g. SU(3) SU(2) U(1) by boundary conditions: A µ : A 5 : (+, +) (+, +) (, ) (+, +) (+, +) (, ) (, ) (, ) (+, +) (, ) (, ) (+, +) (, ) (, ) (+, +) (+, +) (+, +) (, ) Higgs doublet from A 5 = A a 5 ta

26 Gauge-Higgs Unification in AdS 5 To build realistic models of EWSB from AdS 5 : Isospin symmetry: need SO(4) U(1) X in bulk SO(5) U(1) X SO(4) U(1) X by BCs (Agashe, Contino, Pomarol) Higgs is 4 of SO(4): 4 d.o.f. complex SU(2) L doublet Gauge bosons and fermions in complete SO(5) multiplets Implementing additional symmetry to protect Z b b spectrum of KK fermions, lighter than KK gauge bosons. (Contino, Da Rold, Pomarol)

27 Gauge-Higgs Unification in AdS 5 E.g.: Fermions can be 5 2/3 = (2, 2) 2/3 (1, 1) 2/3 or 10 2/3 = (2, 2) 2/3 (1, 3) 2/3 (3, 1) 2/3 to satisfy custodial + L R symmetry. BCs masses of KK fermions tend to be light (because top is heavy)

28 Gauge-Higgs Unification in AdS 5 Signals: Rich gauge boson spectrum, at few TeV Light KK fermion spectrum: could be as light as 500 GeV Very distinctive signals: E.g. b-type KK fermion tw 4W s + 2b signals (Dennis, Servant, Unel, Tseng) Enhanced t 1 pair production through KK gluon (Carena, Medina, Panes, Shah, Wagner)

29 Flavor Violation in AdS 5 Models KK Gauge Bosons couple stronger to heavier fermions KK Gauge Bosons light fermions heavy fermions 0 L Tree-level flavor violation is hierarchical: Only important with the heavier generations

30 Flavor Violation: The Good If ZM fermion is localized close enough to IR can interaction with KK gauge boson (e.g. KK gluon) be strong enough to condense fermions? Need F F F is ZM quark Scale of condensation is M KK 1 TeV m F ( ) GeV 4th Generation Condensation in AdS 5

31 EWSB from Fourth-Generation in AdS 5 Need 4th-generation strongly coupled to new interaction If 4th-generation propagates in AdS 5 bulk and is highly localized on the TeV brane (G.B., Da Rold) 4th-generation quarks are strongly coupled to KK gluon:

32 EWSB from Fourth-Generation in AdS 5 Solution to the gap equation: If g U > g crit. U, ŪLU R 0 This implies Electroweak Symmetry Breaking Dynamical m U We can also write an effective theory at low energy for the Higgs.

33 Predictions for m U, m H For M KK = 3 TeV, we get m U 600 GeV m h 900 GeV Higgs naturally TeV-brane localized Fermion masses (other than m U ): From bulk Higher Dimensional Ops.

34 Two Higgs Doublets from 4G Condensation If both U and D 4th gen. quarks condense Two-Higgs Doublet model (GB Haluch 11) PQ Symmetry pseudo-scalar A is light: m A (25 130) GeV. Scalars are heavy (h, H, H ± ) in the ( ) GeV range Phenomenology at LHC interesting (GB, Haluch, Matheus 11) But current LHC bounds on 4G quarks closing in m Q4 > 500 GeV

35 Flavor Violation: The Bad Constraints from low energy/flavor physics Potentially, deviations in CP asymmetries in B decays b sl + l m Bs D 0 D 0 mixing But for M KK > 2 TeV, and/or adjusting the down-quark rotation matrices D L,R, these bounds can be evaded.

36 Single Top Production at High Invariant Mass (Aquino, GB, Eboli 07) q _ q g q G t _ c g t Utc Signal: t + jet, very large invariant mass (> 1.5 TeV). Use t blν. Typically few hundred fb 1.

37 Flavor Violation: The Ugly But one flavor observable is hard to get around: ɛ K Mixed Chirality operators d R s L d L s R have enhancement of ( mk m s ) 2 η 5 1 > 100 Bound from ɛ K is M KK > 30 TeV!! Need flavor symmetries to protect from this.

38 Future Avenues Build AdS 5 models with flavor symmetries protecting from ɛ K bounds Abandon AdS 5 dogma: Keep the good features Abandon 5D metric: Deconstruct AdS 5. Resulting 4D Theories have much less flavor violation far from the continuum (GB, Fonseca, Lima 12)

ELECTROWEAK BREAKING IN EXTRA DIMENSIONS MINI REVIEW. Gero von Gersdorff (École Polytechnique) Moriond Electroweak Session, La Thuile, March 2011

ELECTROWEAK BREAKING IN EXTRA DIMENSIONS MINI REVIEW. Gero von Gersdorff (École Polytechnique) Moriond Electroweak Session, La Thuile, March 2011 ELECTROWEAK BREAKING IN EXTRA DIMENSIONS MINI REVIEW Gero von Gersdorff (École Polytechnique) Moriond Electroweak Session, La Thuile, March 2011 OUTLINE How can Extra Dimensions explain the electroweak

More information

Light KK modes in Custodially Symmetric Randall-Sundrum

Light KK modes in Custodially Symmetric Randall-Sundrum Light KK modes in Custodially Symmetric Randall-Sundrum José Santiago Theory Group (FNAL) hep-ph/0607106, with M. Carena (FNAL), E. Pontón (Columbia) and C. Wagner (ANL) Motivation Randall-Sundrum like

More information

BEYOND THE SM (II) Kaustubh Agashe (University of Maryland)

BEYOND THE SM (II) Kaustubh Agashe (University of Maryland) BEYOND THE SM (II) Kaustubh Agashe (University of Maryland) ierarchy problems (from lecture 1) Planck-weak hierarchy problem Flavor (hierarchy) puzzle...extra dimensions can address both... Extra dimensions:

More information

Heavy Electroweak Resonances at the LHC

Heavy Electroweak Resonances at the LHC Heavy Electroweak Resonances at the LHC (arxiv:0709.0007 + Ongoing work) Brookhaven National Lab with Agashe, Davoudiasl, Han, Huang, Perez, Si, Soni...... LHC-08, KITP, Santa Barbara Apr. 2008 Motivation

More information

S = 2 decay in Warped Extra Dimensions

S = 2 decay in Warped Extra Dimensions S = 2 decay in Warped Extra Dimensions Faisal Munir IHEP, Beijing Supervisor: Cai-Dian Lü HFCPV CCNU, Wuhan October 28, 2017 based on: Chin. Phys. C41 (2017) 053106 [arxiv:1607.07713] F. Munir (IHEP) New

More information

Gauge-Higgs Unification and the LHC

Gauge-Higgs Unification and the LHC Gauge-Higgs Unification and the LHC If the Higgs boson is 124 or 126 or? GeV with SM couplings, Explain SM Higgs. with non-sm couplings, is not seen at LHC, Higgs is stable. Higgs does not exist. 2 If

More information

Composite Higgs/ Extra Dimensions

Composite Higgs/ Extra Dimensions Composite Higgs/ Extra Dimensions Eduardo Pontón Instituto de Física Teórica -UNESP & ICTP-SAIFR Snowmass on the Pacific, KITP May 30, 2013 Fundamental Question raised by the SM How and why is the Electroweak

More information

Introduction : Extra dimensions. Y. Hosotani, PPP2011, YITP, 8 March 2011, - 2

Introduction : Extra dimensions. Y. Hosotani, PPP2011, YITP, 8 March 2011, - 2 Introduction : Extra dimensions Y. Hosotani, PPP2011, YITP, 8 March 2011, - 2 Success in 1980-2010 LHC Y. Hosotani, PPP2011, YITP, 8 March 2011, - 3 M 4 S 1 φ(x, y) = φ n (x) e i(n+α)y/r m 2 n = (n + α)2

More information

Exotic Dark Matter as Spin-off of Proton Stability. Kaustubh Agashe (University of Maryland)

Exotic Dark Matter as Spin-off of Proton Stability. Kaustubh Agashe (University of Maryland) Exotic Dark Matter as Spin-off of Proton Stability Kaustubh Agashe (University of Maryland) Outline and Summary Warped extra dimensions address Planckweak and flavor hierarchies: new (KK) particles at

More information

FLAVOUR IN WARPED EXTRA DIMENSIONS

FLAVOUR IN WARPED EXTRA DIMENSIONS FLAVOUR IN WARPED EXTRA DIMENSIONS G. CACCIAPAGLIA Institut de Physique Nucléaire de Lyon, Université Lyon, CNRS/IN2P3, F-69622 Villeurbanne Cedex, France Models in warped extra dimensions are very attractive

More information

Elementary/Composite Mixing in Randall-Sundrum Models

Elementary/Composite Mixing in Randall-Sundrum Models Elementary/Composite Mixing in Randall-Sundrum Models Brian Batell University of Minnesota with Tony Gherghetta - arxiv:0706.0890 - arxiv:0710.1838 Cornell 1/30/08 5D Warped Dimension = 4D Strong Dynamics

More information

Searching for Extra Space Dimensions at the LHC. M.A.Parker Cavendish Laboratory Cambridge

Searching for Extra Space Dimensions at the LHC. M.A.Parker Cavendish Laboratory Cambridge Searching for Extra Space Dimensions at the LHC M.A.Parker Cavendish Laboratory Cambridge I shall use ATLAS to illustrate LHC physics, because it is the experiment I know best. Both general purpose detectors

More information

Accidental SUSY at the LHC

Accidental SUSY at the LHC Accidental SUSY at the LHC Tony Gherghetta (University of Melbourne) PACIFIC 2011, Moorea, French Polynesia, September 12, 2011 with Benedict von Harling and Nick Setzer [arxiv:1104.3171] 1 What is the

More information

Warped Penguins. Based on arxiv: In collaboration with Csaba Csáki, Yuval Grossman, Philip Tanedo. LEPP Particle Theory Seminar

Warped Penguins. Based on arxiv: In collaboration with Csaba Csáki, Yuval Grossman, Philip Tanedo. LEPP Particle Theory Seminar Warped Penguins Based on arxiv:1004.2037 In collaboration with Csaba Csáki, Yuval Grossman, Philip Tanedo Cornell University LEPP Particle Theory Seminar Yuhsin Tsai, Cornell University/LEPP Warped Penguins

More information

Collider signatures of gauge-higgs unification

Collider signatures of gauge-higgs unification Collider signatures of gauge-higgs unification Gauge-Higgs Unification in 5 dimensions 4-dim. components A µ extra-dim. component A y Hosotani 1983, 1989 Davies, McLachlan 1988, 1989 Hatanaka, Inami, Lim,

More information

Theory Perspective of Top Production: Top Resonances. Tim M.P. Tait

Theory Perspective of Top Production: Top Resonances. Tim M.P. Tait Theory Perspective of Top Production: Top Resonances Tim M.P. Tait APS April Meeting May 3 2009 Outline Top Resonances are EVERYWHERE! Models, Models, and more Models High Mass Resonances and Boosted Tops

More information

Introduction to (Large) Extra Dimensions

Introduction to (Large) Extra Dimensions SLAC Dark Matter & Exotic Physics WG p. 1/39 Introduction to (Large) Extra Dimensions A. Lionetto Department of Physics & INFN Roma Tor Vergata SLAC Dark Matter & Exotic Physics WG p. 2/39 Outline Introduction

More information

Y. Hosotani, SI2010, 15 August 2010, - 2

Y. Hosotani, SI2010, 15 August 2010, - 2 = Y. osotani, SI2010, 15 August 2010, - 2 Gauge-iggs Unification a la Kaluza-Klein osotani 1983, 1989 Davies, McLachlan 1988, 1989 atanaka, Inami, Lim, 1998 Gauge theory A M in higher dimensions 4-dim.

More information

Yuhsin Tsai Cornell/Fermilab Warped Penguins 1/38

Yuhsin Tsai Cornell/Fermilab Warped Penguins 1/38 Warped Penguins Yuhsin Tsai Fermilab / Cornell Fermilab Theory Seminar, 18 Aug 2011 BG: Wall paper from www.layoutsparks.com 1 / Yuhsin Tsai Cornell/Fermilab Warped Penguins 1/38 38 This talk includes

More information

Flavor in the scalar sector of Warped Extra Dimensions a. Manuel Toharia

Flavor in the scalar sector of Warped Extra Dimensions a. Manuel Toharia Flavor in the scalar sector of Warped Extra Dimensions a by Manuel Toharia (University of Maryland) at the University of Virginia, Dec. 2, 2009 a Based on PRD80:03506( 09) A.Azatov, M.T., L.Zhu PRD80:0370(

More information

Warped Models in String Theory

Warped Models in String Theory Warped Models in String Theory SISSA/ISAS Trieste (Italy) Rutgers 14 November 2006 (Work in collaboration with B.S.Acharya and F.Benini) Appearing soon Introduction 5D Models 5D warped models in a slice

More information

Electroweak Symmetry Breaking via Strong Dynamics in the Precision Higgs Era: Extra Dimension and Composite Higgs.

Electroweak Symmetry Breaking via Strong Dynamics in the Precision Higgs Era: Extra Dimension and Composite Higgs. Electroweak Symmetry Breaking via Strong Dynamics in the Precision Higgs Era: Extra Dimension and Composite Higgs Tirtha Sankar Ray XXI DAE-BRNS HEP Symposium, 8-12 December, 2014 The Standard Model All

More information

Introduction to the Beyond the Standard Model session

Introduction to the Beyond the Standard Model session Introduction to the Beyond the Standard Model session JJC 2014 Dec. 11th 2014 Samuel Calvet Outline Why do we need Beyond the Standard Model (BSM) theories? BSM theories on the market : their predictions/particles

More information

INTRODUCTION TO EXTRA DIMENSIONS

INTRODUCTION TO EXTRA DIMENSIONS INTRODUCTION TO EXTRA DIMENSIONS MARIANO QUIROS, ICREA/IFAE MORIOND 2006 INTRODUCTION TO EXTRA DIMENSIONS p.1/36 OUTLINE Introduction Where do extra dimensions come from? Strings and Branes Experimental

More information

The Higgs boson. as a window to Beyond the Standard Model Physics. Roberto Contino. Università di Roma La Sapienza

The Higgs boson. as a window to Beyond the Standard Model Physics. Roberto Contino. Università di Roma La Sapienza The Higgs boson as a window to Beyond the Standard Model Physics Roberto Contino Università di Roma La Sapienza 1. what have we discovered so far...... and why we need an EWSB sector The physics discovered

More information

Aharonov-Bohm Effect and Unification of Elementary Particles. Yutaka Hosotani, Osaka University Warsaw, May 2006

Aharonov-Bohm Effect and Unification of Elementary Particles. Yutaka Hosotani, Osaka University Warsaw, May 2006 Aharonov-Bohm Effect and Unification of Elementary Particles Yutaka Hosotani, Osaka University Warsaw, May 26 - Part 1 - Aharonov-Bohm effect Aharonov-Bohm Effect! B)! Fµν = (E, vs empty or vacuum!= Fµν

More information

Introduction to the Beyond the Standard Model session

Introduction to the Beyond the Standard Model session Introduction to the Beyond the Standard Model session JRJC 2015 Nov. 19th 2015 Samuel Calvet Outline Why do we need Beyond the Standard Model (BSM) theories? BSM theories on the market : their predictions/particles

More information

The Higgs as a composite pseudo-goldstone boson. Roberto Contino - CERN

The Higgs as a composite pseudo-goldstone boson. Roberto Contino - CERN The Higgs as a composite pseudo-goldstone boson Roberto Contino - CERN Part I: The need for an EWSB sector...... and how this could be strongly interacting The physics discovered so far: L = L 0 + L mass

More information

New Solutions to the Hierarchy Problem

New Solutions to the Hierarchy Problem 56 Brazilian Journal of Physics, vol. 37, no. 2B, June, 27 New Solutions to the Hierarchy Problem Gustavo Burdman Instituto de Física, Universidade de São Paulo Cidade Universitaria, São Paulo, SP, 558-9,

More information

Lepton flavour violation in RS models

Lepton flavour violation in RS models Lepton flavour violation in RS models P. Moch with M. Beneke and J. Rohrwild Theoretische Physik 1 Uni Siegen Outline: Introduction Strategy and formalism Results P. Moch (Uni Siegen LVF in RS PSI, Oktober

More information

EXOTICA AT LHC. Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration.

EXOTICA AT LHC. Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration. EXOTICA AT LHC Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration pmine@poly.in2p3.fr Chia, Sardinia, Italy October 24-27 2001 1 EXOTICA AT LHC Beyond the Standard Model, Supersymmetry

More information

Top quark effects in composite vector pair production at the LHC

Top quark effects in composite vector pair production at the LHC Top quark effects in composite vector pair production at the LHC Antonio Enrique Cárcamo Hernández. Universidad Tecnica Federico Santa Maria. SILAFAE 01, 10th-14th of December of 01. Based on: A. E. Cárcamo

More information

Flavor, Minimality and Naturalness in Composite Higgs Models

Flavor, Minimality and Naturalness in Composite Higgs Models eth zurich Flavor, Minimality and Naturalness in Composite Higgs Models Adrián Carmona Bermúdez Institute for Theoretical Physics, ETH Zurich In collaboration with F. Goertz A naturally light Higgs without

More information

Double Higgs production via gluon fusion (gg hh) in composite models

Double Higgs production via gluon fusion (gg hh) in composite models Double Higgs production via gluon fusion (gg hh) in composite models Ennio Salvioni CERN and University of Padova based on work in collaboration with C.Grojean (CERN), M.Gillioz (Zürich), R.Gröber and

More information

Little Higgs Models Theory & Phenomenology

Little Higgs Models Theory & Phenomenology Little Higgs Models Theory Phenomenology Wolfgang Kilian (Karlsruhe) Karlsruhe January 2003 How to make a light Higgs (without SUSY) Minimal models The Littlest Higgs and the Minimal Moose Phenomenology

More information

A framework for domain-wall brane model building

A framework for domain-wall brane model building A framework for domain-wall brane model building Raymond R. Volkas The University of Melbourne Beyond the Standard Models of Particle Physics, Cosmology and Astrophysics Feb 2010 Raymond R. Volkas (U Melbourne)

More information

Kaluza-Klein Dark Matter

Kaluza-Klein Dark Matter Kaluza-Klein Dark Matter Hsin-Chia Cheng UC Davis Pre-SUSY06 Workshop Complementary between Dark Matter Searches and Collider Experiments Introduction Dark matter is the best evidence for physics beyond

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

Higgs-Radion mixing and the LHC Higgs-like excesses

Higgs-Radion mixing and the LHC Higgs-like excesses Higgs-Radion mixing and the LHC Higgs-like excesses Jack Gunion U.C. Davis CMS Seminar, February 6, 2012 with B. Grzadkowski Higgs-like LHC Excesses Is what we are seeing a Higgs-like chameleon? J. Gunion,

More information

Boundary Conditions in AdS Life Without a Higgs

Boundary Conditions in AdS Life Without a Higgs Boundary Conditions in AdS Life Without a Higgs Csáki, Grojean, Murayama, Pilo, JT hep-ph/0305237 Csáki, Grojean, Pilo, JT hep-ph/0308038 Csáki, Grojean, Hubisz, Shirman, JT hep-ph/0310355 Cacciapaglia,

More information

SEARCH FOR EXTRA DIMENSIONS WITH ATLAS AND CMS DETECTORS AT THE LHC

SEARCH FOR EXTRA DIMENSIONS WITH ATLAS AND CMS DETECTORS AT THE LHC SEARCH FOR EXTRA DIMENSIONS WITH ATLAS AND CMS DETECTORS AT THE LHC S. SHMATOV for ATLAS and CMS Collaborations Joint Institute for Nuclear Research, Dubna, Russia E-mail: shmatov@cern.ch A brief review

More information

Inter-brane distance stabilization by bulk Higgs field in RS model

Inter-brane distance stabilization by bulk Higgs field in RS model EPJ Web of Conferences 58, 0500 07 QFTHEP 07 DOI: 0.05/epjconf/07580500 Inter-brane distance stabilization by bulk Higgs field in RS model Vadim Egorov,, and Igor Volobuev, Skobeltsyn Institute of Nuclear

More information

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Neutrinos and Fundamental Symmetries: L, CP, and CP T Neutrinos and Fundamental Symmetries: L, CP, and CP T Outstanding issues Lepton number (L) CP violation CP T violation Outstanding issues in neutrino intrinsic properties Scale of underlying physics? (string,

More information

Search for physics beyond the Standard Model at LEP 2

Search for physics beyond the Standard Model at LEP 2 Search for physics beyond the Standard Model at LEP 2 Theodora D. Papadopoulou NTU Athens DESY Seminar 28/10/03 1 Outline Introduction about LEP Alternatives to the Higgs mechanism Technicolor Contact

More information

Non-SUSY BSM: Lecture 1/2

Non-SUSY BSM: Lecture 1/2 Non-SUSY BSM: Lecture 1/2 Generalities Benasque September 26, 2013 Mariano Quirós ICREA/IFAE Mariano Quirós (ICREA/IFAE) Non-SUSY BSM: Lecture 1/2 1 / 31 Introduction Introduction There are a number of

More information

Composite Higgs Overview

Composite Higgs Overview Composite Higgs Overview Tony Gherghetta Fundamental Composite Dynamics, IBS CTPU, Daejeon, Korea, December 6, 2017 1 IBS Daejeon - 6 December 2017 Composite Higgs New strong force with coupling, g s g

More information

How to tell apart non-standard EWSB mechanisms. Veronica Sanz CERN and YORK Moriond 2012

How to tell apart non-standard EWSB mechanisms. Veronica Sanz CERN and YORK Moriond 2012 How to tell apart non-standard EWSB mechanisms Veronica Sanz CERN and YORK Moriond 2012 In this talk What is standard? EWSB by elementary scalar(s) includes SM and SUSY What is non-standard? EWSB by -composite

More information

Search for Extra Dimensions with the ATLAS and CMS Detectors at the LHC

Search for Extra Dimensions with the ATLAS and CMS Detectors at the LHC Available on CMS information server CMS CR 2006/086 October 31, 2006 Search for Extra Dimensions with the ATLAS and CMS Detectors at the LHC Sergei Shmatov Joint Institute for Nuclear Research, Dubna,

More information

Searching for Extra Space Dimensions at the LHC. M.A.Parker Cavendish Laboratory Cambridge

Searching for Extra Space Dimensions at the LHC. M.A.Parker Cavendish Laboratory Cambridge Searching for Extra Space Dimensions at the LHC M.A.Parker Cavendish Laboratory Cambridge The Large Hadron Collider Under construction in Geneva, startup in 2007. 14 TeV pp collider, L=1034cm-2 s-1. σ

More information

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Solutions to gauge hierarchy problem. SS 10, Uli Haisch Solutions to gauge hierarchy problem SS 10, Uli Haisch 1 Quantum instability of Higgs mass So far we considered only at RGE of Higgs quartic coupling (dimensionless parameter). Higgs mass has a totally

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

Higgs-Radion Mixing in the RS and LHC Higgs-like Excesses

Higgs-Radion Mixing in the RS and LHC Higgs-like Excesses Higgs-Radion Mixing in the RS and LHC Higgs-like Excesses Jack Gunion U.C. Davis Grenoble Higgs Workshop, February 2, 2012 with B. Grzadkowski Higgs-like LHC Excesses Is what we are seeing a Higgs-like

More information

Composite Higgs and Flavor

Composite Higgs and Flavor Composite Higgs and Flavor Xiaohong Wu East China University of Science and Technology Seminar @ ICTS, Jun. 6, 2013 125GeV SM-like Higgs Discovered p 0 5 3-3 -5-7 -9 1 3 Combined observed γγ observed llll

More information

EXTRA DIMENSIONS I and II

EXTRA DIMENSIONS I and II Emilian Dudas CERN-PH-TH and CPhT-Ecole Polytechnique EXTRA DIMENSIONS I and II sept. 12, 2012, Corfu School and Workshops Outline Generalities - extra dimensions and Kaluza-Klein unification - chirality,

More information

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model Scalar from November 24, 2014 1 2 3 4 5 What is the? Gauge theory that explains strong weak, and electromagnetic forces SU(3) C SU(2) W U(1) Y Each generation (3) has 2 quark flavors (each comes in one

More information

Electroweak and Higgs Physics

Electroweak and Higgs Physics Electroweak and Higgs Physics Lecture 2 : Higgs Mechanism in the Standard and Supersymmetric Models Alexei Raspereza DESY Summer Student Program Hamburg August 2017 Standard Model (Summary) Building blocks

More information

Exploring Universal Extra-Dimensions at the LHC

Exploring Universal Extra-Dimensions at the LHC Exploring Universal Extra-Dimensions at the LHC Southampton University & Rutherford Appleton Laboratory 1 Problems to be addressed by the underlying theory The Nature of Electroweak Symmetry Breaking The

More information

Extra-d geometry might also explain flavor

Extra-d geometry might also explain flavor Flavor and CP Solutions via~gim in Bulk RS LR with Liam Fitzpatrick, Gilad Perez -w/ Liam Fitzpatrick, Clifford Cheung Introduction Lots of attention devoted to weak scale Flavor and CP remain outstanding

More information

Extra Dimensional Signatures at CLIC

Extra Dimensional Signatures at CLIC Extra Dimensional Signatures at CLIC Thomas G. Rizzo SLAC A brief overview is presented of the signatures for several different models with extra dimensions at CLIC, an e + e linear collider with a center

More information

Partial Compositeness and

Partial Compositeness and Partial Compositeness and its implications for the LHC Roberto Contino Università Roma La Sapienza & INFN In collaboration with: Raman Sundrum Thomas Kramer Minho Son Motivation: Solving the Hierarchy

More information

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN Teoria e fenomenologia dei modelli di Higgs composto Roberto Contino - CERN Part I: Quick review of the Composite Higgs Composite Higgs models [Georgi & Kaplan, `80s] EWSB sector H G G _ _ Aµ (G SM ) ψ

More information

FLIGHT OF THE WARPED PENGUINS. In collaboration with Csaba Csáki, Yuval Grossman, and Yuhsin Tsai. DAMTP/Cavendish HEP Seminar, 26 May 2011

FLIGHT OF THE WARPED PENGUINS. In collaboration with Csaba Csáki, Yuval Grossman, and Yuhsin Tsai. DAMTP/Cavendish HEP Seminar, 26 May 2011 FLIGHT OF THE WARPED PENGUINS Phys. Rev. D83, 073002 arxiv:1004.2037 Cornell University In collaboration with Csaba Csáki, Yuval Grossman, and Yuhsin Tsai DAMTP/Cavendish HEP Seminar, 26 May 2011 1 / Flip

More information

SUPERSYMETRY FOR ASTROPHYSICISTS

SUPERSYMETRY FOR ASTROPHYSICISTS Dark Matter: From the Cosmos to the Laboratory SUPERSYMETRY FOR ASTROPHYSICISTS Jonathan Feng University of California, Irvine 29 Jul 1 Aug 2007 SLAC Summer Institute 30 Jul 1 Aug 07 Feng 1 Graphic: N.

More information

125 GeV Higgs Boson and Gauge Higgs Unification

125 GeV Higgs Boson and Gauge Higgs Unification 125 GeV Higgs Boson and Gauge Higgs Unification Nobuchika Okada The University of Alabama Miami 2013, Fort Lauderdale, Dec. 12 18, 2013 Discovery of Higgs boson at LHC! 7/04/2012 Standard Model Higgs boson

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

Beyond the Standard Model

Beyond the Standard Model Beyond the Standard Model The Standard Model Problems with the Standard Model New Physics Supersymmetry Extended Electroweak Symmetry Grand Unification References: 2008 TASI lectures: arxiv:0901.0241 [hep-ph]

More information

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik th Discovery Discovery of of the the 4 4th generation generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion 1 Introduction Introduction

More information

The Higgs Mechanism and the Higgs Particle

The Higgs Mechanism and the Higgs Particle The Higgs Mechanism and the Higgs Particle Heavy-Ion Seminar... or the Anderson-Higgs-Brout-Englert-Guralnik-Hagen-Kibble Mechanism Philip W. Anderson Peter W. Higgs Tom W. B. Gerald Carl R. François Robert

More information

Universal Extra-Dimension at LHC

Universal Extra-Dimension at LHC Universal Extra-Dimension at LHC Swarup Kumar Majee National Taiwan University UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.1 Plan Hierarchy problem Extra-dimensions Flat extra-dimension (ADD and UED model)

More information

Higgsless Vector Boson Fusion at the LHC beyond leading order

Higgsless Vector Boson Fusion at the LHC beyond leading order Higgsless Vector Boson Fusion at the LHC beyond leading order Christoph Englert 29.10.2009 GGI Conference The Search for New States and Forces of Nature, Florence INSTITUTE FOR THEORETICAL PHYSICS KIT

More information

Higgs Physics as an Indirect BSM Probe

Higgs Physics as an Indirect BSM Probe Higgs Physics as an Indirect BSM Probe Marcela Carena Fermilab EFI and KICP, U. of Chicago Second MCTP Spring Symposium on Higgs Boson Physics U.of Michigan, April 20, 2012 works beautifully, explaining

More information

arxiv: v3 [hep-ph] 22 Dec 2017

arxiv: v3 [hep-ph] 22 Dec 2017 SLAC PUB 17154 September, 2017 arxiv:1709.07909v3 [hep-ph] 22 Dec 2017 Competing Forces in 5-Dimensional Fermion Condensation Jongmin Yoon and Michael E. Peskin 1 SLAC, Stanford University, Menlo Park,

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

SUSY and Exotics. UK HEP ForumFrom the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1 SUSY and Exotics Standard Model and the Origin of Mass Puzzles of Standard Model and Cosmology Bottom-up and top-down motivation Extra dimensions Supersymmetry - MSSM -NMSSM -E 6 SSM and its exotics UK

More information

Composite Higgs, Quarks and Leptons, a contemporary view

Composite Higgs, Quarks and Leptons, a contemporary view Composite Higgs, Quarks and Leptons, a contemporary view 1 Thanks to Sid Drell Always be positive, curious, constructive Α others will think your questions are dumb 2 3 Brodsky-Drell anomalous magnetic

More information

Modelling an extra dimension with domain-wall branes

Modelling an extra dimension with domain-wall branes Modelling an extra dimension with domain-wall branes Damien George Nikhef theory seminar 5 th November 2009 Overview Physics beyond the standard model: extra dimensions. Brane domain wall (topological

More information

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Jürgen Reuter Albert-Ludwigs-Universität Freiburg W. Kilian, JR, PLB B642 (2006), 81; and work in progress (with F. Deppisch, W. Kilian)

More information

12.2 Problem Set 2 Solutions

12.2 Problem Set 2 Solutions 78 CHAPTER. PROBLEM SET SOLUTIONS. Problem Set Solutions. I will use a basis m, which ψ C = iγ ψ = Cγ ψ (.47) We can define left (light) handed Majorana fields as, so that ω = ψ L + (ψ L ) C (.48) χ =

More information

CP Violation in B Physics Puzzles, Opportunities at LHCb,

CP Violation in B Physics Puzzles, Opportunities at LHCb, CP Violation in B Physics Puzzles, Opportunities at LHCb, Matthias Neubert Matthias Neubert Institut für Physik (THEP) Johannes Gutenberg-Universität Mainz CPT@ICTP, Trieste, July 2008 1 Flavor Puzzles

More information

Beyond the Standard Model

Beyond the Standard Model 4 KIT, 6-10 February 12 Beyond the Standard Model Guido Altarelli Universita di Roma Tre CERN Solutions to the hierarchy problem Supersymmetry: boson-fermion symm. The most ambitious and widely accepted

More information

Sensitivity to the Single Production of Vector-Like Quarks at an Upgraded Large Hadron Collider

Sensitivity to the Single Production of Vector-Like Quarks at an Upgraded Large Hadron Collider Sensitivity to the Single Production of Vector-Like Quarks at an Upgraded Large Hadron Collider arxiv:1309.1888v [hep-ph] Oct 013 T. Andeen 1, C. Bernard, K. Black, T. Childers 3, L. Dell Asta, and N.

More information

Universal Extra Dimensions

Universal Extra Dimensions Universal Extra Dimensions Add compact dimension(s) of radius R ~ ant crawling on tube Kaluza-Klein tower of partners to SM particles due to curled-up extra dimensions of radius R n = quantum number for

More information

Neutrinos and flavour in a brane model

Neutrinos and flavour in a brane model Neutrinos and flavour in a brane model Raymond R. Volkas The University of Melbourne Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics September 2009 Raymond R. Volkas (U Melbourne) Neutrinos

More information

PoS(Kruger 2010)034. CMS searches for new physics. Mara Senghi Soares On behalf of the CMS Collaboration.

PoS(Kruger 2010)034. CMS searches for new physics. Mara Senghi Soares On behalf of the CMS Collaboration. On behalf of the CMS Collaboration E-mail: mara.senghi@ciemat.es We discuss the first searches for new physics being carried out with the CMS detector, at the early stage of data taking. Prospects for

More information

This thesis is protected by copyright which belongs to the author.

This thesis is protected by copyright which belongs to the author. A University of Sussex PhD thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced

More information

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK Higgs Physics Yasuhiro Okada (KEK) November 26, 2004, at KEK 1 Higgs mechanism One of two principles of the Standard Model. Gauge invariance and Higgs mechanism Origin of the weak scale. Why is the weak

More information

STABILIZING EXTRA DIMENSIONS

STABILIZING EXTRA DIMENSIONS STABILIZING EXTRA DIMENSIONS Gero von Gersdorff (École Polytechnique) Warsaw, October 19th 2009 Collaboration with J.A.Cabrer and M.Quirós OUTLINE Features of Warped Extra Dimensions Stabilizing Models

More information

Search for SUperSYmmetry SUSY

Search for SUperSYmmetry SUSY PART 3 Search for SUperSYmmetry SUSY SUPERSYMMETRY Symmetry between fermions (matter) and bosons (forces) for each particle p with spin s, there exists a SUSY partner p~ with spin s-1/2. q ~ g (s=1)

More information

Physics beyond the standard model with S 2 extra-space

Physics beyond the standard model with S 2 extra-space Physics beyond the standard model with S 2 extra-space Programs in Science and Engineering Course in Material Science Student ID: 07DS008 Takaaki Nomura Doctoral Course Supervisor: Associate Professor

More information

Gauge-Higgs Dark Matter

Gauge-Higgs Dark Matter Toshifumi Yamashita (Nagoya University) 5 Mar. 2009 @KEKPH09 in preparation with N. Haba (Osaka Univ.) S. Matsumoto (Toyama Univ.) N. Okada (KEK) Introduction Motivations for beyond the SM hierarchy problem

More information

Large Extra Dimensions and the Hierarchy Problem

Large Extra Dimensions and the Hierarchy Problem Large Extra Dimensions and the Hierarchy Problem The Hierarchy Problem - At Planck energies (M P L 10 19 GeV ) all four forces have the same strength. -At the Electroweak scale (M EW 1T ev ) the four forces

More information

Higgs-Radion mixing in the Randall Sundrum model and the LHC Higgs-like excesses

Higgs-Radion mixing in the Randall Sundrum model and the LHC Higgs-like excesses Higgs-Radion mixing in the Randall Sundrum model and the LHC Higgs-like excesses Jack Gunion U.C. Davis CERN Theory Group, February 10, 2012 with B. Grzadkowski Higgs-like LHC Excesses Is what we are seeing

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

Naturalness & Compositeness Riccardo Rattazzi, EPFL

Naturalness & Compositeness Riccardo Rattazzi, EPFL Naturalness & Compositeness 2014 Riccardo Rattazzi, EPFL In QM whatever is possible is also compulsory selection rules O = i O i O i = c i λ n 1i 1...λ n ki k dim = dim = If O exp max O i it seems we are

More information

Searches for new physics at ATLAS

Searches for new physics at ATLAS 1 Searches for new physics at ATLAS Gökhan Ünel U.C. Irvine On behalf of the ATLAS collaboration ICPP 2011 Istanbul Outline 2 LHC has been giving us data at ever increasing pace. Lint =1 fb reached as

More information

Dark matter and collider signatures from extra dimensions

Dark matter and collider signatures from extra dimensions KAIST TF, A. Menon, Z. Sullivan, PRD 86 (2012) 093006 L. Edelhäuser, TF, M. Krämer, JHEP 1308 (2013) 091 TF, KC Kong, SC Park, JHEP 1305 (2013) 111, arxiv:1309.xxxx COSMO 2013, Cambridge Outline Universal

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Peter Krieger Carleton University Physics Motivations Experimental Theoretical New particles searches Standard Model Higgs

More information

Mono Vector-Quark Production at the LHC

Mono Vector-Quark Production at the LHC Mono Vector-Quark Production at the LHC Haiying Cai Department of Physics, Peking University arxiv: 1210.5200 Particle Physics and Cosmology KIAS, November 5-9, 2012 Introduction Vector-like quark exists

More information

The Standard Model and Beyond

The Standard Model and Beyond The Standard Model and Beyond Nobuchika Okada Department of Physics and Astronomy The University of Alabama 2011 BCVSPIN ADVANCED STUDY INSTITUTE IN PARTICLE PHYSICS AND COSMOLOGY Huê, Vietnam, 25-30,

More information