The Plane Stress Problem

Size: px
Start display at page:

Download "The Plane Stress Problem"

Transcription

1 . 14 The Plane Stress Problem 14 1

2 Chapter 14: THE PLANE STRESS PROBLEM 14 TABLE OF CONTENTS Page Introduction Plate in Plane Stress Mathematical Model Plane Stress Problem Description Given Problem Data Problem Unknowns Linear Elasticit Equations Governing Equations Boundar Conditions Weak Forms versus Strong Form Total Potential Energ Finite Element Equations Displacement Interpolation Element Energ Element Stiffness Equations Notes and Bibliograph References Eercises Solutions to. Eercises

3 INTRODUCTION Introduction We nowpass to the variational formulation of two-dimensional continuum finite elements. The problem of plane stress will serve as the vehicle for illustrating such formulations. As narrated in 1.7.1, continuum finite elements were invented in the aircraft industr (at Boeing, earl 1950s) to solve this kind of problem when it arose in the design and analsis of delta wing panels [164]. The problem is presented here within the framework of the linear theor of elasticit Plate in Plane Stress In structural mechanics, a flat thin sheet of material is called a plate. 1 The distance between the plate faces is called the thickness and denoted b h. The midplane lies halfwa between the two faces. z The direction normal to the midplane is the transverse direction. Directions parallel to the midplane are called in-plane directions. The global ais z will be oriented along the transverse direction. Aes and are placed in the midplane, forming a right-handed Rectangular Cartesian Coordinate (RCC) sstem. Thus the midplane equation is z = 0. See Figure Figure A plate structure in plane stress. A plate loaded in its midplane is said to be in a state of plane stress, oramembrane state, if the following assumptions hold: 1. All loads applied to the plate act in the midplane direction, and are smmetric with respect to the midplane.. All support conditions are smmetric about the midplane. 3. In-plane displacements, strains and stresses can be taken to be uniform through the thickness. 4. The normal and shear stress components in the z direction are zero or negligible. The last two assumptions are not necessaril consequences of the first two. For the latter to hold, the thickness h should be small, tpicall 10% or less, than the shortest in-plane dimension. If the plate thickness varies it should do so graduall. Finall, the plate fabrication must ehibit smmetr with respect to the midplane. To these four assumptions we add the following restriction: 5. The plate is fabricated of the same material through the thickness. Such plates are called transversel homogeneous or (in aerospace) monocoque plates. The last assumption ecludes wall constructions of importance in aerospace, in particular composite and honecomb sandwich plates. The development of mathematical models for such configurations requires a more complicated integration over the thickness as well as the abilit to handle coupled bending and stretching effects, and will not be considered here. 1 If it is relativel thick, as in concrete pavements or Argentinian beefsteaks, the term slab is also used but not for plane stress conditions. 14 3

4 Chapter 14: THE PLANE STRESS PROBLEM 14 4 Midplane Mathematical idealization Plate Γ Ω Figure 14.. Mathematical model of plate in plane stress. Remark Selective relaation from assumption 4 lead to the so-called generalized plane stress state, in which z stresses are accepted. The plane strain state is obtained if strains in the z direction are precluded. Although the construction of finite element models for those states has man common points with plane stress, we shall not consider those models here. For isotropic materials the plane stress and plane strain problems can be mapped into each other through a fictitious-propert technique; see Eercise Remark 14.. Transverse loading on a plate produces plate bending, which is associated with a more comple configuration of internal forces and deformations. This subject is studied in more advanced courses Mathematical Model The mathematical model of the plate in plane stress is a two-dimensional boundar value problem (BVP). The BVP is posed over a plane domain with a boundar Ɣ, as illustrated in Figure 14.. In this idealization the third dimension is represented as functions of and that are integrated through the plate thickness. Engineers often work with internal plate forces, which result from integrating the in-plane stresses through the thickness. See Figure Plane Stress Problem Description Given Problem Data Domain geometr. This is defined b the boundar Ɣ illustrated in Figure 14.. Thickness. Most plates used as structural components have constant thickness. If the thickness does var, in which case h = h(, ), it should do so graduall to maintain the plane stress state. Material data. This is defined b the constitutive equations. Here we shall assume that the plate material is linearl elastic but not necessaril isotropic. Specified Interior Forces. These are known forces that act in the interior of the plate. There are of two tpes. Bod forces or volume forces are forces specified per unit of plate volume; for eample the plate weight. Face forces act tangentiall to the plate faces and are transported to the midplane. For eample, the friction or drag force on an airplane skin is of this tpe if the skin is modeled to be in plane stress. Specified Surface Forces. These are known forces that act on the boundar Ɣ of the plate. In elasticit these are called surface tractions. In actual applications it is important to knowwhether these forces are specified per unit of surface area or per unit length. 14 4

5 PLANE STRESS PROBLEM DESCRIPTION In-plane internal forces h p p p p p p z In-plane stresses h = Positive sign convention In-plane strains In-plane displacements h e e = e e h u u Figure Notation for in-plane stresses, strains, displacements and internal forces for a plate in plane stress. Displacement Boundar Conditions. These specif howthe plate is supported. Points on the plate boundar ma be fied, allowed to move in one direction, or subject to multipoint constraints. In addition smmetr and antismmetr lines ma be identified as discussed in Chapter 8. If no displacement boundar conditions are imposed, the plate structure is said to be free-free Problem Unknowns The unknown fields are displacements, strains and stresses. Because of the assumed wall fabrication homogeneit the in-plane components are assumed to be uniform through the plate thickness. Thus the dependence on z disappears and all such components become functions of and onl. Displacements. The in-plane displacement field is defined b two components: [ ] u (, ) u(, ) = (14.1) u (, ) The transverse displacement component u z (,, z) component is generall nonzero because of Poisson s ratio effects, and depends on z. However, this displacement does not appear in the governing equations. Strains. The in-plane strain field forms a tensor defined b three independent components: e, e and e. To allowstating the FE equations in matri form, these components are conventionall arranged to form a 3-component strain vector e(, ) = [ ] e (, ) e (, ) e (, ) 14 5 (14.)

6 Chapter 14: THE PLANE STRESS PROBLEM 14 6 Prescribed displacements u^ Displacement BCs u = u^ on Γ u Displacements u Bod forces b Γ Ω Kinematic e = D u in Ω D + b = 0 in Ω Equilibrium Strains e = E e in Ω Constitutive Stresses Force BCs T n = t^ or p T n = q^ on Γ t Prescribed tractions t or forces q Figure The Strong Form of the plane stress equations of linear elastostatics displaed as a Tonti diagram. Yellowboes identif prescribed fields whereas orange boes denote unknown fields. The distinction between Strong and Weak Forms is eplained in The factor of in e shortens strain energ epressions. The shear strain components e z and e z vanish. The transverse normal strain e zz is generall nonzero because of Poisson s ratio effects. This strain does not enter the governing equations as unknown, however, because the associated stress zz is zero. This eliminates the contribution of zz e zz to the internal energ. Stresses. The in-plane stress field forms a tensor defined b three independent components:, and. As in the case of strains, to allowstating the FE equations in matri form, these components are conventionall arranged to form a 3-component stress vector (, ) = [ ] (, ) (, ) (, ) (14.3) The remaining three stress components: zz, z and z, are assumed to vanish. The plate internal forces are obtained on integrating the stresses through the thickness. Under the assumption of uniform stress distribution, p = h, p = h, p = h. (14.4) These p s also form a tensor. The are called membrane forces in the literature. See Figure Linear Elasticit Equations We shall develop plane stress finite elements in the framework of classical linear elasticit. The necessar governing equations are presented below. The are graphicall represented in the Strong Form Tonti diagram of Figure

7 LINEAR ELASTICITY EQUATIONS Governing Equations The three internal fields: displacements, strains and stresses (14.1) (14.3) are connected b three field equations: kinematic, constitutive and internal-equilibrium equations. If initial strain effects are ignored, these equations read [ e e e [ ] [ ] / 0 [ u = 0 / u / / ] [ E11 E 1 E 13 = E 1 E E 3 E 13 E 3 E 33 ] [ ] + [ / 0 / 0 / / ], ][ e e e [ b ], b ] = [ ] 0. 0 (14.5) In these equations, b and b are the components of the interior bod force b, E is the 3 3 stress-strain matri of plane stress elastic moduli, D is the 3 smmetric-gradient operator and its transpose the 3 tensor-divergence operator. The compact matri version of (14.5) is e = Du, = Ee, D T + b = 0, (14.6) in which E = E T. If the plate material is isotropic with elastic modulus E and Poisson s ratio ν, the moduli in the constitutive matri E reduce to E 11 = E = E/(1 ν ), E 33 = 1 E/(1 + ν) = G, E 1 = ν E 11 and E 13 = E 3 = 0. See also Eercise Boundar Conditions Boundar conditions prescribed on Ɣ ma be of two tpes: displacement BC or force BC (the latter is also called stress BC or traction BC). To write down those conditions it is conceptuall convenient to break up Ɣ into two subsets: Ɣ u and Ɣ t, over which displacements and force or stresses, respectivel, are specified. See Figure Displacement boundar conditions are prescribed on Ɣ u in the form u = û. (14.7) Here û are prescribed displacements. Often û = 0. This happens in fied portions of the boundar, as the ones illustrated in Figure Force boundar conditions (also called stress BCs and traction BCs in the literature) are specified on Ɣ t. The take the form n = ˆt. (14.8) Here ˆt are prescribed surface tractions specified as a force per unit area (that is, not integrated through the thickness), and n is the stress vector shown in Figure The dependence on (, ) has been omitted to reduce clutter. 14 7

8 Chapter 14: THE PLANE STRESS PROBLEM 14 8 t n (unit eterior normal) ;; ;; Γ u ; ^ + u = 0 Boundar displacements u ^ are prescribed on Γu (figure depicts fiit condition) Γ t t^ Boundar tractions ^t or boundar forces q^ are prescribed on Γ t n nt ^t n ^t t ^t nn Stress BC details (decomposition of forces q ^ would be similar) Figure Displacement and force (stress, traction) boundar conditions for the plane stress problem. An alternative form of (14.8) uses the internal plate forces: p n = ˆq. (14.9) Here p n = n h and ˆq = ˆt h. This form is used more often than (14.8) in structural design, particularl when the plate wall construction is inhomogeneous. The components of n in Cartesian coordinates followfrom Cauch s stress transformation formula [ ] [ n n = + n n 0 n = n + n 0 n n ] [ ], (14.10) in which n and n denote the Cartesian components of the unit normal vector n e (also called the direction cosines of the normal). Thus (14.8) splits into two scalar conditions: ˆt = n and ˆt = n. The derivation of (14.10) is the subject of Eercise It is sometimes convenient to write the condition (14.8) in terms of normal n and tangential t directions: nn = ˆt n, nt = ˆt t (14.11) in which nn = n n + n n and nt = n n + n n. Remark The separation of Ɣ into Ɣ u and Ɣ t is useful for conciseness in the mathematical formulation, such as the energ integrals presented below. It does not ehaust, however, all BC possibilities. Frequentl at points of Ɣ one specifies a displacement in one direction and a force (or stress) in the other. An eample of these are roller and sliding conditions as well as lines of smmetr and antismmetr. To cover these situations one needs either a generalization of the split, in which Ɣ u and Ɣ t are permitted to overlap, or to define another portion Ɣ m for mied conditions. Such generalizations will not be presented here, as the become unimportant once the FE discretization is done. 14 8

9 LINEAR ELASTICITY EQUATIONS Prescribed displacements u^ Displacement BCs u = u^ on Γ u Displacements u Bod forces b Γ Ω Kinematic e = D u in Ω δπ= 0 in Ω Equilibrium (weak) Strains e = E e in Ω Constitutive Stresses Force BCs (weak) δπ = 0 on Γt Prescribed tractions t or forces q Figure The TPE-based Weak Form of the plane stress equations of linear elastostatics. Weak links are marked with gre lines Weak Forms versus Strong Form We introduce nowsome further terminolog from variational calculus. The Tonti diagram of Figure 14.4 is said to displa the Strong Form of the governing equations because all relations are verified point b point. These relations, called strong links, are shown in the diagram with black lines. A Weak Form is obtained b relaing one or more strong links. Those are replaced b weak links, which enforce relations in an average or integral sense rather than point b point. The weak links are then provided b the variational formulation chosen for the problem. Because in general man variational forms of the same problem are possible, there are man possible Weak Forms. On the other hand the Strong Form is unique. The Weak Form associated with the Total Potential Energ (TPE) variational form is illustrated in Figure The internal equilibrium equations and stress BC become weak links, which are drawn b gra lines. These equations are given b the variational statement δ = 0, where the TPE functional is given in the net subsection. The FEM displacement formulation discussed belowis based on this particular Weak Form Total Potential Energ As usual the Total Potential Energ functional for the plane stress problem is given b The internal energ is the elastic strain energ: U = 1 h T e d = 1 = U W. (14.1) h e T Eed. (14.13) The derivation details are relegated to Eercise E14.5. The eternal energ is the sum of contributions from known interior and boundar forces: W = h u T b d + h u T ˆt dɣ. (14.14) Ɣ t 14 9

10 Chapter 14: THE PLANE STRESS PROBLEM Note that the boundar integral over Ɣ is taken onl over Ɣ t. That is, the portion of the boundar over which tractions or forces are specified Finite Element Equations The necessar equations to appl the finite element method to the plane stress problem are collected here and epressed in matri form. The domain of Figure 14.7(a) is discretized b a finite element mesh as illustrated in Figure 14.7(b). From this mesh we etract a generic element labeled e with n 3 node points. In the subsequent derivations the number n is kept arbitrar. Therefore, the formulation is applicable to arbitrar two-dimensional elements, for eample those sketched in Figure Departing from previous practice in 1D elements, the element node points will be labelled 1 through n. These are called local node numbers. The element domain and boundar are denoted b e and Ɣ e, respectivel. (a) Γ Ω (c) (b) Ω Figure Finite element discretization and etraction of generic element. The element has n degrees of freedom. These are collected in the element node displacement vector u e = [ u 1 u 1 u... u n u n ] T. (14.15) Displacement Interpolation The displacement field u e (, ) over the element is interpolated from the node displacements. We shall assume that the same interpolation functions are used for both displacement components. 3 Thus u (, ) = n i=1 N e i (, ) u i, u (, ) = where Ni e (, ) are the element shape functions. In matri form: u(, ) = n i=1 e Γ N e i (, ) u i, (14.16) [ ] [ ] u (, ) N e = 1 0 N e 0... Nn e 0 u (, ) 0 N1 e 0 N e... 0 Nn e u e = Nu e. (14.17) This N (with superscript e omitted to reduce clutter) is called the shape function matri. It has dimensions n. For eample, if the element has 4 nodes, N is 8. The interpolation condition on the element shape function Ni e (, ) states that it must take the value one at the i th node and zero at all others. This ensures that the interpolation (14.17) is correct at the nodes. Additional requirements on the shape functions are stated in later Chapters. e 3 This is the so called element isotrop condition, which is studied and justified in advanced FEM courses

11 FINITE ELEMENT EQUATIONS n = 3 n = 4 n = 6 n = 1 Figure Eample plane stress finite elements, characterized b their number of nodes n Differentiating the finite element displacement field ields the strain-displacement relations: N1 e N 0 e N e 0... n 0 e(, ) = N e 0 1 N e 0 N e... 0 n N1 e N1 e N e N e N e... n Nn e ue = Bu e. (14.18) This B = DNis called the strain-displacement matri. It is dimensioned 3 n. For eample, if the element has 6 nodes, B is 3 1. The stresses are given in terms of strains and displacements b = Ee= EBu e, which is assumed to hold at all points of the element Element Energ To obtain finite element stiffness equations, the variation of the TPE functional is decomposed into contributions from individual elements: δ e = δu e δw e = 0. (14.19) where U e = 1 h T e d e = 1 h e T Ee d e (14.0) e e and W e = h u T b d e + h u T ˆt dɣ e (14.1) e Ɣ e Note that in (14.1) Ɣt e has been taken equal to the complete boundar Ɣ e of the element. This is a consequence of the fact that displacement boundar conditions are applied after assembl, to a free-free structure. Consequentl it does not harm to assume that all boundar conditions are of stress tpe insofar as forming the element equations Element Stiffness Equations Inserting the relations u = Nu e, e = Bu e and = Ee into e ields the quadratic form in the nodal displacements e = 1 uet K e u e u et f e. (14.) 14 11

12 Chapter 14: THE PLANE STRESS PROBLEM 14 1 Here the element stiffness matri is K e = h B T EB d e, e (14.3) and the consistent element nodal force vector is f e = h N T b d e + e h N T ˆt dɣ e. Ɣ e (14.4) In the second integral of (14.4) the matri N is evaluated on the element boundar onl. The calculation of the entries of K e and f e for several elements of historical or practical interest is described in subsequent Chapters. Notes and Bibliograph The plane stress problem is well suited for introducing continuum finite elements, from both historical and technical standpoints. Some books use the Poisson equation for this purpose, but problems such as heat conduction cannot illustrate features such as vector-mied boundar conditions and shear effects. The first continuum structural finite elements were developed at Boeing in the earl 1950s to model delta-wing skin panels [3,164]. A plane stress model was naturall chosen for the panels. The paper that gave the method its name [5] used the plane stress problem as application driver. The technical aspects of plane stress can be found in an book on elasticit. A particularl readable one is the ecellent tetbook b Fung [69], which is unfortunatel out of print. References Referenced items have been moved to Appendi R. 14 1

13 14 13 Eercises Homework Eercises for Chapter 14 The Plane Stress Problem EXERCISE 14.1 [A+C:5] Suppose that the structural material is isotropic, with elastic modulus E and Poisson s ratio ν. The in-plane stress-strain relations for plane stress ( zz = z = z = 0) and plane strain (e zz = e z = e z = 0) as given in an tetbook on elasticit, are [ ] [ ][ ] plane stress: = E 1 ν 0 e ν 1 0 e 1 ν, ν e ] 1 ν 0 ] (E14.1) plane strain: [ = E(1 ν) (1 + ν)(1 ν) 1 ν ν 1 ν ν (1 ν) [ e Showthat the constitutive matri of plane strain can be formall obtained b replacing E b a fictitious modulus E and ν b a fictitious Poisson s ratio ν in the plane stress constitutive matri and suppressing the stars. Find the epression of E and ν in terms of E and ν. You ma also chose to answer this eercise b doing the inverse process: go from plane strain to plain stress b replacing a fictitious modulus and Poisson s ratio in the plane strain constitutive matri. This device permits reusing a plane stress FEM program to do plane strain, or vice-versa, as long as the material is isotropic. Partial answer to go from plane stress to plane strain: ν = ν/(1 ν). EXERCISE 14. [A:5] In the finite element formulation of near incompressible isotropic materials (as well as plasticit and viscoelasticit) it is convenient to use the so-called Lamé constants λ and µ instead of E and ν in the constitutive equations. Both λ and µ have the phsical dimension of stress and are related to E and ν b ν E λ = (1 + ν)(1 ν), µ = G = E (1 + ν). (E14.) Conversel µ(3λ + µ) E = λ + µ, ν = λ (λ + µ). (E14.3) Substitute (E14.3) into (E14.1) to epress the two stress-strain matrices in terms of λ and µ. Then split the stress-strain matri E of plane strain as E = E µ + E λ (E14.4) in which E µ and E λ contain onl µ and λ, respectivel, with E µ diagonal and E λ33 = 0. This is the Lamé or {λ, µ} splitting of the plane strain constitutive equations, which leads to the so-called B-bar formulation of near-incompressible finite elements. 4 Epress E µ and E λ also in terms of E and ν. For the plane stress case perform a similar splitting in which where E λ contains onl λ = λµ/(λ + µ) with E λ33 = 0, and E µ is a diagonal matri function of µ and λ. 5 Epress E µ and E λ also in terms of E and ν. e e. 4 Equation (E14.4) is sometimes referred to as the deviatoric+volumetric splitting of the stress-strain law, on account of its phsical meaning in plane strain. That meaning is lost, however, for plane stress. 5 For the phsical significance of λ see [143, pp. 54ff]

14 Chapter 14: THE PLANE STRESS PROBLEM EXERCISE 14.3 [A:0] Include thermoelastic effects in the plane stress constitutive field equations, assuming a thermall isotropic material with coefficient of linear epansion α. Hint: start from the two-dimensional Hooke s lawincluding temperature: e = 1 E ( ν ) + α T, e = 1 E ( ν ) + α T, e = /G, (E14.5) in which T = T (, ) and G = 1 E/(1 + ν). Solve for stresses and collect effects of T in one vector of thermal stresses. EXERCISE 14.4 [A:15] Derive the Cauch stressto-traction equations (14.10) using force equilibrium along and and the geometric relations shown in Figure E14.1. (This is the wedge method in Mechanics of Materials.) Hint: t ds = d + d, etc. = t d ds d n(n =d/ds, n =d/ds) Figure E14.1. Geometr for deriving (14.10). t EXERCISE 14.5 [A:5=5+5+15] A plate is in linearl elastic plane stress. It is shown in courses in elasticit that the internal strain energ densit stored per unit volume is U = 1 ( e + e + e + e ) = 1 ( e + e + e ). (E14.6) (a) Showthat (E14.6) can be written in terms of strains onl as U = 1 et Ee, (E14.7) (b) and hence justif (14.13). Showthat (E14.6) can be written in terms of stresses onl as U = 1 T C, (E14.8) (c) where C = E 1 is the elastic compliance (strain-stress) matri. Suppose ou want to write (E14.6) in terms of the etensional strains {e, e } and of the shear stress =. This is known as a mied representation. Show that U = 1 [ e e ] T [ A11 A 1 A 13 A 1 A A 3 A 13 A 3 A 33 ][ e e ], (E14.9) and eplain howthe entries A ij can be calculated 6 in terms of the elastic moduli E ij. 6 The process of computing A is an instance of partial inversion of matri E. See Remark

The Plane Stress Problem

The Plane Stress Problem . 4 The Plane Stress Problem 4 Chapter 4: THE PLANE STRESS PROBLEM 4 TABLE OF CONTENTS Page 4.. INTRODUCTION 4 3 4... Plate in Plane Stress............... 4 3 4... Mathematical Model.............. 4 4

More information

The Plane Stress Problem

The Plane Stress Problem 14 The Plane Stress Problem IFEM Ch 14 Slide 1 Plate in Plane Stress Thickness dimension or transverse dimension z Top surface Inplane dimensions: in, plane IFEM Ch 14 Slide 2 Mathematical Idealization

More information

MMJ1153 COMPUTATIONAL METHOD IN SOLID MECHANICS PRELIMINARIES TO FEM

MMJ1153 COMPUTATIONAL METHOD IN SOLID MECHANICS PRELIMINARIES TO FEM B Course Content: A INTRODUCTION AND OVERVIEW Numerical method and Computer-Aided Engineering; Phsical problems; Mathematical models; Finite element method;. B Elements and nodes, natural coordinates,

More information

MAE 323: Chapter 4. Plane Stress and Plane Strain. The Stress Equilibrium Equation

MAE 323: Chapter 4. Plane Stress and Plane Strain. The Stress Equilibrium Equation The Stress Equilibrium Equation As we mentioned in Chapter 2, using the Galerkin formulation and a choice of shape functions, we can derive a discretized form of most differential equations. In Structural

More information

Chapter 6 2D Elements Plate Elements

Chapter 6 2D Elements Plate Elements Institute of Structural Engineering Page 1 Chapter 6 2D Elements Plate Elements Method of Finite Elements I Institute of Structural Engineering Page 2 Continuum Elements Plane Stress Plane Strain Toda

More information

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design MAE4700/5700 Finite Element Analsis for Mechanical and Aerospace Design Cornell Universit, Fall 2009 Nicholas Zabaras Materials Process Design and Control Laborator Sible School of Mechanical and Aerospace

More information

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane 3.5 Plane Stress This section is concerned with a special two-dimensional state of stress called plane stress. It is important for two reasons: () it arises in real components (particularl in thin components

More information

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Chapter 8 KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Figure 8.1: 195 196 CHAPTER 8. KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS 8.1 Motivation In Chapter 3, the conservation of linear momentum for a

More information

Exercise solutions: concepts from chapter 5

Exercise solutions: concepts from chapter 5 1) Stud the oöids depicted in Figure 1a and 1b. a) Assume that the thin sections of Figure 1 lie in a principal plane of the deformation. Measure and record the lengths and orientations of the principal

More information

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 20, 2011 Professor A. Dolovich

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 20, 2011 Professor A. Dolovich UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 20, 2011 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS LAST NAME (printed): FIRST NAME (printed): STUDENT

More information

ME 7502 Lecture 2 Effective Properties of Particulate and Unidirectional Composites

ME 7502 Lecture 2 Effective Properties of Particulate and Unidirectional Composites ME 75 Lecture Effective Properties of Particulate and Unidirectional Composites Concepts from Elasticit Theor Statistical Homogeneit, Representative Volume Element, Composite Material Effective Stress-

More information

THE GENERAL ELASTICITY PROBLEM IN SOLIDS

THE GENERAL ELASTICITY PROBLEM IN SOLIDS Chapter 10 TH GNRAL LASTICITY PROBLM IN SOLIDS In Chapters 3-5 and 8-9, we have developed equilibrium, kinematic and constitutive equations for a general three-dimensional elastic deformable solid bod.

More information

1.1 The Equations of Motion

1.1 The Equations of Motion 1.1 The Equations of Motion In Book I, balance of forces and moments acting on an component was enforced in order to ensure that the component was in equilibrium. Here, allowance is made for stresses which

More information

CH.7. PLANE LINEAR ELASTICITY. Multimedia Course on Continuum Mechanics

CH.7. PLANE LINEAR ELASTICITY. Multimedia Course on Continuum Mechanics CH.7. PLANE LINEAR ELASTICITY Multimedia Course on Continuum Mechanics Overview Plane Linear Elasticit Theor Plane Stress Simplifing Hpothesis Strain Field Constitutive Equation Displacement Field The

More information

Aircraft Structures Structural & Loading Discontinuities

Aircraft Structures Structural & Loading Discontinuities Universit of Liège Aerospace & Mechanical Engineering Aircraft Structures Structural & Loading Discontinuities Ludovic Noels Computational & Multiscale Mechanics of Materials CM3 http://www.ltas-cm3.ulg.ac.be/

More information

Kirchhoff Plates: Field Equations

Kirchhoff Plates: Field Equations 20 Kirchhoff Plates: Field Equations AFEM Ch 20 Slide 1 Plate Structures A plate is a three dimensional bod characterized b Thinness: one of the plate dimensions, the thickness, is much smaller than the

More information

Chapter 3: BASIC ELEMENTS. solid mechanics)

Chapter 3: BASIC ELEMENTS. solid mechanics) Chapter 3: BASIC ELEMENTS Section 3.: Preliminaries (review of solid mechanics) Outline Most structural analsis FE codes are displacement based In this chapter we discuss interpolation methods and elements

More information

Space frames. b) R z φ z. R x. Figure 1 Sign convention: a) Displacements; b) Reactions

Space frames. b) R z φ z. R x. Figure 1 Sign convention: a) Displacements; b) Reactions Lecture notes: Structural Analsis II Space frames I. asic concepts. The design of a building is generall accomplished b considering the structure as an assemblage of planar frames, each of which is designed

More information

Finite Element Method in Geotechnical Engineering

Finite Element Method in Geotechnical Engineering Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 5-8, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps

More information

Section 1: Review of Elasticity

Section 1: Review of Elasticity Finite Elements in Elasticit Section : Review of Elasticit Stress & Strain 2 Constitutive Theor 3 Energ Methods Section : Stress and Strain Stress at a point Q : F = lim A 0 A F = lim A 0 A F = lim A 0

More information

Second-Order Linear Differential Equations C 2

Second-Order Linear Differential Equations C 2 C8 APPENDIX C Additional Topics in Differential Equations APPENDIX C. Second-Order Homogeneous Linear Equations Second-Order Linear Differential Equations Higher-Order Linear Differential Equations Application

More information

Chapter 1: Differential Form of Basic Equations

Chapter 1: Differential Form of Basic Equations MEG 74 Energ and Variational Methods in Mechanics I Brendan J. O Toole, Ph.D. Associate Professor of Mechanical Engineering Howard R. Hghes College of Engineering Universit of Nevada Las Vegas TBE B- (7)

More information

4 Strain true strain engineering strain plane strain strain transformation formulae

4 Strain true strain engineering strain plane strain strain transformation formulae 4 Strain The concept of strain is introduced in this Chapter. The approimation to the true strain of the engineering strain is discussed. The practical case of two dimensional plane strain is discussed,

More information

And similarly in the other directions, so the overall result is expressed compactly as,

And similarly in the other directions, so the overall result is expressed compactly as, SQEP Tutorial Session 5: T7S0 Relates to Knowledge & Skills.5,.8 Last Update: //3 Force on an element of area; Definition of principal stresses and strains; Definition of Tresca and Mises equivalent stresses;

More information

PLATE AND PANEL STRUCTURES OF ISOTROPIC, COMPOSITE AND PIEZOELECTRIC MATERIALS, INCLUDING SANDWICH CONSTRUCTION

PLATE AND PANEL STRUCTURES OF ISOTROPIC, COMPOSITE AND PIEZOELECTRIC MATERIALS, INCLUDING SANDWICH CONSTRUCTION PLATE AND PANEL STRUCTURES OF ISOTROPIC, COMPOSITE AND PIEZOELECTRIC MATERIALS, INCLUDING SANDWICH CONSTRUCTION SOLID MECHANICS AND ITS APPLICATIONS Volume 10 Series Editor: G.M.L. GLADWELL Department

More information

Strain Transformation and Rosette Gage Theory

Strain Transformation and Rosette Gage Theory Strain Transformation and Rosette Gage Theor It is often desired to measure the full state of strain on the surface of a part, that is to measure not onl the two etensional strains, and, but also the shear

More information

Variational formulation of the B.V.P. in terms of displacements is. This principle is particularly useful in analyzing large deflection

Variational formulation of the B.V.P. in terms of displacements is. This principle is particularly useful in analyzing large deflection 4-8 CATIGLIANO' THEOREM OF LEAT WORK. Principle of stationar potential energ: Variational formulation of the B.V.P. in terms of displacements is achieved b the principle. This principle is particularl

More information

Calculus of the Elastic Properties of a Beam Cross-Section

Calculus of the Elastic Properties of a Beam Cross-Section Presented at the COMSOL Conference 2009 Milan Calculus of the Elastic Properties of a Beam Cross-Section Dipartimento di Modellistica per l Ingegneria Università degli Studi della Calabria (Ital) COMSOL

More information

3 Stress internal forces stress stress components Stress analysis stress transformation equations principal stresses stress invariants

3 Stress internal forces stress stress components Stress analysis stress transformation equations principal stresses stress invariants 3 Stress orces acting at the surfaces of components were considered in the previous chapter. The task now is to eamine forces arising inside materials, internal forces. Internal forces are described using

More information

Consider a slender rod, fixed at one end and stretched, as illustrated in Fig ; the original position of the rod is shown dotted.

Consider a slender rod, fixed at one end and stretched, as illustrated in Fig ; the original position of the rod is shown dotted. 4.1 Strain If an object is placed on a table and then the table is moved, each material particle moves in space. The particles undergo a displacement. The particles have moved in space as a rigid bod.

More information

Chapter 11 Three-Dimensional Stress Analysis. Chapter 11 Three-Dimensional Stress Analysis

Chapter 11 Three-Dimensional Stress Analysis. Chapter 11 Three-Dimensional Stress Analysis CIVL 7/87 Chapter - /39 Chapter Learning Objectives To introduce concepts of three-dimensional stress and strain. To develop the tetrahedral solid-element stiffness matri. To describe how bod and surface

More information

Chapter 2 Overview of the Simulation Methodology

Chapter 2 Overview of the Simulation Methodology Chapter Overview of the Simulation Methodolog. Introduction This chapter presents an overview of the simulation methodolog that comprises both the art and science involved in simulating phsical phenomena.

More information

Stability Analysis of Laminated Composite Thin-Walled Beam Structures

Stability Analysis of Laminated Composite Thin-Walled Beam Structures Paper 224 Civil-Comp Press, 2012 Proceedings of the Eleventh International Conference on Computational Structures echnolog, B.H.V. opping, (Editor), Civil-Comp Press, Stirlingshire, Scotland Stabilit nalsis

More information

Fluid Mechanics II. Newton s second law applied to a control volume

Fluid Mechanics II. Newton s second law applied to a control volume Fluid Mechanics II Stead flow momentum equation Newton s second law applied to a control volume Fluids, either in a static or dnamic motion state, impose forces on immersed bodies and confining boundaries.

More information

Research Article Equivalent Elastic Modulus of Asymmetrical Honeycomb

Research Article Equivalent Elastic Modulus of Asymmetrical Honeycomb International Scholarl Research Network ISRN Mechanical Engineering Volume, Article ID 57, pages doi:.5//57 Research Article Equivalent Elastic Modulus of Asmmetrical Honecomb Dai-Heng Chen and Kenichi

More information

REVIEW FOR EXAM II. Dr. Ibrahim A. Assakkaf SPRING 2002

REVIEW FOR EXAM II. Dr. Ibrahim A. Assakkaf SPRING 2002 REVIEW FOR EXM II. J. Clark School of Engineering Department of Civil and Environmental Engineering b Dr. Ibrahim. ssakkaf SPRING 00 ENES 0 Mechanics of Materials Department of Civil and Environmental

More information

Stress and Strain ( , 3.14) MAE 316 Strength of Mechanical Components NC State University Department of Mechanical & Aerospace Engineering

Stress and Strain ( , 3.14) MAE 316 Strength of Mechanical Components NC State University Department of Mechanical & Aerospace Engineering (3.8-3.1, 3.14) MAE 316 Strength of Mechanical Components NC State Universit Department of Mechanical & Aerospace Engineering 1 Introduction MAE 316 is a continuation of MAE 314 (solid mechanics) Review

More information

8 Properties of Lamina

8 Properties of Lamina 8 Properties of Lamina 8- ORTHOTROPIC LAMINA An orthotropic lamina is a sheet with unique and predictable properties and consists of an assemblage of fibers ling in the plane of the sheet and held in place

More information

Survey of Wave Types and Characteristics

Survey of Wave Types and Characteristics Seminar: Vibrations and Structure-Borne Sound in Civil Engineering Theor and Applications Surve of Wave Tpes and Characteristics Xiuu Gao April 1 st, 2006 Abstract Mechanical waves are waves which propagate

More information

6.1 The Linear Elastic Model

6.1 The Linear Elastic Model Linear lasticit The simplest constitutive law or solid materials is the linear elastic law, which assumes a linear relationship between stress and engineering strain. This assumption turns out to be an

More information

Thermomechanical Effects

Thermomechanical Effects 3 hermomechanical Effects 3 Chapter 3: HERMOMECHANICAL EFFECS ABLE OF CONENS Page 3. Introduction..................... 3 3 3.2 hermomechanical Behavior............... 3 3 3.2. hermomechanical Stiffness

More information

Stress-strain relations

Stress-strain relations SICLLY INDRMIN SRSS SYSMS staticall determinate stress sstem simple eample of this is a bar loaded b a weight, hanging in tension. he solution for the stress is simpl W/ where is the cross sectional area.

More information

1 Differential Equations for Solid Mechanics

1 Differential Equations for Solid Mechanics 1 Differential Eqations for Solid Mechanics Simple problems involving homogeneos stress states have been considered so far, wherein the stress is the same throghot the component nder std. An eception to

More information

Module #4. Fundamentals of strain The strain deviator Mohr s circle for strain READING LIST. DIETER: Ch. 2, Pages 38-46

Module #4. Fundamentals of strain The strain deviator Mohr s circle for strain READING LIST. DIETER: Ch. 2, Pages 38-46 HOMEWORK From Dieter 2-7 Module #4 Fundamentals of strain The strain deviator Mohr s circle for strain READING LIST DIETER: Ch. 2, Pages 38-46 Pages 11-12 in Hosford Ch. 6 in Ne Strain When a solid is

More information

MEG 741 Energy and Variational Methods in Mechanics I

MEG 741 Energy and Variational Methods in Mechanics I MEG 74 Energ and Variational Methods in Mechanics I Brendan J. O Toole, Ph.D. Associate Professor of Mechanical Engineering Howard R. Hghes College of Engineering Universit of Nevada Las Vegas TBE B- (7)

More information

Shear and torsion correction factors of Timoshenko beam model for generic cross sections

Shear and torsion correction factors of Timoshenko beam model for generic cross sections Shear and torsion correction factors of Timoshenko beam model for generic cross sections Jouni Freund*, Alp Karakoç Online Publication Date: 15 Oct 2015 URL: http://www.jresm.org/archive/resm2015.19me0827.html

More information

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004 Elements of Continuum Elasticity David M. Parks Mechanics and Materials II 2.002 February 25, 2004 Solid Mechanics in 3 Dimensions: stress/equilibrium, strain/displacement, and intro to linear elastic

More information

Chapter 14 Truss Analysis Using the Stiffness Method

Chapter 14 Truss Analysis Using the Stiffness Method Chapter 14 Truss Analsis Using the Stiffness Method Structural Mechanics 2 ept of Arch Eng, Ajou Univ Outline undamentals of the stiffness method Member stiffness matri isplacement and force transformation

More information

Errata Sheet for S. D. Rajan, Introduction to Structural Analysis & Design (1 st Edition) John Wiley & Sons Publication

Errata Sheet for S. D. Rajan, Introduction to Structural Analysis & Design (1 st Edition) John Wiley & Sons Publication S D Rajan, Introduction to Structural Analsis & Design ( st Edition) Errata Sheet for S D Rajan, Introduction to Structural Analsis & Design ( st Edition) John Wile & Sons Publication Chapter Page Correction

More information

Citation Key Engineering Materials, ,

Citation Key Engineering Materials, , NASITE: Nagasaki Universit's Ac Title Author(s) Interference Analsis between Crack Plate b Bod Force Method Ino, Takuichiro; Ueno, Shohei; Saim Citation Ke Engineering Materials, 577-578, Issue Date 2014

More information

Three-Dimensional Explicit Parallel Finite Element Analysis of Functionally Graded Solids under Impact Loading. Ganesh Anandakumar and Jeong-Ho Kim

Three-Dimensional Explicit Parallel Finite Element Analysis of Functionally Graded Solids under Impact Loading. Ganesh Anandakumar and Jeong-Ho Kim Three-Dimensional Eplicit Parallel Finite Element Analsis of Functionall Graded Solids under Impact Loading Ganesh Anandaumar and Jeong-Ho Kim Department of Civil and Environmental Engineering, Universit

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending EA 3702 echanics & aterials Science (echanics of aterials) Chapter 4 Pure Bending Pure Bending Ch 2 Aial Loading & Parallel Loading: uniform normal stress and shearing stress distribution Ch 3 Torsion:

More information

Fundamentals of Linear Elasticity

Fundamentals of Linear Elasticity Fundamentals of Linear Elasticity Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research of the Polish Academy

More information

Theories of Straight Beams

Theories of Straight Beams EVPM3ed02 2016/6/10 7:20 page 71 #25 This is a part of the revised chapter in the new edition of the tetbook Energy Principles and Variational Methods in pplied Mechanics, which will appear in 2017. These

More information

Mathematical Background

Mathematical Background CHAPTER ONE Mathematical Background This book assumes a background in the fundamentals of solid mechanics and the mechanical behavior of materials, including elasticity, plasticity, and friction. A previous

More information

BOUNDARY EFFECTS IN STEEL MOMENT CONNECTIONS

BOUNDARY EFFECTS IN STEEL MOMENT CONNECTIONS BOUNDARY EFFECTS IN STEEL MOMENT CONNECTIONS Koung-Heog LEE 1, Subhash C GOEL 2 And Bozidar STOJADINOVIC 3 SUMMARY Full restrained beam-to-column connections in steel moment resisting frames have been

More information

r some or all of m, x, yz. Similarly for I yy and I zz.

r some or all of m, x, yz. Similarly for I yy and I zz. Homework 10. Chapters 1, 1. Moments and products of inertia. 10.1 Concepts: What objects have a moment of inertia? (Section 1.1). Consider the moment of inertia S/ bu bu of an object S about a point for

More information

Module 2 Stresses in machine elements. Version 2 ME, IIT Kharagpur

Module 2 Stresses in machine elements. Version 2 ME, IIT Kharagpur Module Stresses in machine elements Version M, IIT Kharagpur Lesson 3 Strain analsis Version M, IIT Kharagpur Instructional Objectives At the end of this lesson, the student should learn Normal and shear

More information

Chapter 3 Variational Formulation & the Galerkin Method

Chapter 3 Variational Formulation & the Galerkin Method Institute of Structural Engineering Page 1 Chapter 3 Variational Formulation & the Galerkin Method Institute of Structural Engineering Page 2 Today s Lecture Contents: Introduction Differential formulation

More information

APPENDIX D Rotation and the General Second-Degree Equation

APPENDIX D Rotation and the General Second-Degree Equation APPENDIX D Rotation and the General Second-Degree Equation Rotation of Aes Invariants Under Rotation After rotation of the - and -aes counterclockwise through an angle, the rotated aes are denoted as the

More information

torsion equations for lateral BucKling ns trahair research report r964 July 2016 issn school of civil engineering

torsion equations for lateral BucKling ns trahair research report r964 July 2016 issn school of civil engineering TORSION EQUATIONS FOR ATERA BUCKING NS TRAHAIR RESEARCH REPORT R96 Jul 6 ISSN 8-78 SCHOO OF CIVI ENGINEERING SCHOO OF CIVI ENGINEERING TORSION EQUATIONS FOR ATERA BUCKING RESEARCH REPORT R96 NS TRAHAIR

More information

Two-Dimensional Formulation.

Two-Dimensional Formulation. Two-Dimensional Formulation mi@seu.edu.cn Outline Introduction( 概论 ) Two vs. Three-Dimensional Problems Plane Strain( 平面应变 ) Plane Stress( 平面应力 ) Boundar Conditions( 边界条件 ) Correspondence between Plane

More information

CONSERVATION OF ENERGY FOR ACONTINUUM

CONSERVATION OF ENERGY FOR ACONTINUUM Chapter 6 CONSERVATION OF ENERGY FOR ACONTINUUM Figure 6.1: 6.1 Conservation of Energ In order to define conservation of energ, we will follow a derivation similar to those in previous chapters, using

More information

Stability Of Structures: Continuous Models

Stability Of Structures: Continuous Models 5 Stabilit Of Structures: Continuous Models SEN 311 ecture 5 Slide 1 Objective SEN 311 - Structures This ecture covers continuous models for structural stabilit. Focus is on aiall loaded columns with various

More information

Systems of Linear and Quadratic Equations. Check Skills You ll Need. y x. Solve by Graphing. Solve the following system by graphing.

Systems of Linear and Quadratic Equations. Check Skills You ll Need. y x. Solve by Graphing. Solve the following system by graphing. NY- Learning Standards for Mathematics A.A. Solve a sstem of one linear and one quadratic equation in two variables, where onl factoring is required. A.G.9 Solve sstems of linear and quadratic equations

More information

2. Supports which resist forces in two directions. Fig Hinge. Rough Surface. Fig Rocker. Roller. Frictionless Surface

2. Supports which resist forces in two directions. Fig Hinge. Rough Surface. Fig Rocker. Roller. Frictionless Surface 4. Structural Equilibrium 4.1 ntroduction n statics, it becomes convenient to ignore the small deformation and displacement. We pretend that the materials used are rigid, having the propert or infinite

More information

LESSON #11 - FORMS OF A LINE COMMON CORE ALGEBRA II

LESSON #11 - FORMS OF A LINE COMMON CORE ALGEBRA II LESSON # - FORMS OF A LINE COMMON CORE ALGEBRA II Linear functions come in a variet of forms. The two shown below have been introduced in Common Core Algebra I and Common Core Geometr. TWO COMMON FORMS

More information

University of Illinois at Urbana-Champaign College of Engineering

University of Illinois at Urbana-Champaign College of Engineering University of Illinois at Urbana-Champaign College of Engineering CEE 570 Finite Element Methods (in Solid and Structural Mechanics) Spring Semester 03 Quiz # April 8, 03 Name: SOUTION ID#: PS.: A the

More information

LESSON #12 - FORMS OF A LINE COMMON CORE ALGEBRA II

LESSON #12 - FORMS OF A LINE COMMON CORE ALGEBRA II LESSON # - FORMS OF A LINE COMMON CORE ALGEBRA II Linear functions come in a variet of forms. The two shown below have been introduced in Common Core Algebra I and Common Core Geometr. TWO COMMON FORMS

More information

Rigid and Braced Frames

Rigid and Braced Frames RH 331 Note Set 12.1 F2014abn Rigid and raced Frames Notation: E = modulus of elasticit or Young s modulus F = force component in the direction F = force component in the direction FD = free bod diagram

More information

MECh300H Introduction to Finite Element Methods. Finite Element Analysis (F.E.A.) of 1-D Problems

MECh300H Introduction to Finite Element Methods. Finite Element Analysis (F.E.A.) of 1-D Problems MECh300H Introduction to Finite Element Methods Finite Element Analysis (F.E.A.) of -D Problems Historical Background Hrenikoff, 94 frame work method Courant, 943 piecewise polynomial interpolation Turner,

More information

MATHEMATICAL FUNDAMENTALS I. Michele Fitzpatrick

MATHEMATICAL FUNDAMENTALS I. Michele Fitzpatrick MTHEMTICL FUNDMENTLS I Michele Fitpatrick OVERVIEW Vectors and arras Matrices Linear algebra Del( operator Tensors DEFINITIONS vector is a single row or column of numbers. n arra is a collection of vectors

More information

Determinants. We said in Section 3.3 that a 2 2 matrix a b. Determinant of an n n Matrix

Determinants. We said in Section 3.3 that a 2 2 matrix a b. Determinant of an n n Matrix 3.6 Determinants We said in Section 3.3 that a 2 2 matri a b is invertible if and onl if its c d erminant, ad bc, is nonzero, and we saw the erminant used in the formula for the inverse of a 2 2 matri.

More information

Measurement of deformation. Measurement of elastic force. Constitutive law. Finite element method

Measurement of deformation. Measurement of elastic force. Constitutive law. Finite element method Deformable Bodies Deformation x p(x) Given a rest shape x and its deformed configuration p(x), how large is the internal restoring force f(p)? To answer this question, we need a way to measure deformation

More information

Stress analysis of a stepped bar

Stress analysis of a stepped bar Stress analysis of a stepped bar Problem Find the stresses induced in the axially loaded stepped bar shown in Figure. The bar has cross-sectional areas of A ) and A ) over the lengths l ) and l ), respectively.

More information

MECHANICS OF MATERIALS REVIEW

MECHANICS OF MATERIALS REVIEW MCHANICS OF MATRIALS RVIW Notation: - normal stress (psi or Pa) - shear stress (psi or Pa) - normal strain (in/in or m/m) - shearing strain (in/in or m/m) I - area moment of inertia (in 4 or m 4 ) J -

More information

Development of Truss Equations

Development of Truss Equations CIVL 7/87 Chapter 3 - Truss Equations - Part /53 Chapter 3a Development of Truss Equations Learning Objectives To derive the stiffness matri for a bar element. To illustrate how to solve a bar assemblage

More information

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. December 21, 2001 topic13_grid_generation 1

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. December 21, 2001 topic13_grid_generation 1 AE/ME 339 Professor of Aerospace Engineering December 21, 2001 topic13_grid_generation 1 The basic idea behind grid generation is the creation of the transformation laws between the phsical space and the

More information

Additional Topics in Differential Equations

Additional Topics in Differential Equations 6 Additional Topics in Differential Equations 6. Eact First-Order Equations 6. Second-Order Homogeneous Linear Equations 6.3 Second-Order Nonhomogeneous Linear Equations 6.4 Series Solutions of Differential

More information

9/28/2009. t kz H a x. in free space. find the value(s) of k such that E satisfies both of Maxwell s curl equations.

9/28/2009. t kz H a x. in free space. find the value(s) of k such that E satisfies both of Maxwell s curl equations. 9//9 3- E3.1 For E E cos 6 1 tkz a in free space,, J=, find the value(s) of k such that E satisfies both of Mawell s curl equations. Noting that E E (z,t)a,we have from B E, t 3-1 a a a z B E t z E B E

More information

Dynamics and control of mechanical systems

Dynamics and control of mechanical systems JU 18/HL Dnamics and control of mechanical sstems Date Da 1 (3/5) 5/5 Da (7/5) Da 3 (9/5) Da 4 (11/5) Da 5 (14/5) Da 6 (16/5) Content Revie of the basics of mechanics. Kinematics of rigid bodies coordinate

More information

Physics of Continuous media

Physics of Continuous media Physics of Continuous media Sourendu Gupta TIFR, Mumbai, India Classical Mechanics 2012 October 26, 2012 Deformations of continuous media If a body is deformed, we say that the point which originally had

More information

Vibrational Power Flow Considerations Arising From Multi-Dimensional Isolators. Abstract

Vibrational Power Flow Considerations Arising From Multi-Dimensional Isolators. Abstract Vibrational Power Flow Considerations Arising From Multi-Dimensional Isolators Rajendra Singh and Seungbo Kim The Ohio State Universit Columbus, OH 4321-117, USA Abstract Much of the vibration isolation

More information

Lecture notes Models of Mechanics

Lecture notes Models of Mechanics Lecture notes Models of Mechanics Anders Klarbring Division of Mechanics, Linköping University, Sweden Lecture 7: Small deformation theories Klarbring (Mechanics, LiU) Lecture notes Linköping 2012 1 /

More information

Additional Topics in Differential Equations

Additional Topics in Differential Equations 0537_cop6.qd 0/8/08 :6 PM Page 3 6 Additional Topics in Differential Equations In Chapter 6, ou studied differential equations. In this chapter, ou will learn additional techniques for solving differential

More information

NONLINEAR CONTINUUM FORMULATIONS CONTENTS

NONLINEAR CONTINUUM FORMULATIONS CONTENTS NONLINEAR CONTINUUM FORMULATIONS CONTENTS Introduction to nonlinear continuum mechanics Descriptions of motion Measures of stresses and strains Updated and Total Lagrangian formulations Continuum shell

More information

Post Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method

Post Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method 9210-220 Post Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method You should have the following for this examination one answer book scientific calculator No

More information

ME 323 Examination #2 April 11, 2018

ME 323 Examination #2 April 11, 2018 ME 2 Eamination #2 April, 2 PROBLEM NO. 25 points ma. A thin-walled pressure vessel is fabricated b welding together two, open-ended stainless-steel vessels along a 6 weld line. The welded vessel has an

More information

Bending of Shear Deformable Plates Resting on Winkler Foundations According to Trigonometric Plate Theory

Bending of Shear Deformable Plates Resting on Winkler Foundations According to Trigonometric Plate Theory J. Appl. Comput. ech., 4(3) (018) 187-01 DOI: 10.055/JAC.017.3057.1148 ISSN: 383-4536 jacm.scu.ac.ir Bending of Shear Deformable Plates Resting on Winkler Foundations According to Trigonometric Plate Theor

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 06

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 06 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 06 In the last lecture, we have seen a boundary value problem, using the formal

More information

Nonconservative Loading: Overview

Nonconservative Loading: Overview 35 Nonconservative Loading: Overview 35 Chapter 35: NONCONSERVATIVE LOADING: OVERVIEW TABLE OF CONTENTS Page 35. Introduction..................... 35 3 35.2 Sources...................... 35 3 35.3 Three

More information

y R T However, the calculations are easier, when carried out using the polar set of co-ordinates ϕ,r. The relations between the co-ordinates are:

y R T However, the calculations are easier, when carried out using the polar set of co-ordinates ϕ,r. The relations between the co-ordinates are: Curved beams. Introduction Curved beams also called arches were invented about ears ago. he purpose was to form such a structure that would transfer loads, mainl the dead weight, to the ground b the elements

More information

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification INF 4300 151014 Introduction to classifiction Anne Solberg anne@ifiuiono Based on Chapter 1-6 in Duda and Hart: Pattern Classification 151014 INF 4300 1 Introduction to classification One of the most challenging

More information

Aircraft Structures Beams Torsion & Section Idealization

Aircraft Structures Beams Torsion & Section Idealization Universit of Liège Aerospace & Mechanical Engineering Aircraft Structures Beams Torsion & Section Idealiation Ludovic Noels omputational & Multiscale Mechanics of Materials M3 http://www.ltas-cm3.ulg.ac.be/

More information

Elastic Cylinders Subjected to End Loadings.

Elastic Cylinders Subjected to End Loadings. Elastic Clinders Subjected to End Loadings mi@seu.edu.cn Outline Elastic Clinders with End Loading ( 端部受载柱体 ) Etension of Clinders ( 拉伸 ) Torsion of Clinders ( 扭转 ) Stress Function Formulation ( 应力函数体系

More information

Kirchhoff Plates: Field Equations

Kirchhoff Plates: Field Equations 20 Kirchhoff Plates: Field Equations 20 1 Chapter 20: KIRCHHOFF PLATES: FIELD EQUATIONS TABLE OF CONTENTS Page 20.1 Introduction..................... 20 3 20.2 Plates: Basic Concepts................. 20

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

Stresses: Beams in Bending

Stresses: Beams in Bending CHAPTER 7 Stresses: Beams in Bending 7.1 General Remarks The organization of this chapter mimics that of the last chapter on torsion of circular shafts but the stor about stresses in beams is longer, covers

More information

Structures. Carol Livermore Massachusetts Institute of Technology

Structures. Carol Livermore Massachusetts Institute of Technology C. Livermore: 6.777J/.7J Spring 007, Lecture 7 - Structures Carol Livermore Massachusetts Institute of Technolog * With thanks to Steve Senturia, from whose lecture notes some of these materials are adapted.

More information

Mathematical aspects of mechanical systems eigentones

Mathematical aspects of mechanical systems eigentones Seminar: Vibrations and Structure-Borne Sound in Civil Engineering Theor and Applications Mathematical aspects of mechanical sstems eigentones Andre Kuzmin April st 6 Abstract Computational methods of

More information