Infinite Horizon LQ. Given continuous-time state equation. Find the control function u(t) to minimize

Size: px
Start display at page:

Download "Infinite Horizon LQ. Given continuous-time state equation. Find the control function u(t) to minimize"

Transcription

1 Infinite Horizon LQ Given continuous-time state equation x = Ax + Bu Find the control function ut) to minimize J = 1 " # [ x T t)qxt) + u T t)rut)] dt 2 0 Q $ 0, R > 0 and symmetric Solution is obtained as the limiting case of Ricatti Eq. Summary of Continuous-Time LQ Solution Control law: u = "Kx, K = R "1 B T P Algebraic Ricatti Equation ARE) PA + A T P + Q " PBR "1 B T P = 0 J " = 1 2 x 0 ) T Px 0)

2 Example Find the optimal controller that minimizes u M=1 y J = 1 " # [ y 2 t) + ru 2 t)] 2 dt, r > 0 0 " x 1 = x 2 # % d & $ x 2 = u dt ' & Q = 1 0 ) +, R = r ' 0 0* x 1 x 2 ) & + = 0 1 )& + x 1) * ' 0 0* ' * + + & 0 ) ' 1 + u * x 2 Solving for P PA + A T P + Q " PBR "1 B T P = 0 " p 1 p 2 %" $ ' 0 1 % " $ ' %" $ ' p 1 p 2 % " $ ' % $ ' # p 2 p 3 &# 0 0& # 1 0& # p 2 p 3 & # 0 0& 1 " p 1 p 2 %" $ r # p 2 p 3 & ' 0 % " $ # 1 '[ 0 1] p 1 p 2 % $ ' = 0 & # p 2 p 3 & Gives three simultaneous equations: # 2 1" p 2 r = 0 % # $ p 1 " p 2 p 3 r = 0 ' p 2 = r 1 2, p 3 = 2r 3 4 $ % 2 & p 1 = 2r 1 4 & 2p 2 " p 3 r = 0

3 Control Gain and Closed-Loop Poles Control law: u = "Kx, K = R "1 B T P K = " 1 [ r 0 1 # ] p 1 p 2 & % = " 1 $ p 2 p 3 ' r p 2 p 3 K = " r "1 2 2r "1 4 [ ] [ ] Closed-loop Characteristic Eq. si " A " BK = s 2 + 2r "1 4 s + r "1 2 = 0 Natural frequency and damping ratio " n = r #1 4,$ = 2 2 = Comments on the LQ Solution of Example As r!0, natural frequency! infinity and settling time! 0 fast system) As r!infinity, natural frequency! 0 and settling time! infinity slow system) Damping ratio is always Effect on ut)?

4 Optimal Estimation Observer design based on poleplacement is nonunique and does not consider noise effects Optimal observer dynamics are difficult to determine Estimators can be optimized with respect to input and measurement noise properties Discrete Random Variables Discrete random variable x has discrete values x i, i=1,,n each with certain occurrence probability p i Expected Value of x: x = Ex) = x i p i Covariance of x: N [ ] = # x i " x P = E x " x )x " x ) T i=1 N " i=1 ) x i " x ) T p i

5 Dice Example x=dots on rolled dice p 0 6/36 5/36 4/36 3/36 2/36 1/ x x = L = 7 P = 2 " 7) L+ 12 " 7) = 5.83 Continuous Random Variables A continuous random variable x has continuous values from -" to +" according to certain probability density function pdf) px): px) x Basic Properties of pdf: px) " 0 +$ % px)dx =1 #$

6 Interpretation of pdf pa) dx is the probability that x lies in interval # a " dx $ % 2,a + dx 2 & ' a dx x Expected value of x: x = Ex) = xpx)dx Covariance of x: P = E x " x ) 2 +# $ "# [ ] = +# $ x " x )2 px)dx "# Uniform pdf Example $ & 1 px) = c, b " c 2 # x # b " c % 2 '& 0, otherwise px) } c 1/c b x Ex) = E x " b) 2 +# $ xpx) dx = "# b+c 2 [ ] = 1 b+c 2 1 $ b"c 2 c x dx = b $ x " b)2dx = c2 c 12 b"c 2

7 Gaussian pdf Example px) = % 1 " 2# exp ' $ x $ x &' 2" 2 ) 2 * )* px) x # x It can be shown that Ex) = x E [x " x ) 2 ] = # 2 Continuous Random Vectors For x=[x 1 x 2 x n ], pdf px) is function of x 1,, x n : Interpretation: pa) dx 1,,dx n is the probability that x lies in the differential volume dx 1,,dx n centered at x=a. +# +# $ L $ px)dx 1 Ldx n =1 "# "# a dx 1 dx 2

8 Expected Value and Covariance of a Random Vector Expected value of x: Covariance of x: P = E x " x )x " x ) T +# +# x = Ex) = $ L $ xpx)dx 1 Ldx n "# "# [ ] = L +# $ x " x )x " x )T px)dx 1 +# $ Ldx n "# "# % x 1 " x 1 ) 2 L x 1 " x 1 )x n " x n ) +# +# ' * P = $ L $ ' M * px)dx 1 Ldx n "# "#' & x 1 " x 1 )x n " x n ) L x n " x n ) 2 * ) Covariance P is symmetric and semi positive definite Gaussian pdf px) = 1 P 1 2 2" It can be shown that $ ) n 2 exp # 1 2 x # x ) T P #1 x # x ) % & Ex) = x, E x " x [ ) x " x ) T ] = P ' )

9 Maximum Likelihood Estimation MLE) Consider the static stochastic process: x A w y = Ax + x,w: uncorrelated Gaussian random variables Problem: Find the most likely estimate for x given observation y Expected Values and Covariances: E[x] = x, Ew) = w E[x " x )x " x ) T ] = P xx, E[w " w )w " w ) T ] = P ww E[x " x )w " w ) T ] = 0 w Least Squares Equivalent of MLE Joint pdf: px,w) = 1 ) P xx 1 2 Pww 1 2 2" exp #J n ) LQ Index J = 1 2 x T P xx "1 x w T P ww "1 w Process Constraint: where y = A x + w y = y " y, x = x " x, w = w " w MLE minimizes J subject to process constraint

10 Minimize J MLE Solution "J " x = x T #1 P xx + w T #1 " w Pww " x = 0, w = y # A x Solving for optimal x, denoted by xˆ, gives x ˆ = x + P ˆ xx A T "1 P ww y " Ax " w ) ˆ P xx "1 = Pxx "1 + A T Pww "1 A Comments on MLE Solution Large P ww relative to P xx indicates lack of confidence in measurement y. This results in x close to x. The covariance of x given y denoted x y) E[x y " x ˆ )x y " x ˆ ) T ] = P ˆ xx P ˆ "1 xx = "1 Pxx + A T "1 Pww A This indicates a reduction in the initial uncertainty in x

11 where Parameter Identification Process: y k = " k T # + w k y k : Output at time k scalar) $: Constant parameter vector unknown) % k : Regression vector known) w k : Gaussian noise with zero mean Find most likely estimate of $ given y 0,y 1,,y k denoted by!ˆ k RLS Version of MLE The MLE can be made recursive by using Current parameter estimate as the initial estimate in the MLE Current covariant estimate as the covariant of the initial estimate in the MLE And continuing the process recursively

12 Recursive Least Squares Exchanging the following variables in MLE x " ˆ # k$1, x ˆ " ˆ # k, P xx " P k$1, P ˆ xx " P k, P ww "1 normalized) ˆ " k = " ˆ T k#1 + P k $ k y k #$ ˆ k " k#1 ) P k #1 = Pk#1 #1 + $k $ k T Efficient RLS Algorithm ˆ " k = " ˆ k#1 + P k#1 $ k 1+ $ k T Pk#1 $ k y k #$ k T ˆ " k#1 ) P k = P k#1 # P k#1$ k $ k T Pk#1 1+ $ k T Pk#1 $ k P 0 = E % " # ˆ & ' " 0 ) " #" ˆ 0 ) T RLS changes $ k proportional to previous estimation error y k - % kt $ k-1 ) and P k-1 % k. ) *

13 Parameter Convergence At every iteration P k & P k-1, i.e., less uncertainty in parameter estimation If the regression vector is such that lim k"# $ min ' ) # & k=0 % k % k T *, = # + then lim P k = 0 and lim k"# k"# ˆ $ k = $ System Identification Consider the Input-Output Model of a LTI Discrete system n yk) = # a i yk " i) + # b i uk " i) + wk) i=1 n i=1 Defining, y k = yk), w k = wk) noise [ ] [ ] " k = yk #1) L yk # n) uk #1) L uk # n) $ = a 1 L a n b 1 L b n Then y k = " k T # + w k RLS can be used to estimate unknown parameters

14 First Order Example Consider the first order system yk) = ayk "1) + buk "1) + wk) Defining, y k = yk), w k = wk) $ yk #1)' " k = & % uk #1) ),* = $ a ' & % b ) noise Then y k = " k T # + w k RLS can be used to estimate unknown parameters a and b Matlab Solution: Input- Output Data % Parameter Identification Using RLS % Continuous-Time plant Gs)=1/s+1); numc=[0 1]; denc=[1 1]; Ts=0.1; [num,den]=c2dmnumc,denc,ts,'zoh'); % Generate Input/Output Signal K=[0:500]'; imax=lengthk); U=sin2*pi*K/10); Y=dlsimnum,den,U); %Add Measurement Noise ymax=maxabsy)); Noise=normrnd0,0.5*ymax,sizeY)); Yn=Y+Noise;

15 Matlab Version of RLS %Initialize Least Squares Variables phi=zeros2,1); P=1000*eye2,2); thh=zeros2,1); THH=[]; for ii=1:imax y=ynii); [thhn,pn]=rlsthh,p,y,phi); thh=thhn; P=Pn; THH=[THH; ii thh' y-phi'*thh]; phi=[ynii);uii)]; end RLS Update Function function [thn,pn]=rlsth,p,y,phi); % This function updates the estimated % parameter and the covariant matrix %using the Recursive Least Squares % RLS) update algorithm. e=y-phi'*th;; psi=p*phi; g=1/1+phi'*psi); thn=th+g*psi*e; Pn=P-g*psi*psi');

16 1 Input-Output Data U Y 0.5 Amplitude K Output With Noise Y Y + 10%Noise Amplitude K

17 Identification Results 1 Amplitude Theta 1) Theta 2) K Output With Noise Y Y + 20% Noise Amplitude K

18 Identification Results Amplitude K

Optimal Control. Quadratic Functions. Single variable quadratic function: Multi-variable quadratic function:

Optimal Control. Quadratic Functions. Single variable quadratic function: Multi-variable quadratic function: Optimal Control Control design based on pole-placement has non unique solutions Best locations for eigenvalues are sometimes difficult to determine Linear Quadratic LQ) Optimal control minimizes a quadratic

More information

Robust Control 5 Nominal Controller Design Continued

Robust Control 5 Nominal Controller Design Continued Robust Control 5 Nominal Controller Design Continued Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 4/14/2003 Outline he LQR Problem A Generalization to LQR Min-Max

More information

OPTIMAL CONTROL. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 28

OPTIMAL CONTROL. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 28 OPTIMAL CONTROL Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, Urbana-Champaign Fall 2016 S. Bolouki (UIUC) 1 / 28 (Example from Optimal Control Theory, Kirk) Objective: To get from

More information

ik () uk () Today s menu Last lecture Some definitions Repeatability of sensing elements

ik () uk () Today s menu Last lecture Some definitions Repeatability of sensing elements Last lecture Overview of the elements of measurement systems. Sensing elements. Signal conditioning elements. Signal processing elements. Data presentation elements. Static characteristics of measurement

More information

LQR, Kalman Filter, and LQG. Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin

LQR, Kalman Filter, and LQG. Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin LQR, Kalman Filter, and LQG Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin May 2015 Linear Quadratic Regulator (LQR) Consider a linear system

More information

EE C128 / ME C134 Final Exam Fall 2014

EE C128 / ME C134 Final Exam Fall 2014 EE C128 / ME C134 Final Exam Fall 2014 December 19, 2014 Your PRINTED FULL NAME Your STUDENT ID NUMBER Number of additional sheets 1. No computers, no tablets, no connected device (phone etc.) 2. Pocket

More information

Optimal control and estimation

Optimal control and estimation Automatic Control 2 Optimal control and estimation Prof. Alberto Bemporad University of Trento Academic year 2010-2011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011

More information

COM336: Neural Computing

COM336: Neural Computing COM336: Neural Computing http://www.dcs.shef.ac.uk/ sjr/com336/ Lecture 2: Density Estimation Steve Renals Department of Computer Science University of Sheffield Sheffield S1 4DP UK email: s.renals@dcs.shef.ac.uk

More information

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Kalman Filter Kalman Filter Predict: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Update: K = P k k 1 Hk T (H k P k k 1 Hk T + R) 1 x k k = x k k 1 + K(z k H k x k k 1 ) P k k =(I

More information

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics)

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Probability quantifies randomness and uncertainty How do I estimate the normalization and logarithmic slope of a X ray continuum, assuming

More information

Reminders. Thought questions should be submitted on eclass. Please list the section related to the thought question

Reminders. Thought questions should be submitted on eclass. Please list the section related to the thought question Linear regression Reminders Thought questions should be submitted on eclass Please list the section related to the thought question If it is a more general, open-ended question not exactly related to a

More information

Extensions and applications of LQ

Extensions and applications of LQ Extensions and applications of LQ 1 Discrete time systems 2 Assigning closed loop pole location 3 Frequency shaping LQ Regulator for Discrete Time Systems Consider the discrete time system: x(k + 1) =

More information

Statistics, Probability Distributions & Error Propagation. James R. Graham

Statistics, Probability Distributions & Error Propagation. James R. Graham Statistics, Probability Distributions & Error Propagation James R. Graham Sample & Parent Populations Make measurements x x In general do not expect x = x But as you take more and more measurements a pattern

More information

01 Probability Theory and Statistics Review

01 Probability Theory and Statistics Review NAVARCH/EECS 568, ROB 530 - Winter 2018 01 Probability Theory and Statistics Review Maani Ghaffari January 08, 2018 Last Time: Bayes Filters Given: Stream of observations z 1:t and action data u 1:t Sensor/measurement

More information

ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 2 PROBABILITY. Prof. Steven Waslander

ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 2 PROBABILITY. Prof. Steven Waslander ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 2 Prof. Steven Waslander p(a): Probability that A is true 0 pa ( ) 1 p( True) 1, p( False) 0 p( A B) p( A) p( B) p( A B) A A B B 2 Discrete Random Variable X

More information

Suppose that we have a specific single stage dynamic system governed by the following equation:

Suppose that we have a specific single stage dynamic system governed by the following equation: Dynamic Optimisation Discrete Dynamic Systems A single stage example Suppose that we have a specific single stage dynamic system governed by the following equation: x 1 = ax 0 + bu 0, x 0 = x i (1) where

More information

Probability Theory Review Reading Assignments

Probability Theory Review Reading Assignments Probability Theory Review Reading Assignments R. Duda, P. Hart, and D. Stork, Pattern Classification, John-Wiley, 2nd edition, 2001 (appendix A.4, hard-copy). "Everything I need to know about Probability"

More information

Linear Systems. Manfred Morari Melanie Zeilinger. Institut für Automatik, ETH Zürich Institute for Dynamic Systems and Control, ETH Zürich

Linear Systems. Manfred Morari Melanie Zeilinger. Institut für Automatik, ETH Zürich Institute for Dynamic Systems and Control, ETH Zürich Linear Systems Manfred Morari Melanie Zeilinger Institut für Automatik, ETH Zürich Institute for Dynamic Systems and Control, ETH Zürich Spring Semester 2016 Linear Systems M. Morari, M. Zeilinger - Spring

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Control Systems. Design of State Feedback Control.

Control Systems. Design of State Feedback Control. Control Systems Design of State Feedback Control chibum@seoultech.ac.kr Outline Design of State feedback control Dominant pole design Symmetric root locus (linear quadratic regulation) 2 Selection of closed-loop

More information

Linear-Quadratic-Gaussian (LQG) Controllers and Kalman Filters

Linear-Quadratic-Gaussian (LQG) Controllers and Kalman Filters Linear-Quadratic-Gaussian (LQG) Controllers and Kalman Filters Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 204 Emo Todorov (UW) AMATH/CSE 579, Winter

More information

Linear-Quadratic Optimal Control: Full-State Feedback

Linear-Quadratic Optimal Control: Full-State Feedback Chapter 4 Linear-Quadratic Optimal Control: Full-State Feedback 1 Linear quadratic optimization is a basic method for designing controllers for linear (and often nonlinear) dynamical systems and is actually

More information

Linear System Theory. Wonhee Kim Lecture 1. March 7, 2018

Linear System Theory. Wonhee Kim Lecture 1. March 7, 2018 Linear System Theory Wonhee Kim Lecture 1 March 7, 2018 1 / 22 Overview Course Information Prerequisites Course Outline What is Control Engineering? Examples of Control Systems Structure of Control Systems

More information

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Modeling and Analysis of Dynamic Systems by Dr. Guillaume Ducard c Fall 2016 Institute for Dynamic Systems and Control ETH Zurich, Switzerland G. Ducard c 1 Outline 1 Lecture 9: Model Parametrization 2

More information

Optimal Polynomial Control for Discrete-Time Systems

Optimal Polynomial Control for Discrete-Time Systems 1 Optimal Polynomial Control for Discrete-Time Systems Prof Guy Beale Electrical and Computer Engineering Department George Mason University Fairfax, Virginia Correspondence concerning this paper should

More information

Chapter 3. LQ, LQG and Control System Design. Dutch Institute of Systems and Control

Chapter 3. LQ, LQG and Control System Design. Dutch Institute of Systems and Control Chapter 3 LQ, LQG and Control System H 2 Design Overview LQ optimization state feedback LQG optimization output feedback H 2 optimization non-stochastic version of LQG Application to feedback system design

More information

Control Design. Lecture 9: State Feedback and Observers. Two Classes of Control Problems. State Feedback: Problem Formulation

Control Design. Lecture 9: State Feedback and Observers. Two Classes of Control Problems. State Feedback: Problem Formulation Lecture 9: State Feedback and s [IFAC PB Ch 9] State Feedback s Disturbance Estimation & Integral Action Control Design Many factors to consider, for example: Attenuation of load disturbances Reduction

More information

LQ and Model Predictive Control (MPC) of a tank process

LQ and Model Predictive Control (MPC) of a tank process Uppsala University Information Technology Systems and Control Susanne Svedberg 2000 Rev. 2009 by BPGH, 2010 by TS, 2011 by HN Last rev. September 22, 2014 by RC Automatic control II Computer Exercise 4

More information

Chapter 3. State Feedback - Pole Placement. Motivation

Chapter 3. State Feedback - Pole Placement. Motivation Chapter 3 State Feedback - Pole Placement Motivation Whereas classical control theory is based on output feedback, this course mainly deals with control system design by state feedback. This model-based

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables This Version: July 30, 2015 Multiple Random Variables 2 Now we consider models with more than one r.v. These are called multivariate models For instance: height and weight An

More information

Lecture 5 Linear Quadratic Stochastic Control

Lecture 5 Linear Quadratic Stochastic Control EE363 Winter 2008-09 Lecture 5 Linear Quadratic Stochastic Control linear-quadratic stochastic control problem solution via dynamic programming 5 1 Linear stochastic system linear dynamical system, over

More information

Multivariate Random Variable

Multivariate Random Variable Multivariate Random Variable Author: Author: Andrés Hincapié and Linyi Cao This Version: August 7, 2016 Multivariate Random Variable 3 Now we consider models with more than one r.v. These are called multivariate

More information

Machine Learning Lecture Notes

Machine Learning Lecture Notes Machine Learning Lecture Notes Predrag Radivojac February 2, 205 Given a data set D = {(x i,y i )} n the objective is to learn the relationship between features and the target. We usually start by hypothesizing

More information

On Stochastic Adaptive Control & its Applications. Bozenna Pasik-Duncan University of Kansas, USA

On Stochastic Adaptive Control & its Applications. Bozenna Pasik-Duncan University of Kansas, USA On Stochastic Adaptive Control & its Applications Bozenna Pasik-Duncan University of Kansas, USA ASEAS Workshop, AFOSR, 23-24 March, 2009 1. Motivation: Work in the 1970's 2. Adaptive Control of Continuous

More information

ECE 636: Systems identification

ECE 636: Systems identification ECE 636: Systems identification Lectures 3 4 Random variables/signals (continued) Random/stochastic vectors Random signals and linear systems Random signals in the frequency domain υ ε x S z + y Experimental

More information

Lecture 10 Linear Quadratic Stochastic Control with Partial State Observation

Lecture 10 Linear Quadratic Stochastic Control with Partial State Observation EE363 Winter 2008-09 Lecture 10 Linear Quadratic Stochastic Control with Partial State Observation partially observed linear-quadratic stochastic control problem estimation-control separation principle

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 05 SUBJECT NAME : Probability & Random Process SUBJECT CODE : MA6 MATERIAL NAME : University Questions MATERIAL CODE : JM08AM004 REGULATION : R008 UPDATED ON : Nov-Dec 04 (Scan

More information

The Gaussian distribution

The Gaussian distribution The Gaussian distribution Probability density function: A continuous probability density function, px), satisfies the following properties:. The probability that x is between two points a and b b P a

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Introduction to Probabilistic Methods Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB

More information

Lecture 2: Discrete-time Linear Quadratic Optimal Control

Lecture 2: Discrete-time Linear Quadratic Optimal Control ME 33, U Berkeley, Spring 04 Xu hen Lecture : Discrete-time Linear Quadratic Optimal ontrol Big picture Example onvergence of finite-time LQ solutions Big picture previously: dynamic programming and finite-horizon

More information

Lecture Note 1: Probability Theory and Statistics

Lecture Note 1: Probability Theory and Statistics Univ. of Michigan - NAME 568/EECS 568/ROB 530 Winter 2018 Lecture Note 1: Probability Theory and Statistics Lecturer: Maani Ghaffari Jadidi Date: April 6, 2018 For this and all future notes, if you would

More information

Advanced Control Theory

Advanced Control Theory State Feedback Control Design chibum@seoultech.ac.kr Outline State feedback control design Benefits of CCF 2 Conceptual steps in controller design We begin by considering the regulation problem the task

More information

Topic 2: Probability & Distributions. Road Map Probability & Distributions. ECO220Y5Y: Quantitative Methods in Economics. Dr.

Topic 2: Probability & Distributions. Road Map Probability & Distributions. ECO220Y5Y: Quantitative Methods in Economics. Dr. Topic 2: Probability & Distributions ECO220Y5Y: Quantitative Methods in Economics Dr. Nick Zammit University of Toronto Department of Economics Room KN3272 n.zammit utoronto.ca November 21, 2017 Dr. Nick

More information

Steady State Kalman Filter

Steady State Kalman Filter Steady State Kalman Filter Infinite Horizon LQ Control: ẋ = Ax + Bu R positive definite, Q = Q T 2Q 1 2. (A, B) stabilizable, (A, Q 1 2) detectable. Solve for the positive (semi-) definite P in the ARE:

More information

2 (Statistics) Random variables

2 (Statistics) Random variables 2 (Statistics) Random variables References: DeGroot and Schervish, chapters 3, 4 and 5; Stirzaker, chapters 4, 5 and 6 We will now study the main tools use for modeling experiments with unknown outcomes

More information

Lecture 7 LQG Design. Linear Quadratic Gaussian regulator Control-estimation duality SRL for optimal estimator Example of LQG design for MIMO plant

Lecture 7 LQG Design. Linear Quadratic Gaussian regulator Control-estimation duality SRL for optimal estimator Example of LQG design for MIMO plant L7: Lecture 7 LQG Design Linear Quadratic Gaussian regulator Control-estimation duality SRL for optimal estimator Example of LQG design for IO plant LQG regulator L7:2 If the process and measurement noises

More information

Aarti Singh. Lecture 2, January 13, Reading: Bishop: Chap 1,2. Slides courtesy: Eric Xing, Andrew Moore, Tom Mitchell

Aarti Singh. Lecture 2, January 13, Reading: Bishop: Chap 1,2. Slides courtesy: Eric Xing, Andrew Moore, Tom Mitchell Machine Learning 0-70/5 70/5-78, 78, Spring 00 Probability 0 Aarti Singh Lecture, January 3, 00 f(x) µ x Reading: Bishop: Chap, Slides courtesy: Eric Xing, Andrew Moore, Tom Mitchell Announcements Homework

More information

Lecture 9. Introduction to Kalman Filtering. Linear Quadratic Gaussian Control (LQG) G. Hovland 2004

Lecture 9. Introduction to Kalman Filtering. Linear Quadratic Gaussian Control (LQG) G. Hovland 2004 MER42 Advanced Control Lecture 9 Introduction to Kalman Filtering Linear Quadratic Gaussian Control (LQG) G. Hovland 24 Announcement No tutorials on hursday mornings 8-9am I will be present in all practical

More information

Statistical Learning Theory

Statistical Learning Theory Statistical Learning Theory Part I : Mathematical Learning Theory (1-8) By Sumio Watanabe, Evaluation : Report Part II : Information Statistical Mechanics (9-15) By Yoshiyuki Kabashima, Evaluation : Report

More information

Consider the joint probability, P(x,y), shown as the contours in the figure above. P(x) is given by the integral of P(x,y) over all values of y.

Consider the joint probability, P(x,y), shown as the contours in the figure above. P(x) is given by the integral of P(x,y) over all values of y. ATMO/OPTI 656b Spring 009 Bayesian Retrievals Note: This follows the discussion in Chapter of Rogers (000) As we have seen, the problem with the nadir viewing emission measurements is they do not contain

More information

Machine learning - HT Maximum Likelihood

Machine learning - HT Maximum Likelihood Machine learning - HT 2016 3. Maximum Likelihood Varun Kanade University of Oxford January 27, 2016 Outline Probabilistic Framework Formulate linear regression in the language of probability Introduce

More information

Chapter 6 Steady-State Analysis of Continuous-Time Systems

Chapter 6 Steady-State Analysis of Continuous-Time Systems Chapter 6 Steady-State Analysis of Continuous-Time Systems 6.1 INTRODUCTION One of the objectives of a control systems engineer is to minimize the steady-state error of the closed-loop system response

More information

Advanced Process Control Tutorial Problem Set 2 Development of Control Relevant Models through System Identification

Advanced Process Control Tutorial Problem Set 2 Development of Control Relevant Models through System Identification Advanced Process Control Tutorial Problem Set 2 Development of Control Relevant Models through System Identification 1. Consider the time series x(k) = β 1 + β 2 k + w(k) where β 1 and β 2 are known constants

More information

Stochastic processes Lecture 1: Multiple Random Variables Ch. 5

Stochastic processes Lecture 1: Multiple Random Variables Ch. 5 Stochastic processes Lecture : Multiple Random Variables Ch. 5 Dr. Ir. Richard C. Hendriks 26/04/8 Delft University of Technology Challenge the future Organization Plenary Lectures Book: R.D. Yates and

More information

Control System Design

Control System Design ELEC4410 Control System Design Lecture 19: Feedback from Estimated States and Discrete-Time Control Design Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science

More information

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R In probabilistic models, a random variable is a variable whose possible values are numerical outcomes of a random phenomenon. As a function or a map, it maps from an element (or an outcome) of a sample

More information

Stability of Parameter Adaptation Algorithms. Big picture

Stability of Parameter Adaptation Algorithms. Big picture ME5895, UConn, Fall 215 Prof. Xu Chen Big picture For ˆθ (k + 1) = ˆθ (k) + [correction term] we haven t talked about whether ˆθ(k) will converge to the true value θ if k. We haven t even talked about

More information

ENGR352 Problem Set 02

ENGR352 Problem Set 02 engr352/engr352p02 September 13, 2018) ENGR352 Problem Set 02 Transfer function of an estimator 1. Using Eq. (1.1.4-27) from the text, find the correct value of r ss (the result given in the text is incorrect).

More information

Today. Probability and Statistics. Linear Algebra. Calculus. Naïve Bayes Classification. Matrix Multiplication Matrix Inversion

Today. Probability and Statistics. Linear Algebra. Calculus. Naïve Bayes Classification. Matrix Multiplication Matrix Inversion Today Probability and Statistics Naïve Bayes Classification Linear Algebra Matrix Multiplication Matrix Inversion Calculus Vector Calculus Optimization Lagrange Multipliers 1 Classical Artificial Intelligence

More information

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak 1 Introduction. Random variables During the course we are interested in reasoning about considered phenomenon. In other words,

More information

SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL

SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL 1. Optimal regulator with noisy measurement Consider the following system: ẋ = Ax + Bu + w, x(0) = x 0 where w(t) is white noise with Ew(t) = 0, and x 0 is a stochastic

More information

State Observers and the Kalman filter

State Observers and the Kalman filter Modelling and Control of Dynamic Systems State Observers and the Kalman filter Prof. Oreste S. Bursi University of Trento Page 1 Feedback System State variable feedback system: Control feedback law:u =

More information

Basic Concepts in Data Reconciliation. Chapter 6: Steady-State Data Reconciliation with Model Uncertainties

Basic Concepts in Data Reconciliation. Chapter 6: Steady-State Data Reconciliation with Model Uncertainties Chapter 6: Steady-State Data with Model Uncertainties CHAPTER 6 Steady-State Data with Model Uncertainties 6.1 Models with Uncertainties In the previous chapters, the models employed in the DR were considered

More information

MODERN CONTROL DESIGN

MODERN CONTROL DESIGN CHAPTER 8 MODERN CONTROL DESIGN The classical design techniques of Chapters 6 and 7 are based on the root-locus and frequency response that utilize only the plant output for feedback with a dynamic controller

More information

EECE Adaptive Control

EECE Adaptive Control EECE 574 - Adaptive Control Basics of System Identification Guy Dumont Department of Electrical and Computer Engineering University of British Columbia January 2010 Guy Dumont (UBC) EECE574 - Basics of

More information

L06. LINEAR KALMAN FILTERS. NA568 Mobile Robotics: Methods & Algorithms

L06. LINEAR KALMAN FILTERS. NA568 Mobile Robotics: Methods & Algorithms L06. LINEAR KALMAN FILTERS NA568 Mobile Robotics: Methods & Algorithms 2 PS2 is out! Landmark-based Localization: EKF, UKF, PF Today s Lecture Minimum Mean Square Error (MMSE) Linear Kalman Filter Gaussian

More information

Economics 573 Problem Set 5 Fall 2002 Due: 4 October b. The sample mean converges in probability to the population mean.

Economics 573 Problem Set 5 Fall 2002 Due: 4 October b. The sample mean converges in probability to the population mean. Economics 573 Problem Set 5 Fall 00 Due: 4 October 00 1. In random sampling from any population with E(X) = and Var(X) =, show (using Chebyshev's inequality) that sample mean converges in probability to..

More information

Kalman-Filter-Based Time-Varying Parameter Estimation via Retrospective Optimization of the Process Noise Covariance

Kalman-Filter-Based Time-Varying Parameter Estimation via Retrospective Optimization of the Process Noise Covariance 2016 American Control Conference (ACC) Boston Marriott Copley Place July 6-8, 2016. Boston, MA, USA Kalman-Filter-Based Time-Varying Parameter Estimation via Retrospective Optimization of the Process Noise

More information

1 / 21 Perturbation of system dynamics and the covariance completion problem Armin Zare Joint work with: Mihailo R. Jovanović Tryphon T. Georgiou 55th

1 / 21 Perturbation of system dynamics and the covariance completion problem Armin Zare Joint work with: Mihailo R. Jovanović Tryphon T. Georgiou 55th 1 / 21 Perturbation of system dynamics and the covariance completion problem Armin Zare Joint work with: Mihailo R. Jovanović Tryphon T. Georgiou 55th IEEE Conference on Decision and Control, Las Vegas,

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 08 SUBJECT NAME : Probability & Random Processes SUBJECT CODE : MA645 MATERIAL NAME : University Questions REGULATION : R03 UPDATED ON : November 07 (Upto N/D 07 Q.P) (Scan the

More information

Australian Journal of Basic and Applied Sciences, 3(4): , 2009 ISSN Modern Control Design of Power System

Australian Journal of Basic and Applied Sciences, 3(4): , 2009 ISSN Modern Control Design of Power System Australian Journal of Basic and Applied Sciences, 3(4): 4267-4273, 29 ISSN 99-878 Modern Control Design of Power System Atef Saleh Othman Al-Mashakbeh Tafila Technical University, Electrical Engineering

More information

2 Quick Review of Continuous Random Variables

2 Quick Review of Continuous Random Variables CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems CDS b R. M. Murray Stochastic Systems 8 January 27 Reading: This set of lectures provides a brief introduction to stochastic systems. Friedland,

More information

MATH4406 (Control Theory) Unit 6: The Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) Prepared by Yoni Nazarathy, Artem

MATH4406 (Control Theory) Unit 6: The Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) Prepared by Yoni Nazarathy, Artem MATH4406 (Control Theory) Unit 6: The Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) Prepared by Yoni Nazarathy, Artem Pulemotov, September 12, 2012 Unit Outline Goal 1: Outline linear

More information

Problem 1 Cost of an Infinite Horizon LQR

Problem 1 Cost of an Infinite Horizon LQR THE UNIVERSITY OF TEXAS AT SAN ANTONIO EE 5243 INTRODUCTION TO CYBER-PHYSICAL SYSTEMS H O M E W O R K # 5 Ahmad F. Taha October 12, 215 Homework Instructions: 1. Type your solutions in the LATEX homework

More information

Recursive Estimation

Recursive Estimation Recursive Estimation Raffaello D Andrea Spring 08 Problem Set 3: Extracting Estimates from Probability Distributions Last updated: April 9, 08 Notes: Notation: Unless otherwise noted, x, y, and z denote

More information

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10)

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10) Amme 35 : System Dynamics Control State Space Design Course Outline Week Date Content Assignment Notes 1 1 Mar Introduction 2 8 Mar Frequency Domain Modelling 3 15 Mar Transient Performance and the s-plane

More information

Multivariate Distributions

Multivariate Distributions Copyright Cosma Rohilla Shalizi; do not distribute without permission updates at http://www.stat.cmu.edu/~cshalizi/adafaepov/ Appendix E Multivariate Distributions E.1 Review of Definitions Let s review

More information

Variational Inference and Learning. Sargur N. Srihari

Variational Inference and Learning. Sargur N. Srihari Variational Inference and Learning Sargur N. srihari@cedar.buffalo.edu 1 Topics in Approximate Inference Task of Inference Intractability in Inference 1. Inference as Optimization 2. Expectation Maximization

More information

4F3 - Predictive Control

4F3 - Predictive Control 4F3 Predictive Control - Lecture 2 p 1/23 4F3 - Predictive Control Lecture 2 - Unconstrained Predictive Control Jan Maciejowski jmm@engcamacuk 4F3 Predictive Control - Lecture 2 p 2/23 References Predictive

More information

Quick Tour of Basic Probability Theory and Linear Algebra

Quick Tour of Basic Probability Theory and Linear Algebra Quick Tour of and Linear Algebra Quick Tour of and Linear Algebra CS224w: Social and Information Network Analysis Fall 2011 Quick Tour of and Linear Algebra Quick Tour of and Linear Algebra Outline Definitions

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

System Identification, Lecture 4

System Identification, Lecture 4 System Identification, Lecture 4 Kristiaan Pelckmans (IT/UU, 2338) Course code: 1RT880, Report code: 61800 - Spring 2012 F, FRI Uppsala University, Information Technology 30 Januari 2012 SI-2012 K. Pelckmans

More information

Controlled Diffusions and Hamilton-Jacobi Bellman Equations

Controlled Diffusions and Hamilton-Jacobi Bellman Equations Controlled Diffusions and Hamilton-Jacobi Bellman Equations Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 2014 Emo Todorov (UW) AMATH/CSE 579, Winter

More information

System Identification, Lecture 4

System Identification, Lecture 4 System Identification, Lecture 4 Kristiaan Pelckmans (IT/UU, 2338) Course code: 1RT880, Report code: 61800 - Spring 2016 F, FRI Uppsala University, Information Technology 13 April 2016 SI-2016 K. Pelckmans

More information

Notes on Mathematics Groups

Notes on Mathematics Groups EPGY Singapore Quantum Mechanics: 2007 Notes on Mathematics Groups A group, G, is defined is a set of elements G and a binary operation on G; one of the elements of G has particularly special properties

More information

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules Advanced Control State Regulator Scope design of controllers using pole placement and LQ design rules Keywords pole placement, optimal control, LQ regulator, weighting matrixes Prerequisites Contact state

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Conditions for successful data assimilation

Conditions for successful data assimilation Conditions for successful data assimilation Matthias Morzfeld *,**, Alexandre J. Chorin *,**, Peter Bickel # * Department of Mathematics University of California, Berkeley ** Lawrence Berkeley National

More information

Probability Distributions: Continuous

Probability Distributions: Continuous Probability Distributions: Continuous INFO-2301: Quantitative Reasoning 2 Michael Paul and Jordan Boyd-Graber FEBRUARY 28, 2017 INFO-2301: Quantitative Reasoning 2 Paul and Boyd-Graber Probability Distributions:

More information

Gaussian Processes for Machine Learning

Gaussian Processes for Machine Learning Gaussian Processes for Machine Learning Carl Edward Rasmussen Max Planck Institute for Biological Cybernetics Tübingen, Germany carl@tuebingen.mpg.de Carlos III, Madrid, May 2006 The actual science of

More information

Statistical Filtering and Control for AI and Robotics. Part II. Linear methods for regression & Kalman filtering

Statistical Filtering and Control for AI and Robotics. Part II. Linear methods for regression & Kalman filtering Statistical Filtering and Control for AI and Robotics Part II. Linear methods for regression & Kalman filtering Riccardo Muradore 1 / 66 Outline Linear Methods for Regression Gaussian filter Stochastic

More information

ME 233, UC Berkeley, Spring Background Parseval s Theorem Frequency-shaped LQ cost function Transformation to a standard LQ

ME 233, UC Berkeley, Spring Background Parseval s Theorem Frequency-shaped LQ cost function Transformation to a standard LQ ME 233, UC Berkeley, Spring 214 Xu Chen Lecture 1: LQ with Frequency Shaped Cost Function FSLQ Background Parseval s Theorem Frequency-shaped LQ cost function Transformation to a standard LQ Big picture

More information

The Kalman Filter. Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience. Sarah Dance

The Kalman Filter. Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience. Sarah Dance The Kalman Filter Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience Sarah Dance School of Mathematical and Physical Sciences, University of Reading s.l.dance@reading.ac.uk July

More information

Chapter 2. Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables

Chapter 2. Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables Chapter 2 Some Basic Probability Concepts 2.1 Experiments, Outcomes and Random Variables A random variable is a variable whose value is unknown until it is observed. The value of a random variable results

More information

System Identification

System Identification System Identification Arun K. Tangirala Department of Chemical Engineering IIT Madras July 27, 2013 Module 3 Lecture 1 Arun K. Tangirala System Identification July 27, 2013 1 Objectives of this Module

More information

MS-E2133 Systems Analysis Laboratory II Assignment 2 Control of thermal power plant

MS-E2133 Systems Analysis Laboratory II Assignment 2 Control of thermal power plant MS-E2133 Systems Analysis Laboratory II Assignment 2 Control of thermal power plant How to control the thermal power plant in order to ensure the stable operation of the plant? In the assignment Production

More information

CS 532: 3D Computer Vision 6 th Set of Notes

CS 532: 3D Computer Vision 6 th Set of Notes 1 CS 532: 3D Computer Vision 6 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Intro to Covariance

More information

Parameter Estimation in a Moving Horizon Perspective

Parameter Estimation in a Moving Horizon Perspective Parameter Estimation in a Moving Horizon Perspective State and Parameter Estimation in Dynamical Systems Reglerteknik, ISY, Linköpings Universitet State and Parameter Estimation in Dynamical Systems OUTLINE

More information

Multivariate probability distributions and linear regression

Multivariate probability distributions and linear regression Multivariate probability distributions and linear regression Patrik Hoyer 1 Contents: Random variable, probability distribution Joint distribution Marginal distribution Conditional distribution Independence,

More information

State Estimation of Linear and Nonlinear Dynamic Systems

State Estimation of Linear and Nonlinear Dynamic Systems State Estimation of Linear and Nonlinear Dynamic Systems Part I: Linear Systems with Gaussian Noise James B. Rawlings and Fernando V. Lima Department of Chemical and Biological Engineering University of

More information