Anomalous phenomena in ECRH experiments at toroidal devices and low threshold parametric decay instabilities

Size: px
Start display at page:

Download "Anomalous phenomena in ECRH experiments at toroidal devices and low threshold parametric decay instabilities"

Transcription

1 Anomalous phenomena in ECRH experiments at toroidal devices and low threshold parametric decay instabilities Gusakov E.Z., Popov A.Yu. Ioffe Institute of RAS, SPb, Russia 17 th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating

2 OUTLINE Common theoretical understanding of parametric decay instability role in ECRH experiments at toroidal machines Resent observations of anomalous phenomena at ECRH experiments in toroidal devices (non local electron transport, fast ion generation and induced backscattering phenomena) New theoretical approach to look for conditions when at least one of the daughter waves is trapped in plasma and therefore its convective losses are suppressed Drastic decrease of the decay instability threshold in the presence of nonmonotonic density profile and magnetic field inhomogeneity leading to Bernstein wave trapping across and parallel to the magnetic field Induced Backscattering t t l IB convective PDI threshold at Textor Anomalous reflection absolute instability threshold and growth rate Anomalous absorption t leb lib and t l absolute UH l UH instabilities threshold and growth rate Possible PDI role in the energy budget Conclusions.

3 The PDI thresholds in ECRH experiment Parametric decay instabilities (PDI) leading to anomalous reflection or absorption of microwave power are believed to be deeply suppressed in tokamak MW power level ECR O-mode and second harmonic X-mode heating experiments utilizing gyrotrons. According to theoretical analysis of PDI thresholds [1-3], the typical RF power at which these nonlinear effects can be excited at tokamak plasma parameters is very high (around 1 GW for induced backscattering), which is only possible with free electron laser application planned in late 8 th at MTX. [1-3]: M. Porkolab et al. Nucl. Fusion 8 (1988) 39; B. Cohen et al. Rev. Mod. Phys. 63, (1991) 949; A. Litvak et al. Phys. Fluids B 5, (1993) 4347 The high PDI threshold is due to strong convective losses of daughter waves from the decay region both along magnetic field and plasma inhomogenuity direction. 3

4 Convective losses along plasma inhomogenuity direction Three-wave resonance (decay) conditions,,, k x k x k x d 1 d 1 d 1 Interaction coherence length d k x k1 x k x l dx 1 x d Spatial amplification coefficient S l exp v v 1 (A.D. Piliya 1971, M. Rosenbluth 197) is the maximal PDI growth rate in homogeneous plasma, proportional to the pump wave amplitude PDI were only observed in 1 kw power range EBW heating experiments (M. Porkolab et Versator, 1983; M. Larionov et FT-1, 1986; G. L-, 1989, H. Laqua et WVII-AS, 1997, V. Shevchenko et al. MAST, 6), where the backscattered and pump wave group velocity is reduced and the pump electric field is increased by the presence of the UHR thus decreasing the PDI power threshold (E.Z. Gusakov et al. 7 Plasma Phys. Control. Fusion 49, 631) 4

5 The parametric decay instabilities in ECRH experiment Present day understanding wave propagation and absorption in O-mode and nd harmonic X-mode ECRH experiments where no UHR exists is well described by linear theory and thus predictable in detail. No anomalous reflection or absorption are expected. However during the last decade a critical mass of observations has been obtained evidencing presence of anomalous phenomena in ECRH experiments at toroidal devices. 5

6 (a) Non local electron transport was shown to accompany ECRH in some devices indicating that the RF power is not deposited in the regions predicted by standard theory, but is rather quickly redistributed all over the plasma. Andreev V.F. et al. Plasma Phys. Control. Fusion. 4. V.46. P The ballistic jump of the total heat flux after ECRH switching on (observations on T-1)

7 (a) Non local electron transport K. Ida et al., Multiple states of electron heat transport inside an internal transport barrier in LHD, 3rd EFDA Transport Topical Group Meeting ) Strong nonlocal power redistribution in LHD ECRH experiments just after pellet injection

8 (b) Ion acceleration accompanying ECRH experiments at TJ-II D Rapisarda, B Zurro, V Tribaldos, A Baciero and TJ-II team, Plasma Phys. Control. Fusion 49 (7)

9 Conditions of nd harmonic ECRH at TJ-II N e 1 13 cm ne(rho)(115.ms)-536 ne(rho)(19.ms)-5331 ne(rho)(174.ms)-5333 ne(rho)(174.ms)-5335 TJ-II magnetic configuration and 54 GHz nd harmonic ECRH scheme r Hollow profile typical for ECRH in TJ-II at low density 9

10 (b) Ion acceleration accompanying ECRH experiments at TCV Christian Schlatter Turbulent Ion Heating in TCV Tokamak Plasmas THÈSE NO 4479 (9)

11 Conditions of nd harmonic ECRH at TCV,E+19 n (m -3 ) 1,E+19,85,9,95 1, 1,5 1,1 R (m) TCV magnetic configuration and nd harmonic ECRH scheme Hollow profile typical for 8.4 GHz ECRH in TCV at low density 11

12 (c) TEXTOR backscattering observations Finally the first observations of the backscattering signal in the 6 kw nd harmonic ECRH experiment at TEXTOR tokamak were reported. This signal down shifted in frequency by approximately 1 GHz, which is close to the lower hybrid frequency under the TEXTOR conditions, was surprisingly strongly modulated in amplitude at the m= magnetic island frequency. E. Westerhof et al. PRL 13, 151 (9) 1

13 (c) TEXTOR backscattering observations This observations performed at the modest RF power under conditions when no UHR was possible for the pump wave provides an indication that probably a novel low threshold mechanism of the PDI excitation is associated with the presence of a magnetic island. E. Westerhof et al. PRL 13, 151 (9) 13

14 The candidates for the role of decay waves Backscattered wave - X-mode vs c t t l 1 Low frequency wave lower hybrid or high harmonic ion Bernstein wave S k l exp v v i s k i k s Ion Bernstein (IB) wave turning point Though the convective losses are supressed in a vicinity of turning points. Still high threshold of PDI (5 MW) at a single turning point due to small size of decay region 14

15 4 x x-bottom o-top o-bottom x-top Shot 1718: q= island phases D IBW localization IBW localization In the radial direction due to local density maximum at O-point of the island ne, m z, m M. Yu. Kantor et al. 9 Plasma Phys. Control. Fusion b ki,x k s,xqx (cm-1 ) ki,xk s,x n qx 3 1 n (1 13 cm -3 ) x (cm) The polidal phase portrait q y (y) showing IBW poloidal localization (Ray tracing procedure) E.Z. Gusakov, A.Yu. Popov PRL15 (1) 1153

16 The ion Bernstein daughter wave equation The coupled wave equations drd r r, r r / r 4 r r r r dq Dr r, Dq, exp iqr r ; 3 D D id pe pe pi D q 1 q 1 X Y cot ce ti qti qti ci exp t X iy dt t io x j ksx Esy i sy The high frequency daughter wave equation 4s c e pe enu iy E 4mes ce x j sy iy (A.Piliya and A. Saveliev 1994 PPCF 36 59) The nonlinear charge density responsible for coupling of low and high frequency waves is provided by a 1 e 4 m e ponderomotive force pe cei Es y E Eiy Es y x x x iy 16

17 In the vicinity of magnetic island O-point situated in the equatorial plane of the torus and coincident to the IB wave turning point the above system can be reduced to differential equation D pe x x y D sin q x q x D b 4 b x, y qx x y L nx L b Solution of the unperturbed equation perturbations xx y xx y bxy (, ) k xly H k Hl exp x y x y 1 L q D q L q 1/4 1/ 1/ / / / ; sin / / x nx x x y b x pe 1 D D q x pe q x kl, k 1sin l1 qx L nx L b 17

18 .. & waveguide perturbation theory k x l y Dk x l y 4 k x l y exp iqxx dydx D id i q 1 D D 3 D 4sin 3 z 3 qx qx qx qx x q x qx y damping correction due to decay instability for the IB waveguide 3 4 x q pe ai x y z bx, y i exp ik exp sy y dx ikxx b x, y 16 i ce H D q pe pi x exp sec 3 ei ce ti qxti qxti ci ci K q k k x ix, sx, ii pi 1 p m ci ci exp ti q x ti q x ti q ti m q ti ex 18

19 The convective PDI threshold t t l IB The imaginary q correction due to decay instability for the IBW cavity The IBW gain coefficient & PDI power threshold q 5/ 3/ pe ai z sin qx x k, l i ce H cot q 1 y z, q x K exp x 3 D x D y q x y q x P th ch i ce kl, pe l 1 y qx x 19

20 The convective PDI power threshold in TEXTOR TEXTOR experimental parameters 13-3 H 19 kgs, f 14 GHz, n31 cm, i Ti 6 ev, 1 cm for the fundamental IB mode Pth 45 kw /.9 GHz,, / 1 MHz,.8 cm,.6 cm y x exp, 1 Dependence of frequency corresponding to maximal IB wave gain on plasma density. (triangles-ti=3ev, circles- Ti=6eV, stars- Ti=9eV) density variation in a nn.1 magnetic island Dependence of the IB wave gain on the radial mode number at P = 4 kw, Circles n = 1 13 cm -3, Stars - n = cm -3 a magnetic island width w 3 cm

21 Absolute PDI threshold for toroidal IBW cavity parametric excitation t t l IB APDI threshold in hollow density profile tokamak: IB D D 1 P th, EC c x IB EC V V PDI damp V V damp PDI R pol APDI threshold in homogeneous plasma: P th P E IB P i EC 1

22 Threshold and growth rate of reflective absolute PDI t t l IB For JET-like tokamak parameters 14-3 n 11 cm T D T e 3 kev f 17GHz H 3 kgs / 1.35GHz

23 nd harmonic EBW trapping and possibility of anomalous absorption For the typical conditions of TCV ECRH experiments Radial trapping of EBW satisfying decay condition for the process t l l EB IB 3

24 nd harmonic EBW trapping and possibility of anomalous absorption For the typical conditions of TCV ECRH experiments Radial and poloidal trapping of second harmonic EBW 4

25 Instability threshold and growth rate For the typical conditions of TCV ECRH experiments / 8.4GHz H 14 Gs, I /.55GHz nm qebx.1 cm 13 3 Ti 1 94 cm, 1 qibx cm 35eV T 36eV 77, e 5

26 UH wave trapping by density maximum and low-threshold two-plasmon decay t l l UH UH pe ce 4 Trapping of UH waves in radial direction in the vicinity of density maximum for Textor magnetic island D localization of UH waves by the pump beam at high enough power corresponding to absolute instability onset 6

27 Absolute PDI growth rate and threshold for two-uh-plasmon decay P 6kW The dependence of the growth rate on the pump wave power for Textor magnetic island parameters. s p1, T 5 ev, w w 1 cm, e y z /, q, k l 13, P 16 kw. th y The dependence of the growth rate on the waist of the beam along the magnetic field. See A. Popov On possibility of low-threshold two-plasmon decay instability in second harmonic ECRH experiments at toroidal devices P1-1 at EC-17

28 Possible role of PDI in energy balance in ECRH experiments D Rapisarda, B Zurro, V Tribaldos, A Baciero and TJ-II team, Plasma Phys. Control. Fusion 49 (7) Up to 38 kw absorbed by ions is needed at TJ-II to explain observed ion heating at ECRH power of 4 kw which is a lot because energy is distributed in PDI proportionally to wave frequency 8

29 Possible role of PDI in non local electron transport Nonlocal Transport Phenomena is observed when the electron density profile becomes hollow! 9

30 Conclusions-1 Drastic decrease of parametric decay instability power threshold is provided by non monotonous profile of plasma density, which is routinely observed at the discharge axis, in the vicinity of magnetic islands or blobs and at the plasma edge due to electron pump out effect or pellet injection. Acting in parallel with poloidal magnetic field inhomogeneity it makes possible localization of Bernstein decay waves and suppression of their convective losses. The typical backscattering t t l IB convective parametric decay instability pump power threshold is estimated at the level of less than 1 kw. Based on the convective PDI the absolute t t l IB decay instability can be excited for hollow density profile in tokamak. The non monotonous density profile can lead to trapping of decay EBWs as well, thus making possible the low-threshold anomalous absorption t l l at ECRH Trapping of the UH waves at the non monotonous density profile leads to lowthreshold excitation two-plasmon absolute decay instability t l l UH EB UH IB 3

31 Conclusions- The low threshold anomalous absorption and reflection most likely play a role in anomalous backscattering at TEXTOR and ion acceleration and heating at TJ-II and TCV accompanying ECRH. The low threshold anomalous absorption and reflection can, in principle, lead to reduction of ECRH efficiency and quick change of its localization which is interpreted in terms of so called non local electron transport effect. The low threshold PDIs are potentially dangerous for ECRH in ITER therefore their excitation and consequences should be studied in the present day experiments. The physical reasons of density peaking in the magnetic island and electron-pumpout effect deserve systematic investigation as well. 31

32 PDI and non local electron transport in ECRH experiments Local maximum of the density profile Threshold of the PDI decreases drastically Excitation of the backscattered EC wave with downshifted frequency, which is then reflected from the wall and absorbed diffusively Power deposition profile of daughter EC waves differs from the one predicted by linear theory 3

33 Quasi-linear saturation of absolute PDI Strong stochastic damping of the IBW ci t, th B 4q 1/3 ci q c x x C.F.F. Karney and A. Bers Phys. Rev. Lett. 39, 55 (1977)

34 Quasi-linear saturation of absolute PDI D QL th pi th exp H 1 ti qxti qx ti For JET-like parameters H th -Heaviside function When the PDI pumping exceeds the perpendicular Landau damping the quasi-linear saturation fails. Above this second threshold ion tails generation, spectral cascades and significant modification of power deposition profile can occur.

Upper Hybrid Resonance Backscattering Enhanced Doppler Effect and Plasma Rotation Diagnostics at FT-2 Tokamak

Upper Hybrid Resonance Backscattering Enhanced Doppler Effect and Plasma Rotation Diagnostics at FT-2 Tokamak Upper Hybrid Resonance Backscattering Enhanced Doppler Effect and Plasma Rotation Diagnostics at FT- Tokamak A.B. Altukhov ), V.V. Bulanin ), V.V. Dyachenko ), L.A. Esipov ), M.V. Gorokhov ), A.D. Gurchenko

More information

Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus)

Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus) Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus) PD/P-01 C. Castaldo 1), R. Cesario 1), Y, Andrew 2), A. Cardinali 1), V. Kiptly 2), M. Mantsinen

More information

Effect of ECRH Regime on Characteristics of Short-Wave Turbulence in Plasma of the L-2M Stellarator

Effect of ECRH Regime on Characteristics of Short-Wave Turbulence in Plasma of the L-2M Stellarator 1 Effect of ECRH Regime on Characteristics of Short-Wave Turbulence in Plasma of the L-2M Stellarator N.N. Skvortsova, D.K. Akulina, G.M. Batanov, G.S. Voronov, L.V. Kolik, L.M. Kovrizhnykh, A.A. Letunov,

More information

Recent results on non-inductive startup of highly overdense ST plasma by electron Bernstein wave on LATE

Recent results on non-inductive startup of highly overdense ST plasma by electron Bernstein wave on LATE Recent results on non-inductive startup of highly overdense ST plasma by electron Bernstein wave on LATE M. Uchida, Y. Nozawa, H. Tanaka, T. Maekawa Graduate School of Energy Science, Kyoto University

More information

Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation

Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation P.T. Bonoli, A. E. Hubbard, J. Ko, R. Parker, A.E. Schmidt, G. Wallace, J. C. Wright, and the Alcator C-Mod

More information

Electron Bernstein Wave Heating in the TCV Tokamak

Electron Bernstein Wave Heating in the TCV Tokamak Electron Bernstein Wave Heating in the TCV Tokamak A. Mueck 1, Y. Camenen 1, S. Coda 1, L. Curchod 1, T.P. Goodman 1, H.P. Laqua 2, A. Pochelon 1, TCV Team 1 1 Ecole Polytechnique Fédérale de Lausanne

More information

arxiv:physics/ v2 [physics.plasm-ph] 6 Nov 2004

arxiv:physics/ v2 [physics.plasm-ph] 6 Nov 2004 Plasma heating due to X-B mode conversion in a cylindrical ECR plasma system arxiv:physics/41112v2 [physics.plasm-ph] 6 Nov 24 Vipin K. Yadav and D. Bora Institute for Plasma Research, Bhat, Gandhinagar,

More information

RELATIVISTIC EFFECTS IN ELECTRON CYCLOTRON RESONANCE HEATING AND CURRENT DRIVE

RELATIVISTIC EFFECTS IN ELECTRON CYCLOTRON RESONANCE HEATING AND CURRENT DRIVE RELATIVISTIC EFFECTS IN ELECTRON CYCLOTRON RESONANCE HEATING AND CURRENT DRIVE Abhay K. Ram Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139. U.S.A. Joan Decker

More information

Heating and current drive: Radio Frequency

Heating and current drive: Radio Frequency Heating and current drive: Radio Frequency Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 13 th February 2012 Dr Ben Dudson Magnetic Confinement Fusion (1 of 26)

More information

Influence of ECR Heating on NBI-driven Alfvén Eigenmodes in the TJ-II Stellarator

Influence of ECR Heating on NBI-driven Alfvén Eigenmodes in the TJ-II Stellarator EX/P- Influence of ECR Heating on NBI-driven Alfvén Eigenmodes in the TJ-II Stellarator Á. Cappa, F. Castejón, T. Estrada, J.M. Fontdecaba, M. Liniers and E. Ascasíbar Laboratorio Nacional de Fusión CIEMAT,

More information

A Study of Directly Launched Ion Bernstein Waves in a Tokamak

A Study of Directly Launched Ion Bernstein Waves in a Tokamak PFC-/JA-86-6 A Study of Directly Launched Ion Bernstein Waves in a Tokamak Y. Takase, J. D. Moody, C. L. Fiore, F. S. McDermott, M. Porkolab, and J. Squire Plasma Fusion Center Massachusetts Institute

More information

On Electron-Cyclotron Waves in Relativistic Non-Thermal Tokamak Plasmas

On Electron-Cyclotron Waves in Relativistic Non-Thermal Tokamak Plasmas 1 On Electron-Cyclotron Waves in Relativistic Non-Thermal Tokamak Plasmas Lj. Nikolić and M.M. Škorić Vinča Institute of Nuclear Sciences, P.O.Box 522, Belgrade 11001, Serbia and Montenegro ljnikoli@tesla.rcub.bg.ac.yu

More information

Electron Bernstein Wave (EBW) Physics In NSTX and PEGASUS

Electron Bernstein Wave (EBW) Physics In NSTX and PEGASUS Electron Bernstein Wave (EBW) Physics In NSTX and PEGASUS G. Taylor 1, J.B. Caughman 2, M.D. Carter 2, S. Diem 1, P.C. Efthimion 1, R.W. Harvey 3, J. Preinhaelter 4, J.B. Wilgen 2, T.S. Bigelow 2, R.A.

More information

Full-Wave Maxwell Simulations for ECRH

Full-Wave Maxwell Simulations for ECRH Full-Wave Maxwell Simulations for ECRH H. Hojo Plasma Research Center, University of Tsukuba in collaboration with A. Fukuchi, N. Uchida, A. Shimamura, T. Saito and Y. Tatematsu JIFT Workshop in Kyoto,

More information

A. Bers, A. K. Ram, and S. D. Schultz. Plasma Science and Fusion Center,

A. Bers, A. K. Ram, and S. D. Schultz. Plasma Science and Fusion Center, COUPLING TO ELECTRON BERNSTEIN WAVES IN TOKAMAKS* A. Bers, A. K. Ram, and S. D. Schultz Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139. U.S.A. Abstract The

More information

Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE

Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE 1 EX/P6-18 Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE M. Uchida, T. Maekawa, H. Tanaka, F. Watanabe, Y.

More information

Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX

Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX 1 Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX J.M. Canik 1), D.L. Brower 2), C. Deng 2), D.T. Anderson 1), F.S.B. Anderson 1), A.F.

More information

ICRF Mode Conversion Flow Drive on Alcator C-Mod and Projections to Other Tokamaks

ICRF Mode Conversion Flow Drive on Alcator C-Mod and Projections to Other Tokamaks ICRF Mode Conversion Flow Drive on Alcator C-Mod and Projections to Other Tokamaks Y. Lin, J.E. Rice, S.J. Wukitch, M.J. Greenwald, A.E. Hubbard, A. Ince- Cushman, L. Lin, E.S. Marmar, M. Porkolab, M.L.

More information

Production of Over-dense Plasmas by Launching. 2.45GHz Electron Cyclotron Waves in a Helical Device

Production of Over-dense Plasmas by Launching. 2.45GHz Electron Cyclotron Waves in a Helical Device Production of Over-dense Plasmas by Launching 2.45GHz Electron Cyclotron Waves in a Helical Device R. Ikeda a, M. Takeuchi a, T. Ito a, K. Toi b, C. Suzuki b, G. Matsunaga c, S. Okamura b, and CHS Group

More information

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science Recent Development of LHD Experiment O.Motojima for the LHD team National Institute for Fusion Science 4521 1 Primary goal of LHD project 1. Transport studies in sufficiently high n E T regime relevant

More information

MHD instability driven by supra-thermal electrons in TJ-II stellarator

MHD instability driven by supra-thermal electrons in TJ-II stellarator MHD instability driven by supra-thermal electrons in TJ-II stellarator K. Nagaoka 1, S. Yamamoto 2, S. Ohshima 2, E. Ascasíbar 3, R. Jiménez-Gómez 3, C. Hidalgo 3, M.A. Pedrosa 3, M. Ochando 3, A.V. Melnikov

More information

Ion Heating Experiments Using Perpendicular Neutral Beam Injection in the Large Helical Device

Ion Heating Experiments Using Perpendicular Neutral Beam Injection in the Large Helical Device Ion Heating Experiments Using Perpendicular Neutral Beam Injection in the Large Helical Device Kenichi NAGAOKA, Masayuki YOKOYAMA, Yasuhiko TAKEIRI, Katsumi IDA, Mikiro YOSHINUMA, Seikichi MATSUOKA 1),

More information

Dynamics of ion internal transport barrier in LHD heliotron and JT-60U tokamak plasmas

Dynamics of ion internal transport barrier in LHD heliotron and JT-60U tokamak plasmas Dynamics of ion internal transport barrier in LHD heliotron and JT-60U tokamak plasmas K. Ida 1), Y. Sakamoto 2), M. Yoshinuma 1), H. Takenaga 2), K. Nagaoka 1), N. Oyama 2), M. Osakabe 1), M. Yokoyama

More information

Overview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations

Overview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations Overview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations Lecture by: P.H. Diamond Notes by: C.J. Lee March 19, 2014 Abstract Toroidal rotation is a key part of the design of ITER

More information

Study of Electron Heat Pulse Propagation induced by ECRH/on-off on T-10 and LHD

Study of Electron Heat Pulse Propagation induced by ECRH/on-off on T-10 and LHD J. Plasma Fusion Res. SERIES, Vol. Vol. 6 6 (2004) (2004) 134 138 000 000 Study of Electron Heat Pulse Propagation induced by ECRH/on-off on T-10 and LHD NEUDATCHIN Sergey 1, INAGAKI Shigeru 1, ITOH Kimitaka

More information

1. The first observations of the small-scale ETG-mode drift wave turbulence performed in FT-2 research tokamak.

1. The first observations of the small-scale ETG-mode drift wave turbulence performed in FT-2 research tokamak. Correlative Enhanced Scattering in the upper hybrid resonance for study of micro and meso-scale wave phenomena in low-temperature and tokamak plasmas Evgeniy Gusakov Ioffe Institute 6 Politekhnicheskaya,

More information

POWER DENSITY ABSORPTION PROFILE IN TOKAMAK PLASMA WITH ICRH

POWER DENSITY ABSORPTION PROFILE IN TOKAMAK PLASMA WITH ICRH Dedicated to Professor Oliviu Gherman s 80 th Anniversary POWER DENSITY ABSORPTION PROFILE IN TOKAMAK PLASMA WITH ICRH N. POMETESCU Association EURATOM-MECTS Romania, University of Craiova, Faculty of

More information

Improved RF Actuator Schemes for the Lower Hybrid and the Ion Cyclotron Range of Frequencies in Reactor-Relevant Plasmas

Improved RF Actuator Schemes for the Lower Hybrid and the Ion Cyclotron Range of Frequencies in Reactor-Relevant Plasmas Improved RF Actuator Schemes for the Lower Hybrid and the Ion Cyclotron Range of Frequencies in Reactor-Relevant Plasmas P. T. Bonoli*, S. G. Baek, B. LaBombard, K. Filar, M. Greenwald, R. Leccacorvi,

More information

First Experiments Testing the Working Hypothesis in HSX:

First Experiments Testing the Working Hypothesis in HSX: First Experiments Testing the Working Hypothesis in HSX: Does minimizing neoclassical transport also reduce anomalous transport? J. N. Talmadge HSX Plasma Laboratory University of Wisconsin-Madison Special

More information

Control of Neo-classical tearing mode (NTM) in advanced scenarios

Control of Neo-classical tearing mode (NTM) in advanced scenarios FIRST CHENGDU THEORY FESTIVAL Control of Neo-classical tearing mode (NTM) in advanced scenarios Zheng-Xiong Wang Dalian University of Technology (DLUT) Dalian, China Chengdu, China, 28 Aug, 2018 Outline

More information

Full-wave Electromagnetic Field Simulations in the Lower Hybrid Range of Frequencies

Full-wave Electromagnetic Field Simulations in the Lower Hybrid Range of Frequencies Full-wave Electromagnetic Field Simulations in the Lower Hybrid Range of Frequencies P.T. Bonoli, J.C. Wright, M. Porkolab, PSFC, MIT M. Brambilla, IPP, Garching, Germany E. D Azevedo, ORNL, Oak Ridge,

More information

Effect of the MHD Perturbations on Runaway Beam Formation during Disruptions in the T-10 Tokamak

Effect of the MHD Perturbations on Runaway Beam Formation during Disruptions in the T-10 Tokamak 1 Effect of the MHD Perturbations on Runaway Beam Formation during Disruptions in the T-10 Tokamak P. V. Savrukhin 1), E. V. Popova 1), A. V. Sushkov 1), D. E. Kravtsov 1), S. A. Grashin 1), V. P. Budaev

More information

ICRH Experiments on the Spherical Tokamak Globus-M

ICRH Experiments on the Spherical Tokamak Globus-M 1 Experiments on the Spherical Tokamak Globus-M V.K.Gusev 1), F.V.Chernyshev 1), V.V.Dyachenko 1), Yu.V.Petrov 1), N.V.Sakharov 1), O.N.Shcherbinin 1), V.L.Vdovin 2) 1) A.F.Ioffe Physico-Technical Institute,

More information

Issues of Perpendicular Conductivity and Electric Fields in Fusion Devices

Issues of Perpendicular Conductivity and Electric Fields in Fusion Devices Issues of Perpendicular Conductivity and Electric Fields in Fusion Devices Michael Tendler, Alfven Laboratory, Royal Institute of Technology, Stockholm, Sweden Plasma Turbulence Turbulence can be regarded

More information

Measurement of lower hybrid waves using microwave scattering technique in Alcator C-Mod

Measurement of lower hybrid waves using microwave scattering technique in Alcator C-Mod Measurement of lower hybrid waves using microwave scattering technique in Alcator C-Mod S. Baek, R. Parker, S. Shiraiwa, A. Dominguez, E. Marmar, G. Wallace, G. J. Kramer* Plasma Science and Fusion Center,

More information

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.-J. Zheng Institute for Fusion Studies University of Texas at Austin 12th US-EU Transport Task Force Annual

More information

Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX

Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX J.M. Canik 1, D.L. Brower 2, C. Deng 2, D.T.Anderson 1, F.S.B. Anderson 1, A.F. Almagri

More information

SPECTRUM AND PROPAGATION OF LOWER HYBRID WAVES IN THE ALCATOR C TOKAMAK

SPECTRUM AND PROPAGATION OF LOWER HYBRID WAVES IN THE ALCATOR C TOKAMAK PFC/JA-84-6 PECTRUM AND PROPAGATION OF LOWER HYBRID WAVE IN THE ALCATOR C TOKAMAK R. L. Watterson, Y. Takase, P. T. Bonoli, M. Porkolab Plasma Fusion Center Massachusetts Institute of Technology Cambridge,

More information

Fast ion generation with novel three-ion radiofrequency heating scenarios:

Fast ion generation with novel three-ion radiofrequency heating scenarios: 1 Fast ion generation with novel three-ion radiofrequency heating scenarios: from JET, W7-X and ITER applications to aneutronic fusion studies Yevgen Kazakov 1, D. Van Eester 1, J. Ongena 1, R. Bilato

More information

OVERVIEW OF THE ALCATOR C-MOD PROGRAM. IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center

OVERVIEW OF THE ALCATOR C-MOD PROGRAM. IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center OVERVIEW OF THE ALCATOR C-MOD PROGRAM IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center OUTLINE C-Mod is compact, high field, high density, high power

More information

Heating and Current Drive by Electron Cyclotron Waves in JT-60U

Heating and Current Drive by Electron Cyclotron Waves in JT-60U EX/W- Heating and Current Drive by Electron Cyclotron Waves in JT-6U T. Suzuki ), S. Ide ), C. C. Petty ), Y. Ikeda ), K. Kajiwara ), A. Isayama ), K. Hamamatsu ), O. Naito ), M. Seki ), S. Moriyama )

More information

ENERGETIC PARTICLES AND BURNING PLASMA PHYSICS

ENERGETIC PARTICLES AND BURNING PLASMA PHYSICS ENERGETIC PARTICLES AND BURNING PLASMA PHYSICS Reported by J. Van Dam Institute for Fusion Studies The University of Texas at Austin US-Japan JIFT Workshop on Theory-Based Modeling and Integrated Simulation

More information

UCIrvine. Gyrokinetic Studies of Turbulence Spreading IAEA-CN-116/TH1-4

UCIrvine. Gyrokinetic Studies of Turbulence Spreading IAEA-CN-116/TH1-4 AEA-CN-116/TH1-4 Gyrokinetic Studies of Turbulence Spreading T.S. Hahm, Z. Lin, a P.H. Diamond, b G. Rewoldt, W.X. Wang, S. Ethier, O. Gurcan, b W. Lee, and W.M. Tang Princeton University, Plasma Physics

More information

Plasma heating in stellarators at the fundamental ion cyclotron frequency

Plasma heating in stellarators at the fundamental ion cyclotron frequency PHYSICS OF PLASMAS VOLUME 7, NUMBER FEBRUARY 000 Plasma heating in stellarators at the fundamental ion cyclotron frequency V. A. Svidzinski and D. G. Swanson Department of Physics, Auburn University, Auburn,

More information

Nonlinear Consequences of Weakly Driven Energetic Particle Instabilities

Nonlinear Consequences of Weakly Driven Energetic Particle Instabilities 2008 International Sherwood Fusion Theory Conference March 30 - April 2, 2008, Boulder, Colorado Nonlinear Consequences of Weakly Driven Energetic Particle Instabilities Boris Breizman Institute for Fusion

More information

Physics and Operations Plan for LDX

Physics and Operations Plan for LDX Physics and Operations Plan for LDX Columbia University A. Hansen D.T. Garnier, M.E. Mauel, T. Sunn Pedersen, E. Ortiz Columbia University J. Kesner, C.M. Jones, I. Karim, P. Michael, J. Minervini, A.

More information

STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK

STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK GA A24738 STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK by T.C. LUCE, C.C. PETTY, D.A. HUMPHREYS, R.J. LA HAYE, and R. PRATER JULY 24 DISCLAIMER This

More information

Electron Transport and Improved Confinement on Tore Supra

Electron Transport and Improved Confinement on Tore Supra Electron Transport and Improved Confinement on Tore Supra G. T. Hoang, C. Bourdelle, X. Garbet, T. Aniel, G. Giruzzi, M. Ottaviani. Association EURATOM-CEA. CEA-Cadarache, 38, St Paul-lez-Durance, France

More information

Observation of Co- and Counter Rotation Produced by Lower Hybrid Waves in Alcator C-Mod*

Observation of Co- and Counter Rotation Produced by Lower Hybrid Waves in Alcator C-Mod* Observation of Co- and Counter Rotation Produced by Lower Hybrid Waves in Alcator C-Mod* R. R. Parker, Y. Podpaly, J. Lee, M. L. Reinke, J. E. Rice, P.T. Bonoli, O. Meneghini, S. Shiraiwa, G. M. Wallace,

More information

Fast ion physics in the C-2U advanced, beam-driven FRC

Fast ion physics in the C-2U advanced, beam-driven FRC Fast ion physics in the C-2U advanced, beam-driven FRC Richard Magee for the TAE Team 216 US-Japan Workshop on the Compact Torus August 23, 216! High β FRC embedded in magnetic mirror is a unique fast

More information

Explanation of prompt growth of ECE signal in tokamak runaway electron experiments

Explanation of prompt growth of ECE signal in tokamak runaway electron experiments Chang Liu et al. 2nd IAEA TM on the Fusion Data Processing, Validation and Analysis 1 Explanation of prompt growth of ECE signal in tokamak runaway electron experiments Chang Liu 1, Lei Shi 2, Eero Hirvijoki

More information

Fusion Research in Ioffe Institute

Fusion Research in Ioffe Institute Fusion Research in Ioffe Institute L.G.Askinazi On behalf of FT-2, Globus-M, TUMAN-3M, Diagnostics and Theory Teams Ioffe Institute, St. Petersburg, Russia Russian and International Collaborators A.A.

More information

Effect of the Radial Electric Field on Lower Hybrid Plasma Heating in the FT-2 Tokamak

Effect of the Radial Electric Field on Lower Hybrid Plasma Heating in the FT-2 Tokamak Plasma Physics Reports, Vol. 7, No.,, pp.. Translated from Fizika Plazmy, Vol. 7, No.,, pp. 9 9. Original Russian Text Copyright by Lashkul, Budnikov, Vekshina, D yachenko, Ermolaev, Esipov, Its, Kantor,

More information

ICRF Mode Conversion Flow Drive on the Alcator C Mod Tokamak

ICRF Mode Conversion Flow Drive on the Alcator C Mod Tokamak 23 rd IAEA Fusion Energy Conference, EXW/4 1 ICRF Mode Conversion Flow Drive on the Alcator C Mod Tokamak Yijun Lin, J.E. Rice, S.J. Wukitch, M.L. Reinke, M. Greenwald, A. E. Hubbard, E.S. Marmar, Y. Podpaly,

More information

EX/C3-5Rb Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

EX/C3-5Rb Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier EX/C-Rb Relationship between particle and heat transport in JT-U plasmas with internal transport barrier H. Takenaga ), S. Higashijima ), N. Oyama ), L. G. Bruskin ), Y. Koide ), S. Ide ), H. Shirai ),

More information

Corresponding Authors s address:

Corresponding Authors s  address: Role of SMBI deposition in ELM mitigation and the underlying turbulence characteristics Z. B. Shi 1), Z. C. Yang 1), W. L. Zhong 1), B. Y. Zhang 1), C. Y. Chen 1), M. Jiang 1), P. W. Shi 1), W. Chen 1),

More information

Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk

Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk Max-Planck-Institut für Plasmaphysik Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk Robert Wolf robert.wolf@ipp.mpg.de www.ipp.mpg.de Contents Magnetic confinement The stellarator

More information

Multi scale drift turbulence dynamics in an Ohmic discharge as measured at the FT 2 tokamak and modelled by full f gyrokinetic ELMFIRE code

Multi scale drift turbulence dynamics in an Ohmic discharge as measured at the FT 2 tokamak and modelled by full f gyrokinetic ELMFIRE code Multi scale drift turbulence dynamics in an Ohmic discharge as measured at the FT tokamak and modelled by full f gyrokinetic ELMFIRE code E. Gusakov1, V. Bulanin, A. Gurchenko1, J. Heikkinen3, S. Janhunen4,

More information

Characteristics of the H-mode H and Extrapolation to ITER

Characteristics of the H-mode H and Extrapolation to ITER Characteristics of the H-mode H Pedestal and Extrapolation to ITER The H-mode Pedestal Study Group of the International Tokamak Physics Activity presented by T.Osborne 19th IAEA Fusion Energy Conference

More information

Theory Work in Support of C-Mod

Theory Work in Support of C-Mod Theory Work in Support of C-Mod 2/23/04 C-Mod PAC Presentation Peter J. Catto for the PSFC theory group MC & LH studies ITB investigations Neutrals & rotation BOUT improvements TORIC ICRF Mode Conversion

More information

Effect of ideal kink instabilities on particle redistribution

Effect of ideal kink instabilities on particle redistribution Effect of ideal kink instabilities on particle redistribution H. E. Ferrari1,2,R. Farengo1, P. L. Garcia-Martinez2, M.-C. Firpo3, A. F. Lifschitz4 1 Comisión Nacional de Energía Atómica, Centro Atomico

More information

Scattering of ECRF waves by edge density fluctuations and blobs

Scattering of ECRF waves by edge density fluctuations and blobs PSFC/JA-14-7 Scattering of ECRF waves by edge density fluctuations and blobs A. K. Ram and K. Hizanidis a June 2014 Plasma Science and Fusion Center, Massachusetts Institute of Technology Cambridge, MA

More information

Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1

Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1 J Fusion Energ (2010) 29:553 557 DOI 10.1007/s10894-010-9327-6 ORIGINAL RESEARCH Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1 H. Saitoh Z. Yoshida J. Morikawa Y. Yano T. Mizushima

More information

Finnish-Russian Collaboration: Reflectometry Turbulence Measurements & ELMFIRE Validation on FT-2 Tokamak in St.Petersburg.

Finnish-Russian Collaboration: Reflectometry Turbulence Measurements & ELMFIRE Validation on FT-2 Tokamak in St.Petersburg. Finnish-Russian Collaboration: Reflectometry Turbulence Measurements & ELMFIRE Validation on FT-2 Tokamak in St.Petersburg Established in 1918 Fusion research started in 1957 Alexey Gurchenko Tokamaks

More information

- Effect of Stochastic Field and Resonant Magnetic Perturbation on Global MHD Fluctuation -

- Effect of Stochastic Field and Resonant Magnetic Perturbation on Global MHD Fluctuation - 15TH WORKSHOP ON MHD STABILITY CONTROL: "US-Japan Workshop on 3D Magnetic Field Effects in MHD Control" U. Wisconsin, Madison, Nov 15-17, 17, 2010 LHD experiments relevant to Tokamak MHD control - Effect

More information

Observations of Counter-Current Toroidal Rotation in Alcator C-Mod LHCD Plasmas

Observations of Counter-Current Toroidal Rotation in Alcator C-Mod LHCD Plasmas 1 EX/P5-4 Observations of Counter-Current Toroidal Rotation in Alcator C-Mod LHCD Plasmas J.E. Rice 1), A.C. Ince-Cushman 1), P.T. Bonoli 1), M.J. Greenwald 1), J.W. Hughes 1), R.R. Parker 1), M.L. Reinke

More information

Suppression of nonlinear frequency-sweeping of resonant interchange modes in a magnetic dipole with applied radio frequency fields a

Suppression of nonlinear frequency-sweeping of resonant interchange modes in a magnetic dipole with applied radio frequency fields a PHYSICS OF PLASMAS VOLUME 10, NUMBER 5 MAY 2003 INVITED PAPERS Suppression of nonlinear frequency-sweeping of resonant interchange modes in a magnetic dipole with applied radio frequency fields a D. Maslovsky,

More information

1 EX/C4-3. Increased Understanding of Neoclassical Internal Transport Barrier on CHS

1 EX/C4-3. Increased Understanding of Neoclassical Internal Transport Barrier on CHS EX/C-3 Increased Understanding of Neoclassical Internal Transport Barrier on CHS T.Minami, A.Fujisawa, H.Iguchi, Y.Liang, K.Ida, S.Nishimura, M.Yokoyama, S.Murakami, Y.Yoshimura, M.Isobe, C.Suzuki, I.Nomura,

More information

Progressing Performance Tokamak Core Physics. Marco Wischmeier Max-Planck-Institut für Plasmaphysik Garching marco.wischmeier at ipp.mpg.

Progressing Performance Tokamak Core Physics. Marco Wischmeier Max-Planck-Institut für Plasmaphysik Garching marco.wischmeier at ipp.mpg. Progressing Performance Tokamak Core Physics Marco Wischmeier Max-Planck-Institut für Plasmaphysik 85748 Garching marco.wischmeier at ipp.mpg.de Joint ICTP-IAEA College on Advanced Plasma Physics, Triest,

More information

Plasma Science and Fusion Center

Plasma Science and Fusion Center Plasma Science and Fusion Center Turbulence and transport studies in ALCATOR C Mod using Phase Contrast Imaging (PCI) Diagnos@cs and Comparison with TRANSP and Nonlinear Global GYRO Miklos Porkolab (in

More information

ICRF Induced Argon Pumpout in H-D Plasmas in Alcator C-Mod

ICRF Induced Argon Pumpout in H-D Plasmas in Alcator C-Mod ICRF Induced Argon Pumpout in H-D Plasmas in Alcator C-Mod C. Gao, J.E. Rice, M.L. Reinke, Y. Lin, S.J. Wukitch, L. Delgado-Aparicio, E.S. Marmar, and Alcator C-Mod Team MIT-PSFC, University of York, Princeton

More information

Blob motion and control. simple magnetized plasmas

Blob motion and control. simple magnetized plasmas Blob motion and control in simple magnetized plasmas Christian Theiler A. Fasoli, I. Furno, D. Iraji, B. Labit, P. Ricci, M. Spolaore 1, N. Vianello 1 Centre de Recherches en Physique des Plasmas (CRPP)

More information

Role of Magnetic Configuration and Heating Power in ITB Formation in JET.

Role of Magnetic Configuration and Heating Power in ITB Formation in JET. Role of Magnetic Configuration and Heating Power in ITB Formation in JET. The JET Team (presented by V. Parail 1 ) JET Joint Undertaking, Abingdon, Oxfordshire, United Kingdom 1 present address: EURATOM/UKAEA

More information

Full-wave Simulations of Lower Hybrid Wave Propagation in the EAST Tokamak

Full-wave Simulations of Lower Hybrid Wave Propagation in the EAST Tokamak Full-wave Simulations of Lower Hybrid Wave Propagation in the EAST Tokamak P. T. BONOLI, J. P. LEE, S. SHIRAIWA, J. C. WRIGHT, MIT-PSFC, B. DING, C. YANG, CAS-IPP, Hefei 57 th Annual Meeting of the APS

More information

INTRODUCTION TO MAGNETIC NUCLEAR FUSION

INTRODUCTION TO MAGNETIC NUCLEAR FUSION INTRODUCTION TO MAGNETIC NUCLEAR FUSION S.E. Sharapov Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK With acknowledgments to B.Alper for use of his transparencies

More information

Full wave simulations of lower hybrid wave propagation in tokamaks

Full wave simulations of lower hybrid wave propagation in tokamaks Full wave simulations of lower hybrid wave propagation in tokamaks J. C. Wright, P. T. Bonoli, C. K. Phillips, E. Valeo and R. W. Harvey MIT - Plasma Science and Fusion Center Cambridge, MA 02139 Princeton

More information

GA A22571 REDUCTION OF TOROIDAL ROTATION BY FAST WAVE POWER IN DIII D

GA A22571 REDUCTION OF TOROIDAL ROTATION BY FAST WAVE POWER IN DIII D GA A22571 REDUCTION OF TOROIDAL ROTATION BY FAST WAVE POWER IN DIII D by J.S. degrassie, D.R. BAKER, K.H. BURRELL, C.M. GREENFIELD, H. IKEZI, Y.R. LIN-LIU, C.C. PETTY, and R. PRATER APRIL 1997 This report

More information

On the physics of shear flows in 3D geometry

On the physics of shear flows in 3D geometry On the physics of shear flows in 3D geometry C. Hidalgo and M.A. Pedrosa Laboratorio Nacional de Fusión, EURATOM-CIEMAT, Madrid, Spain Recent experiments have shown the importance of multi-scale (long-range)

More information

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Yasutomo ISHII and Andrei SMOLYAKOV 1) Japan Atomic Energy Agency, Ibaraki 311-0102, Japan 1) University

More information

Simulation Study of High-Frequency Magnetosonic Waves Excited by Energetic Ions in Association with Ion Cyclotron Emission )

Simulation Study of High-Frequency Magnetosonic Waves Excited by Energetic Ions in Association with Ion Cyclotron Emission ) Simulation Study of High-Frequency Magnetosonic Waves Excited by Energetic Ions in Association with Ion Cyclotron Emission ) Mieko TOIDA 1),KenjiSAITO 1), Hiroe IGAMI 1), Tsuyoshi AKIYAMA 1,2), Shuji KAMIO

More information

Shear Flow Generation in Stellarators - Configurational Variations

Shear Flow Generation in Stellarators - Configurational Variations Shear Flow Generation in Stellarators - Configurational Variations D. A. Spong 1), A. S. Ware 2), S. P. Hirshman 1), J. H. Harris 1), L. A. Berry 1) 1) Oak Ridge National Laboratory, Oak Ridge, Tennessee

More information

Energetic Particle Physics in Tokamak Burning Plasmas

Energetic Particle Physics in Tokamak Burning Plasmas Energetic Particle Physics in Tokamak Burning Plasmas presented by C. Z. (Frank) Cheng in collaboration with N. N. Gorelenkov, G. J. Kramer, R. Nazikian, E. Fredrickson, Princeton Plasma Physics Laboratory

More information

Progress of Confinement Physics Study in Compact Helical System

Progress of Confinement Physics Study in Compact Helical System 1st IAEA Fusion Energy Conference Chengdu, China, 16-1 October, 6 IAEA-CN-149/ EX/5-5Rb Progress of Confinement Physics Study in Compact Helical System S. Okamura et al. NIFS-839 Oct. 6 1 EX/5-5Rb Progress

More information

Impact of Localized ECRH on NBI and ICRH Driven Alfven Eigenmodes in the ASDEX Upgrade Tokamak

Impact of Localized ECRH on NBI and ICRH Driven Alfven Eigenmodes in the ASDEX Upgrade Tokamak Impact of Localized ECRH on NBI and ICRH Driven Alfven Eigenmodes in the ASDEX Upgrade Tokamak M. Garcia-Munoz M. A. Van Zeeland, S. Sharapov, Ph. Lauber, J. Ayllon, I. Classen, G. Conway, J. Ferreira,

More information

Studies of Lower Hybrid Range of Frequencies Actuators in the ARC Device

Studies of Lower Hybrid Range of Frequencies Actuators in the ARC Device Studies of Lower Hybrid Range of Frequencies Actuators in the ARC Device P. T. Bonoli, Y. Lin. S. Shiraiwa, G. M. Wallace, J. C. Wright, and S. J. Wukitch MIT PSFC, Cambridge, MA 02139 59th Annual Meeting

More information

Anisotropic electron distribution functions and the transition between the Weibel and the whistler instabilities

Anisotropic electron distribution functions and the transition between the Weibel and the whistler instabilities Anisotropic electron distribution functions and the transition between the Weibel and the whistler instabilities F. Pegoraro, L. Palodhi, F. Califano 5 th INTERNATIONAL CONFERENCE ON THE FRONTIERS OF PLASMA

More information

Overview Impact of 3D fields (RMP) on edge turbulence and turbulent transport

Overview Impact of 3D fields (RMP) on edge turbulence and turbulent transport Trilateral Euregio Cluster Overview Impact of 3D fields (RMP) on edge turbulence and turbulent transport TEC Yuhong Xu Laboratory for Plasma Physics, Ecole Royale Militaire - Koninklijke Militaire School,

More information

Lower Hybrid RF: Results, Goals and Plans. J.R. Wilson Alcator C-Mod Program Advisory Meeting January 27, 2010

Lower Hybrid RF: Results, Goals and Plans. J.R. Wilson Alcator C-Mod Program Advisory Meeting January 27, 2010 Lower Hybrid RF: Results, Goals and Plans J.R. Wilson Alcator C-Mod Program Advisory Meeting January 27, 2010 ITER Needs and the RENEW Report Provide a Context for LH Research on C-Mod ITER Needs: Hea-ng

More information

Electrode and Limiter Biasing Experiments on the Tokamak ISTTOK

Electrode and Limiter Biasing Experiments on the Tokamak ISTTOK Electrode and Limiter Biasing Experiments on the Tokamak ISTTOK C. Silva, H. Figueiredo, J.A.C. Cabral,, I. Nedzelsky, C.A.F. Varandas Associação Euratom/IST, Centro de Fusão Nuclear, Instituto Superior

More information

Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET

Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET EFDA JET CP(02)07/03 C. Castaldo, R. Cesario, Y, Andrew, A. Cardinali, V. Kiptly, M. Mantsinen, F. Meo, A. Murari, A. A. Tuccillo, M. Valisa, D. Van Eester, L. Bertalot, D. Bettella, C. Giroud, C. Ingesson,

More information

(a) (b) (c) (d) (e) (f) r (minor radius) time. time. Soft X-ray. T_e contours (ECE) r (minor radius) time time

(a) (b) (c) (d) (e) (f) r (minor radius) time. time. Soft X-ray. T_e contours (ECE) r (minor radius) time time Studies of Spherical Tori, Stellarators and Anisotropic Pressure with M3D 1 L.E. Sugiyama 1), W. Park 2), H.R. Strauss 3), S.R. Hudson 2), D. Stutman 4), X-Z. Tang 2) 1) Massachusetts Institute of Technology,

More information

Full wave simulations of lower hybrid wave propagation in tokamaks

Full wave simulations of lower hybrid wave propagation in tokamaks PSFC/JA-09-18 Full wave simulations of lower hybrid wave propagation in tokamaks J. C. Wright*, P. T. Bonoli*, C. K. Phillips, E. Valeo and R. W. Harvey** *MIT - Plasma Science and Fusion Center Cambridge,

More information

Triggering Mechanisms for Transport Barriers

Triggering Mechanisms for Transport Barriers Triggering Mechanisms for Transport Barriers O. Dumbrajs, J. Heikkinen 1, S. Karttunen 1, T. Kiviniemi, T. Kurki-Suonio, M. Mantsinen, K. Rantamäki 1, S. Saarelma, R. Salomaa, S. Sipilä, T. Tala 1 Euratom-TEKES

More information

Effect of ion cyclotron parametric turbulence on the generation of edge suprathermal ions during ion cyclotron plasma heating

Effect of ion cyclotron parametric turbulence on the generation of edge suprathermal ions during ion cyclotron plasma heating PHYSICS OF PLASMAS VOLUME 11 NUMBER 8 AUGUST 004 Effect of ion cyclotron parametric turbulence on the generation of edge suprathermal ions during ion cyclotron plasma heating V. S. Mikhailenko and E. E.

More information

Curvature transition and spatiotemporal propagation of internal transport barrier in toroidal plasmas

Curvature transition and spatiotemporal propagation of internal transport barrier in toroidal plasmas Curvature transition and spatiotemporal propagation of internal transport barrier in toroidal plasmas K.Ida, JT- Team a and LHD experiment Group National Institute for Fusion Science, Toki 59-59 Japan

More information

OVERVIEW of FTU RESULTS

OVERVIEW of FTU RESULTS OVERVIEW of FTU RESULTS Angelo A. Tuccillo on behalf of FTU and ECRH teams and A. Alekseyev, V. Lazarev, S. Mirnov (TRINITI, Troitsk, RF) A. Biancalani, F. Pegoraro (University of Pisa) L. Chen (University

More information

Experimental Results on Pellet Injection and MHD from the RTP Tokamak

Experimental Results on Pellet Injection and MHD from the RTP Tokamak Experimental Results on Pellet Injection and MHD from the RTP Tokamak A.A.M. Oomens, J. de Kloe, F.J.B. Salzedas, M.R. de Baar, C.J. Barth, M.N.A. Beurskens, A.J.H. Donné, B. de Groot, G.M.D. Hogeweij,

More information

Long-Range Correlations and Edge Transport Bifurcation in Fusion Plasmas

Long-Range Correlations and Edge Transport Bifurcation in Fusion Plasmas EX-C/9-3 Long-Range Correlations and Edge Transport Bifurcation in Fusion Plasmas Y. Xu 1, N. Vianello 2, M. Spolaore 2, E. Martines 2, P. Manz 3, M. Ramisch 3, U. Stroth 3, C. Silva 4, M. A. Pedrosa 5,

More information

Comparison of Pellet Injection Measurements with a Pellet Cloud Drift Model on the DIII-D Tokamak

Comparison of Pellet Injection Measurements with a Pellet Cloud Drift Model on the DIII-D Tokamak Comparison of Pellet Injection Measurements with a Pellet Cloud Drift Model on the DIII-D Tokamak T.C. Jernigan, L.R. Baylor, S.K. Combs, W.A. Houlberg (Oak Ridge National Laboratory) P.B. Parks (General

More information

Plasma Fusion Center Massachusetts Institute of Technology Cambridge, MA Burrell, K.H. General Atomics PO Box San Diego, CA

Plasma Fusion Center Massachusetts Institute of Technology Cambridge, MA Burrell, K.H. General Atomics PO Box San Diego, CA PFC/JA-95-28 Edge Turbulence Measurements during the L- to H-Mode Transition by Phase Contrast Imaging on DIII-Dt Coda, S.; Porkolab, M.; Plasma Fusion Center Massachusetts Institute of Technology Cambridge,

More information