Full-Wave Maxwell Simulations for ECRH

Size: px
Start display at page:

Download "Full-Wave Maxwell Simulations for ECRH"

Transcription

1 Full-Wave Maxwell Simulations for ECRH H. Hojo Plasma Research Center, University of Tsukuba in collaboration with A. Fukuchi, N. Uchida, A. Shimamura, T. Saito and Y. Tatematsu JIFT Workshop in Kyoto, Dec , 003

2 Old version of Maxwell Equation Simulator ( Maxim ) This code is used mainly for plasma diagnostic problems. t t 1 ε B = c 1 E = B [ J + σ ( r) E] ε() r ε ε() r E pe 0 0 t ε0me 0 e J = ω [ n( r)] E J B ( r) Artificial terms introduced to set wall boundary Input: n () r = Plasma density ( arbitrary ) B () r = External magnetic field ( arbitrary ) σ() r = ε() r = σ* ( > 0) ε* ( > 1) plasma otherwise Incident wave : arbitrary ( cw, pulse, etc )

3 A set of equations( m i = ) for simulation can describe R- and L-modes in parallel propagation, and O and X-modes in perpendicular propagation in high frequency range ( GHz or more ).

4 Two -d simulation models on EM wave propagation Sectional View Top View

5 Radial Profiles of Characteristic Frequencies in Tokamak Model f 0 =3 α=3

6 EM Wave Propagation (Vertical Injection) at ω/ω 0 = and (ω pe0 /ω 0 ) =3 Ex Ey Ez Bx By Bz

7 EM Wave Propagation (Tangential Injection) at ω/ω 0 = and (ω pe0 /ω 0 ) =3 Ex Ey Ez Bx By Bz

8 Radial Profiles of Characteristic Frequencies in Tokamak Model f 0 =6 α=3

9 EM Wave Propagation (Vertical Injection) at ω/ω 0 = and (ω pe0 /ω 0 ) =6 Ey // Bt

10 EM Wave Propagation (Tangential Injection) at ω/ω 0 = and (ω pe0 /ω 0 ) =6

11 Toroidal propagation of electromagnetic wave ( Movie )

12 Ultrashort-pulse propagation in LHD plasma EM Pulse of FWHM = 30ps nxy (, ) = n[1 ψ( XY, )/ ψ ], n = 5 10 cm B( XY,, φ = 0) with p=5 [T. Watanabe and H. Akao: J. Plasma Fusion Res. 73 (1997) 186.] Red ellipse denotes plasma-vacuum boundary.

13 Ultrashort-Pulse Reflectometry for LHD Plasma ( FDTD Simulation ) Reflected waves from plasma ( incident pulse width = 30ps ) Signal at detector point Time delay for reflected waves Reconstructed density profile ( ) Abel inversion

14 Objective Development of a new type of computational tool for wave heating in place of ray-tracing method Ray-tracing method based on geometrical optics is simple, but cannot treat 1. wave diffraction,. wave tunneling, 3. mode conversion. Maxwell equation simulator based on electromagnetic optics can clear the above difficulty in ray-tracing method.

15 Ray Tracing Method Dispersion Relation : D( ω, kr, ) = 0 d D/ k d D/ r r =, k = d t D/ ω d t D/ ω W 1 Re { E * σ E} = E = E 0 exp( Im( k)d s)

16 Maxwell Equation Simulator Good Points: resonance cutoff 1. Full wave analysis. Wave diffraction 3. Wave tunneling 4. Mode conversion incident evanescent transmitted resonance cutoff reflected Bad Points: transmitted evanescent incident 1. Applicable to fundamental heating ( Harmonic resonances can be included in the simulator equations, however, which cannot be solved in time domain as initial value problems.) To trace waves, it is of importance that wave equations are solved in time domain as initial value problems.. Approximated kinetic effect ( Ray tracing results could be covered. )

17 Maxwell Wave Equation: σ k ω ω ω σ E 1+ i E = 0 c εω 0 J = σ E Conductivity tensor is generally obtained from Vlasov equation. In the limit of 0 ( ce ) : ωpe ω pe ω ω ce S = 1 + i π exp ω ω ce ω k v te k vte S 1 id 0 σ i = id S 1 0 εω P 1 D ω ω ce pe ω pe ω ω ce = + i π exp ω ω ωce ω k v te k vte P ωpe ωω pe ω = 1 + i π exp 3 ω ( k vte ) k vte Approximation : k in S, Dand Pis determined by local dispersion equation. Dk (, r, ω ) = 0

18 Equations for Simulations: Previous conductivity tensor is covered by the following equations. ( These time-evolution equations can be solved as initial value problems. ) B = E t 1 1 E = c B J σ E t ε ε e ν J = E J B J ε ε ε ωpe 0 0 t 0me 0 Cyclotron and Landau damping Collisional damping σ xx σxy σxz σ1bz + σ3bx i σ1bz ( σ1 σ3) bxb z σ = σyx σyy σyz = iσ1bz σ1 iσ1bx σzx σzy σ zz ( σ1 σ3) bb x z iσ1bx σ1bx + σ3bz σ ω 1 pe ω ω ce = π exp εω 0 ω k v te k vte σ ωω 3 pe ω = π exp 3 εω 0 ( k vte ) k vte B 0 b = = bx xˆ + bz zˆ B 0

19 Absorbed power deposition in ECRH : W 1 = Re { E* σ E} 1 1 = σ1( bz Ex + Ey + bx Ez ) + σ3( bx Ex + bz Ez ) 1 i + ( σ σ ) ( + ) + σ ( ) ( ) 5 1 bb x z ExEz EE x z 1 be z x be x z Ey be z x be x z Ey When b z = 1, b = 0 x 1 1 W = σ3 Ez + σ1 Ex iey 1 1 = σ ( ) Re( ) Im( ) Im( ) Re( ) 3 Ez σ1 Ex Ey Ex Ey Ex Ey

20 Cross Polarization Scattering ( O and X-modes) Time domain version of Fidone-Granata equation: mode conversion by magnetic shear ( + ω pe + ωce) Ex + ωpeωcee = 0 t t E ( c + ω pe + c θ ) E + ωce Ex = c [ θ + θ E ] t x x X-mode E ( c + ω pe + c θ ) E = c [ θ + θ E ] t x x O-mode B( x) = B ( x) zˆ + B ( x) yˆ z θ ( x) = arctan( B / B ) y y z θ = d θ /d x, θ = d θ /dx 1 Incident O-mode to X-mode at 48GHz in LHD Plasma t=000 O-mode X-mode n(x) 0-1 B p (x) x[mm]

21 -d simulation for fundamental ECRH ( Right-handed circularly polarized wave with ω = 8GHz ) E y E z W x cyclotron resonance

22 Tunneling of right-handed circularly polarized mode ( -d simulation ) L-mode is not affected by resonance and cutoff layer. R-wave L-wave z Resonance and cutoff layer Launched beam is not a plane wave, and then wave diffraction occurs.

23 Tunneling of Right-handed circularly polarized mode ( 1-d simulation ) E y cyclotron resonance and cutoff layer E y E y x

24 Transmittance of right-handed circularly polarized mode T = ( E B) ( E B) x x=+ x x= resonance cutoff incident evanescent transmitted T = exp( π kl) in Budden s problem 1-d simulation -d simulation k=k(x=- )

25 Summary We developed a Maxwell equation simulator, which approximately takes into account wave-particle interactions such as cyclotron resonance. The code can treat wave diffraction, mode tunneling and also mode conversion of electromagnetic waves, in addition to estimate power deposition profile in ECRH.

Full-wave Electromagnetic Field Simulations in the Lower Hybrid Range of Frequencies

Full-wave Electromagnetic Field Simulations in the Lower Hybrid Range of Frequencies Full-wave Electromagnetic Field Simulations in the Lower Hybrid Range of Frequencies P.T. Bonoli, J.C. Wright, M. Porkolab, PSFC, MIT M. Brambilla, IPP, Garching, Germany E. D Azevedo, ORNL, Oak Ridge,

More information

Heating and current drive: Radio Frequency

Heating and current drive: Radio Frequency Heating and current drive: Radio Frequency Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 13 th February 2012 Dr Ben Dudson Magnetic Confinement Fusion (1 of 26)

More information

Chapter 9 WAVES IN COLD MAGNETIZED PLASMA. 9.1 Introduction. 9.2 The Wave Equation

Chapter 9 WAVES IN COLD MAGNETIZED PLASMA. 9.1 Introduction. 9.2 The Wave Equation Chapter 9 WAVES IN COLD MAGNETIZED PLASMA 9.1 Introduction For this treatment, we will regard the plasma as a cold magnetofluid with an associated dielectric constant. We then derive a wave equation using

More information

RELATIVISTIC EFFECTS IN ELECTRON CYCLOTRON RESONANCE HEATING AND CURRENT DRIVE

RELATIVISTIC EFFECTS IN ELECTRON CYCLOTRON RESONANCE HEATING AND CURRENT DRIVE RELATIVISTIC EFFECTS IN ELECTRON CYCLOTRON RESONANCE HEATING AND CURRENT DRIVE Abhay K. Ram Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139. U.S.A. Joan Decker

More information

AST 553. Plasma Waves and Instabilities. Course Outline. (Dated: December 4, 2018)

AST 553. Plasma Waves and Instabilities. Course Outline. (Dated: December 4, 2018) AST 553. Plasma Waves and Instabilities Course Outline (Dated: December 4, 2018) I. INTRODUCTION Basic concepts Waves in plasmas as EM field oscillations Maxwell s equations, Gauss s laws as initial conditions

More information

Study of Optical Properties of Tokamak Plasma

Study of Optical Properties of Tokamak Plasma Study of Optical Properties of Tokamak Plasma Sabri Naima Ghoutia 1, Benouaz Tayeb 2 1 University of Bechar, POB 417, Street Kenadsa, Bechar,08000, Algeria. 2 University of Tlemcen, POB 119, 13000, Algeria.

More information

Plasma heating in stellarators at the fundamental ion cyclotron frequency

Plasma heating in stellarators at the fundamental ion cyclotron frequency PHYSICS OF PLASMAS VOLUME 7, NUMBER FEBRUARY 000 Plasma heating in stellarators at the fundamental ion cyclotron frequency V. A. Svidzinski and D. G. Swanson Department of Physics, Auburn University, Auburn,

More information

On Electron-Cyclotron Waves in Relativistic Non-Thermal Tokamak Plasmas

On Electron-Cyclotron Waves in Relativistic Non-Thermal Tokamak Plasmas 1 On Electron-Cyclotron Waves in Relativistic Non-Thermal Tokamak Plasmas Lj. Nikolić and M.M. Škorić Vinča Institute of Nuclear Sciences, P.O.Box 522, Belgrade 11001, Serbia and Montenegro ljnikoli@tesla.rcub.bg.ac.yu

More information

Scattering of ECRF waves by edge density fluctuations and blobs

Scattering of ECRF waves by edge density fluctuations and blobs PSFC/JA-14-7 Scattering of ECRF waves by edge density fluctuations and blobs A. K. Ram and K. Hizanidis a June 2014 Plasma Science and Fusion Center, Massachusetts Institute of Technology Cambridge, MA

More information

Density Fluctuation in the Tandem Mirror GAMMA 10. A. Itakura, S. Tsunoda, M. Fukuhara, H. Higaki, H. Hojo, M. Ichimura, K. Ishii,

Density Fluctuation in the Tandem Mirror GAMMA 10. A. Itakura, S. Tsunoda, M. Fukuhara, H. Higaki, H. Hojo, M. Ichimura, K. Ishii, Density Fluctuation in the Tandem Mirror GAMMA 10 A. Itakura, S. Tsunoda, M. Fukuhara, H. Higaki, H. Hojo, M. Ichimura, K. Ishii, Y. Shima, H. Takiue, M. Yoshikawa, T. Cho Plasma Research Center, University

More information

Production of Over-dense Plasmas by Launching. 2.45GHz Electron Cyclotron Waves in a Helical Device

Production of Over-dense Plasmas by Launching. 2.45GHz Electron Cyclotron Waves in a Helical Device Production of Over-dense Plasmas by Launching 2.45GHz Electron Cyclotron Waves in a Helical Device R. Ikeda a, M. Takeuchi a, T. Ito a, K. Toi b, C. Suzuki b, G. Matsunaga c, S. Okamura b, and CHS Group

More information

Part VIII. Interaction with Solids

Part VIII. Interaction with Solids I with Part VIII I with Solids 214 / 273 vs. long pulse is I with Traditional i physics (ICF ns lasers): heating and creation of long scale-length plasmas Laser reflected at critical density surface Fast

More information

Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation

Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation P.T. Bonoli, A. E. Hubbard, J. Ko, R. Parker, A.E. Schmidt, G. Wallace, J. C. Wright, and the Alcator C-Mod

More information

Polarization Mode Dispersion

Polarization Mode Dispersion Unit-7: Polarization Mode Dispersion https://sites.google.com/a/faculty.muet.edu.pk/abdullatif Department of Telecommunication, MUET UET Jamshoro 1 Goos Hänchen Shift The Goos-Hänchen effect is a phenomenon

More information

A. Bers, A. K. Ram, and S. D. Schultz. Plasma Science and Fusion Center,

A. Bers, A. K. Ram, and S. D. Schultz. Plasma Science and Fusion Center, COUPLING TO ELECTRON BERNSTEIN WAVES IN TOKAMAKS* A. Bers, A. K. Ram, and S. D. Schultz Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139. U.S.A. Abstract The

More information

MODELING OF AN ECR SOURCE FOR MATERIALS PROCESSING USING A TWO DIMENSIONAL HYBRID PLASMA EQUIPMENT MODEL. Ron L. Kinder and Mark J.

MODELING OF AN ECR SOURCE FOR MATERIALS PROCESSING USING A TWO DIMENSIONAL HYBRID PLASMA EQUIPMENT MODEL. Ron L. Kinder and Mark J. TECHCON 98 Las Vegas, Nevada September 9-11, 1998 MODELING OF AN ECR SOURCE FOR MATERIALS PROCESSING USING A TWO DIMENSIONAL HYBRID PLASMA EQUIPMENT MODEL Ron L. Kinder and Mark J. Kushner Department of

More information

Electron Bernstein Wave Heating in the TCV Tokamak

Electron Bernstein Wave Heating in the TCV Tokamak Electron Bernstein Wave Heating in the TCV Tokamak A. Mueck 1, Y. Camenen 1, S. Coda 1, L. Curchod 1, T.P. Goodman 1, H.P. Laqua 2, A. Pochelon 1, TCV Team 1 1 Ecole Polytechnique Fédérale de Lausanne

More information

Effect of Magnetic Shear on Propagation and Absorption of EC Waves

Effect of Magnetic Shear on Propagation and Absorption of EC Waves Japan-Korea Workshop on Heating and Current Drive KSTAR Conference, Daejeon Convention Center, Feb. 5-7, 015 Effect of Magnetic Shear on Propagation and Absorption of EC Waves Presented by K. Nagasaki

More information

Destruction of a Magnetic Mirror-Trapped Hot Electron Ring by a shear Alfven Wave

Destruction of a Magnetic Mirror-Trapped Hot Electron Ring by a shear Alfven Wave Destruction of a Magnetic Mirror-Trapped Hot Electron Ring by a shear Alfven Wave Y. Wang 1, W. Gekelman 1, P. Pribyl 1, D. Papadopoulos 2 1 University of California, Los Angeles 2 University of Maryland,

More information

APPLIED OPTICS POLARIZATION

APPLIED OPTICS POLARIZATION A. La Rosa Lecture Notes APPLIED OPTICS POLARIZATION Linearly-polarized light Description of linearly polarized light (using Real variables) Alternative description of linearly polarized light using phasors

More information

Wave propagation in an inhomogeneous plasma

Wave propagation in an inhomogeneous plasma DRAFT Wave propagation in an inhomogeneous plasma Felix I. Parra Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX NP, UK This version is of 7 February 208. Introduction In

More information

Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE

Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE 1 EX/P6-18 Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE M. Uchida, T. Maekawa, H. Tanaka, F. Watanabe, Y.

More information

Recent results on non-inductive startup of highly overdense ST plasma by electron Bernstein wave on LATE

Recent results on non-inductive startup of highly overdense ST plasma by electron Bernstein wave on LATE Recent results on non-inductive startup of highly overdense ST plasma by electron Bernstein wave on LATE M. Uchida, Y. Nozawa, H. Tanaka, T. Maekawa Graduate School of Energy Science, Kyoto University

More information

Electromagnetic fields and waves

Electromagnetic fields and waves Electromagnetic fields and waves Maxwell s rainbow Outline Maxwell s equations Plane waves Pulses and group velocity Polarization of light Transmission and reflection at an interface Macroscopic Maxwell

More information

Simulation study of EM radiation f rom Langmuir waves in warm ma gnetized plasmas

Simulation study of EM radiation f rom Langmuir waves in warm ma gnetized plasmas Simulation study of EM radiation f rom Langmuir waves in warm ma gnetized plasmas Iver H. Cairns Eun-Hwa Kim Peter A. Robinson School of Physics, University of Sydney, Australia < AIMS > Demonstrate that

More information

: Imaging Systems Laboratory II. Laboratory 6: The Polarization of Light April 16 & 18, 2002

: Imaging Systems Laboratory II. Laboratory 6: The Polarization of Light April 16 & 18, 2002 151-232: Imaging Systems Laboratory II Laboratory 6: The Polarization of Light April 16 & 18, 22 Abstract. In this lab, we will investigate linear and circular polarization of light. Linearly polarized

More information

SIMULATIONS OF ECR PROCESSING SYSTEMS SUSTAINED BY AZIMUTHAL MICROWAVE TE(0,n) MODES*

SIMULATIONS OF ECR PROCESSING SYSTEMS SUSTAINED BY AZIMUTHAL MICROWAVE TE(0,n) MODES* 25th IEEE International Conference on Plasma Science Raleigh, North Carolina June 1-4, 1998 SIMULATIONS OF ECR PROCESSING SYSTEMS SUSTAINED BY AZIMUTHAL MICROWAVE TE(,n) MODES* Ron L. Kinder and Mark J.

More information

Energy Stable Discontinuous Galerkin Methods for Maxwell s Equations in Nonlinear Optical Media

Energy Stable Discontinuous Galerkin Methods for Maxwell s Equations in Nonlinear Optical Media Energy Stable Discontinuous Galerkin Methods for Maxwell s Equations in Nonlinear Optical Media Yingda Cheng Michigan State University Computational Aspects of Time Dependent Electromagnetic Wave Problems

More information

Propagation of Radio Frequency Waves Through Density Filaments

Propagation of Radio Frequency Waves Through Density Filaments PSFC/JA-15-13 Propagation of Radio Frequency Waves Through Density Filaments A. K. Ram and K. Hizanidis a May 015 a National Technical University of Athens (part of HELLAS) School of Electrical and Computer

More information

Simulation Study of High-Frequency Magnetosonic Waves Excited by Energetic Ions in Association with Ion Cyclotron Emission )

Simulation Study of High-Frequency Magnetosonic Waves Excited by Energetic Ions in Association with Ion Cyclotron Emission ) Simulation Study of High-Frequency Magnetosonic Waves Excited by Energetic Ions in Association with Ion Cyclotron Emission ) Mieko TOIDA 1),KenjiSAITO 1), Hiroe IGAMI 1), Tsuyoshi AKIYAMA 1,2), Shuji KAMIO

More information

Development of a stable coupling of the Yee scheme with linear current

Development of a stable coupling of the Yee scheme with linear current Development of a stable coupling of the Yee scheme with linear current Martin Campos Pinto (LJLL), Bruno Després (LJLL) Stéphane Heuraux (IJL), Filipe Da Silva (IPFN+IST) 15 octobre 2013 Munich: Pereverzev

More information

Lecture Notes on Wave Optics (03/05/14) 2.71/2.710 Introduction to Optics Nick Fang

Lecture Notes on Wave Optics (03/05/14) 2.71/2.710 Introduction to Optics Nick Fang Outline: A. Electromagnetism B. Frequency Domain (Fourier transform) C. EM waves in Cartesian coordinates D. Energy Flow and Poynting Vector E. Connection to geometrical optics F. Eikonal Equations: Path

More information

Lecture10: Plasma Physics 1. APPH E6101x Columbia University

Lecture10: Plasma Physics 1. APPH E6101x Columbia University Lecture10: Plasma Physics 1 APPH E6101x Columbia University Last Lecture - Conservation principles in magnetized plasma frozen-in and conservation of particles/flux tubes) - Alfvén waves without plasma

More information

Waves in plasma. Denis Gialis

Waves in plasma. Denis Gialis Waves in plasma Denis Gialis This is a short introduction on waves in a non-relativistic plasma. We will consider a plasma of electrons and protons which is fully ionized, nonrelativistic and homogeneous.

More information

Physics 3323, Fall 2014 Problem Set 13 due Friday, Dec 5, 2014

Physics 3323, Fall 2014 Problem Set 13 due Friday, Dec 5, 2014 Physics 333, Fall 014 Problem Set 13 due Friday, Dec 5, 014 Reading: Finish Griffiths Ch. 9, and 10..1, 10.3, and 11.1.1-1. Reflecting on polarizations Griffiths 9.15 (3rd ed.: 9.14). In writing (9.76)

More information

The Plasma Phase. Chapter 1. An experiment - measure and understand transport processes in a plasma. Chapter 2. An introduction to plasma physics

The Plasma Phase. Chapter 1. An experiment - measure and understand transport processes in a plasma. Chapter 2. An introduction to plasma physics The Plasma Phase Chapter 1. An experiment - measure and understand transport processes in a plasma Three important vugraphs What we have just talked about The diagnostics Chapter 2. An introduction to

More information

A Study of Directly Launched Ion Bernstein Waves in a Tokamak

A Study of Directly Launched Ion Bernstein Waves in a Tokamak PFC-/JA-86-6 A Study of Directly Launched Ion Bernstein Waves in a Tokamak Y. Takase, J. D. Moody, C. L. Fiore, F. S. McDermott, M. Porkolab, and J. Squire Plasma Fusion Center Massachusetts Institute

More information

Paraxial WKB method applied to the lower hybrid wave propagation a)

Paraxial WKB method applied to the lower hybrid wave propagation a) Paraxial WKB method applied to the lower hybrid wave propagation a) N. Bertelli, 1, b) O. Maj, 2 E. Poli, 2 R. Harvey, 3 J. C. Wright, 4 P. T. Bonoli, 4 C. K. Phillips, 1 E. Valeo, 1 and J. R. Wilson 1

More information

Measurement of lower hybrid waves using microwave scattering technique in Alcator C-Mod

Measurement of lower hybrid waves using microwave scattering technique in Alcator C-Mod Measurement of lower hybrid waves using microwave scattering technique in Alcator C-Mod S. Baek, R. Parker, S. Shiraiwa, A. Dominguez, E. Marmar, G. Wallace, G. J. Kramer* Plasma Science and Fusion Center,

More information

MEMORANDUM-4. n id (n 2 + n2 S) 0 n n 0. Det[ɛ(ω, k)]=0 gives the Dispersion relation for waves in a cold magnetized plasma: ω 2 pα ω 2 cα ω2, ω 2

MEMORANDUM-4. n id (n 2 + n2 S) 0 n n 0. Det[ɛ(ω, k)]=0 gives the Dispersion relation for waves in a cold magnetized plasma: ω 2 pα ω 2 cα ω2, ω 2 Fundamental dispersion relation MEMORANDUM-4 n S) id n n id n + n S) 0 } n n 0 {{ n P } ɛω,k) E x E y E z = 0 Det[ɛω, k)]=0 gives the Dispersion relation for waves in a cold magnetized plasma: n P ) [

More information

Waves in plasmas. S.M.Lea

Waves in plasmas. S.M.Lea Waves in plasmas S.M.Lea 17 1 Plasma as an example of a dispersive medium We shall now discuss the propagation of electromagnetic waves through a hydrogen plasm an electrically neutral fluid of protons

More information

Propagation of Radio Frequency Waves Through Fluctuations in Plasmas

Propagation of Radio Frequency Waves Through Fluctuations in Plasmas PSFC/JA-15- Propagation of Radio Frequency Waves Through Fluctuations in Plasmas A. K. Ram K. Hizanidis a and S. Valvis a a National Technical University of Athens (part of HELLAS) School of Electrical

More information

Light Waves and Polarization

Light Waves and Polarization Light Waves and Polarization Xavier Fernando Ryerson Communications Lab http://www.ee.ryerson.ca/~fernando The Nature of Light There are three theories explain the nature of light: Quantum Theory Light

More information

Lecture11: Plasma Physics 1. APPH E6101x Columbia University

Lecture11: Plasma Physics 1. APPH E6101x Columbia University Lecture11: Plasma Physics 1 APPH E6101x Columbia University 1 Last Lecture Introduction to plasma waves Basic review of electromagnetic waves in various media (conducting, dielectric, gyrotropic, ) Basic

More information

Ray Tracing and Full-wave Simulation of KSTAR LH Wave

Ray Tracing and Full-wave Simulation of KSTAR LH Wave Ray Tracing and Full-wave Simulation of KSTAR LH Wave 2016 KO-JA Workshop on Physics and Technology of Heating and Current Drive Presented by Young-soon Bae NFRI a W. Namkung, a M.H. Cho, b S. Shiraiwa,

More information

Chapter 1 - The Nature of Light

Chapter 1 - The Nature of Light David J. Starling Penn State Hazleton PHYS 214 Electromagnetic radiation comes in many forms, differing only in wavelength, frequency or energy. Electromagnetic radiation comes in many forms, differing

More information

Studies of Lower Hybrid Range of Frequencies Actuators in the ARC Device

Studies of Lower Hybrid Range of Frequencies Actuators in the ARC Device Studies of Lower Hybrid Range of Frequencies Actuators in the ARC Device P. T. Bonoli, Y. Lin. S. Shiraiwa, G. M. Wallace, J. C. Wright, and S. J. Wukitch MIT PSFC, Cambridge, MA 02139 59th Annual Meeting

More information

Electromagnetic Properties of Materials Part 2

Electromagnetic Properties of Materials Part 2 ECE 5322 21 st Century Electromagnetics Instructor: Office: Phone: E Mail: Dr. Raymond C. Rumpf A 337 (915) 747 6958 rcrumpf@utep.edu Lecture #3 Electromagnetic Properties of Materials Part 2 Nonlinear

More information

H ( E) E ( H) = H B t

H ( E) E ( H) = H B t Chapter 5 Energy and Momentum The equations established so far describe the behavior of electric and magnetic fields. They are a direct consequence of Maxwell s equations and the properties of matter.

More information

WaFu Notes Discussions around the cold plasma model

WaFu Notes Discussions around the cold plasma model WaFu Notes Discussions around the cold plasma model Lise-Marie Imbert-Gérard Summer 7 These notes correspond - more or less - to the presentation I gave at the WaFu summer school on July 6th, 7 in Paris.

More information

The prospects for electron Bernstein wave heating of spherical tokamaks

The prospects for electron Bernstein wave heating of spherical tokamaks The prospects for electron Bernstein wave heating of spherical tokamaks R. A. Cairns and C. N. Lashmore-Davies Citation: Phys. Plasmas 7, 416 (000); doi: 10.1063/1.190051 View online: http://dx.doi.org/10.1063/1.190051

More information

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasma physics Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas Transverse waves

More information

Integrated Full Wave Analysis of RF Heating and Current Drive in Toroidal Plasmas

Integrated Full Wave Analysis of RF Heating and Current Drive in Toroidal Plasmas Integrated Full Wave Analysis of RF Heating and Current Drive in Toroidal Plasmas IAEA Fusion Energy Conference Chengdu, China 2006/10/20 A. Fukuyama, S. Murakami, A. Sonoda, M. Honda// Department of Nuclear

More information

Anomalous phenomena in ECRH experiments at toroidal devices and low threshold parametric decay instabilities

Anomalous phenomena in ECRH experiments at toroidal devices and low threshold parametric decay instabilities Anomalous phenomena in ECRH experiments at toroidal devices and low threshold parametric decay instabilities Gusakov E.Z., Popov A.Yu. Ioffe Institute of RAS, SPb, Russia 17 th Joint Workshop on Electron

More information

ANTENNA AND WAVE PROPAGATION

ANTENNA AND WAVE PROPAGATION ANTENNA AND WAVE PROPAGATION Electromagnetic Waves and Their Propagation Through the Atmosphere ELECTRIC FIELD An Electric field exists in the presence of a charged body ELECTRIC FIELD INTENSITY (E) A

More information

Electromagnetic waves in magnetized plasma The dispersion relation

Electromagnetic waves in magnetized plasma The dispersion relation Electromagnetic waves in magnetized plasma The dispersion relation Bruno Després (LJLL-UPMC) Electromagnetic waves in magnetized plasma The dispersion relation p. 1 / 32 Vlasov-Maxwell Vectors are in bold.

More information

Introduction to Plasma Physics

Introduction to Plasma Physics Introduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 A simplistic view on a Fusion Power

More information

16. More About Polarization

16. More About Polarization 16. More About Polarization Polarization control Wave plates Circular polarizers Reflection & polarization Scattering & polarization Birefringent materials have more than one refractive index A special

More information

Plasma waves in the fluid picture II

Plasma waves in the fluid picture II Plasma waves in the fluid picture II Parallel electromagnetic waves Perpendicular electromagnetic waves Whistler mode waves Cut-off frequencies Resonance (gyro) frequencies Ordinary and extra-ordinary

More information

Progress on Quantitative Modeling of rf Sheaths

Progress on Quantitative Modeling of rf Sheaths Progress on Quantitative Modeling of rf Sheaths D. A. D Ippolito, J. R. Myra, H. Kohno and J. C. Wright Lodestar Research Corporation, Boulder, Colorado, 80301 May, 2011 Prepared for the 19th Topical Conference

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condensed Matter Physics Diffraction I Basic Physics M.P. Vaughan Diffraction Electromagnetic waves Geometric wavefront The Principle of Linear Superposition Diffraction regimes Single

More information

Plasma waves in the fluid picture I

Plasma waves in the fluid picture I Plasma waves in the fluid picture I Langmuir oscillations and waves Ion-acoustic waves Debye length Ordinary electromagnetic waves General wave equation General dispersion equation Dielectric response

More information

Waves in Plasmas. Francesco Volpe Columbia University. Mirai Summer School, 9-10 August 2012

Waves in Plasmas. Francesco Volpe Columbia University. Mirai Summer School, 9-10 August 2012 Mirai Summer School, 9-10 August 01 Waves in Plasmas Francesco Volpe Columbia University Mirai Summer School, Japan, August 9, 01 F. Volpe Waves in Plasmas 1 Itinerary to New York 1997-1998 Collective

More information

Summary of Beam Optics

Summary of Beam Optics Summary of Beam Optics Gaussian beams, waves with limited spatial extension perpendicular to propagation direction, Gaussian beam is solution of paraxial Helmholtz equation, Gaussian beam has parabolic

More information

Integration of Fokker Planck calculation in full wave FEM simulation of LH waves

Integration of Fokker Planck calculation in full wave FEM simulation of LH waves Integration of Fokker Planck calculation in full wave FEM simulation of LH waves O. Meneghini S. Shiraiwa R. Parker 51 st DPP APS, Atlanta November 4, 29 L H E A F * Work supported by USDOE awards DE-FC2-99ER54512

More information

II Theory Of Surface Plasmon Resonance (SPR)

II Theory Of Surface Plasmon Resonance (SPR) II Theory Of Surface Plasmon Resonance (SPR) II.1 Maxwell equations and dielectric constant of metals Surface Plasmons Polaritons (SPP) exist at the interface of a dielectric and a metal whose electrons

More information

arxiv:physics/ v2 [physics.plasm-ph] 6 Nov 2004

arxiv:physics/ v2 [physics.plasm-ph] 6 Nov 2004 Plasma heating due to X-B mode conversion in a cylindrical ECR plasma system arxiv:physics/41112v2 [physics.plasm-ph] 6 Nov 24 Vipin K. Yadav and D. Bora Institute for Plasma Research, Bhat, Gandhinagar,

More information

Relativistic Electron Heating in Focused Multimode Laser Fields with Stochastic Phase Purturbations

Relativistic Electron Heating in Focused Multimode Laser Fields with Stochastic Phase Purturbations 1 Relativistic Electron Heating in Focused Multimode Laser Fields with Stochastic Phase Purturbations Yu.A.Mikhailov, L.A.Nikitina, G.V.Sklizkov, A.N.Starodub, M.A.Zhurovich P.N.Lebedev Physical Institute,

More information

Preliminary Topics in EM

Preliminary Topics in EM ECE 53 1 st Century Electromagnetics Instructor: Office: Phone: E Mail: Dr. Raymond C. Rumpf A 337 (915) 747 6958 rcrumpf@utep.edu Lecture #1 Preliminary Topics in EM Lecture 1 1 Lecture Outline Maxwell

More information

Influence of ECR Heating on NBI-driven Alfvén Eigenmodes in the TJ-II Stellarator

Influence of ECR Heating on NBI-driven Alfvén Eigenmodes in the TJ-II Stellarator EX/P- Influence of ECR Heating on NBI-driven Alfvén Eigenmodes in the TJ-II Stellarator Á. Cappa, F. Castejón, T. Estrada, J.M. Fontdecaba, M. Liniers and E. Ascasíbar Laboratorio Nacional de Fusión CIEMAT,

More information

Development of LH wave fullwave simulation based on FEM

Development of LH wave fullwave simulation based on FEM Development of LH wave fullwave simulation based on FEM S. Shiraiwa and O. Meneghini on behalf of LHCD group of Alacator C-Mod PSFC, MIT 2010/03/10 San-Diego, CA Special acknowledgements : R. Parker, P.

More information

2D full wave analysis of wave structure by TASK/WF2

2D full wave analysis of wave structure by TASK/WF2 17th NEXT (Numerical Experiment of Tokamak) Meeting, University of Tokyo, Kashiwa, Japan, March 15-16, 2012 2D full wave analysis of wave structure by TASK/WF2 Y. Maruyama, A. Fukuyama Department of Nuclear

More information

Basics of electromagnetic response of materials

Basics of electromagnetic response of materials Basics of electromagnetic response of materials Microscopic electric and magnetic field Let s point charge q moving with velocity v in fields e and b Force on q: F e F qeqvb F m Lorenz force Microscopic

More information

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasmas as a coupled system Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas

More information

Characterization of Left-Handed Materials

Characterization of Left-Handed Materials Characterization of Left-Handed Materials Massachusetts Institute of Technology 6.635 lecture notes 1 Introduction 1. How are they realized? 2. Why the denomination Left-Handed? 3. What are their properties?

More information

Formula Sheet. ( γ. 0 : X(t) = (A 1 + A 2 t) e 2 )t. + X p (t) (3) 2 γ Γ +t Γ 0 : X(t) = A 1 e + A 2 e + X p (t) (4) 2

Formula Sheet. ( γ. 0 : X(t) = (A 1 + A 2 t) e 2 )t. + X p (t) (3) 2 γ Γ +t Γ 0 : X(t) = A 1 e + A 2 e + X p (t) (4) 2 Formula Sheet The differential equation Has the general solutions; with ẍ + γẋ + ω 0 x = f cos(ωt + φ) (1) γ ( γ )t < ω 0 : X(t) = A 1 e cos(ω 0 t + β) + X p (t) () γ = ω ( γ 0 : X(t) = (A 1 + A t) e )t

More information

Cold plasma waves. Waves in non-magnetized plasma Cold plasma dispersion equation Cold plasma wave modes

Cold plasma waves. Waves in non-magnetized plasma Cold plasma dispersion equation Cold plasma wave modes Cold plasma waves Waves in non-magnetized plasma Cold plasma dispersion equation Cold plasma wave modes EM wave propagation through and interaction with plasmas belong to central issues of plasma physics.

More information

Full-wave Simulations of Lower Hybrid Wave Propagation in the EAST Tokamak

Full-wave Simulations of Lower Hybrid Wave Propagation in the EAST Tokamak Full-wave Simulations of Lower Hybrid Wave Propagation in the EAST Tokamak P. T. BONOLI, J. P. LEE, S. SHIRAIWA, J. C. WRIGHT, MIT-PSFC, B. DING, C. YANG, CAS-IPP, Hefei 57 th Annual Meeting of the APS

More information

I. INTRODUCTION AND HISTORICAL PERSPECTIVE

I. INTRODUCTION AND HISTORICAL PERSPECTIVE I. INTRODUCTION AND HISTORICAL PERSPECTIVE A. Failures of Classical Physics At the end of the 19th century, physics was described via two main approaches. Matter was described by Newton s laws while radiation

More information

Two ion species studies in LAPD * Ion-ion Hybrid Alfvén Wave Resonator

Two ion species studies in LAPD * Ion-ion Hybrid Alfvén Wave Resonator Two ion species studies in LAPD * Ion-ion Hybrid Alfvén Wave Resonator G. J. Morales, S. T. Vincena, J. E. Maggs and W. A. Farmer UCLA Experiments performed at the Basic Plasma Science Facility (BaPSF)

More information

Waves in Linear Optical Media

Waves in Linear Optical Media 1/53 Waves in Linear Optical Media Sergey A. Ponomarenko Dalhousie University c 2009 S. A. Ponomarenko Outline Plane waves in free space. Polarization. Plane waves in linear lossy media. Dispersion relations

More information

MODELING THE ELECTROMAGNETIC FIELD

MODELING THE ELECTROMAGNETIC FIELD MODELING THE ELECTROMAGNETIC FIELD IN ANISOTROPIC INHOMOGENEOUS MAGNETIZED PLASMA OF ECR ION SOURCES G. Torrisi (1), D. Mascali (1), A. Galatà (2), G. Castro (1), L. Celona (1), L. Neri (1), G. Sorbello

More information

CHAPTER 9 ELECTROMAGNETIC WAVES

CHAPTER 9 ELECTROMAGNETIC WAVES CHAPTER 9 ELECTROMAGNETIC WAVES Outlines 1. Waves in one dimension 2. Electromagnetic Waves in Vacuum 3. Electromagnetic waves in Matter 4. Absorption and Dispersion 5. Guided Waves 2 Skip 9.1.1 and 9.1.2

More information

Measurements of rotational transform due to noninductive toroidal current using motional Stark effect spectroscopy in the Large Helical Device

Measurements of rotational transform due to noninductive toroidal current using motional Stark effect spectroscopy in the Large Helical Device REVIEW OF SCIENTIFIC INSTRUMENTS 76, 053505 2005 Measurements of rotational transform due to noninductive toroidal current using motional Stark effect spectroscopy in the Large Helical Device K. Ida, a

More information

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces Lecture 5: Crystal Optics Outline 1 Homogeneous, Anisotropic Media 2 Crystals 3 Plane Waves in Anisotropic Media 4 Wave Propagation in Uniaxial Media 5 Reflection and Transmission at Interfaces Christoph

More information

Constructive vs. destructive interference; Coherent vs. incoherent interference

Constructive vs. destructive interference; Coherent vs. incoherent interference Constructive vs. destructive interference; Coherent vs. incoherent interference Waves that combine in phase add up to relatively high irradiance. = Constructive interference (coherent) Waves that combine

More information

Electron Cyclotron Emission Simulation from TCABR Plasmas

Electron Cyclotron Emission Simulation from TCABR Plasmas 1602 Brazilian Journal of Physics, vol. 34, no. 4B, December, 2004 Electron Cyclotron Emission Simulation from TCABR Plasmas Eduardo H. Lyvio and P. R. da S. Rosa Departamento de Física, UFMS, Caixa Postal

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 17

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 17 ECE 634 Intermediate EM Waves Fall 16 Prof. David R. Jacson Dept. of ECE Notes 17 1 General Plane Waves General form of plane wave: E( xz,, ) = Eψ ( xz,, ) where ψ ( xz,, ) = e j( xx+ + zz) The wavenumber

More information

Supplementary Information

Supplementary Information 1 Supplementary Information 3 Supplementary Figures 4 5 6 7 8 9 10 11 Supplementary Figure 1. Absorbing material placed between two dielectric media The incident electromagnetic wave propagates in stratified

More information

Plasma Effects. Massimo Ricotti. University of Maryland. Plasma Effects p.1/17

Plasma Effects. Massimo Ricotti. University of Maryland. Plasma Effects p.1/17 Plasma Effects p.1/17 Plasma Effects Massimo Ricotti ricotti@astro.umd.edu University of Maryland Plasma Effects p.2/17 Wave propagation in plasma E = 4πρ e E = 1 c B t B = 0 B = 4πJ e c (Faraday law of

More information

Chapter 33. Electromagnetic Waves

Chapter 33. Electromagnetic Waves Chapter 33 Electromagnetic Waves Today s information age is based almost entirely on the physics of electromagnetic waves. The connection between electric and magnetic fields to produce light is own of

More information

Modeling Focused Beam Propagation in scattering media. Janaka Ranasinghesagara, Ph.D.

Modeling Focused Beam Propagation in scattering media. Janaka Ranasinghesagara, Ph.D. Modeling Focused Beam Propagation in scattering media Janaka Ranasinghesagara, Ph.D. Teaching Objectives The need for computational models of focused beam propagation in scattering media Introduction to

More information

Modal Phenomena of Surface and Bulk Polaritons in Magnetic-Semiconductor Superlattices

Modal Phenomena of Surface and Bulk Polaritons in Magnetic-Semiconductor Superlattices Modal Phenomena of Surface and Bulk Polaritons in Magnetic-Semiconductor Superlattices VLADIMIR R. TUZ, 1,2 ILLIA V. FEDORIN, 3 VOLODYMYR I. FESENKO 1,2,* 1 International Center of Future Science, State

More information

3. Maxwell's Equations and Light Waves

3. Maxwell's Equations and Light Waves 3. Maxwell's Equations and Light Waves Vector fields, vector derivatives and the 3D Wave equation Derivation of the wave equation from Maxwell's Equations Why light waves are transverse waves Why is the

More information

Anisotropic electron distribution functions and the transition between the Weibel and the whistler instabilities

Anisotropic electron distribution functions and the transition between the Weibel and the whistler instabilities Anisotropic electron distribution functions and the transition between the Weibel and the whistler instabilities F. Pegoraro, L. Palodhi, F. Califano 5 th INTERNATIONAL CONFERENCE ON THE FRONTIERS OF PLASMA

More information

Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX

Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX 1 Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX J.M. Canik 1), D.L. Brower 2), C. Deng 2), D.T. Anderson 1), F.S.B. Anderson 1), A.F.

More information

Simulation and Numerical Modeling of a Rectangular Patch Antenna Using Finite Difference Time Domain (FDTD) Method

Simulation and Numerical Modeling of a Rectangular Patch Antenna Using Finite Difference Time Domain (FDTD) Method Journal of Computer Science and Information Technology June 2014, Vol. 2, No. 2, pp. 01-08 ISSN: 2334-2366 (Print), 2334-2374 (Online) Copyright The Author(s). 2014. All Rights Reserved. Published by American

More information

Electromagnetic Waves Across Interfaces

Electromagnetic Waves Across Interfaces Lecture 1: Foundations of Optics Outline 1 Electromagnetic Waves 2 Material Properties 3 Electromagnetic Waves Across Interfaces 4 Fresnel Equations 5 Brewster Angle 6 Total Internal Reflection Christoph

More information

TURBULENT TRANSPORT THEORY

TURBULENT TRANSPORT THEORY ASDEX Upgrade Max-Planck-Institut für Plasmaphysik TURBULENT TRANSPORT THEORY C. Angioni GYRO, J. Candy and R.E. Waltz, GA The problem of Transport Transport is the physics subject which studies the physical

More information

Explanation of prompt growth of ECE signal in tokamak runaway electron experiments

Explanation of prompt growth of ECE signal in tokamak runaway electron experiments Chang Liu et al. 2nd IAEA TM on the Fusion Data Processing, Validation and Analysis 1 Explanation of prompt growth of ECE signal in tokamak runaway electron experiments Chang Liu 1, Lei Shi 2, Eero Hirvijoki

More information