Nonlinear Mixed Effects Models

Size: px
Start display at page:

Download "Nonlinear Mixed Effects Models"

Transcription

1 Nonlinear Mixed Effects Modeling Department of Mathematics Center for Research in Scientific Computation Center for Quantitative Sciences in Biomedicine North Carolina State University July 31, 216

2 Introduction Application of a mathematical model to longitudinal data requires that it is placed in a framework to acknowledge intra-subject variation measurement/assay errors model misspecification/numerical approximation Application of a mathematical model to data from multiple subjects requires that it is placed in a framework that not only recognizes within-subject variation, as above, but also inter-subject variation variation in dynamic parameters across the population (heterogeneity of subjects within the population)

3 An Example: Logistic Equation Our test model is the logistic equation dp dt = rp ( 1 P K The logistic equation (Verhulst model [1847]) is used to model population growth )

4 For our test case, data was generated using P() = 2, t =, 1, 2,..., 1 v k N(,.1) To create variability, 1 profiles were created with different parameters having a normal distribution with mean and covariance ( ) ( ) ( ) r µ = = Ω = K 2.2

5 Data 6 Population growth data for 1 groups 5 Population size time

6 Two Stage Method Two Stage Method Fit each individual profile find mean of estimates: µ = 1 N N i=1 q i find covariance of estimates: Cov(x, y) = E[xy] µ x µ y Fits Population size Model fits for two groups time

7 Two stage fits 6 Two stage population fits 5 Population size time

8 True ( ( ) r.725 = K) 2 ( ).5 Ω =.2 Two Stage Results ( ) ( ) r.7551 = K ( ) Ω =

9 Can we do better?

10 Nonlinear mixed effects models (Davidian/Giltinan95; Wu/Zhang6) are statistical models that are used to analyze repeated measure data, and a modeling framework involving both fixed-effects for population parameters and random effects incorporating uncertainty associated with inter- and intra-individual variability. Stage 1:(intra-individual variability - assay errors, model errors) y i,j = g(x i,j, φ i ) + e i,j, e i,j N(, σ 2 ) i = 1,..., N, j = 1,..., n i dx dt = f (t, x, u; φ), x() = x Stage 2: (inter-individual variability) φ i = h(θ, Z i, η i ); (log-normal ) φ i = θ exp(η i ), η i N(, Ω) Estimate population parameters: (θ, σ 2, Ω)

11 Maximum Likelihood Estimation Maximum likelihood estimation is a method to estimate parameters (θ, σ 2, Ω) in a statistical model. Maximizing likelihood maximizes the probability of the observed data under the resulting distribution. Maximize the marginal density N L(θ, σ 2, Ω) p 1 (Y ini η i, θ, σ 2 )p 2 (η i Ω)dη i i=1 where L is the population likelihood function, Y ij = [y i1,..., y ini ] represents all observations of the ith individual up to time t ij.

12 N L(θ, σ 2, Ω) p 1 (Y ini η i, θ, σ 2, d i )p 2 (η i Ω)dη i i=1 Assuming a normal conditional density, the first stage distribution is p 1 (y ini η i, θ, σ 2, d i ) n i j=1 exp( 1 2 et i,j R 1 i(j j 1) e i,j) 2πRi(j j 1) where e i,j = y i,j g(x i,j, φ i ) and R i(j j 1) = prediction covariance. The second stage distribution is p 2 (η i Ω) N(, Ω),

13 N L(θ, σ 2, Ω) = i=1 N i=1 p 1 (Y ini η i, θ, σ 2, d i )p 2 (η i Ω)dη i exp(l i )dη i, a posteriori log-likehood function for a random effect of the ith individual l i = 1 2 n i j=1 ( ) eij T R 1 i(j j 1) e ij + log 2πR i(j j 1) 1 2 ηt i Ω 1 η i 1 2 log 2πΩ

14 Logistic Equation True vs. NLME ( ) ( ) r.725 = vs. K 2 ( ( ) r.735 = K) NLME 2.46 ( ).5 Ω = vs..2 ( ) Ω NLME = Fits Population size NLME population fits time

15 Population Pharmacokinetic Study of Metformin Metformin is a commonly prescribed treatment for type 2 diabetes, with a poorly understood glucose-lowering action. A 16 subject study of a new 2mg extended release (XR) single dose oral formulation of metformin was carried out and plasma concentrations were collected over a 36 hour time frame (every half hour (first 3 hours and between hours 12 to 14); otherwise, every hour).

16 A Two Compartment Oral Absorption Model A simple two compartment model is used to describe the pharmacokinetics model of the single dose oral administration of Metformin.

17 Two Compartment Oral Absorption - Model d dt A a C A peripheral with observation equation k a = k a k V (k 12 + k e ) 21 V k 12 V k 21 log(c obs ) = log(c) + e, e N(, σ 2 ) Individual parameter vector (rate constants) φ i = θ exp(η i ), η i N(, Ω) A a C A peripheral

18 NLME population PK Concentration (mg/l) Predicted Conc. 2 2 Cpt Oral log additive time (h) Invidiual Predictions vs. Observations in log space Observed Conc.

19 How do we refine the model? Decompose the intra-individual variability into two components: model misspecification term representing the uncertainty associated with unknown or incorrectly specified dynamics measurement noise term dx = f (x, u, t, φ)dt + σdw Nonlinear Filtering

20 NLME - revisited The population likelihood N L(θ, σ 2, Ω) i=1 p 1 (Y ini η i, θ, σ 2, d i )p 2 (η i Ω)dη i where the first stage distribution is p 1 (y ini η i, θ, σ 2, d i ) n i j=1 Filtering Integration: (Overgaard5) exp( 1 2 et i,j R 1 i(j j 1) e i,j) 2πRi(j j 1) R i(j j 1) = H ij P i(j j 1) H T ij + σ 2 ŷ i(j j 1) = g( x i(j j 1), φ i ),

21 Two-Compartment Absorption Model- revisited Due to variable absorption, use a stochastic differential equation (SDE) model k a d A a C = k a A a k a V A a (k 12 + k e )C + k21 V A dt peri A peri k 12 VC k 21 A peri σ ka + σ Aa σ central σ peri dw t

22 SDE Model Calibration Concentration (mg/l Predicted EKF Conc. 2 Cpt Oral log additive EKF time (h) Invidiual EKF Predictions vs. Observations in log space Observed Conc. Concentration (mg/l Predicted UKF Conc. 2 Cpt Oral log additive UKF time (h) Invidiual UKF Predictions vs. Observations in log space Observed Conc. Figure: SDE Model Fit: EKF Figure: SDE Model Fit: UKF

23 A Structured Model for Absorption Rate Utilizing information from the SDE model, a structural model for absorption rate (Wiebull) is considered: k a = α ( 1 exp( (λ/t) K ) ) d dt A a C A peripheral k a = k a k V (k 12 + k e ) 21 V k 12 V k 21 A a C A peripheral

24 Wiebull Model Calibration Concentration (mg/l) Predicted Conc. 2 Cpt Oral log additive Wiebull time (h) Invidiual Predictions vs. Observations in log space Observed Conc.

25 SDE Model Calibration Conc (mg/l) Subject 1 data UKF +σ σ EKF +σ σ time (h) Figure: Subject one fits Figure: EKF vs. UKF prediction intervals

26 Conclusion Noise in Biology can present itself in many ways and the proper handling of this noise is important for both the methodologies and the modeling process. The use of nonlinear filters for the estimation of both state and parameters has shown encouraging results and presents advantages to classical approaches (ODE) in the context of nonlinear mixed effects model.

Estimation and Model Selection in Mixed Effects Models Part I. Adeline Samson 1

Estimation and Model Selection in Mixed Effects Models Part I. Adeline Samson 1 Estimation and Model Selection in Mixed Effects Models Part I Adeline Samson 1 1 University Paris Descartes Summer school 2009 - Lipari, Italy These slides are based on Marc Lavielle s slides Outline 1

More information

A matlab framework for estimation of NLME models using stochastic differential equations

A matlab framework for estimation of NLME models using stochastic differential equations Downloaded from orbit.dtu.dk on: Dec 16, 218 A matlab framework for estimation of NLME models using stochastic differential equations Mortensen, Stig Bousgaard; Klim, Søren; Dammann, Bernd; Kristensen,

More information

Description of UseCase models in MDL

Description of UseCase models in MDL Description of UseCase models in MDL A set of UseCases (UCs) has been prepared to illustrate how different modelling features can be implemented in the Model Description Language or MDL. These UseCases

More information

Non-Linear Mixed-Effects Models with Stochastic Differential Equations: Implementation of an Estimation Algorithm

Non-Linear Mixed-Effects Models with Stochastic Differential Equations: Implementation of an Estimation Algorithm Journal of Pharmacokinetics and Pharmacodynamics, Vol. 32, No. 1, February 2005 (Ó 2005) DOI: 10.1007/s10928-005-2104-x Non-Linear Mixed-Effects Models with Stochastic Differential Equations: Implementation

More information

1Non Linear mixed effects ordinary differential equations models. M. Prague - SISTM - NLME-ODE September 27,

1Non Linear mixed effects ordinary differential equations models. M. Prague - SISTM - NLME-ODE September 27, GDR MaMoVi 2017 Parameter estimation in Models with Random effects based on Ordinary Differential Equations: A bayesian maximum a posteriori approach. Mélanie PRAGUE, Daniel COMMENGES & Rodolphe THIÉBAUT

More information

The general concept of pharmacokinetics

The general concept of pharmacokinetics The general concept of pharmacokinetics Hartmut Derendorf, PhD University of Florida Pharmacokinetics the time course of drug and metabolite concentrations in the body Pharmacokinetics helps to optimize

More information

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems Integrating Mathematical and Statistical Models Recap of mathematical models Models and data Statistical models and sources of

More information

Reliability Monitoring Using Log Gaussian Process Regression

Reliability Monitoring Using Log Gaussian Process Regression COPYRIGHT 013, M. Modarres Reliability Monitoring Using Log Gaussian Process Regression Martin Wayne Mohammad Modarres PSA 013 Center for Risk and Reliability University of Maryland Department of Mechanical

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features. Yangxin Huang

Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features. Yangxin Huang Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features Yangxin Huang Department of Epidemiology and Biostatistics, COPH, USF, Tampa, FL yhuang@health.usf.edu January

More information

Dynamic System Identification using HDMR-Bayesian Technique

Dynamic System Identification using HDMR-Bayesian Technique Dynamic System Identification using HDMR-Bayesian Technique *Shereena O A 1) and Dr. B N Rao 2) 1), 2) Department of Civil Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India 1) ce14d020@smail.iitm.ac.in

More information

An Approach for Identifiability of Population Pharmacokinetic-Pharmacodynamic Models

An Approach for Identifiability of Population Pharmacokinetic-Pharmacodynamic Models An Approach for Identifiability of Population Pharmacokinetic-Pharmacodynamic Models Vittal Shivva 1 * Julia Korell 12 Ian Tucker 1 Stephen Duffull 1 1 School of Pharmacy University of Otago Dunedin New

More information

A Novel Screening Method Using Score Test for Efficient Covariate Selection in Population Pharmacokinetic Analysis

A Novel Screening Method Using Score Test for Efficient Covariate Selection in Population Pharmacokinetic Analysis A Novel Screening Method Using Score Test for Efficient Covariate Selection in Population Pharmacokinetic Analysis Yixuan Zou 1, Chee M. Ng 1 1 College of Pharmacy, University of Kentucky, Lexington, KY

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Jae-Kwang Kim Department of Statistics, Iowa State University Outline 1 Introduction 2 Observed likelihood 3 Mean Score

More information

Fitting PK Models with SAS NLMIXED Procedure Halimu Haridona, PPD Inc., Beijing

Fitting PK Models with SAS NLMIXED Procedure Halimu Haridona, PPD Inc., Beijing PharmaSUG China 1 st Conference, 2012 Fitting PK Models with SAS NLMIXED Procedure Halimu Haridona, PPD Inc., Beijing ABSTRACT Pharmacokinetic (PK) models are important for new drug development. Statistical

More information

Multicompartment Pharmacokinetic Models. Objectives. Multicompartment Models. 26 July Chapter 30 1

Multicompartment Pharmacokinetic Models. Objectives. Multicompartment Models. 26 July Chapter 30 1 Multicompartment Pharmacokinetic Models Objectives To draw schemes and write differential equations for multicompartment models To recognize and use integrated equations to calculate dosage regimens To

More information

1 Kalman Filter Introduction

1 Kalman Filter Introduction 1 Kalman Filter Introduction You should first read Chapter 1 of Stochastic models, estimation, and control: Volume 1 by Peter S. Maybec (available here). 1.1 Explanation of Equations (1-3) and (1-4) Equation

More information

Lecture 6: Bayesian Inference in SDE Models

Lecture 6: Bayesian Inference in SDE Models Lecture 6: Bayesian Inference in SDE Models Bayesian Filtering and Smoothing Point of View Simo Särkkä Aalto University Simo Särkkä (Aalto) Lecture 6: Bayesian Inference in SDEs 1 / 45 Contents 1 SDEs

More information

L06. LINEAR KALMAN FILTERS. NA568 Mobile Robotics: Methods & Algorithms

L06. LINEAR KALMAN FILTERS. NA568 Mobile Robotics: Methods & Algorithms L06. LINEAR KALMAN FILTERS NA568 Mobile Robotics: Methods & Algorithms 2 PS2 is out! Landmark-based Localization: EKF, UKF, PF Today s Lecture Minimum Mean Square Error (MMSE) Linear Kalman Filter Gaussian

More information

Beka 2 Cpt: Two Compartment Model - Loading Dose And Maintenance Infusion

Beka 2 Cpt: Two Compartment Model - Loading Dose And Maintenance Infusion MEDSCI 719 Pharmacometrics Beka 2 Cpt: Two Compartment Model - Loading Dose And Maintenance Infusion Objective 1. To observe the time course of drug concentration in the central and peripheral compartments

More information

A new iterated filtering algorithm

A new iterated filtering algorithm A new iterated filtering algorithm Edward Ionides University of Michigan, Ann Arbor ionides@umich.edu Statistics and Nonlinear Dynamics in Biology and Medicine Thursday July 31, 2014 Overview 1 Introduction

More information

Lecture 25: Review. Statistics 104. April 23, Colin Rundel

Lecture 25: Review. Statistics 104. April 23, Colin Rundel Lecture 25: Review Statistics 104 Colin Rundel April 23, 2012 Joint CDF F (x, y) = P [X x, Y y] = P [(X, Y ) lies south-west of the point (x, y)] Y (x,y) X Statistics 104 (Colin Rundel) Lecture 25 April

More information

Accurate Maximum Likelihood Estimation for Parametric Population Analysis. Bob Leary UCSD/SDSC and LAPK, USC School of Medicine

Accurate Maximum Likelihood Estimation for Parametric Population Analysis. Bob Leary UCSD/SDSC and LAPK, USC School of Medicine Accurate Maximum Likelihood Estimation for Parametric Population Analysis Bob Leary UCSD/SDSC and LAPK, USC School of Medicine Why use parametric maximum likelihood estimators? Consistency: θˆ θ as N ML

More information

Information geometry for bivariate distribution control

Information geometry for bivariate distribution control Information geometry for bivariate distribution control C.T.J.Dodson + Hong Wang Mathematics + Control Systems Centre, University of Manchester Institute of Science and Technology Optimal control of stochastic

More information

Research Article. Jacob Leander, 1,2 Joachim Almquist, 1,3 Christine Ahlström, 4 Johan Gabrielsson, 5 and Mats Jirstrand 1,6

Research Article. Jacob Leander, 1,2 Joachim Almquist, 1,3 Christine Ahlström, 4 Johan Gabrielsson, 5 and Mats Jirstrand 1,6 The AAPS Journal ( # 2015) DOI: 10.1208/s12248-015-9718-8 Research Article Mixed Effects Modeling Using Stochastic Differential Equations: Illustrated by Pharmacokinetic Data of Nicotinic Acid in Obese

More information

Information in a Two-Stage Adaptive Optimal Design

Information in a Two-Stage Adaptive Optimal Design Information in a Two-Stage Adaptive Optimal Design Department of Statistics, University of Missouri Designed Experiments: Recent Advances in Methods and Applications DEMA 2011 Isaac Newton Institute for

More information

Sequential Monte Carlo Methods for Bayesian Computation

Sequential Monte Carlo Methods for Bayesian Computation Sequential Monte Carlo Methods for Bayesian Computation A. Doucet Kyoto Sept. 2012 A. Doucet (MLSS Sept. 2012) Sept. 2012 1 / 136 Motivating Example 1: Generic Bayesian Model Let X be a vector parameter

More information

A comparison of estimation methods in nonlinear mixed effects models using a blind analysis

A comparison of estimation methods in nonlinear mixed effects models using a blind analysis A comparison of estimation methods in nonlinear mixed effects models using a blind analysis Pascal Girard, PhD EA 3738 CTO, INSERM, University Claude Bernard Lyon I, Lyon France Mentré, PhD, MD Dept Biostatistics,

More information

Case Study in the Use of Bayesian Hierarchical Modeling and Simulation for Design and Analysis of a Clinical Trial

Case Study in the Use of Bayesian Hierarchical Modeling and Simulation for Design and Analysis of a Clinical Trial Case Study in the Use of Bayesian Hierarchical Modeling and Simulation for Design and Analysis of a Clinical Trial William R. Gillespie Pharsight Corporation Cary, North Carolina, USA PAGE 2003 Verona,

More information

Stat 579: Generalized Linear Models and Extensions

Stat 579: Generalized Linear Models and Extensions Stat 579: Generalized Linear Models and Extensions Linear Mixed Models for Longitudinal Data Yan Lu April, 2018, week 15 1 / 38 Data structure t1 t2 tn i 1st subject y 11 y 12 y 1n1 Experimental 2nd subject

More information

Plot of Laser Operating Current as a Function of Time Laser Test Data

Plot of Laser Operating Current as a Function of Time Laser Test Data Chapter Repeated Measures Data and Random Parameter Models Repeated Measures Data and Random Parameter Models Chapter Objectives Understand applications of growth curve models to describe the results of

More information

Nonparametric Drift Estimation for Stochastic Differential Equations

Nonparametric Drift Estimation for Stochastic Differential Equations Nonparametric Drift Estimation for Stochastic Differential Equations Gareth Roberts 1 Department of Statistics University of Warwick Brazilian Bayesian meeting, March 2010 Joint work with O. Papaspiliopoulos,

More information

Kalman Filtering in a Mass-Spring System

Kalman Filtering in a Mass-Spring System Department of Mathematics Center for Quantitative Sciences in Biomedicine North Carolina State University July 30, 2016 Practical Overview Goal: Implement Kalman filter for linear system 1. Solve a linear

More information

Modeling biological systems - The Pharmaco-Kinetic-Dynamic paradigm

Modeling biological systems - The Pharmaco-Kinetic-Dynamic paradigm Modeling biological systems - The Pharmaco-Kinetic-Dynamic paradigm Main features:. Time profiles and complex systems 2. Disturbed and sparse measurements 3. Mixed variabilities One of the most highly

More information

State Space Models for Wind Forecast Correction

State Space Models for Wind Forecast Correction for Wind Forecast Correction Valérie 1 Pierre Ailliot 2 Anne Cuzol 1 1 Université de Bretagne Sud 2 Université de Brest MAS - 2008/28/08 Outline 1 2 Linear Model : an adaptive bias correction Non Linear

More information

3 Results. Part I. 3.1 Base/primary model

3 Results. Part I. 3.1 Base/primary model 3 Results Part I 3.1 Base/primary model For the development of the base/primary population model the development dataset (for data details see Table 5 and sections 2.1 and 2.2), which included 1256 serum

More information

Exponential families also behave nicely under conditioning. Specifically, suppose we write η = (η 1, η 2 ) R k R p k so that

Exponential families also behave nicely under conditioning. Specifically, suppose we write η = (η 1, η 2 ) R k R p k so that 1 More examples 1.1 Exponential families under conditioning Exponential families also behave nicely under conditioning. Specifically, suppose we write η = η 1, η 2 R k R p k so that dp η dm 0 = e ηt 1

More information

Censoring mechanisms

Censoring mechanisms Censoring mechanisms Patrick Breheny September 3 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/23 Fixed vs. random censoring In the previous lecture, we derived the contribution to the likelihood

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

Monte Carlo in Bayesian Statistics

Monte Carlo in Bayesian Statistics Monte Carlo in Bayesian Statistics Matthew Thomas SAMBa - University of Bath m.l.thomas@bath.ac.uk December 4, 2014 Matthew Thomas (SAMBa) Monte Carlo in Bayesian Statistics December 4, 2014 1 / 16 Overview

More information

Modeling and Simulation for Determination of the Therapeutic Window of MK-2295: a TRPV1 Antagonist

Modeling and Simulation for Determination of the Therapeutic Window of MK-2295: a TRPV1 Antagonist Modeling and Simulation for Determination of the Therapeutic Window of MK-2295: a TRPV1 Antagonist William S. Denney *, Yaming Hang *, Marissa Dockendorf *, Chi-Chung Li *, Samer R. Eid *, Robert Valesky

More information

Goals. PSCI6000 Maximum Likelihood Estimation Multiple Response Model 2. Recap: MNL. Recap: MNL

Goals. PSCI6000 Maximum Likelihood Estimation Multiple Response Model 2. Recap: MNL. Recap: MNL Goals PSCI6000 Maximum Likelihood Estimation Multiple Response Model 2 Tetsuya Matsubayashi University of North Texas November 9, 2010 Learn multiple responses models that do not require the assumption

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Lecture 4: Numerical Solution of SDEs, Itô Taylor Series, Gaussian Approximations

Lecture 4: Numerical Solution of SDEs, Itô Taylor Series, Gaussian Approximations Lecture 4: Numerical Solution of SDEs, Itô Taylor Series, Gaussian Approximations Simo Särkkä Aalto University, Finland November 18, 2014 Simo Särkkä (Aalto) Lecture 4: Numerical Solution of SDEs November

More information

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems Hierarchical Statistical Models for Complex Data Structures Motivation Basic hierarchical model and assumptions Statistical inference

More information

ROBUST CONSTRAINED ESTIMATION VIA UNSCENTED TRANSFORMATION. Pramod Vachhani a, Shankar Narasimhan b and Raghunathan Rengaswamy a 1

ROBUST CONSTRAINED ESTIMATION VIA UNSCENTED TRANSFORMATION. Pramod Vachhani a, Shankar Narasimhan b and Raghunathan Rengaswamy a 1 ROUST CONSTRINED ESTIMTION VI UNSCENTED TRNSFORMTION Pramod Vachhani a, Shankar Narasimhan b and Raghunathan Rengaswamy a a Department of Chemical Engineering, Clarkson University, Potsdam, NY -3699, US.

More information

Stat 710: Mathematical Statistics Lecture 12

Stat 710: Mathematical Statistics Lecture 12 Stat 710: Mathematical Statistics Lecture 12 Jun Shao Department of Statistics University of Wisconsin Madison, WI 53706, USA Jun Shao (UW-Madison) Stat 710, Lecture 12 Feb 18, 2009 1 / 11 Lecture 12:

More information

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu Anwesan Pal:

More information

P321(b), Assignement 1

P321(b), Assignement 1 P31(b), Assignement 1 1 Exercise 3.1 (Fetter and Walecka) a) The problem is that of a point mass rotating along a circle of radius a, rotating with a constant angular velocity Ω. Generally, 3 coordinates

More information

Bayes Filter Reminder. Kalman Filter Localization. Properties of Gaussians. Gaussians. Prediction. Correction. σ 2. Univariate. 1 2πσ e.

Bayes Filter Reminder. Kalman Filter Localization. Properties of Gaussians. Gaussians. Prediction. Correction. σ 2. Univariate. 1 2πσ e. Kalman Filter Localization Bayes Filter Reminder Prediction Correction Gaussians p(x) ~ N(µ,σ 2 ) : Properties of Gaussians Univariate p(x) = 1 1 2πσ e 2 (x µ) 2 σ 2 µ Univariate -σ σ Multivariate µ Multivariate

More information

Population stochastic modelling (PSM) An R package for mixed-effects models based on stochastic differential equations

Population stochastic modelling (PSM) An R package for mixed-effects models based on stochastic differential equations computer methods and programs in biomedicine 94 (2009) 279 289 journal homepage: www.intl.elsevierhealth.com/journals/cmpb Population stochastic modelling (PSM) An R package for mixed-effects models based

More information

Image Alignment and Mosaicing Feature Tracking and the Kalman Filter

Image Alignment and Mosaicing Feature Tracking and the Kalman Filter Image Alignment and Mosaicing Feature Tracking and the Kalman Filter Image Alignment Applications Local alignment: Tracking Stereo Global alignment: Camera jitter elimination Image enhancement Panoramic

More information

Evaluation of the Fisher information matrix in nonlinear mixed eect models without linearization

Evaluation of the Fisher information matrix in nonlinear mixed eect models without linearization Evaluation of the Fisher information matrix in nonlinear mixed eect models without linearization Sebastian Ueckert, Marie-Karelle Riviere, and France Mentré INSERM, IAME, UMR 1137, F-75018 Paris, France;

More information

Pharmacometrics : Nonlinear mixed effect models in Statistics. Department of Statistics Ewha Womans University Eun-Kyung Lee

Pharmacometrics : Nonlinear mixed effect models in Statistics. Department of Statistics Ewha Womans University Eun-Kyung Lee Pharmacometrics : Nonlinear mixed effect models in Statistics Department of Statistics Ewha Womans University Eun-Kyung Lee 1 Clinical Trials Preclinical trial: animal study Phase I trial: First in human,

More information

Introduction to PK/PD modelling - with focus on PK and stochastic differential equations

Introduction to PK/PD modelling - with focus on PK and stochastic differential equations Downloaded from orbit.dtu.dk on: Feb 12, 2018 Introduction to PK/PD modelling - with focus on PK and stochastic differential equations Mortensen, Stig Bousgaard; Jónsdóttir, Anna Helga; Klim, Søren; Madsen,

More information

Restricted Maximum Likelihood in Linear Regression and Linear Mixed-Effects Model

Restricted Maximum Likelihood in Linear Regression and Linear Mixed-Effects Model Restricted Maximum Likelihood in Linear Regression and Linear Mixed-Effects Model Xiuming Zhang zhangxiuming@u.nus.edu A*STAR-NUS Clinical Imaging Research Center October, 015 Summary This report derives

More information

On a Data Assimilation Method coupling Kalman Filtering, MCRE Concept and PGD Model Reduction for Real-Time Updating of Structural Mechanics Model

On a Data Assimilation Method coupling Kalman Filtering, MCRE Concept and PGD Model Reduction for Real-Time Updating of Structural Mechanics Model On a Data Assimilation Method coupling, MCRE Concept and PGD Model Reduction for Real-Time Updating of Structural Mechanics Model 2016 SIAM Conference on Uncertainty Quantification Basile Marchand 1, Ludovic

More information

Lecture 22: A Population Growth Equation with Diffusion

Lecture 22: A Population Growth Equation with Diffusion M3 - ADVANCED ENGINEERING MATHEMATICS Lecture : A Population Gth Equation with Diffusion The logistic population equation studied in ordinary differential equations classes has the form: ( p (t) = rp(t)

More information

FDSA and SPSA in Simulation-Based Optimization Stochastic approximation provides ideal framework for carrying out simulation-based optimization

FDSA and SPSA in Simulation-Based Optimization Stochastic approximation provides ideal framework for carrying out simulation-based optimization FDSA and SPSA in Simulation-Based Optimization Stochastic approximation provides ideal framework for carrying out simulation-based optimization Rigorous means for handling noisy loss information inherent

More information

Mini-Course 07 Kalman Particle Filters. Henrique Massard da Fonseca Cesar Cunha Pacheco Wellington Bettencurte Julio Dutra

Mini-Course 07 Kalman Particle Filters. Henrique Massard da Fonseca Cesar Cunha Pacheco Wellington Bettencurte Julio Dutra Mini-Course 07 Kalman Particle Filters Henrique Massard da Fonseca Cesar Cunha Pacheco Wellington Bettencurte Julio Dutra Agenda State Estimation Problems & Kalman Filter Henrique Massard Steady State

More information

TSRT14: Sensor Fusion Lecture 8

TSRT14: Sensor Fusion Lecture 8 TSRT14: Sensor Fusion Lecture 8 Particle filter theory Marginalized particle filter Gustaf Hendeby gustaf.hendeby@liu.se TSRT14 Lecture 8 Gustaf Hendeby Spring 2018 1 / 25 Le 8: particle filter theory,

More information

Stochastic Gradient Descent in Continuous Time

Stochastic Gradient Descent in Continuous Time Stochastic Gradient Descent in Continuous Time Justin Sirignano University of Illinois at Urbana Champaign with Konstantinos Spiliopoulos (Boston University) 1 / 27 We consider a diffusion X t X = R m

More information

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak 1 Introduction. Random variables During the course we are interested in reasoning about considered phenomenon. In other words,

More information

Introduction to Mobile Robotics Bayes Filter Kalman Filter

Introduction to Mobile Robotics Bayes Filter Kalman Filter Introduction to Mobile Robotics Bayes Filter Kalman Filter Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Giorgio Grisetti, Kai Arras 1 Bayes Filter Reminder 1. Algorithm Bayes_filter( Bel(x),d ):

More information

STA216: Generalized Linear Models. Lecture 1. Review and Introduction

STA216: Generalized Linear Models. Lecture 1. Review and Introduction STA216: Generalized Linear Models Lecture 1. Review and Introduction Let y 1,..., y n denote n independent observations on a response Treat y i as a realization of a random variable Y i In the general

More information

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) =

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) = Until now we have always worked with likelihoods and prior distributions that were conjugate to each other, allowing the computation of the posterior distribution to be done in closed form. Unfortunately,

More information

Joint Modeling of Longitudinal Item Response Data and Survival

Joint Modeling of Longitudinal Item Response Data and Survival Joint Modeling of Longitudinal Item Response Data and Survival Jean-Paul Fox University of Twente Department of Research Methodology, Measurement and Data Analysis Faculty of Behavioural Sciences Enschede,

More information

Nonlinear Filtering. With Polynomial Chaos. Raktim Bhattacharya. Aerospace Engineering, Texas A&M University uq.tamu.edu

Nonlinear Filtering. With Polynomial Chaos. Raktim Bhattacharya. Aerospace Engineering, Texas A&M University uq.tamu.edu Nonlinear Filtering With Polynomial Chaos Raktim Bhattacharya Aerospace Engineering, Texas A&M University uq.tamu.edu Nonlinear Filtering with PC Problem Setup. Dynamics: ẋ = f(x, ) Sensor Model: ỹ = h(x)

More information

Lecture 7: Optimal Smoothing

Lecture 7: Optimal Smoothing Department of Biomedical Engineering and Computational Science Aalto University March 17, 2011 Contents 1 What is Optimal Smoothing? 2 Bayesian Optimal Smoothing Equations 3 Rauch-Tung-Striebel Smoother

More information

Topic 12 Overview of Estimation

Topic 12 Overview of Estimation Topic 12 Overview of Estimation Classical Statistics 1 / 9 Outline Introduction Parameter Estimation Classical Statistics Densities and Likelihoods 2 / 9 Introduction In the simplest possible terms, the

More information

Chapter 3 - Temporal processes

Chapter 3 - Temporal processes STK4150 - Intro 1 Chapter 3 - Temporal processes Odd Kolbjørnsen and Geir Storvik January 23 2017 STK4150 - Intro 2 Temporal processes Data collected over time Past, present, future, change Temporal aspect

More information

5 Applying the Fokker-Planck equation

5 Applying the Fokker-Planck equation 5 Applying the Fokker-Planck equation We begin with one-dimensional examples, keeping g = constant. Recall: the FPE for the Langevin equation with η(t 1 )η(t ) = κδ(t 1 t ) is = f(x) + g(x)η(t) t = x [f(x)p

More information

Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling

Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling Jae-Kwang Kim 1 Iowa State University June 26, 2013 1 Joint work with Shu Yang Introduction 1 Introduction

More information

Partial Differential Equations (PDEs)

Partial Differential Equations (PDEs) 10.34 Numerical Methods Applied to Chemical Engineering Fall 2015 Final Exam Review Partial Differential Equations (PDEs) 1. Classification (a) Many PDEs encountered by chemical engineers are second order

More information

A review on estimation of stochastic differential equations for pharmacokinetic/pharmacodynamic models

A review on estimation of stochastic differential equations for pharmacokinetic/pharmacodynamic models A review on estimation of stochastic differential equations for pharmacokinetic/pharmacodynamic models Sophie Donnet, Adeline Samson To cite this version: Sophie Donnet, Adeline Samson. A review on estimation

More information

Robust control and applications in economic theory

Robust control and applications in economic theory Robust control and applications in economic theory In honour of Professor Emeritus Grigoris Kalogeropoulos on the occasion of his retirement A. N. Yannacopoulos Department of Statistics AUEB 24 May 2013

More information

Estimating terminal half life by non-compartmental methods with some data below the limit of quantification

Estimating terminal half life by non-compartmental methods with some data below the limit of quantification Paper SP08 Estimating terminal half life by non-compartmental methods with some data below the limit of quantification Jochen Müller-Cohrs, CSL Behring, Marburg, Germany ABSTRACT In pharmacokinetic studies

More information

State Estimation for Nonlinear Systems using Restricted Genetic Optimization

State Estimation for Nonlinear Systems using Restricted Genetic Optimization State Estimation for Nonlinear Systems using Restricted Genetic Optimization Santiago Garrido, Luis Moreno, and Carlos Balaguer Universidad Carlos III de Madrid, Leganés 28911, Madrid (Spain) Abstract.

More information

Mortality Surface by Means of Continuous Time Cohort Models

Mortality Surface by Means of Continuous Time Cohort Models Mortality Surface by Means of Continuous Time Cohort Models Petar Jevtić, Elisa Luciano and Elena Vigna Longevity Eight 2012, Waterloo, Canada, 7-8 September 2012 Outline 1 Introduction Model construction

More information

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions Pattern Recognition and Machine Learning Chapter 2: Probability Distributions Cécile Amblard Alex Kläser Jakob Verbeek October 11, 27 Probability Distributions: General Density Estimation: given a finite

More information

Consumption. Consider a consumer with utility. v(c τ )e ρ(τ t) dτ.

Consumption. Consider a consumer with utility. v(c τ )e ρ(τ t) dτ. Consumption Consider a consumer with utility v(c τ )e ρ(τ t) dτ. t He acts to maximize expected utility. Utility is increasing in consumption, v > 0, and concave, v < 0. 1 The utility from consumption

More information

Bayesian Regression (1/31/13)

Bayesian Regression (1/31/13) STA613/CBB540: Statistical methods in computational biology Bayesian Regression (1/31/13) Lecturer: Barbara Engelhardt Scribe: Amanda Lea 1 Bayesian Paradigm Bayesian methods ask: given that I have observed

More information

Data assimilation with and without a model

Data assimilation with and without a model Data assimilation with and without a model Tyrus Berry George Mason University NJIT Feb. 28, 2017 Postdoc supported by NSF This work is in collaboration with: Tim Sauer, GMU Franz Hamilton, Postdoc, NCSU

More information

An effective approach for obtaining optimal sampling windows for population pharmacokinetic experiments

An effective approach for obtaining optimal sampling windows for population pharmacokinetic experiments An effective approach for obtaining optimal sampling windows for population pharmacokinetic experiments Kayode Ogungbenro and Leon Aarons Centre for Applied Pharmacokinetic Research School of Pharmacy

More information

Stochastic Calculus. Kevin Sinclair. August 2, 2016

Stochastic Calculus. Kevin Sinclair. August 2, 2016 Stochastic Calculus Kevin Sinclair August, 16 1 Background Suppose we have a Brownian motion W. This is a process, and the value of W at a particular time T (which we write W T ) is a normally distributed

More information

Example using R: Heart Valves Study

Example using R: Heart Valves Study Example using R: Heart Valves Study Goal: Show that the thrombogenicity rate (TR) is less than two times the objective performance criterion R and WinBUGS Examples p. 1/27 Example using R: Heart Valves

More information

Gaussian processes for inference in stochastic differential equations

Gaussian processes for inference in stochastic differential equations Gaussian processes for inference in stochastic differential equations Manfred Opper, AI group, TU Berlin November 6, 2017 Manfred Opper, AI group, TU Berlin (TU Berlin) inference in SDE November 6, 2017

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Le Song Machine Learning I CSE 6740, Fall 2013 Naïve Bayes classifier Still use Bayes decision rule for classification P y x = P x y P y P x But assume p x y = 1 is fully factorized

More information

F. Combes (1,2,3) S. Retout (2), N. Frey (2) and F. Mentré (1) PODE 2012

F. Combes (1,2,3) S. Retout (2), N. Frey (2) and F. Mentré (1) PODE 2012 Prediction of shrinkage of individual parameters using the Bayesian information matrix in nonlinear mixed-effect models with application in pharmacokinetics F. Combes (1,2,3) S. Retout (2), N. Frey (2)

More information

Model comparison and selection

Model comparison and selection BS2 Statistical Inference, Lectures 9 and 10, Hilary Term 2008 March 2, 2008 Hypothesis testing Consider two alternative models M 1 = {f (x; θ), θ Θ 1 } and M 2 = {f (x; θ), θ Θ 2 } for a sample (X = x)

More information

Pattern Recognition and Machine Learning. Bishop Chapter 6: Kernel Methods

Pattern Recognition and Machine Learning. Bishop Chapter 6: Kernel Methods Pattern Recognition and Machine Learning Chapter 6: Kernel Methods Vasil Khalidov Alex Kläser December 13, 2007 Training Data: Keep or Discard? Parametric methods (linear/nonlinear) so far: learn parameter

More information

Bayesian Inference for directional data through ABC and homogeneous proper scoring rules

Bayesian Inference for directional data through ABC and homogeneous proper scoring rules Bayesian Inference for directional data through ABC and homogeneous proper scoring rules Monica Musio* Dept. of Mathematics and Computer Science, University of Cagliari, Italy - email: mmusio@unica.it

More information

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015 Sequence Modelling with Features: Linear-Chain Conditional Random Fields COMP-599 Oct 6, 2015 Announcement A2 is out. Due Oct 20 at 1pm. 2 Outline Hidden Markov models: shortcomings Generative vs. discriminative

More information

Nonlinear mixed-effects models using Stata

Nonlinear mixed-effects models using Stata Nonlinear mixed-effects models using Stata Yulia Marchenko Executive Director of Statistics StataCorp LP 2017 German Stata Users Group meeting Yulia Marchenko (StataCorp) 1 / 48 Outline What is NLMEM?

More information

Interest Rate Models:

Interest Rate Models: 1/17 Interest Rate Models: from Parametric Statistics to Infinite Dimensional Stochastic Analysis René Carmona Bendheim Center for Finance ORFE & PACM, Princeton University email: rcarmna@princeton.edu

More information

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics)

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Probability quantifies randomness and uncertainty How do I estimate the normalization and logarithmic slope of a X ray continuum, assuming

More information

nonlinear mixed effect model fitting with nlme

nonlinear mixed effect model fitting with nlme nonlinear mixed effect model fitting with nlme David Lamparter March 29, 2010 David Lamparter nonlinear mixed effect model fitting with nlme Purpose of nonlinear mixed effects modeling nonlinearity fitting

More information

Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit

Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit Evan Kwiatkowski, Jan Mandel University of Colorado Denver December 11, 2014 OUTLINE 2 Data Assimilation Bayesian Estimation

More information

Learning Gaussian Process Models from Uncertain Data

Learning Gaussian Process Models from Uncertain Data Learning Gaussian Process Models from Uncertain Data Patrick Dallaire, Camille Besse, and Brahim Chaib-draa DAMAS Laboratory, Computer Science & Software Engineering Department, Laval University, Canada

More information