Filamentation of femtosecond nondiffracting beams Applications to laser ablation

Size: px
Start display at page:

Download "Filamentation of femtosecond nondiffracting beams Applications to laser ablation"

Transcription

1 Filamentation of femtosecond nondiffracting beams Applications to laser ablation F. Courvoisier, C. Xie, A. Mathis, J. Zhang, L. Froehly, V. Jukna, L. Furfaro, M. Jacquot, R. Giust, P.-A. Lacourt, A. Couairon, J. M. Dudley FEMTO-ST Institute University of Franche-Comté Besançon, France Center for Theoretical Physics Ecole Polytechnique Palaiseau, France

2 Femtosecond laser ablation is not a direct process. I~10 12 to W/cm^2 Energy deposition via ionization Material coupling Gatass,R and Mazur,E. Nature Photonics,2,219 (2008) 2

3 Motivations Femtosecond lasers have enabled significant progresses for precision micro and nanofabrication with ablation accuracy down to ~ nm. But the extent of laser ablation with high accuracy is limited to surface nanocraters or spherical nanovoids in the bulk of transparent materials. 2 µm 1 µm McLeod and Arnold, Nature Nanotech. 3, 413 (2008) Juodkazis et al, Phys. Rev. Lett (2006) 3

4 Motivations We aim at fabricating much deeper structures. Nanofluidics Glass panels Nanophotonics Precision mechanisms The control of the longitudinal profile of ablation structures during drilling and dicing is a key technological issue. 4

5 Motivations - drilling in transparent materials Need to control the beam propagation and energy deposition Need to deal with the nonlinear propagation. 5

6 Deep drilling with Gaussian beams Weakly focused Gaussian beams yield pulse spatio-temporal distorsions (filamentation, splitting ). Self-focusing Plasma Absorption & Diffraction Sudrie et al, Phys. Rev. Lett. 89, (2002) 6

7 Outline Main Objective: we show that the use of stationary regimes of filamentation allows a higher degree of control of the energy deposition process. Non diffracting Bessel beams for high aspect ratio drilling Conical structure Accelerating beams for laser machining of curved profiles Caustic structure 7

8 Beam shaping toolbox Bessel beams SLM Fourier filtering 800 nm 5 KHz 100 fs SLM image Accelerating beams High-quality beams 1-2 µm spot size High angles (up to 50 ) 8

9 Outline Non diffracting Bessel beams for high aspect ratio drilling Conical structure 9

10 Diffraction-free Bessel beams Longitudinally extended Bessel beams are an invariant solution to the wave equation Generated from a superposition of plane waves by an axicon 10

11 What matters is not the intensity distribution The conical structure can be a stationary solution of the nonlinear propagation AND an attractor of the filamentation regime. 2 filamentation regimes at high intensity Plasma density Plasma density Non-stationary (periodic peaks) Polesana et al, Phys. Rev. A. 77, (2008) Stationary (absence of pulse dynamics) 11

12 What matters is not the intensity distribution The conical structure can be a stationary solution of the nonlinear propagation AND an attractor. Water assisted drilling in glass with fs Bessel beams 2 µm Bhuyan et al,opt. Express 18, 566 (2010) Plasma density Plasma density 3µm Non-stationary (periodic peaks) Polesana et al, Phys. Rev. A. 77, (2008) Stationary (absence of pulse dynamics) 12

13 Experimental setup High conical angles allow us to maintain a stationary regime Virtual axicon Bhuyan et al, Appl. Phys. Lett., 97, (2010) Courvoisier et al, Opt. Lett., 34, 3163 (2009) 13

14 Single shot machining of glass (Corning 0211) Result 0.65 µj 0.85 µj aspect ratio =100:1 200 nm 330 nm 14

15 Through-channel with a single laser shot 3 µj single pulse Bhuyan et al, Appl. Phys. Lett., 97, (2010) Unexpectedly deep material extraction. Origin? 15

16 Numerical simulations (NLSE+plasma equation) We accurately reproduce our experimental results with 2 numerical models (NLSE or UPPE) Sudrie et al, Phys. Rev. Lett. 89, (2002) Couairon et al, Eur. Phys. J. Special Topics, 199,1 (2011) Zhang et al, in preparation Fluence Plasma density 16

17 Dense plasma formation Plasma densities are close to those observed during fs laser induced micro-explosions. This time on much longer propagation distances. 17

18 Potential practical applications Nanofluidics Nanophotonics Pitch: 0.8 µm Pitch: 1.6 µm Bhuyan et al, Appl. Phys. Lett., 97, (2010) 18

19 Outline Accelerating beams for laser machining of curved profiles Caustic structure 19

20 Accelerating beams Airy beams are (nondiffracting) solutions of the paraxial wave equation. Propagation Intensity Transverse dimension Siviloglou et al, Phys. Rev. Lett. 99, (2007) Airy beams follow a parabolic trajectory: they are one example of accelerating beam. 20

21 Accelerating beams Airy beams sustain curved & stationary filaments. BUT: paraxial trajectories, parabolic only Polynkin et al, Science 324, 229 (2009) Lotti et al, Phys. Rev. A 84, (2011) 21

22 Accelerating beams are caustics Accelerating beams can be viewed as caustics the boundary of an envelope of rays that forms a curve of concentrated light. The amplitude distribution is accurately described with catastrophe theory and allows us to calculate the phase mask. L. Froehly et al, Opt. Express (2011) E. Greenfield et al. Phys. Rev. Lett (2011) 22

23 Setup Beams are generated from the Fourier space 23

24 Arbitrary accelerating beams-nonparaxial regime Bending over more than 95 degrees Numeric Experiment Mathis et al, Opt. Lett., 38, 2218 (2013) 24

25 Arbitrary accelerating beams-nonparaxial regime The caustic approach allows us to design the phase mask to generate an accelerating beam with an arbitrary trajectory. Mathis et al, Opt. Lett., 38, 2218 (2013) 25

26 Spherical light Half-sphere with 50 µm radius 26

27 Setup Experimental 50% Propagation Transverse distance (µm) Beam cross section 3D View 27

28 Edge profiling 3D processing concept 28

29 Edge profiling 3D processing concept 29

30 Results on silicon 100 µm thick silicon slide initially cut squared 100 µm R=120 µm Mathis et al, Appl. Phys. Lett. 101, (2012) 30

31 Results on silicon quartic profile 100 µm R=120 µm Mathis et al, Appl. Phys. Lett. 101, (2012) 31

32 It also works for transparent materials diamond 100 µm 50 µm R=120 µm R=70 µm Mathis et al, Appl. Phys. Lett. 101, (2012) 32

33 Direct trench machining in silicon Mathis et al, Appl. Phys. Lett. 101, (2012) Debris distribution is highly asymmetric. 33

34 Analysis in terms of light propagation direction Surface trench opening determines the depth of the trench along the caustic trajectory. Intensity on top surface Mathis et al, JEOS:RP, (2013) 34

35 Analysis in terms of light propagation direction Surface trench opening determines the depth of the trench This is performed by the SIDE lobes, that are more intense on surface Mathis et al, JEOS:RP, (2013) 35

36 Conclusion Shaping light direction and addressing stationary filamentation regimes provides a novel degree of control for ultrafast laser micro and nanomachining. We have reported high aspect ratio drilling and curved edge profiling. Perspectives: - novel tool to create and manipulate plasmas - Curved nanochannels? 36

Intense femtosecond shaped laser beams for writing extended structures inside transparent dielectrics

Intense femtosecond shaped laser beams for writing extended structures inside transparent dielectrics Appl. Phys. A (2014) 114:143 149 DOI 10.1007/s00339-013-8133-1 INVITED PAPER Intense femtosecond shaped laser beams for writing extended structures inside transparent dielectrics Pavel Polynkin Received:

More information

Free-Space Data-Carrying Bendable Light Communications

Free-Space Data-Carrying Bendable Light Communications Free-Space Data-Carrying Bendable Light Communications Long Zhu, Andong Wang, Jian Wang* Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University

More information

Stelios Tzortzakis. Science Program, Texas A&M University at Qatar Institute of Electronic Structure and Laser, FORTH & University of Crete, Greece

Stelios Tzortzakis. Science Program, Texas A&M University at Qatar Institute of Electronic Structure and Laser, FORTH & University of Crete, Greece University of Crete Stelios Tzortzakis Science Program, Texas A&M University at Qatar Institute of Electronic Structure and Laser, FORTH & University of Crete, Greece Introduction o o Intense laser beams

More information

ACMAC s PrePrint Repository

ACMAC s PrePrint Repository ACMAC s PrePrint Repository Observation of self-accelerating Bessel-like optical beams along arbitrary trajectories Juanying Zhao and Peng Zhang and Dongmei Deng and Jingjiao Liu and Yuanmei Gao and Ioannis

More information

Airy beam induced optical routing

Airy beam induced optical routing Airy beam induced optical routing Patrick Rose, Falko Diebel, Martin Boguslawski, and Cornelia Denz Institut für Angewandte Physik and Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität

More information

Airy beam induced optical routing

Airy beam induced optical routing Airy beam induced optical routing Patrick Rose, Falko Diebel, Martin Boguslawski, and Cornelia Denz Institut für Angewandte Physik and Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität

More information

Atmospheric applications of laser filamentation from space

Atmospheric applications of laser filamentation from space Atmospheric applications of laser filamentation from space Vytautas Jukna, Arnaud Couairon, Carles Milián Centre de Physique théorique, CNRS École Polytechnique Palaiseau, France Christophe Praz, Leopold

More information

Semiconductor laser beam bending

Semiconductor laser beam bending Turkish Journal of Electrical Engineering & Computer Sciences http:// journals. tubitak. gov. tr/ elektrik/ Research Article Turk J Elec Eng & Comp Sci (2015) 23: 1257 1262 c TÜBİTAK doi:10.3906/elk-1303-143

More information

A Highly Adjustable Helical Beam: Design and Propagation Characteristic

A Highly Adjustable Helical Beam: Design and Propagation Characteristic A Highly Adjustable Helical Beam: Design and Propagation Characteristic Yuanhui Wen, Yujie Chen*, and Siyuan Yu State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics

More information

Stelios Tzortzakis. Science Program, Texas A&M University at Qatar Institute of Electronic Structure and Laser, FORTH, & University of Crete, Greece

Stelios Tzortzakis. Science Program, Texas A&M University at Qatar Institute of Electronic Structure and Laser, FORTH, & University of Crete, Greece University of Crete Stelios Tzortzakis Science Program, Texas A&M University at Qatar Institute of Electronic Structure and Laser, FORTH, & University of Crete, Greece Introduction o o THz science - Motivation

More information

I n 1992, Allen et al demonstrated that light beams with a phase singularity or vortex charge (i.e. orbital angular

I n 1992, Allen et al demonstrated that light beams with a phase singularity or vortex charge (i.e. orbital angular OPEN SUBJECT AREAS: NONLINEAR OPTICS LASER MATERIAL PROCESSING Tubular filamentation for laser material processing Chen Xie 1, Vytautas Jukna 2,3, Carles Milián 2, Remo Giust 1, Ismail Ouadghiri-Idrissi

More information

Incoherent self-accelerating beams

Incoherent self-accelerating beams Research Article Vol. 2, No. 10 / October 2015 / Optica 886 Incoherent self-accelerating beams YAAKOV LUMER, 1 YI LIANG, 2,3 RAN SCHLEY, 1 IDO KAMINER, 1 ELAD GREENFIELD, 1 DAOHONG SONG, 2 XINZHENG ZHANG,

More information

Transverse intensity profile of an intense femtosecond Airy laser beam in air. 38 OPN Optics & Photonics News

Transverse intensity profile of an intense femtosecond Airy laser beam in air. 38 OPN Optics & Photonics News Transverse intensity profile of an intense femtosecond Airy laser beam in air. 38 OPN Optics & Photonics News www.osa-opn.org 1047-6938/10/09/0038/6-$15.00 OSA Extreme Nonlinear Optics with Ultra-Intense

More information

Self-accelerating self-trapped nonlinear beams of Maxwell's equations

Self-accelerating self-trapped nonlinear beams of Maxwell's equations Self-accelerating self-trapped nonlinear beams of Maxwell's equations Ido Kaminer, Jonathan Nemirovsky, and Mordechai Segev * Physics Department and Solid State Institute, Technion, 2011, Haifa 32000,

More information

Nondiffracting accelerating waves: Weber waves and parabolic momentum

Nondiffracting accelerating waves: Weber waves and parabolic momentum PAPER OPEN ACCESS Nondiffracting accelerating waves: Weber waves and parabolic momentum To cite this article: Miguel A Bandres and B M Rodríguez-Lara 2013 New J. Phys. 15 013054 View the article online

More information

Miguel A. Bandres, Ido Kaminer, Matthew S. Mills, B.M. Rodríguez-Lara, Elad Greenfield, Morderchai Segev and Demetrios N.

Miguel A. Bandres, Ido Kaminer, Matthew S. Mills, B.M. Rodríguez-Lara, Elad Greenfield, Morderchai Segev and Demetrios N. Miguel A. Bandres, Ido Kaminer, Matthew S. Mills, B.M. Rodrígue-Lara, Elad Greenfield, Morderchai Segev and Demetrios N. Christodoulides Accelerati Optical Beam Optical Beam Thanks to their unique interference,

More information

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida Optical and Photonic Glasses : Femtosecond Laser Irradiation and Acoustooptic Effects Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Femto second

More information

SPECTRAL GENERATION AND CONTROL OF LINEAR AND NONLINEAR SELF-ACCELERATING BEAMS AND PULSES

SPECTRAL GENERATION AND CONTROL OF LINEAR AND NONLINEAR SELF-ACCELERATING BEAMS AND PULSES Université du Québec Institut National de la Recherche Scientifique (INRS) Centre Énergie, Matériaux et Télécommunications (EMT) SPECTRAL GENERATION AND CONTROL OF LINEAR AND NONLINEAR SELF-ACCELERATING

More information

A short tutorial on optical rogue waves

A short tutorial on optical rogue waves A short tutorial on optical rogue waves John M Dudley Institut FEMTO-ST CNRS-Université de Franche-Comté Besançon, France Experiments in collaboration with the group of Guy Millot Institut Carnot de Bourgogne

More information

Assessment of Threshold for Nonlinear Effects in Ibsen Transmission Gratings

Assessment of Threshold for Nonlinear Effects in Ibsen Transmission Gratings Assessment of Threshold for Nonlinear Effects in Ibsen Transmission Gratings Temple University 13th & Norris Street Philadelphia, PA 19122 T: 1-215-204-1052 contact: johanan@temple.edu http://www.temple.edu/capr/

More information

Finite-energy, accelerating Bessel pulses

Finite-energy, accelerating Bessel pulses Finite-energy, accelerating Bessel pulses M. Clerici 1,5, D. Faccio 1,2,5,, A. Lotti 1,5, E. Rubino 1,5,O. Jedrkiewicz 1,5, J. Biegert 2,3, P. Di Trapani 1,4,5 1 CNISM and Department of Physics and Mathematics,

More information

Obstacle evasion in free space optical communications utilizing Airy beams

Obstacle evasion in free space optical communications utilizing Airy beams Obstacle evasion in free space optical communications utilizing Airy beams Guoxuan Zhu 1,, Yuanhui Wen 1,, Xiong Wu 1,, Yujie Chen 1,*, Jie Liu 1, and Siyuan Yu 1,2 1 State Key Laboratory of Optoelectronic

More information

Airy beams generated by a binary phase element made of polymer-dispersed liquid crystals

Airy beams generated by a binary phase element made of polymer-dispersed liquid crystals Airy beams generated by a binary phase element made of polymer-dispersed liquid crystals H. T. Dai, 1,2 X. W. Sun, 1,* D. Luo, 1 and Y. J. Liu 3 1 School of Electrical and Electronic Engineering, Nanyang

More information

arxiv: v1 [physics.optics] 25 Mar 2013

arxiv: v1 [physics.optics] 25 Mar 2013 arxiv:1303.6320v1 [physics.optics] 25 Mar 2013 Three-dimensional Accelerating Electromagnetic Waves Miguel A. Bandres, a,1 Miguel A. Alonso, b Ido Kaminer c and Mordechai Segev c a Instituto Nacional de

More information

Dynamics of filament formation in a Kerr medium (with Erratum)

Dynamics of filament formation in a Kerr medium (with Erratum) University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Martin Centurion Publications Research Papers in Physics and Astronomy 2005 Dynamics of filament formation in a Kerr medium

More information

Three-dimensional accelerating electromagnetic waves

Three-dimensional accelerating electromagnetic waves Three-dimensional accelerating electromagnetic waves Miguel A. Bandres, 1, Miguel A. Alonso, 2 Ido Kaminer, 3 and Mordechai Segev 3 1 Instituto Nacional de Astrofísica, Óptica y Electrónica Calle Luis

More information

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Jyhpyng Wang ( ) Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National

More information

Dynamics of accelerating Bessel solutions of Maxwell s equations

Dynamics of accelerating Bessel solutions of Maxwell s equations Research Article Vol. 33, No. 10 / October 2016 / Journal of the Optical Society of America A 2047 Dynamics of accelerating Bessel solutions of Maxwell s equations PARINAZ ALEAHMAD, 1 HECTOR MOYA CESSA,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11840 Section 1. Provides an analytical derivation of the Schrödinger equation or the Helmholtz equation from the Klein-Gordon equation for electrons. Section 2 provides a mathematical

More information

Laser-based proton sources for medical applications

Laser-based proton sources for medical applications Laser-based proton sources for medical applications V. Yu. Bychenkov, A. V. Brantov Lebedev Physics Institute, Moscow Center for Fundamental and Applied Research (CFAR), VNIIA, ROSATOM, Moscow ICAN Scientific

More information

Laser matter interaction

Laser matter interaction Laser matter interaction PH413 Lasers & Photonics Lecture 26 Why study laser matter interaction? Fundamental physics Chemical analysis Material processing Biomedical applications Deposition of novel structures

More information

Applications of SLM in Laser Surface Engineering

Applications of SLM in Laser Surface Engineering Applications of SLM in Laser Surface Engineering B. Neuenschwander, T. Kramer, S. Remund Bern Bern University of of Applied Sciences / Institute for for Applied Laser, Laser, Photonics and and Surface

More information

Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging G. Golovin 1, S. Banerjee 1, C. Liu 1, S. Chen 1, J. Zhang 1, B. Zhao 1, P. Zhang 1, M. Veale 2, M. Wilson

More information

66506, USA. Florida 32816, USA ABSTRACT 1. INTRODUCTION , (1)

66506, USA. Florida 32816, USA ABSTRACT 1. INTRODUCTION , (1) Control of multiphoton and avalanche ionization using an ultravioletinfrared pulse train in femtosecond laser micro-/nano-machining of fused silica Xiaoming Yu a, Qiumei Bian a, Zenghu Chang b, P.B. Corkum

More information

Soliton pair generation in the interactions of Airy and nonlinear accelerating beams

Soliton pair generation in the interactions of Airy and nonlinear accelerating beams Soliton pair generation in the interactions of Airy and nonlinear accelerating beams Yiqi Zhang, 1,5 Milivoj Belić, 2,6 Zhenkun Wu, 1 Huaibin Zheng, 1 Keqing Lu, 3 Yuanyuan Li, 4 Yanpeng Zhang 1, 1 Key

More information

Laser-induced breakdown and damage in bulk transparent materials induced by tightly

Laser-induced breakdown and damage in bulk transparent materials induced by tightly Home Search Collections Journals About Contact us My IOPscience Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses This content has been

More information

Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme.

Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme. Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme. A.G. Khachatryan, F.A. van Goor, J.W.J. Verschuur and K.-J. Boller

More information

Computational Study on the Effect of the Pulse Length on Laser Ablation Processes

Computational Study on the Effect of the Pulse Length on Laser Ablation Processes Lasers in Manufacturing Conference 015 Computational Study on the Effect of the Pulse Length on Laser Ablation Processes "Stefan Tatra *, Rodrigo Gómez Vázquez, Andreas Otto" "Vienna University of Technology,

More information

Laser ion acceleration with low density targets: a new path towards high intensity, high energy ion beams

Laser ion acceleration with low density targets: a new path towards high intensity, high energy ion beams Laser ion acceleration with low density targets: a new path towards high intensity, high energy ion beams P. Antici 1,2,3, J.Boeker 4, F. Cardelli 1,S. Chen 2,J.L. Feugeas 5, F. Filippi 1, M. Glesser 2,3,

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Application of nondiffracting beams to wireless optical communications

Application of nondiffracting beams to wireless optical communications Application of nondiffracting beams to wireless optical communications V. Kollárová a, T. Medřík a, R. Čelechovský a, Z. Bouchal a O. Wilfert* b, Z. Kolka b a Faculty of Science, Palacký University, 17.

More information

Part 1: Fano resonances Part 2: Airy beams Part 3: Parity-time symmetric systems

Part 1: Fano resonances Part 2: Airy beams Part 3: Parity-time symmetric systems Lecture 3 Part 1: Fano resonances Part 2: Airy beams Part 3: Parity-time symmetric systems Yuri S. Kivshar Nonlinear Physics Centre, Australian National University, Canberra, Australia http://wwwrsphysse.anu.edu.au/nonlinear/

More information

Toward a high quality MeV electron source from a wakefield accelerator for ultrafast electron diffraction

Toward a high quality MeV electron source from a wakefield accelerator for ultrafast electron diffraction Toward a high quality MeV electron source from a wakefield accelerator for ultrafast electron diffraction Jérôme FAURE Laboratoire d Optique Appliquée Ecole Polytechnique Palaiseau, France UMR 7639 FemtoElec

More information

Direct spatiotemporal measurements of accelerating ultrashort Bessel-type light bullets

Direct spatiotemporal measurements of accelerating ultrashort Bessel-type light bullets Direct spatiotemporal measurements of accelerating ultrashort Bessel-type light bullets Heli Valtna-Lukner, 1,* Pamela Bowlan, 2 Madis Lõhmus, 1 Peeter Piksarv, 1 Rick Trebino, 2 and Peeter Saari 1,* 1

More information

Femtosecond laser fabrication of micro and nano-disks in single layer graphene using vortex

Femtosecond laser fabrication of micro and nano-disks in single layer graphene using vortex Femtosecond laser fabrication of micro and nano-disks in single layer graphene using vortex Bessel beams Benjamin Wetzel, Chen Xie, Pierre-Ambroise Lacourt, John Michael udley, François Courvoisier To

More information

Supplemental material for Bound electron nonlinearity beyond the ionization threshold

Supplemental material for Bound electron nonlinearity beyond the ionization threshold Supplemental material for Bound electron nonlinearity beyond the ionization threshold 1. Experimental setup The laser used in the experiments is a λ=800 nm Ti:Sapphire amplifier producing 42 fs, 10 mj

More information

Breakup of Ring Beams Carrying Orbital Angular Momentum in Sodium Vapor

Breakup of Ring Beams Carrying Orbital Angular Momentum in Sodium Vapor Breakup of Ring Beams Carrying Orbital Angular Momentum in Sodium Vapor Petros Zerom, Matthew S. Bigelow and Robert W. Boyd The Institute of Optics, University of Rochester, Rochester, New York 14627 Now

More information

Control of the filamentation distance and pattern in long-range atmospheric propagation

Control of the filamentation distance and pattern in long-range atmospheric propagation Control of the filamentation distance and pattern in long-range atmospheric propagation Shmuel Eisenmann, Einat Louzon, Yiftach Katzir, Tala Palchan, and Arie Zigler Racah Institute of Physics, Hebrew

More information

SELF-ORGANIZATION OF SPATIAL SOLITONS

SELF-ORGANIZATION OF SPATIAL SOLITONS Chapter 5 86 SELF-ORGANIZATION OF SPATIAL SOLITONS 5.1. INTRODUCTION In this chapter we present experimental results on the self-organization of spatial solitons in a self-focusing nonlinear medium. We

More information

DYNAMICS OF FILAMENT FORMATION IN A KERR MEDIUM

DYNAMICS OF FILAMENT FORMATION IN A KERR MEDIUM Chapter 4 63 DYNAMICS OF FILAMENT FORMATION IN A KERR MEDIUM 4.1. INTRODUCTION In this chapter we present a study of the large scale beam break up and filamentation of femtosecond pulses in a Kerr medium.

More information

Multi-GeV electron acceleration using the Texas Petawatt laser

Multi-GeV electron acceleration using the Texas Petawatt laser Multi-GeV electron acceleration using the Texas Petawatt laser X. Wang, D. Du, S. Reed, R. Zgadzaj, P.Dong, N. Fazel, R. Korzekwa, Y.Y. Chang, W. Henderson M. Downer S.A. Yi, S. Kalmykov, E. D'Avignon

More information

Supplementary information: Photonic Crystal Microchip Laser

Supplementary information: Photonic Crystal Microchip Laser Supplementary information: Photonic Crystal Microchip Laser Darius Gailevicius* 1, Volodymyr Koliadenko 2, Vytautas Purlys 1, Martynas Peckus 1, Victor Taranenko 2, and Kestutis Staliunas 3,4 1 Laser Research

More information

Creating and probing of a perfect vortex in situ with an optically trapped particle

Creating and probing of a perfect vortex in situ with an optically trapped particle Creating and probing of a perfect vortex in situ with an optically trapped particle Mingzhou Chen, Michael Mazilu, Yoshihiko Arita, Ewan M. Wright, and Kishan Dholakia, SUPA, School of Physics & Astronomy,

More information

Analysis of FEL Performance Using Brightness Scaled Variables

Analysis of FEL Performance Using Brightness Scaled Variables Analysis of FEL Performance Using Brightness Scaled Variables Michael Gullans with G. Penn, J. Wurtele, and M. Zolotorev Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Outline Introduce brightness

More information

Modification and Machining on Back Surface of a Silicon Substrate by Femtosecond Laser Pulses at 1552 nm

Modification and Machining on Back Surface of a Silicon Substrate by Femtosecond Laser Pulses at 1552 nm Modification and Machining on Back Surface of a Silicon Substrate by Femtosecond Laser Pulses at 1552 nm Yoshiro ITO*, Hiroki SAKASHITA, Ryosuke SUZUKI, Mitsuru UEWADA, Khanh Phu LUONG and Rie TANABE Department

More information

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 12 High Harmonic Generation 12.1 Atomic units 12.2 The three step model 12.2.1 Ionization 12.2.2 Propagation 12.2.3 Recombination 12.3 Attosecond

More information

Moving Weakly Relativistic Electromagnetic Solitons in Laser-Plasmas

Moving Weakly Relativistic Electromagnetic Solitons in Laser-Plasmas Moving Weakly Relativistic Electromagnetic Solitons in Laser-Plasmas Lj. Hadžievski, A. Mančić and M.M. Škorić Department of Physics, Faculty of Sciences and Mathematics, University of Niš, P.O. Box 4,

More information

Self-accelerating optical beams in highly nonlocal nonlinear media

Self-accelerating optical beams in highly nonlocal nonlinear media Self-accelerating optical beams in highly nonlocal nonlinear media Rivka Bekenstein and Mordechai Segev* Physics Department and Solid State Institute, Technion, 3 Haifa, Israel *msegev@techunix.technion.ac.il

More information

Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics

Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics Richard Haight IBM TJ Watson Research Center PO Box 218 Yorktown Hts., NY 10598 Collaborators Al Wagner Pete Longo Daeyoung

More information

External Injection in Plasma Accelerators. R. Pompili, S. Li, F. Massimo, L. Volta, J. Yang

External Injection in Plasma Accelerators. R. Pompili, S. Li, F. Massimo, L. Volta, J. Yang External Injection in Plasma Accelerators R. Pompili, S. Li, F. Massimo, L. Volta, J. Yang Why Plasma Accelerators? Conventional RF cavities: 50-100 MV/m due to electrical breakdown Plasma: E>100 GV/m

More information

Tight-Focusing of Short Intense Laser Beams in Particle-in-Cell Simulations of Laser-Plasma Interaction

Tight-Focusing of Short Intense Laser Beams in Particle-in-Cell Simulations of Laser-Plasma Interaction 28/03/2017, CTU in Prague Tight-Focusing of Short Intense Laser Beams in Particle-in-Cell Simulations of Laser-Plasma Interaction Bc. Petr Valenta (petr.valenta@eli-beams.eu) Supervisors: doc. Ing. Ondrej

More information

THz field strength larger than MV/cm generated in organic crystal

THz field strength larger than MV/cm generated in organic crystal SwissFEL Wir schaffen Wissen heute für morgen 1 2 C. Vicario 1, R. Clemens 1 and C. P. Hauri 1,2 THz field strength larger than MV/cm generated in organic crystal 10/16/12 Workshop on High Field THz science

More information

Propagation dynamics of abruptly autofocusing Airy beams with optical vortices

Propagation dynamics of abruptly autofocusing Airy beams with optical vortices Propagation dynamics of abruptly autofocusing Airy beams with optical vortices Yunfeng Jiang, 1 Kaikai Huang, 1,2 and Xuanhui Lu 1, * 1 Institute of Optics, Department of Physics, Zhejiang University,

More information

Issue Date , Fuji Technology Press.

Issue Date , Fuji Technology Press. NAOSITE: Nagasaki University's Ac Title Micro Drilling Simulation of Ultra- Author(s Motomura, Fumitaka Citation International Journal of Automation Issue Date 15-7 URL http://hdl.handle.net/169/35847

More information

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Frank Ceballos 1, Ming-Gang Ju 2 Samuel D. Lane 1, Xiao Cheng Zeng 2 & Hui Zhao 1 1 Department of Physics and Astronomy,

More information

Femto-second FEL Generation with Very Low Charge at LCLS

Femto-second FEL Generation with Very Low Charge at LCLS Femto-second FEL Generation with Very Low Charge at LCLS Yuantao Ding, For the LCLS commissioning team X-ray Science at the Femtosecond to Attosecond Frontier workshop May 18-20, 2009, UCLA SLAC-PUB-13525;

More information

Optical solitons and its applications

Optical solitons and its applications Physics 568 (Nonlinear optics) 04/30/007 Final report Optical solitons and its applications 04/30/007 1 1 Introduction to optical soliton. (temporal soliton) The optical pulses which propagate in the lossless

More information

Low density plasma experiments investigating laser propagation and proton acceleration

Low density plasma experiments investigating laser propagation and proton acceleration Low density plasma experiments investigating laser propagation and proton acceleration L Willingale, K Krushelnick, A Maksimchuk Center for Ultrafast Optical Science, University of Michigan, USA W Nazarov

More information

Novel method for ultrashort laser pulse-width measurement based on the self-diffraction effect

Novel method for ultrashort laser pulse-width measurement based on the self-diffraction effect Novel method for ultrashort laser pulse-width measurement based on the self-diffraction effect Peng Xi, Changhe Zhou, Enwen Dai, and Liren Liu Shanghai Institute of Optics and Fine Mechanics, Chinese Academy

More information

Nanocomposite photonic crystal devices

Nanocomposite photonic crystal devices Nanocomposite photonic crystal devices Xiaoyong Hu, Cuicui Lu, Yulan Fu, Yu Zhu, Yingbo Zhang, Hong Yang, Qihuang Gong Department of Physics, Peking University, Beijing, P. R. China Contents Motivation

More information

MODELLING PLASMA FLUORESCENCE INDUCED BY FEMTOSECOND PULSE PROPAGATION IN IONIZING GASES

MODELLING PLASMA FLUORESCENCE INDUCED BY FEMTOSECOND PULSE PROPAGATION IN IONIZING GASES MODELLING PLASMA FLUORESCENCE INDUCED BY FEMTOSECOND PULSE PROPAGATION IN IONIZING GASES V. TOSA 1,, A. BENDE 1, T. D. SILIPAS 1, H. T. KIM, C. H. NAM 1 National Institute for R&D of Isotopic and Molecular

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS2397 Strong-field physics with singular light beams M. Zürch, C. Kern, P. Hansinger, A. Dreischuh, and Ch. Spielmann Supplementary Information S.1 Spectrometric

More information

Introduction to intense laser-matter interaction

Introduction to intense laser-matter interaction Pohang, 22 Aug. 2013 Introduction to intense laser-matter interaction Chul Min Kim Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST) & Center for Relativistic

More information

Simulation of laser propagation in plasma chamber including nonlinearities by utilization of VirtualLab 5 software

Simulation of laser propagation in plasma chamber including nonlinearities by utilization of VirtualLab 5 software Simulation of laser propagation in plasma chamber including nonlinearities by utilization of VirtualLab 5 software DESY Summer Student Programme, 2012 Anusorn Lueangaramwong Chiang Mai University, Thailand

More information

Time-resolved shadowgraphs of transient plasma induced by spatiotemporally focused femtosecond laser pulses in fused silica glass

Time-resolved shadowgraphs of transient plasma induced by spatiotemporally focused femtosecond laser pulses in fused silica glass Time-resolved shadowgraphs of transient plasma induced by spatiotemporally focused femtosecond laser pulses in fused silica glass ZHAOHUI WANG, 1, BIN ZENG, 1 GUIHUA LI, 1 HONGQIANG XIE, 1, WEI CHU, 1

More information

Analysis of second-harmonic generation microscopy under refractive index mismatch

Analysis of second-harmonic generation microscopy under refractive index mismatch Vol 16 No 11, November 27 c 27 Chin. Phys. Soc. 19-1963/27/16(11/3285-5 Chinese Physics and IOP Publishing Ltd Analysis of second-harmonic generation microscopy under refractive index mismatch Wang Xiang-Hui(

More information

Controlling Graphene Ultrafast Hot Carrier Response from Metal-like. to Semiconductor-like by Electrostatic Gating

Controlling Graphene Ultrafast Hot Carrier Response from Metal-like. to Semiconductor-like by Electrostatic Gating Controlling Graphene Ultrafast Hot Carrier Response from Metal-like to Semiconductor-like by Electrostatic Gating S.-F. Shi, 1,2* T.-T. Tang, 1 B. Zeng, 1 L. Ju, 1 Q. Zhou, 1 A. Zettl, 1,2,3 F. Wang 1,2,3

More information

As a partial differential equation, the Helmholtz equation does not lend itself easily to analytical

As a partial differential equation, the Helmholtz equation does not lend itself easily to analytical Aaron Rury Research Prospectus 21.6.2009 Introduction: The Helmhlotz equation, ( 2 +k 2 )u(r)=0 1, serves as the basis for much of optical physics. As a partial differential equation, the Helmholtz equation

More information

PROPAGATION DYNAMICS OF SPATIO-TEMPORAL WAVE PACKETS

PROPAGATION DYNAMICS OF SPATIO-TEMPORAL WAVE PACKETS PROPAGATION DYNAMICS OF SPATIO-TEMPORAL WAVE PACKETS Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science

More information

Ultrashort Pulse Laser Technology for Processing of Advanced Electronics Materials

Ultrashort Pulse Laser Technology for Processing of Advanced Electronics Materials Ultrashort Pulse Laser Technology for Processing of Advanced Electronics Materials Jim BOVATSEK *1, Rajesh PATEL *1 *1 Spectra-Physics, MKS Instruments, Inc., 3635 Peterson Way, Santa Clara, CA., 95054,

More information

Femtosecond laser nanostructuring in glass with sub-50nm feature sizes

Femtosecond laser nanostructuring in glass with sub-50nm feature sizes Femtosecond laser nanostructuring in glass with sub-50nm feature sizes Yang Liao 1, Yinglong Shen 2, Lingling Qiao 1, Danping Chen 2, Ya Cheng 1, *, Koji Sugioka 3 and Katsumi Midorikawa 3 1 State Key

More information

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source C. Blome, K. Sokolowski-Tinten *, C. Dietrich, A. Tarasevitch, D. von der Linde Inst. for Laser- and

More information

A model system for adaptive strong field control

A model system for adaptive strong field control A model system for adaptive strong field control M. Wollenhaupt, T. Bayer and T. Baumert Universität Kassel Institut für Physik Principle of adaptive control 2 Shaping light: full control over the light

More information

ULTRAFAST LASER CONTROL. Of IONIZATION. Fundamentals And Applications. Thomas Baumert. Institut fuer Physik der Universitaet Kassel, GERMANY

ULTRAFAST LASER CONTROL. Of IONIZATION. Fundamentals And Applications. Thomas Baumert. Institut fuer Physik der Universitaet Kassel, GERMANY ULTRAFAST LASER CONTROL Fundamentals And Applications Of IONIZATION Thomas Baumert Institut fuer Physik der Universitaet Kassel, GERMANY H. Baumann: first permanent Laser Sculpture / since Documenta 6

More information

GA A24166 SUPER-INTENSE QUASI-NEUTRAL PROTON BEAMS INTERACTING WITH PLASMA: A NUMERICAL INVESTIGATION

GA A24166 SUPER-INTENSE QUASI-NEUTRAL PROTON BEAMS INTERACTING WITH PLASMA: A NUMERICAL INVESTIGATION GA A24166 SUPER-INTENSE QUASI-NEUTRAL PROTON BEAMS INTERACTING WITH PLASMA: A NUMERICAL INVESTIGATION by H. RUHL, T.E. COWAN, and R.B. STEPHENS OCTOBER 2 DISCLAIMER This report was prepared as an account

More information

Proton acceleration in thin foils with micro-structured surface

Proton acceleration in thin foils with micro-structured surface Proton acceleration in thin foils with micro-structured surface J. Pšikal*, O. Klimo*, J. Limpouch*, J. Proška, F. Novotný, J. Vyskočil Czech Technical University in Prague, Faculty of Nuclear Sciences

More information

Development and characterization of 3D semiconductor X-rays detectors for medical imaging

Development and characterization of 3D semiconductor X-rays detectors for medical imaging Development and characterization of 3D semiconductor X-rays detectors for medical imaging Marie-Laure Avenel, Eric Gros d Aillon CEA-LETI, DETectors Laboratory marie-laure.avenel@cea.fr Outlines Problematic

More information

plasma optics Amplification of light pulses: non-ionised media

plasma optics Amplification of light pulses: non-ionised media Amplification of light pulses: non-ionised media since invention of laser: constant push towards increasing focused intensity of the light pulses Chirped pulse amplification D. Strickland, G. Mourou, Optics

More information

Plasma mirrors for ultrahigh-intensity optics

Plasma mirrors for ultrahigh-intensity optics Plasma mirrors for ultrahigh-intensity optics C. Thaury, F. Quéré, J-P. Geindre 2, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d Oliveira, P. Audebert 2, R. Marjoribanks 3 & Ph. Martin Service

More information

arxiv: v2 [physics.plasm-ph] 12 Sep 2012

arxiv: v2 [physics.plasm-ph] 12 Sep 2012 Short Intense Laser Pulse Collapse in Near-Critical Plasma F. Sylla, A. Flacco, S. Kahaly, M. Veltcheva, A. Lifschitz, and V. Malka Laboratoire d Optique Appliquée, ENSTA, CNRS, Ecole Polytechnique, UMR

More information

Practical uses of femtosecond laser micro-materials processing m. richardson

Practical uses of femtosecond laser micro-materials processing m. richardson Appl. Phys. A 77, 311 315 (2003) DOI: 10.1007/s00339-003-2121-9 Applied Physics A Materials Science & Processing a. zoubir l. shah k. richardson Practical uses of femtosecond laser micro-materials processing

More information

Supplementary Materials for

Supplementary Materials for wwwsciencemagorg/cgi/content/full/scienceaaa3035/dc1 Supplementary Materials for Spatially structured photons that travel in free space slower than the speed of light Daniel Giovannini, Jacquiline Romero,

More information

ULTRA-INTENSE LASER PLASMA INTERACTIONS RELATED TO FAST IGNITOR IN INERTIAL CONFINEMENT FUSION

ULTRA-INTENSE LASER PLASMA INTERACTIONS RELATED TO FAST IGNITOR IN INERTIAL CONFINEMENT FUSION ULTRA-INTENSE LASER PLASMA INTERACTIONS RELATED TO FAST IGNITOR IN INERTIAL CONFINEMENT FUSION R. KODAMA, H. FUJITA, N. IZUMI, T. KANABE, Y. KATO*, Y. KITAGAWA, Y. SENTOKU, S. NAKAI, M. NAKATSUKA, T. NORIMATSU,

More information

Nonparaxial accelerating Bessel-like beams

Nonparaxial accelerating Bessel-like beams PHYSICAL REVIEW A 88, 63816 (13) Nonparaxial accelerating Bessel-like beams Ioannis D. Chremmos 1,,* and Nikolaos K. Efremidis 1,* 1 Department of Applied Mathematics, University of Crete, Heraklion 7149,

More information

Self-channeling of Femtosecond Laser Pulses for Rapid and Efficient Standoff Detection of Energetic Materials

Self-channeling of Femtosecond Laser Pulses for Rapid and Efficient Standoff Detection of Energetic Materials Self-channeling of Femtosecond Laser Pulses for Rapid and Efficient Standoff Detection of Energetic Materials Matthieu Baudelet, Martin Richardson, Townes laser Institute, CREOL, University of Central

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10721 Experimental Methods The experiment was performed at the AMO scientific instrument 31 at the LCLS XFEL at the SLAC National Accelerator Laboratory. The nominal electron bunch charge

More information

Focusing of light. Colin Sheppard Division of Bioengineering and Department of Biological Sciences National University of Singapore

Focusing of light. Colin Sheppard Division of Bioengineering and Department of Biological Sciences National University of Singapore Focusing of light Colin Sheppard Division of Bioengineering and Department of Biological Sciences National University of Singapore E-mail: colin@nus.edu.sg Tight focusing of light Microscopy Laser micromachining

More information

Chan Joshi UCLA With help from Weiming An, Chris Clayton, Xinlu Xu, Ken Marsh and Warren Mori

Chan Joshi UCLA With help from Weiming An, Chris Clayton, Xinlu Xu, Ken Marsh and Warren Mori E-doubling with emittance preservation and pump depletion Generation of Ultra-low Emittance Electrons Testing a new concept for a novel positron source Chan Joshi UCLA With help from Weiming An, Chris

More information

High-power Cryogenic Yb:YAG Lasers and Optical Particle Targeting for EUV Sources *

High-power Cryogenic Yb:YAG Lasers and Optical Particle Targeting for EUV Sources * High-power Cryogenic Yb:YAG Lasers and Optical Particle Targeting for EUV Sources * J.D. Hybl**, T.Y. Fan, W.D. Herzog, T.H. Jeys, D.J.Ripin, and A. Sanchez EUV Source Workshop 29 May 2009 * This work

More information