Fundamentals Algorithms for Linear Equation Solution. Gaussian Elimination LU Factorization

Size: px
Start display at page:

Download "Fundamentals Algorithms for Linear Equation Solution. Gaussian Elimination LU Factorization"

Transcription

1 Fundamentals Algorithms for Linear Equation Solution Gaussian Elimination LU Factorization J. Roychowdhury, University of alifornia at erkeley Slide

2 Dense vs Sparse Matrices ircuit Jacobians: typically 3N-4N non-zeros compare against N2 for dense J. Roychowdhury, University of alifornia at erkeley Slide 2

3 Why Sparsity / O(n) Matters Matri storage for dense: N (N = size of matri = no. of rows/cols) N=, dense = billion nonzeros (8G storage) sparse: 4N = 4 nonzeros (3.2M storage) 2 25, less omputation how to eploit sparsity of A in solving A=b? lower bound: O(N) i.e.: at the least, need to look at each non-zero core concepts: Gaussian Elimination, LU factorization J. Roychowdhury, University of alifornia at erkeley Slide 3

4 Why are Matrices Sparse? Stems from local connectivity of graph each node: connected only to a few other nodes Incidence Matri: sparse Some eceptions power (gnd) nodes substrate networks etracted networks parasitic caps J. Roychowdhury, University of alifornia at erkeley i2 i3 i4 i5 {z A i6 i7 i8 i i9 i2 i3 i4 ~ i5 = : i6 A A } i 9 {z } ~ib Slide 4

5 Solution via omputing the Inverse ~ = J ~g (~ ), with J sparse matri sparse, but inverse dense still N2 storage computation even worse: N3! J. Roychowdhury, University of alifornia at erkeley Slide 5

6 Gaussian Elimination: Eample The A = b problem: z 2 A 2 2:5 :5 } :5 :5 ~ ~b { z } { z } { = 5 A 5 Step : divide first eqn. by diagonal element 2:5 :5 :5 :5 J. Roychowdhury, University of alifornia at erkeley : = 5 A 5 Slide 6

7 Gaussian Elim. Eample (contd.) From Step : 2:5 :5 :5 :5 Step 2: zero column : = 5 A 5 by subtracting eqn., scaled, from every other :5 :5 :5 :5 J. Roychowdhury, University of alifornia at erkeley : = 5 Slide 7

8 Gaussian Elim. Eample (contd.) From Step :5 :5 :5 :5 : = 5 Step 3: normalize eqn. 2 by dividing by diagonal element of row :5 :5 J. Roychowdhury, University of alifornia at erkeley : = 5 Slide 8

9 Gaussian Elim. Eample (contd.) From Step :5 :5 : = 5 Step 4: zero column 2 by subtracting eqn. 2, scaled, from every other J. Roychowdhury, University of alifornia at erkeley : = :5A A Slide 9

10 Gaussian Elim. Eample (contd.) From Step : = :5A A Step 5: eqn. 3: zero pivot, cannot normalize solution: swap eqns 3 and 4, then J. Roychowdhury, University of alifornia at erkeley : = 2 A A Slide

11 Gaussian Elim. Eample (contd.) From Step Step 6: zero column J. Roychowdhury, University of alifornia at erkeley 2 6: = 2 A A :5 3 = 2 A A 4 5 4:5 Slide

12 Gaussian Elim. Eample (contd.) From Step :5 3 = 2 A A 4 5 4:5 Steps 7, 8: normalize eqn. 4, zero col. J. Roychowdhury, University of alifornia at erkeley :5 3 = 2 A A 4 5 6:5 Slide 2

13 Gaussian Elim. Eample (contd.) From Step :5 3 = 2 A A 4 5 6:5 Steps 9, : normalize eqn. 5, zero col. J. Roychowdhury, University of alifornia at erkeley :25 2 :75 3 = 6:25A A 4 5 8:25 Solution Slide 3

14 Gaussian Elim. to LU Factorization Summary of Gaussian Elimination For i = :N normalize equation (row + RHS) by diagonal pivot zero all entries of column i (ecept diagonal, = ) (swap row/col if necessary first, to ensure non-zero pivot) by subtracting scaled versions of the ith equation In practice: LU Factorization tweak of Gaussian Elimination strategy zero only lower columns GE with tweak is equivalent to factoring A: A = LU, with L/U structured: lower/upper triangular LU factorization: 3-step strategy for solving A=b factor A = LU ( difficult ) forward and back substitute ( easy ): Ly = b, U = y key features can factor A only once and re-use with multiple RHS vectors crucial fact: L and U often retain sparsity J. Roychowdhury, University of alifornia at erkeley Slide 4

15 LU vs Inversion for Sparse Matrices J. Roychowdhury, University of alifornia at erkeley Slide 5

16 Forward Substitution Forward Substitution: solve Ly=b for y L= Key: solve successively for y, y2,..., yn y = b =l y2 = (b2 l2 y )=l22 y3 = (b3 l3 y l32 y2 )=l33 yn = (bn ln y ln 2 y2 l(n;n ) yn )=lnn J. Roychowdhury, University of alifornia at erkeley Slide 6

17 ack Substitution ack Substitution: solve U=y for U = Solve successively for N,,2, N = yn =un N N = (yn u(n ;N) N )=u(n ;N ) = (y u2 2 u3 3 u N N )=u J. Roychowdhury, University of alifornia at erkeley Slide 7

18 rout LU Factorization: 33 Eample z a3 z a3 l a23 A a33 l3 L } l22 l32 l33 { z A@ U } u2 { u3 u23 A a2 = l u2 a3 = l u3 a2 = l2 a22 = l2 u2 + l22 a23 = l2 u3 + l22 u23 a3 = l3 a32 = l3 u2 + l32 a33 = l3 u3 + l32 u23 + l33 Go in submatri order from top left first col of L; first row of U; second col of L; Doolittle: diagonal s are in L, not U { a = l A } a2 a22 a32 uii are unknowns, lii =. Factorize in place : save memory note: aij used only once, to compute lij or uij overwrite elements of A as L/U elements are computed J. Roychowdhury, University of alifornia at erkeley Slide 8

19

20

21

22

23 Re-ordering for Sparsity (not just for handling zero pivots) re-order matri: make it sparse towards top left A L=U re-order: swap rows and 4, cols and 4 Ar Lr =Ur A J. Roychowdhury, University of alifornia at erkeley A A % fill-in No fill-in Slide 23

24 Fill-in Reduction via Re-Ordering J. Roychowdhury, University of alifornia at erkeley Slide 24

25 Sparse Matri Technology Heuristics are key achieve balance between fill-in vs error growth control cost of re-ordering error growth == stability ~= zero pivot issues best reordering for minimum fill-in: NP-complete problem i.e., simply re-ordering is much worse than dense LU! Structural vs Numerical factorization structural : no numerics involved numerical compute a good re-ordering (using heuristics) find locations of fill-ins; pre-allocate memory, set up pointers run the LU algorithm (numerical calculations) structural often more epensive than numerical J. Roychowdhury, University of alifornia at erkeley Slide 25

26 Sparse Matri Packages SPIE3's SMP: hard-coded () current-controlled equations at end) Kundert's SPARSE v.3 () partial/full pivoting options (internally) well-structured, modular HSL/NAG: MA28, ZA28, MA58, (Fortran) long-time industry staple Demmel group: superlu () superblock (small dense-ish) matri operations, leveraging LAS, cache utilization advanced heuristics (a la iterative methods) superlu MT/DIST variants for parallel machines Tim Davis (U. Florida): UMFPAK (++) MATLA's lu(...), A\b for A sparse Dense matri packages LINPAK (Fortran) LAPAK (Fortran), -LAPAK (), LAPAK++ (++) MATLA's inv(a), A\b for A dense J. Roychowdhury, University of alifornia at erkeley Slide 26

Scientific Computing

Scientific Computing Scientific Computing Direct solution methods Martin van Gijzen Delft University of Technology October 3, 2018 1 Program October 3 Matrix norms LU decomposition Basic algorithm Cost Stability Pivoting Pivoting

More information

Math 471 (Numerical methods) Chapter 3 (second half). System of equations

Math 471 (Numerical methods) Chapter 3 (second half). System of equations Math 47 (Numerical methods) Chapter 3 (second half). System of equations Overlap 3.5 3.8 of Bradie 3.5 LU factorization w/o pivoting. Motivation: ( ) A I Gaussian Elimination (U L ) where U is upper triangular

More information

IMPROVING THE PERFORMANCE OF SPARSE LU MATRIX FACTORIZATION USING A SUPERNODAL ALGORITHM

IMPROVING THE PERFORMANCE OF SPARSE LU MATRIX FACTORIZATION USING A SUPERNODAL ALGORITHM IMPROVING THE PERFORMANCE OF SPARSE LU MATRIX FACTORIZATION USING A SUPERNODAL ALGORITHM Bogdan OANCEA PhD, Associate Professor, Artife University, Bucharest, Romania E-mail: oanceab@ie.ase.ro Abstract:

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Decompositions, numerical aspects Gerard Sleijpen and Martin van Gijzen September 27, 2017 1 Delft University of Technology Program Lecture 2 LU-decomposition Basic algorithm Cost

More information

Program Lecture 2. Numerical Linear Algebra. Gaussian elimination (2) Gaussian elimination. Decompositions, numerical aspects

Program Lecture 2. Numerical Linear Algebra. Gaussian elimination (2) Gaussian elimination. Decompositions, numerical aspects Numerical Linear Algebra Decompositions, numerical aspects Program Lecture 2 LU-decomposition Basic algorithm Cost Stability Pivoting Cholesky decomposition Sparse matrices and reorderings Gerard Sleijpen

More information

2.1 Gaussian Elimination

2.1 Gaussian Elimination 2. Gaussian Elimination A common problem encountered in numerical models is the one in which there are n equations and n unknowns. The following is a description of the Gaussian elimination method for

More information

Exploiting Fill-in and Fill-out in Gaussian-like Elimination Procedures on the Extended Jacobian Matrix

Exploiting Fill-in and Fill-out in Gaussian-like Elimination Procedures on the Extended Jacobian Matrix 2nd European Workshop on AD 1 Exploiting Fill-in and Fill-out in Gaussian-like Elimination Procedures on the Extended Jacobian Matrix Andrew Lyons (Vanderbilt U.) / Uwe Naumann (RWTH Aachen) 2nd European

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 19: Computing the SVD; Sparse Linear Systems Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

30.3. LU Decomposition. Introduction. Prerequisites. Learning Outcomes

30.3. LU Decomposition. Introduction. Prerequisites. Learning Outcomes LU Decomposition 30.3 Introduction In this Section we consider another direct method for obtaining the solution of systems of equations in the form AX B. Prerequisites Before starting this Section you

More information

LU Factorization. Marco Chiarandini. DM559 Linear and Integer Programming. Department of Mathematics & Computer Science University of Southern Denmark

LU Factorization. Marco Chiarandini. DM559 Linear and Integer Programming. Department of Mathematics & Computer Science University of Southern Denmark DM559 Linear and Integer Programming LU Factorization Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark [Based on slides by Lieven Vandenberghe, UCLA] Outline

More information

Introduction to Compact Dynamical Modeling. II.1 Steady State Simulation. Luca Daniel Massachusetts Institute of Technology. dx dt.

Introduction to Compact Dynamical Modeling. II.1 Steady State Simulation. Luca Daniel Massachusetts Institute of Technology. dx dt. Course Outline NS & NIH Introduction to Compact Dynamical Modeling II. Steady State Simulation uca Daniel Massachusetts Institute o Technology Quic Snea Preview I. ssembling Models rom Physical Problems

More information

LINEAR SYSTEMS (11) Intensive Computation

LINEAR SYSTEMS (11) Intensive Computation LINEAR SYSTEMS () Intensive Computation 27-8 prof. Annalisa Massini Viviana Arrigoni EXACT METHODS:. GAUSSIAN ELIMINATION. 2. CHOLESKY DECOMPOSITION. ITERATIVE METHODS:. JACOBI. 2. GAUSS-SEIDEL 2 CHOLESKY

More information

SYMBOLIC AND EXACT STRUCTURE PREDICTION FOR SPARSE GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING

SYMBOLIC AND EXACT STRUCTURE PREDICTION FOR SPARSE GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING SYMBOLIC AND EXACT STRUCTURE PREDICTION FOR SPARSE GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING LAURA GRIGORI, JOHN R. GILBERT, AND MICHEL COSNARD Abstract. In this paper we consider two structure prediction

More information

Sparsity. The implication is that we would like to find ways to increase efficiency of LU decomposition.

Sparsity. The implication is that we would like to find ways to increase efficiency of LU decomposition. Sparsity. Introduction We saw in previous notes that the very common problem, to solve for the n vector in A b ( when n is very large, is done without inverting the n n matri A, using LU decomposition.

More information

Linear Systems of n equations for n unknowns

Linear Systems of n equations for n unknowns Linear Systems of n equations for n unknowns In many application problems we want to find n unknowns, and we have n linear equations Example: Find x,x,x such that the following three equations hold: x

More information

Solving linear systems (6 lectures)

Solving linear systems (6 lectures) Chapter 2 Solving linear systems (6 lectures) 2.1 Solving linear systems: LU factorization (1 lectures) Reference: [Trefethen, Bau III] Lecture 20, 21 How do you solve Ax = b? (2.1.1) In numerical linear

More information

5.1 Banded Storage. u = temperature. The five-point difference operator. uh (x, y + h) 2u h (x, y)+u h (x, y h) uh (x + h, y) 2u h (x, y)+u h (x h, y)

5.1 Banded Storage. u = temperature. The five-point difference operator. uh (x, y + h) 2u h (x, y)+u h (x, y h) uh (x + h, y) 2u h (x, y)+u h (x h, y) 5.1 Banded Storage u = temperature u= u h temperature at gridpoints u h = 1 u= Laplace s equation u= h u = u h = grid size u=1 The five-point difference operator 1 u h =1 uh (x + h, y) 2u h (x, y)+u h

More information

Example: Current in an Electrical Circuit. Solving Linear Systems:Direct Methods. Linear Systems of Equations. Solving Linear Systems: Direct Methods

Example: Current in an Electrical Circuit. Solving Linear Systems:Direct Methods. Linear Systems of Equations. Solving Linear Systems: Direct Methods Example: Current in an Electrical Circuit Solving Linear Systems:Direct Methods A number of engineering problems or models can be formulated in terms of systems of equations Examples: Electrical Circuit

More information

Illustration of Gaussian elimination to find LU factorization. A = a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44

Illustration of Gaussian elimination to find LU factorization. A = a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 Illustration of Gaussian elimination to find LU factorization. A = a 21 a a a a 31 a 32 a a a 41 a 42 a 43 a 1 Compute multipliers : Eliminate entries in first column: m i1 = a i1 a 11, i = 2, 3, 4 ith

More information

Hani Mehrpouyan, California State University, Bakersfield. Signals and Systems

Hani Mehrpouyan, California State University, Bakersfield. Signals and Systems Hani Mehrpouyan, Department of Electrical and Computer Engineering, Lecture 26 (LU Factorization) May 30 th, 2013 The material in these lectures is partly taken from the books: Elementary Numerical Analysis,

More information

pset3-sol September 7, 2017

pset3-sol September 7, 2017 pset3-sol September 7, 2017 1 18.06 pset 3 Solutions 1.1 Problem 1 Suppose that you solve AX = B with and find that X is 1 1 1 1 B = 0 2 2 2 1 1 0 1 1 1 0 1 X = 1 0 1 3 1 0 2 1 1.1.1 (a) What is A 1? (You

More information

Consider the following example of a linear system:

Consider the following example of a linear system: LINEAR SYSTEMS Consider the following example of a linear system: Its unique solution is x + 2x 2 + 3x 3 = 5 x + x 3 = 3 3x + x 2 + 3x 3 = 3 x =, x 2 = 0, x 3 = 2 In general we want to solve n equations

More information

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4 Linear Algebra Section. : LU Decomposition Section. : Permutations and transposes Wednesday, February 1th Math 01 Week # 1 The LU Decomposition We learned last time that we can factor a invertible matrix

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.4 THE MATRIX EQUATION A = b MATRIX EQUATION A = b m n Definition: If A is an matri, with columns a 1, n, a n, and if is in, then the product of A and, denoted by

More information

Matrix decompositions

Matrix decompositions Matrix decompositions How can we solve Ax = b? 1 Linear algebra Typical linear system of equations : x 1 x +x = x 1 +x +9x = 0 x 1 +x x = The variables x 1, x, and x only appear as linear terms (no powers

More information

Solving Consistent Linear Systems

Solving Consistent Linear Systems Solving Consistent Linear Systems Matrix Notation An augmented matrix of a system consists of the coefficient matrix with an added column containing the constants from the right sides of the equations.

More information

y b where U. matrix inverse A 1 ( L. 1 U 1. L 1 U 13 U 23 U 33 U 13 2 U 12 1

y b where U. matrix inverse A 1 ( L. 1 U 1. L 1 U 13 U 23 U 33 U 13 2 U 12 1 LU decomposition -- manual demonstration Instructor: Nam Sun Wang lu-manualmcd LU decomposition, where L is a lower-triangular matrix with as the diagonal elements and U is an upper-triangular matrix Just

More information

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur. Lecture - 21 Power Flow VI

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur. Lecture - 21 Power Flow VI Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture - 21 Power Flow VI (Refer Slide Time: 00:57) Welcome to lesson 21. In this

More information

Matrix Assembly in FEA

Matrix Assembly in FEA Matrix Assembly in FEA 1 In Chapter 2, we spoke about how the global matrix equations are assembled in the finite element method. We now want to revisit that discussion and add some details. For example,

More information

CSE 160 Lecture 13. Numerical Linear Algebra

CSE 160 Lecture 13. Numerical Linear Algebra CSE 16 Lecture 13 Numerical Linear Algebra Announcements Section will be held on Friday as announced on Moodle Midterm Return 213 Scott B Baden / CSE 16 / Fall 213 2 Today s lecture Gaussian Elimination

More information

Computational Methods. Systems of Linear Equations

Computational Methods. Systems of Linear Equations Computational Methods Systems of Linear Equations Manfred Huber 2010 1 Systems of Equations Often a system model contains multiple variables (parameters) and contains multiple equations Multiple equations

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 Logistics Notes for 2016-09-14 1. There was a goof in HW 2, problem 1 (now fixed) please re-download if you have already started looking at it. 2. CS colloquium (4:15 in Gates G01) this Thurs is Margaret

More information

Linear Systems and LU

Linear Systems and LU Linear Systems and LU CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Linear Systems and LU 1 / 48 Homework 1. Homework 0 due Monday CS 205A:

More information

Gaussian Elimination and Back Substitution

Gaussian Elimination and Back Substitution Jim Lambers MAT 610 Summer Session 2009-10 Lecture 4 Notes These notes correspond to Sections 31 and 32 in the text Gaussian Elimination and Back Substitution The basic idea behind methods for solving

More information

= V I = Bus Admittance Matrix. Chapter 6: Power Flow. Constructing Ybus. Example. Network Solution. Triangular factorization. Let

= V I = Bus Admittance Matrix. Chapter 6: Power Flow. Constructing Ybus. Example. Network Solution. Triangular factorization. Let Chapter 6: Power Flow Network Matrices Network Solutions Newton-Raphson Method Fast Decoupled Method Bus Admittance Matri Let I = vector of currents injected into nodes V = vector of node voltages Y bus

More information

Simultaneous Linear Equations

Simultaneous Linear Equations Simultaneous Linear Equations PHYSICAL PROBLEMS Truss Problem Pressure vessel problem a a b c b Polynomial Regression We are to fit the data to the polynomial regression model Simultaneous Linear Equations

More information

A convex QP solver based on block-lu updates

A convex QP solver based on block-lu updates Block-LU updates p. 1/24 A convex QP solver based on block-lu updates PP06 SIAM Conference on Parallel Processing for Scientific Computing San Francisco, CA, Feb 22 24, 2006 Hanh Huynh and Michael Saunders

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.1 SYSTEMS OF LINEAR EQUATIONS LINEAR EQUATION,, 1 n A linear equation in the variables equation that can be written in the form a a a b 1 1 2 2 n n a a is an where

More information

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit VII Sparse Matrix Computations Part 1: Direct Methods Dianne P. O Leary c 2008

More information

Introduction to Mathematical Programming

Introduction to Mathematical Programming Introduction to Mathematical Programming Ming Zhong Lecture 6 September 12, 2018 Ming Zhong (JHU) AMS Fall 2018 1 / 20 Table of Contents 1 Ming Zhong (JHU) AMS Fall 2018 2 / 20 Solving Linear Systems A

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 12: Gaussian Elimination and LU Factorization Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 10 Gaussian Elimination

More information

LU Factorization. A m x n matrix A admits an LU factorization if it can be written in the form of A = LU

LU Factorization. A m x n matrix A admits an LU factorization if it can be written in the form of A = LU LU Factorization A m n matri A admits an LU factorization if it can be written in the form of Where, A = LU L : is a m m lower triangular matri with s on the diagonal. The matri L is invertible and is

More information

Matrix decompositions

Matrix decompositions Matrix decompositions How can we solve Ax = b? 1 Linear algebra Typical linear system of equations : x 1 x +x = x 1 +x +9x = 0 x 1 +x x = The variables x 1, x, and x only appear as linear terms (no powers

More information

Solving Ax = b w/ different b s: LU-Factorization

Solving Ax = b w/ different b s: LU-Factorization Solving Ax = b w/ different b s: LU-Factorization Linear Algebra Josh Engwer TTU 14 September 2015 Josh Engwer (TTU) Solving Ax = b w/ different b s: LU-Factorization 14 September 2015 1 / 21 Elementary

More information

CS475: Linear Equations Gaussian Elimination LU Decomposition Wim Bohm Colorado State University

CS475: Linear Equations Gaussian Elimination LU Decomposition Wim Bohm Colorado State University CS475: Linear Equations Gaussian Elimination LU Decomposition Wim Bohm Colorado State University Except as otherwise noted, the content of this presentation is licensed under the Creative Commons Attribution

More information

7. LU factorization. factor-solve method. LU factorization. solving Ax = b with A nonsingular. the inverse of a nonsingular matrix

7. LU factorization. factor-solve method. LU factorization. solving Ax = b with A nonsingular. the inverse of a nonsingular matrix EE507 - Computational Techniques for EE 7. LU factorization Jitkomut Songsiri factor-solve method LU factorization solving Ax = b with A nonsingular the inverse of a nonsingular matrix LU factorization

More information

LU Factorization a 11 a 1 a 1n A = a 1 a a n (b) a n1 a n a nn L = l l 1 l ln1 ln 1 75 U = u 11 u 1 u 1n 0 u u n 0 u n...

LU Factorization a 11 a 1 a 1n A = a 1 a a n (b) a n1 a n a nn L = l l 1 l ln1 ln 1 75 U = u 11 u 1 u 1n 0 u u n 0 u n... .. Factorizations Reading: Trefethen and Bau (1997), Lecture 0 Solve the n n linear system by Gaussian elimination Ax = b (1) { Gaussian elimination is a direct method The solution is found after a nite

More information

EBG # 3 Using Gaussian Elimination (Echelon Form) Gaussian Elimination: 0s below the main diagonal

EBG # 3 Using Gaussian Elimination (Echelon Form) Gaussian Elimination: 0s below the main diagonal EBG # 3 Using Gaussian Elimination (Echelon Form) Gaussian Elimination: 0s below the main diagonal [ x y Augmented matrix: 1 1 17 4 2 48 (Replacement) Replace a row by the sum of itself and a multiple

More information

Lecture 7. Gaussian Elimination with Pivoting. David Semeraro. University of Illinois at Urbana-Champaign. February 11, 2014

Lecture 7. Gaussian Elimination with Pivoting. David Semeraro. University of Illinois at Urbana-Champaign. February 11, 2014 Lecture 7 Gaussian Elimination with Pivoting David Semeraro University of Illinois at Urbana-Champaign February 11, 2014 David Semeraro (NCSA) CS 357 February 11, 2014 1 / 41 Naive Gaussian Elimination

More information

Review of matrices. Let m, n IN. A rectangle of numbers written like A =

Review of matrices. Let m, n IN. A rectangle of numbers written like A = Review of matrices Let m, n IN. A rectangle of numbers written like a 11 a 12... a 1n a 21 a 22... a 2n A =...... a m1 a m2... a mn where each a ij IR is called a matrix with m rows and n columns or an

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algera 1.4 THE MATRIX EQUATION A MATRIX EQUATION A mn Definition: If A is an matri, with columns a 1,, a n, and if is in R n, then the product of A and, denoted y A, is the

More information

Revised Simplex Method

Revised Simplex Method DM545 Linear and Integer Programming Lecture 7 Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 2 Motivation Complexity of single pivot operation

More information

Numerical Analysis Fall. Gauss Elimination

Numerical Analysis Fall. Gauss Elimination Numerical Analysis 2015 Fall Gauss Elimination Solving systems m g g m m g x x x k k k k k k k k k 3 2 1 3 2 1 3 3 3 2 3 2 2 2 1 0 0 Graphical Method For small sets of simultaneous equations, graphing

More information

Direct solution methods for sparse matrices. p. 1/49

Direct solution methods for sparse matrices. p. 1/49 Direct solution methods for sparse matrices p. 1/49 p. 2/49 Direct solution methods for sparse matrices Solve Ax = b, where A(n n). (1) Factorize A = LU, L lower-triangular, U upper-triangular. (2) Solve

More information

MODULE 7. where A is an m n real (or complex) matrix. 2) Let K(t, s) be a function of two variables which is continuous on the square [0, 1] [0, 1].

MODULE 7. where A is an m n real (or complex) matrix. 2) Let K(t, s) be a function of two variables which is continuous on the square [0, 1] [0, 1]. Topics: Linear operators MODULE 7 We are going to discuss functions = mappings = transformations = operators from one vector space V 1 into another vector space V 2. However, we shall restrict our sights

More information

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in Vectors and Matrices Continued Remember that our goal is to write a system of algebraic equations as a matrix equation. Suppose we have the n linear algebraic equations a x + a 2 x 2 + a n x n = b a 2

More information

Linear Algebra Linear Algebra : Matrix decompositions Monday, February 11th Math 365 Week #4

Linear Algebra Linear Algebra : Matrix decompositions Monday, February 11th Math 365 Week #4 Linear Algebra Linear Algebra : Matrix decompositions Monday, February 11th Math Week # 1 Saturday, February 1, 1 Linear algebra Typical linear system of equations : x 1 x +x = x 1 +x +9x = 0 x 1 +x x

More information

Direct Methods for Solving Linear Systems. Matrix Factorization

Direct Methods for Solving Linear Systems. Matrix Factorization Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

1.Chapter Objectives

1.Chapter Objectives LU Factorization INDEX 1.Chapter objectives 2.Overview of LU factorization 2.1GAUSS ELIMINATION AS LU FACTORIZATION 2.2LU Factorization with Pivoting 2.3 MATLAB Function: lu 3. CHOLESKY FACTORIZATION 3.1

More information

CS 542G: Conditioning, BLAS, LU Factorization

CS 542G: Conditioning, BLAS, LU Factorization CS 542G: Conditioning, BLAS, LU Factorization Robert Bridson September 22, 2008 1 Why some RBF Kernel Functions Fail We derived some sensible RBF kernel functions, like φ(r) = r 2 log r, from basic principles

More information

MATHEMATICS FOR COMPUTER VISION WEEK 2 LINEAR SYSTEMS. Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year

MATHEMATICS FOR COMPUTER VISION WEEK 2 LINEAR SYSTEMS. Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year 1 MATHEMATICS FOR COMPUTER VISION WEEK 2 LINEAR SYSTEMS Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year 2013-14 OUTLINE OF WEEK 2 Linear Systems and solutions Systems of linear

More information

MATH 3511 Lecture 1. Solving Linear Systems 1

MATH 3511 Lecture 1. Solving Linear Systems 1 MATH 3511 Lecture 1 Solving Linear Systems 1 Dmitriy Leykekhman Spring 2012 Goals Review of basic linear algebra Solution of simple linear systems Gaussian elimination D Leykekhman - MATH 3511 Introduction

More information

MA3232 Numerical Analysis Week 9. James Cooley (1926-)

MA3232 Numerical Analysis Week 9. James Cooley (1926-) MA umerical Analysis Week 9 James Cooley (96-) James Cooley is an American mathematician. His most significant contribution to the world of mathematics and digital signal processing is the Fast Fourier

More information

Numerical Methods I Solving Square Linear Systems: GEM and LU factorization

Numerical Methods I Solving Square Linear Systems: GEM and LU factorization Numerical Methods I Solving Square Linear Systems: GEM and LU factorization Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 September 18th,

More information

Computation fundamentals of discrete GMRF representations of continuous domain spatial models

Computation fundamentals of discrete GMRF representations of continuous domain spatial models Computation fundamentals of discrete GMRF representations of continuous domain spatial models Finn Lindgren September 23 2015 v0.2.2 Abstract The fundamental formulas and algorithms for Bayesian spatial

More information

Linear Algebraic Equations

Linear Algebraic Equations Linear Algebraic Equations 1 Fundamentals Consider the set of linear algebraic equations n a ij x i b i represented by Ax b j with [A b ] [A b] and (1a) r(a) rank of A (1b) Then Axb has a solution iff

More information

Solving Dense Linear Systems I

Solving Dense Linear Systems I Solving Dense Linear Systems I Solving Ax = b is an important numerical method Triangular system: [ l11 l 21 if l 11, l 22 0, ] [ ] [ ] x1 b1 = l 22 x 2 b 2 x 1 = b 1 /l 11 x 2 = (b 2 l 21 x 1 )/l 22 Chih-Jen

More information

Direct Methods for solving Linear Equation Systems

Direct Methods for solving Linear Equation Systems REVIEW Lecture 5: Systems of Linear Equations Spring 2015 Lecture 6 Direct Methods for solving Linear Equation Systems Determinants and Cramer s Rule Gauss Elimination Algorithm Forward Elimination/Reduction

More information

GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511)

GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511) GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511) D. ARAPURA Gaussian elimination is the go to method for all basic linear classes including this one. We go summarize the main ideas. 1.

More information

An exploration of matrix equilibration

An exploration of matrix equilibration An exploration of matrix equilibration Paul Liu Abstract We review three algorithms that scale the innity-norm of each row and column in a matrix to. The rst algorithm applies to unsymmetric matrices,

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations Motivation Solving Systems of Linear Equations The idea behind Googles pagerank An example from economics Gaussian elimination LU Decomposition Iterative Methods The Jacobi method Summary Motivation Systems

More information

Numerical Methods I: Numerical linear algebra

Numerical Methods I: Numerical linear algebra 1/3 Numerical Methods I: Numerical linear algebra Georg Stadler Courant Institute, NYU stadler@cimsnyuedu September 1, 017 /3 We study the solution of linear systems of the form Ax = b with A R n n, x,

More information

Next topics: Solving systems of linear equations

Next topics: Solving systems of linear equations Next topics: Solving systems of linear equations 1 Gaussian elimination (today) 2 Gaussian elimination with partial pivoting (Week 9) 3 The method of LU-decomposition (Week 10) 4 Iterative techniques:

More information

CS412: Lecture #17. Mridul Aanjaneya. March 19, 2015

CS412: Lecture #17. Mridul Aanjaneya. March 19, 2015 CS: Lecture #7 Mridul Aanjaneya March 9, 5 Solving linear systems of equations Consider a lower triangular matrix L: l l l L = l 3 l 3 l 33 l n l nn A procedure similar to that for upper triangular systems

More information

Quiescent Steady State (DC) Analysis The Newton-Raphson Method

Quiescent Steady State (DC) Analysis The Newton-Raphson Method Quiescent Steady State (DC) Analysis The Newton-Raphson Method J. Roychowdhury, University of California at Berkeley Slide 1 Solving the System's DAEs DAEs: many types of solutions useful DC steady state:

More information

Y = ax + b. Numerical Applications Least-squares. Start with Self-test 10-1/459. Linear equation. Error function: E = D 2 = (Y - (ax+b)) 2

Y = ax + b. Numerical Applications Least-squares. Start with Self-test 10-1/459. Linear equation. Error function: E = D 2 = (Y - (ax+b)) 2 Ch.10 Numerical Applications 10-1 Least-squares Start with Self-test 10-1/459. Linear equation Y = ax + b Error function: E = D 2 = (Y - (ax+b)) 2 Regression Formula: Slope a = (N ΣXY - (ΣX)(ΣY)) / (N

More information

Chapter 4 No. 4.0 Answer True or False to the following. Give reasons for your answers.

Chapter 4 No. 4.0 Answer True or False to the following. Give reasons for your answers. MATH 434/534 Theoretical Assignment 3 Solution Chapter 4 No 40 Answer True or False to the following Give reasons for your answers If a backward stable algorithm is applied to a computational problem,

More information

Factoring Matrices with a Tree-Structured Sparsity Pattern

Factoring Matrices with a Tree-Structured Sparsity Pattern TEL-AVIV UNIVERSITY RAYMOND AND BEVERLY SACKLER FACULTY OF EXACT SCIENCES SCHOOL OF COMPUTER SCIENCE Factoring Matrices with a Tree-Structured Sparsity Pattern Thesis submitted in partial fulfillment of

More information

BLAS: Basic Linear Algebra Subroutines Analysis of the Matrix-Vector-Product Analysis of Matrix-Matrix Product

BLAS: Basic Linear Algebra Subroutines Analysis of the Matrix-Vector-Product Analysis of Matrix-Matrix Product Level-1 BLAS: SAXPY BLAS-Notation: S single precision (D for double, C for complex) A α scalar X vector P plus operation Y vector SAXPY: y = αx + y Vectorization of SAXPY (αx + y) by pipelining: page 8

More information

5.7 Cramer's Rule 1. Using Determinants to Solve Systems Assumes the system of two equations in two unknowns

5.7 Cramer's Rule 1. Using Determinants to Solve Systems Assumes the system of two equations in two unknowns 5.7 Cramer's Rule 1. Using Determinants to Solve Systems Assumes the system of two equations in two unknowns (1) possesses the solution and provided that.. The numerators and denominators are recognized

More information

Sparse linear solvers

Sparse linear solvers Sparse linear solvers Laura Grigori ALPINES INRIA and LJLL, UPMC On sabbatical at UC Berkeley March 2015 Plan Sparse linear solvers Sparse matrices and graphs Classes of linear solvers Sparse Cholesky

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.1 SYSTEMS OF LINEAR EQUATIONS LINEAR EQUATION x 1,, x n A linear equation in the variables equation that can be written in the form a 1 x 1 + a 2 x 2 + + a n x n

More information

1 GSW Sets of Systems

1 GSW Sets of Systems 1 Often, we have to solve a whole series of sets of simultaneous equations of the form y Ax, all of which have the same matrix A, but each of which has a different known vector y, and a different unknown

More information

Using Postordering and Static Symbolic Factorization for Parallel Sparse LU

Using Postordering and Static Symbolic Factorization for Parallel Sparse LU Using Postordering and Static Symbolic Factorization for Parallel Sparse LU Michel Cosnard LORIA - INRIA Lorraine Nancy, France Michel.Cosnard@loria.fr Laura Grigori LORIA - Univ. Henri Poincaré Nancy,

More information

Principles of Scientific Computing Linear Algebra II, Algorithms

Principles of Scientific Computing Linear Algebra II, Algorithms Principles of Scientific Computing Linear Algebra II, Algorithms David Bindel and Jonathan Goodman last revised March 2, 2006, printed February 26, 2009 1 1 Introduction This chapter discusses some of

More information

The purpose of computing is insight, not numbers. Richard Wesley Hamming

The purpose of computing is insight, not numbers. Richard Wesley Hamming Systems of Linear Equations The purpose of computing is insight, not numbers. Richard Wesley Hamming Fall 2010 1 Topics to Be Discussed This is a long unit and will include the following important topics:

More information

Recent advances in sparse linear solver technology for semiconductor device simulation matrices

Recent advances in sparse linear solver technology for semiconductor device simulation matrices Recent advances in sparse linear solver technology for semiconductor device simulation matrices (Invited Paper) Olaf Schenk and Michael Hagemann Department of Computer Science University of Basel Basel,

More information

LU Factorization. LU factorization is the most common way of solving linear systems! Ax = b LUx = b

LU Factorization. LU factorization is the most common way of solving linear systems! Ax = b LUx = b AM 205: lecture 7 Last time: LU factorization Today s lecture: Cholesky factorization, timing, QR factorization Reminder: assignment 1 due at 5 PM on Friday September 22 LU Factorization LU factorization

More information

Solving Linear Systems of Equations

Solving Linear Systems of Equations November 6, 2013 Introduction The type of problems that we have to solve are: Solve the system: A x = B, where a 11 a 1N a 12 a 2N A =.. a 1N a NN x = x 1 x 2. x N B = b 1 b 2. b N To find A 1 (inverse

More information

LUSOL: A basis package for constrained optimization

LUSOL: A basis package for constrained optimization LUSOL: A basis package for constrained optimization IFORS Triennial Conference on OR/MS Honolulu, HI, July 11 15, 2005 Michael O Sullivan and Michael Saunders Dept of Engineering Science Dept of Management

More information

The Solution of Linear Systems AX = B

The Solution of Linear Systems AX = B Chapter 2 The Solution of Linear Systems AX = B 21 Upper-triangular Linear Systems We will now develop the back-substitution algorithm, which is useful for solving a linear system of equations that has

More information

Elimination Method Streamlined

Elimination Method Streamlined Elimination Method Streamlined There is a more streamlined version of elimination method where we do not have to write all of the steps in such an elaborate way. We use matrices. The system of n equations

More information

Paul Heckbert. Computer Science Department Carnegie Mellon University. 26 Sept B - Introduction to Scientific Computing 1

Paul Heckbert. Computer Science Department Carnegie Mellon University. 26 Sept B - Introduction to Scientific Computing 1 Paul Heckbert Computer Science Department Carnegie Mellon University 26 Sept. 2 5-859B - Introduction to Scientific Computing aerospace: simulate subsonic & supersonic air flow around full aircraft, no

More information

CS 219: Sparse matrix algorithms: Homework 3

CS 219: Sparse matrix algorithms: Homework 3 CS 219: Sparse matrix algorithms: Homework 3 Assigned April 24, 2013 Due by class time Wednesday, May 1 The Appendix contains definitions and pointers to references for terminology and notation. Problem

More information

Linear Systems of Equations. ChEn 2450

Linear Systems of Equations. ChEn 2450 Linear Systems of Equations ChEn 450 LinearSystems-directkey - August 5, 04 Example Circuit analysis (also used in heat transfer) + v _ R R4 I I I3 R R5 R3 Kirchoff s Laws give the following equations

More information

Low-Complexity Encoding Algorithm for LDPC Codes

Low-Complexity Encoding Algorithm for LDPC Codes EECE 580B Modern Coding Theory Low-Complexity Encoding Algorithm for LDPC Codes Problem: Given the following matrix (imagine a larger matrix with a small number of ones) and the vector of information bits,

More information

MA 1B PRACTICAL - HOMEWORK SET 3 SOLUTIONS. Solution. (d) We have matrix form Ax = b and vector equation 4

MA 1B PRACTICAL - HOMEWORK SET 3 SOLUTIONS. Solution. (d) We have matrix form Ax = b and vector equation 4 MA B PRACTICAL - HOMEWORK SET SOLUTIONS (Reading) ( pts)[ch, Problem (d), (e)] Solution (d) We have matrix form Ax = b and vector equation 4 i= x iv i = b, where v i is the ith column of A, and 4 A = 8

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 2. Systems of Linear Equations

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 2. Systems of Linear Equations Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 2 Systems of Linear Equations Copyright c 2001. Reproduction permitted only for noncommercial,

More information

Math 22AL Lab #4. 1 Objectives. 2 Header. 0.1 Notes

Math 22AL Lab #4. 1 Objectives. 2 Header. 0.1 Notes Math 22AL Lab #4 0.1 Notes Green typewriter text represents comments you must type. Each comment is worth one point. Blue typewriter text represents commands you must type. Each command is worth one point.

More information

Dense LU factorization and its error analysis

Dense LU factorization and its error analysis Dense LU factorization and its error analysis Laura Grigori INRIA and LJLL, UPMC February 2016 Plan Basis of floating point arithmetic and stability analysis Notation, results, proofs taken from [N.J.Higham,

More information