NIT 2 FORCE AND MOVEMENT FORCE MOVEMENT. Dynomometer. Upthrust. Electrical Force. Weight. Magnetic Force. Gravity. Resultant. Frictional Force.

Size: px
Start display at page:

Download "NIT 2 FORCE AND MOVEMENT FORCE MOVEMENT. Dynomometer. Upthrust. Electrical Force. Weight. Magnetic Force. Gravity. Resultant. Frictional Force."

Transcription

1 NIT 2 FORCE AND MOVEMENT Dynomometer is measured by Weight Upthrust Electrical Force Gravity means Magnetic Force FORCE Resultant Motion is opposite with in used for Frictional Force Work causes is done by Simple Machines MOVEMENT vectorial scalar Velocity Speed

2 2 Entry Activities Anything we throw upwards falls back down but none of the hunderds of satellites in space fall down. What is the reason for this? Discuss this with your friends and note your answers in your notebooks. Go over your answers after you finish the unit. When historical buildings were constructed many years ago there were no working machines like excavators or cranes.therefore how were the huge and heavy stones used in buildings moved or lifted up. Discuss this with your friends and note your answers in your notebooks. Go over your answers after you finish the unit. 20

3 Force and Movement FORCE AND MOVEMENT We get up in the morning open the bedroom door, slice bread put the book on our desk into our schoolbag and so on. We live our lives by performing many actions of this kind. Have you noticed that these activities are all pushing or pulling actions. We can see that a huge ship is pushed by its motors, or can observe how the wind moves the leaves around.in both cases, what we see is not the force, but it is the results brought about by force.in most general terms, force is the pushing or pulling action.we can understand the presence of force by seeing or feeling the results it brings about. There are two types of force;the one with a circular effect is the circular force and the one that forms a linear effect is the linear force. We open the lid of a jar by exerting circular force and we pull a weight by exerting linear force. 21

4 2 2.1 A - Forces in our Environment The Stone we throw upwards falls back down. We open our bedroom window by pushing it. Magnets attract (pull) metals like iron and nickel. We carry weights from one place to another either by pulling or by pushing them. If we let the stone in our hand go, it falls down. Is this caused by a force. Yes it is caused by the force of attraction. All the objects exert a force on one another, but the force exerted by small objects on one another is so small that it is negligible. However, the earth is so huge that, the force it exerts is large enongh to pull all the other objects to itself. This force is called the gravity. Water and air have the effect of lifting objects upwards, i.e. they have the buoyant force. Upthrust of Water Upthrust of Air ( Force of air resistance) Gravity Gravity Magnets attract some metals. There is rejection (pushing) or attraction (pulling) between magnets as well. This is called the magnetic force. There is a similar attractions in an atom, this is called the electrical force. Did You Know? The unit of force is named after Sir Isaac Newton, the scientist that found the Law of General Attaction. 22

5 Force and Movement 2.1 B - What is Force? When playing football, we send the ball to different directions, to our teammates or to the nets to score a goal. The ball gains different speeds according to the force we exert on it. It stops when the goal keeper catches it. When playing the rope pulling game, the team which pulls with a greater force, wins. If both teams pull with the same force, none of the teams wins as there will be no movement. The force used here is the force in our muscles. Different forces act on an object in different directions. If the object is stationary, then, all the opposite forces acting on it are balanced. In order for the object to move, the force in one direction must be greater than the force acting on it in the opposite direction. Force can move stationary objects, can stop moving objects or can change the direction of movement. 100 Newton 100 Newton Opposing forces are balanced, the object does not move. 20 Newton 100 Newton The right hand force is greater; =80N. The object moves to right with a force of 80N. 100 Newton 100 Newton 20 Newton 100 Newton 100 Newton The total force to the left is greater; (100+20) = 20N. The object moves to left with a force from of 20N Opposing forces (to the right and to the left) are balanced, but as there is another force from another direction, the object moves downwards. 100 Newton Did You Know? The billiard robot designed in Bristol University,England, can calculate the exact force that should be used to hit the balls. 23

6 2 2.1 C - How Do We Measure Force? We know that objects have mass and volume and that mass can be measured by using a scale.we now learned that one of the greatest forces acting on objects is the Granitational Force. Scientists prepared a scaled apparatus with a spring and decided that the amount of stretching of a 100gr object on this apparatus is equql to a force of 1 Newton.This apparatus is called a dynamometer. A dynomometer can be prepared in various forms.a manual scale with a spring is a dynomometer. The maximum amount of force that can be measured by laboratory dynomometers have a limited stretching capacity. Stretching capacity of the spring determines the amount of force that can be measured by that dynamometer. Gravitational Force The gravitational force acting on a 1 kg object on earth is approximately 9.81Newtons. Thus, we can calculate the weight of a 20 kg (mass) object is 20 x 9.81=196.2 Newtons. As can be seen from the given example weight is the gravitational force exerted on objects by earth. An astraunot on the moon has a smaller weight than he has on earth as the gravitational force on the moon is smaller than that on earth.in space, the astraunot has no weight as there is no gravitational force in space. Therefore; it can be stated that each object has a constant mass but its weight changes according to the gravitational force in different environment. Activity After studying the pictures above, draw the force(s) acting on objects, and state which one(s) are balanced. Did You Know? The gravitational force on the moon is 1/6 th of that on earth. 24

7 Force and Movement 2.2 A - Forces in Action I spent the day moving a stone out of our garden. I tied a rope around the stone and dragged it out. Finally, I did it. I got rid of the stone but I had a tiring work day. I wish the stone was closer to the fence,then I could move it outside much easily and would have a less tiring workday. However, the stone was very far from the fence and I had to put a lot of effort in order to move it outside. As given in the example above, scientists call the force applied times the distance moved by the object work. If the object does not move in the direction of force we apply, then we do not do any work. WORK = FORCE x DISTANCE Force: 100 Newton Joule Newton Meter Distance: 15 meter WORK = 100 x 15 = 1500 Joule If I was stronger, I could move the stone out much faster. Then I would not have to spend the whole day working. Scientists call the speed of work done power.power is the time taken to do the work. POWER = WORK TIME Joule Second Did You Know? Watt People evaluate the power spent for work. This is one of the fundamental principles of the Declaration of Human Rights The unit of power which was previously stated as horse power is named after James Watt the creator of steam machine. 25

8 2 2.3 A - Simple Machines Kyrenia Castle and Salamis ancient city are the examples of architecture that have remained from ancient times. Pyramids in Egypt are other examples of architecture from old times. How were these ancient buildings constructed at that time? How were these ancient buildings constructed at times when there were no modern machinery? Lenght of the slope is 800 meters Height is 100 meters Gained Force = = The largest pyramid is about 146 meters high. Large rocks used in building the pyramids were taken to a height of 146 meters by inclined planes or ramps. Lifting the rock directly upwards involves movement in a shorter distance, butit requires a much greater force. When it is carried by using an inclined plane, it has to be moved it is much smaller. A rock that would need thousands of men to be lifted can be brought to the same height by a few men. Using an inclined plane does not change the amount of work done, but the same weight is carried over a much longer distance. The larger distance in using an inclined plane, the smaller the force required. This is an example of a basic machine. Scientists name the basic machines that can change the type of force, the direction or the magnitude of force, as simple machines. Did You Know? Scientific ideas make your life easier. The Greek scientist Heron who lived in the 2nd century believed that even the most complex machines consists of 5 simple machines. 26

9 2.3 B - Inclined Planes In Our Environment Force and Movement Inclined Plane Inclined planes are the simplest machines used for many puposes. The front part of a ship Works as an inclined plane. It is because of this inclined planet hat the ship uplits water and moves along easily. Screw A screw, which has a wide variety of uses, holds two or more pieces together. Screws change the circular force into linear force. Altought a screw does not resemble an inclined plane, it Works like one. When a screw makes a complete turn, it moves a thead space. This is called a screw step. An ax is a machine that has two incline planes brought together. The sharp edge of the ax hits the tree bark, and with its gradually wideniry structure the tree into two. Activity Find 5 different inclined planes in your environment and state the use of each one of them. Did You Know? The ziper, invented in 1891 by an American called Whitcomb Judson, is a simple machine that Works with the help of three inclined planes. 27

10 2 2.3 C-We Are Lifting Heavy Weights With Small Forces Lever Levers are simple machines that consist of a rod and a support. According to the purpose of using the lever, the support can be placed any where below the rod. We use various levers in our everyday life. Fishing line, hammer scissors, balance(scale) are all examples of levers. Effort Load Pivot Load Distance Effort Distance Pulley We can change the direction and magnitude of a force by using a pulley. Elavators and cranes that do the lifting actions use pulleys. Pulleys are divided into three: Fixed pulleys, movable pulleys and pulley systems. Fixed pulley Movable pulley Force Pulley System Force Weight Force Weight Activity: Show the place of pivot, force and load points on each of the following levers. Weight Did You Know? In sailing ships, pulleys are used in folding and unfolding the sails faster and easier. 28

11 Force and Movement 2.3 D - Let Us Use the Rotational Force Wheel and Axle Wheel is one of the most important inventions. Vehicles move by the movement of an axle that is turned by wheels. The circular movement of the axle is changed into a linear movement by the wheel. As the cirumference of the wheel is much greater than that of the axle, the force exerted by the axle on the wheel is much greater than the force exerted by the wheel on the ground. Big area low force Little are high force The handle of a screwdriver is wider than its axle. Therefore, the screw can be rotated with a greater force. Screwdriver is a good example of a wheel and axle. Gear and Wheels Wheels with teeth or with belts are simple machines that change the magnitude and direction of force. Wheels that rotate are connected to each other by teeth or by a belt.as a result, the rotation of one wheel causes the rotation of the other. When the larger wheel makes 1 complete turn, the smaller wheel makes 2 or more rotations. Gear Wheels with teeth or with belts are used in bicycles. Chains, instead of belts, increase the strength of the connection. Wheel Activity By looking at the diagram aside, make a wheel with teeth. For this, you need a 1 cm thick potatoe slice, a cardboard box and 16 toothpicks. Did You Know? The smallest motor produced in the world was made by Toshiba and it is 1mmin width. 29

12 2 2.4 A-If There was no Friction! When we hit a ball, it moves, but it gradually slows down and stops. If we push a book on the table, it slows down and stops after a while. Any object we apply a force on slows down and stops after moving for a while. Why is this so? Force can cause the movement of a stationary object, can stop moving objects or learned the direction of movement. We learned this statement before. Then, it is a type of force which stops a moving object. Which one? This force is the friction force, As the frictional force opposes the movement of the object, it stops the object. Motion Frictional Force Force Applied Let us rub our hands together, what happens?our hands get warmer.if we continue to rub our hands, friction causes wear and our hands are hurt. Friction leads to loss of power, because some of the energy we use changes into heat energy due to friction, and it is lost. The frictional force affects the moving vehicles. Scientists have been working on a new vehicle design called aerodynamics in order to reduce friction caused by air. There are various ways of reducing friciton. If the rubbing surfaces are smooth or lubricated by grease or water friction between them is reduced. Friciton can also be reduced by replacing sliding movement into rolling movement. Place several marbles underneath yours book. Does it move easier? The frictional force affects the moving vehicles. Scientists have been working on a new vehicle design called aerodynamics in order to reduce friction caused by air. Soles are rough to prevent sweeping Friction has some uses. If there was no friction between our feet and ground, we would not be able to walk, we would slide and fall. That is why shoes have processes underneath, so that friction with the ground is increased. There is friction between a pencil and notebook. If there was no friction, writing would be impossible. It is almost impossible to write with a pencil on very smooth surfaces like glass that have very little friction. 30

13 Force and Movement 2.5 A - Let's Move When we look around, we notice that everything moves. Cars, bicycles, planes are continuously moving from one place to another. We know that the earth turns around the Sun and the moon turns around the earth. Briefly, everything in universe moves. Since everything moves in universe, we have to find a reference point for our own movement. Scientists call the movement from one place to another or changing one's position displacement. Displacement = Final position - Initial position Position Meters A B C D E According to the reference points given on the left, the displacement of a car moving from point B to D can be found by: Displacemet = Final position-initial position, Displacement = 6-2 = 4 meters. In this example the car that moved from point B to point D had a displacement of 4 meters. Here, the car's displacement is equal to the distance it covered. But sometimes, this is not the case. We know that displacement is the different between the two positions. Displacement is related to initial position, distance and direction. The sizes that involve the intial point, magnitude and direction are said to be vectorial. The distance is the amount of movement made by the car. Distance does not involve any sense of direction, so it is said to be scalar. School On the diagram given, two different ways are given to go from home to school. If the given way is taken: Green Road Displacement = 100 meters, Distance = 100 meters If the given way is taken: Red Road Displacement = 100 meters, Distance = = 140 meters Displacement is the same in both, because it means changing positions, However, the distance covered is different in each case. Home 100 meters 60 meters Did You Know? 80 meters The first car race took place in 1909 and the speed of the fastest car was 105 km/hour 31

14 2 2.5 B - Velocity and Speed The difference between velocity and speed is the fact that:velocity is vectorial, but speed is scalar. In other words, for finding the velocity of a moving object we use the vectorial displacement, but for finding its speed we use the scalar value of distance. Vectorial DISPLACEMENT VELOCITY = TIME SPEED = Scalar DISTANCE TIME Activity A Straight Road : 200 metre B Curving Road : 1500 metre We can move from point A to point B in 10 seconds when we use the straight road, and in50 seconds when we use the curving road.then, the velocity and speed for both roads can be calcualted as: Straight Road; Velocity = Displacement / Time Velocity = 200 / 10 = 20 m/sec Speed = Distance / Time Speed = 200 / 10 = 20 m / sec Curving Road; Velocity = Displacement / Time Velocity = 200 / 50 = 4 m/sec Speed = Distance / Time Speed = 1500 / 50 = 30 m / sec On a curving road displacement and distance covered are not the same, so velocity and speed are different. 32

15 Force and Movement TEST Match each of the following activities with the type of force used in performing that activity. a)carrying a table to another place by pulling it. b)opening the lid of a jar. c)cutting down a tree with an ax. d)lifting a weight by using a pulley. e)taking off a screw from a piece of wood by using a screwdriver. f)turning the pedals of a bicycle. Rotational Force Linear Force 2. State the type of force used on each of the following. 3. Look at the dynamometers below, complete the table given and answer the questions. I. A 0N 10 N 20 N II. B 0N 50 N 100 N III. 4. Which simple machines are found in each of the following objects? C 0N 1N 2N 3N Object Dynamometer Weight A B C a)which object is the heaviest? b)which dynamometer must be used in order to find the weight of an object of 1 Newton? 5. According to the references points given above which car is the fastest? Position A B C D E F G H I J K (Meters) Ferrari Mercedes Honda Moved from point D to J in 10 seconds Moved from point G to K in 20 seconds. Moved from point A to E in 50 seconds. 33

16 2 Multiple Intellegence Activities Add 5 more questions to the following and make up a survey of 10 questions. Ask these questions to at least 2 people from your families and friends. Draw the pictures of simple Machines below in the spaces provided. Q.1 : What do you think force means? Q.2 : In everyday life, for which activities do you use force? Q.3 : Give 2 examples of activities that use rotational force? Q.4 : What type of tools do you use to do work using less force? Q.5 : Give examples of simple machines? Inclined Plane Gear Wheel and Axle Pulley Lever Screw How would we live if there was no friction? We can do work using less force. Write a composition with a theme that is based on one of the facts given above. Write down problems that will need the use of the formula below to be solved. Work = Force x Distance Problem:... Solution: Power = Work / Time Problem:... Solution:

17 Force and Movement Multiple Intellegence Activities Symbolise each simple machine given below with a different colour and colour the boxes accordingly Screw Pulley Lever Inclined Plane Wheel and Axle Gear State the type of simple machine in each of the following by using your colour symbols. a) Ax b) Scissors c) Elevator d) Cart e) Screwdriver Write down a brief report on the negative effects of speeding in our lives. ( Title of the report ) ( Slogan) ( Information on the subject ) Apply the words below to one of your favourite songs or make up your own song. There are two types of force Rotational and Linear. Select and pick any simple machine you like. Screw, inclined plan Lever, pulley Do your work using less force Don't forget the wheel. State the type of simple machine you used during each time period given below. 07:00 to 10:00 : :00 to 13:00 : :00 to 15:00 : :00 to 18:00 : :00 to 21:00 :

18 NOTES

How Do Objects Move? Describing Motion. Different Kinds of Motion

How Do Objects Move? Describing Motion. Different Kinds of Motion How Do Objects Move? Describing Motion Different Kinds of Motion Motion is everywhere. The planets are in motion around the Sun. Cars are in motion as they are driven down the street. There s even motion

More information

Chapter: Work and Machines

Chapter: Work and Machines Table of Contents Chapter: Work and Machines Section 1: Work Section 2: Using Machines Section 3: Simple Machines 1 Work What is work? To many people, the word work means something they do to earn money.

More information

Work, Power, & Machines

Work, Power, & Machines Work, Power, & Machines 1 What is work? To many people, the word work means something they do to earn money. The word work also means exerting a force with your muscles. 1 What is work? Someone might say

More information

Lesson 1: How can you describe motion?

Lesson 1: How can you describe motion? Lesson 1 Summary Use with pp. 407 409 Lesson 1: How can you describe motion? Vocabulary velocity the speed and direction of an object s motion Types of Motion Motion is movement. When you see something

More information

Check out Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Check out  Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Name: Mr. Willis Conceptual Physics: Date: Unit IV Work, Power, and Machines Need extra help? Check out http://www.bayhicoach.com Unit IV Study Guide Multiple Choice Identify the letter of the choice that

More information

acceleration weight load

acceleration weight load Instructions for Vocabulary Cards: Please photocopy the following pages onto heavy card stock (back to back, so the word is printed on the back side of the matching definition). Then, laminate each page.

More information

Forces. Unit 2. Why are forces important? In this Unit, you will learn: Key words. Previously PHYSICS 219

Forces. Unit 2. Why are forces important? In this Unit, you will learn: Key words. Previously PHYSICS 219 Previously Remember From Page 218 Forces are pushes and pulls that can move or squash objects. An object s speed is the distance it travels every second; if its speed increases, it is accelerating. Unit

More information

Chapter: Newton s Laws of Motion

Chapter: Newton s Laws of Motion Table of Contents Chapter: Newton s Laws of Motion Section 1: Motion Section 2: Newton s First Law Section 3: Newton s Second Law Section 4: Newton s Third Law 1 Motion What is motion? Distance and Displacement

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

2.1 Introduction to Simple Machines

2.1 Introduction to Simple Machines 2.1 Introduction to Simple Machines 2.1 Introduction to Simple Machines Simple Machines Unit DO NOT WRITE ANYWHERE IN THIS PACKAGE One of the few properties that separate us from animals is our ability

More information

l Every object in a state of uniform motion tends to remain in that state of motion unless an

l Every object in a state of uniform motion tends to remain in that state of motion unless an Motion and Machine Unit Notes DO NOT LOSE! Name: Energy Ability to do work To cause something to change move or directions Energy cannot be created or destroyed, but transferred from one form to another.

More information

2. FORCE AND MOTION. In the above, the objects are being moved by a push or pull. A push or pull acting on objects is called a force.

2. FORCE AND MOTION. In the above, the objects are being moved by a push or pull. A push or pull acting on objects is called a force. 2. FORCE AND MOTION Force We do many jobs in our daily life like lifting things, moving things from one place to another, cutting objects, etc. To do these jobs, we have to move. We are surrounded by a

More information

Section 1: Work and Power. Section 2: Using Machines. Section 3: Simple Machines

Section 1: Work and Power. Section 2: Using Machines. Section 3: Simple Machines Table of Contents Chapter: Work and Simple Machines Section 1: Work and Power Section 2: Using Machines Section 3: Simple Machines 1 Work and Power What is work? Work is done when a force causes an object

More information

7.P Simple Machines Study Guide Multiple Choice: Identify the letter of the choice that best completes the statement or answers the question.

7.P Simple Machines Study Guide Multiple Choice: Identify the letter of the choice that best completes the statement or answers the question. 7.P.2.4 - Simple Machines Study Guide Multiple Choice: Identify the letter of the choice that best completes the statement or answers the question. 1. For work to be done on an object, a. some force need

More information

Answers. Forces. Year 7 Science Chapter 8

Answers. Forces. Year 7 Science Chapter 8 Answers Forces Year 7 Science Chapter 8 p173 1 Steering a car involves pulling on the steering wheel. A climb in the plane involves a pull from the propellor and a pull from gravity on the plane. A horse

More information

Investigating the Factors Affecting the Speed of a Car After Freewheeling Down a Slope (Annotate this article)

Investigating the Factors Affecting the Speed of a Car After Freewheeling Down a Slope (Annotate this article) Investigating the Factors Affecting the Speed of a Car After Freewheeling Down a Slope (Annotate this article) Sir Isaac Newton formulated three Laws relating to the motion of objects. A moving object

More information

Chapter 8 Study Questions

Chapter 8 Study Questions Chapter 8 Study Questions Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Work is being done when a. you apply a force to an object. b. an

More information

2016 Junior Lesson One

2016 Junior Lesson One 2016 Junior Lesson One To complete this lesson make sure you answer all the questions in bold and do one of the projects at the end of the lesson. Parts marked ADVANCED are for the curious. This year we

More information

Making Things Move. Very often, we want to make something move, for example: Opening a door Opening a drawer

Making Things Move. Very often, we want to make something move, for example: Opening a door Opening a drawer Forces Making Things Move Very often, we want to make something move, for example: Opening a door Opening a drawer To open a drawer, we must pull, to open a door, we must push or pull. Pushes and pulls

More information

Isaac Newton was a British scientist whose accomplishments

Isaac Newton was a British scientist whose accomplishments E8 Newton s Laws of Motion R EA D I N G Isaac Newton was a British scientist whose accomplishments included important discoveries about light, motion, and gravity. You may have heard the legend about how

More information

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions: CHAPTER 2 1 SECTION Forces and Motion Gravity and Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: How does gravity affect objects? How does air resistance

More information

1. Earth and everything on it are affected by FORCES.

1. Earth and everything on it are affected by FORCES. FORCE AND MOTION 1. Earth and everything on it are affected by FORCES. 2. A force is a PUSH OR A PULL that causes an object to move, STOP, change direction, SPEED up, or slow down. It is measured in

More information

Simple Machines. Bởi: OpenStaxCollege

Simple Machines. Bởi: OpenStaxCollege F Simple Machines Simple Machines Bởi: OpenStaxCollege Simple machines are devices that can be used to multiply or augment a force that we apply often at the expense of a distance through which we apply

More information

Chapter 6 Energy and Oscillations

Chapter 6 Energy and Oscillations Chapter 6 Energy and Oscillations Conservation of Energy In this chapter we will discuss one of the most important and fundamental principles in the universe. Energy is conserved. This means that in any

More information

How things move and the forces that act on them.

How things move and the forces that act on them. 1 How things move and the forces that act on them. 2 What is a Force? In science, force is a push or a pull. Think of a game of bowling. The moving object - the ball, exerts a pushing force against anything

More information

Physics Midterm Review KEY

Physics Midterm Review KEY Name: Date: 1. Which quantities are scalar? A. speed and work B. velocity and force C. distance and acceleration D. momentum and power 2. A 160.-kilogram space vehicle is traveling along a straight line

More information

Unit 6 Forces and Pressure

Unit 6 Forces and Pressure Unit 6 Forces and Pressure Lesson Objectives: Mass and weight Gravitational field and field strength describe the effect of balanced and unbalanced forces on a body describe the ways in which a force may

More information

Chapter 5. Preview. Section 1 Measuring Motion. Section 2 What Is a Force? Section 3 Friction: A Force That Opposes Motion

Chapter 5. Preview. Section 1 Measuring Motion. Section 2 What Is a Force? Section 3 Friction: A Force That Opposes Motion Matter in Motion Preview Section 1 Measuring Motion Section 2 What Is a Force? Section 3 Friction: A Force That Opposes Motion Section 4 Gravity: A Force of Attraction Concept Mapping Section 1 Measuring

More information

Chapter 5 The Force Vector

Chapter 5 The Force Vector Conceptual Physics/ PEP Name: Date: Chapter 5 The Force Vector Section Review 5.1 1. Indicate whether each of the following units of measurement are scalar or vector units: Speed _scalar time scalar mass

More information

The Laws of Motion. Gravity and Friction

The Laws of Motion. Gravity and Friction The Laws of Motion Gravity and Friction Types of Forces Think about all the things you pushed or pulled today. You might have pushed toothpaste out of a tube. Maybe you pulled out a chair to sit down.

More information

Different Forces Act on Objects

Different Forces Act on Objects Have you heard the story about Isaac Newton sitting under an apple tree? According to the story, an apple fell from a tree and hit him on the head. From that event, it is said that Newton discovered the

More information

Motion and Forces. Forces

Motion and Forces. Forces CHAPTER 8 Motion and LESSON 3 What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with the statement or a D

More information

Pushes and Pulls. Example- an apple falling on a tree exerts a downward force with a magnitude of about 1 newton.

Pushes and Pulls. Example- an apple falling on a tree exerts a downward force with a magnitude of about 1 newton. What are Forces? Pushes and Pulls Force- a push or pull that acts on an object. Forces make a moving object speed up, slow down, or change direction. Forces have both magnitude and direction. Magnitude

More information

FORCE. Definition: Combining Forces (Resultant Force)

FORCE. Definition: Combining Forces (Resultant Force) 1 FORCE Definition: A force is either push or pull. A Force is a vector quantity that means it has magnitude and direction. Force is measured in a unit called Newtons (N). Some examples of forces are:

More information

Work, Power and Machines

Work, Power and Machines CHAPTER 13.1 & 13.2 Work, Power and Machines Section one: Work, Power, and Machines Objective one: Calculate Work Objective Two: Differentiate Work and Power Objective Three: Discover that machines make

More information

CHAPTER 5. Work, Power and Machines

CHAPTER 5. Work, Power and Machines CHAPTER 5 Work, Power and Machines Section one: Work, Power, and Machines Objective one: Calculate Work Objective Two: Differentiate Work and Power Objective Three: Discover that machines make work easier

More information

Mechanical Advantage & Simple Machines. Physics 5 th Six Weeks

Mechanical Advantage & Simple Machines. Physics 5 th Six Weeks Mechanical Advantage & Simple Machines Physics 5 th Six Weeks And now, for an appetizer: Bill Nye and using Mechanical Advantage Mechanical Advantage A machine is something that makes doing work easier

More information

Physics Unit: Force & Motion

Physics Unit: Force & Motion Physics Unit: Force & Motion What is physical science? A. Physical science is a field of science that studies matter and energy. B. Physical science has 2 main branches: 1. PHYSICS: the study of how matter

More information

FORCES AND MOTION UNIT TEST. Multiple Choice: Draw a Circle Completely around the ONE BEST answer.

FORCES AND MOTION UNIT TEST. Multiple Choice: Draw a Circle Completely around the ONE BEST answer. Name: Date: Period: FORCES AND MOTION UNIT TEST Multiple Choice: Draw a Circle Completely around the ONE BEST answer. 1. A force acting on an object does no work if a. a machine is used to move the object.

More information

TEACHER BACKGROUND INFORMATION FORCE

TEACHER BACKGROUND INFORMATION FORCE TEACHER BACKGROUND INFORMATION FORCE WHAT IS FORCE? Force is anything that can change the state of motion of a body. In simpler terms, force is a push or a pull. For example, wind pushing on a flag is

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 1 Newton s Second Law Force, Mass, and Acceleration Newton s first law

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 4 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Broughton High School

Broughton High School 1 Physical Science Vocabulary Vocabulary for Chapter 5 - Work and Machines No.# Term Page # Definition 2 1. Compound Machine 2. Efficiency 3. Inclined Plane 4. Input force 5. Lever 6. Machine 7. Mechanical

More information

Theme 2 - PHYSICS UNIT 2 Forces and Moments. A force is a push or a pull. This means that whenever we push or pull something, we are doing a force.

Theme 2 - PHYSICS UNIT 2 Forces and Moments. A force is a push or a pull. This means that whenever we push or pull something, we are doing a force. Forces A force is a push or a pull. This means that whenever we push or pull something, we are doing a force. Forces are measured in Newtons (N) after the great physicist Sir Isaac Newton. The instrument

More information

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION.

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. MOTION & FORCES SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. A. CALCULATE VELOCITY AND ACCELERATION. B. APPLY NEWTON S THREE LAWS TO EVERYDAY SITUATIONS BY EXPLAINING THE

More information

Forces and Newton s Laws

Forces and Newton s Laws chapter 3 section 1 Forces Forces and Newton s Laws What You ll Learn how force and motion are related what friction is between objects the difference between mass and weight Before You Read When you hit

More information

Experimenting with Forces

Experimenting with Forces A mother hears a loud crash in the living room. She walks into the room to see her seven-year-old son looking at a broken vase on the floor. How did that happen? she asks. I don t know. The vase just fell

More information

7.2. Assessment in Diploma Program Physics 281

7.2. Assessment in Diploma Program Physics 281 7.2. Assessment in Diploma Program Physics 281 figures in 100 kmh 1, we round the answer to two significant figures. Note that we have to use at least one significant figure more than the final result

More information

Work, Power and Simple Machines. Chapter 4 Physical Science

Work, Power and Simple Machines. Chapter 4 Physical Science Work, Power and Simple Machines Chapter 4 Physical Science Work, Power and Simple Machines Machines make jobs easier by increasing the applied force on an object. The trade-off is that this also requires

More information

produce sugar, which contains stored chemical energy. Most of the energy that we use on Earth originally came from the Sun.

produce sugar, which contains stored chemical energy. Most of the energy that we use on Earth originally came from the Sun. Conservation of Energy Energy can be in many different forms. Students should know sources and properties of the following forms of energy: Heat energy is the transfer of thermal energy (energy that is

More information

Physics Unit: Force & Motion

Physics Unit: Force & Motion Physics Unit: Force & Motion What is physical science? A. Physical science is a field of science that studies matter and energy. B. Physical science has 2 main branches: 1. PHYSICS: the study of how matter

More information

Forces and Motion in One Dimension

Forces and Motion in One Dimension Nicholas J. Giordano www.cengage.com/physics/giordano Forces and Motion in One Dimension Applications of Newton s Laws We will learn how Newton s Laws apply in various situations We will begin with motion

More information

A. true. 6. An object is in motion when

A. true. 6. An object is in motion when 1. The SI unit for speed is A. Miles per hour B. meters per second 5. Frictional forces are greatest when both surfaces are rough. A. true B. false 2. The combination of all of the forces acting on an

More information

CHAPTER 4 TEST REVIEW

CHAPTER 4 TEST REVIEW CHAPTER 4 TEST REVIEW Work = Force x Distance 1. Work is measured in. a. Newtons b. Joules c. Centimeters d. Grams 2. Sir Isaac Newton is famous for discovering the. a. Laws of motion b. Laws of work c.

More information

1. Two forces are applied to a wooden box as shown below. Which statement best describes the effect these forces have on the box?

1. Two forces are applied to a wooden box as shown below. Which statement best describes the effect these forces have on the box? 1. Two forces are applied to a wooden box as shown below. Which statement best describes the effect these forces have on the box? A. The box does not move. B. The box moves to the right. C. The box moves

More information

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book.

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book. AP Physics 1- Dynamics Practice Problems FACT: Inertia is the tendency of an object to resist a change in state of motion. A change in state of motion means a change in an object s velocity, therefore

More information

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 *Read the following (20) questions and choose the right answer: 1 The figure below represents the speed-time graph for the motion of a vehicle during a 7.0-minute

More information

Forces. Net force is the combination all of the forces acting on an object. All forces have both size and direction.

Forces. Net force is the combination all of the forces acting on an object. All forces have both size and direction. Objectives Forces Describe forces, and explain how forces act on objects. Determine the net force when more than one force is acting on an object. Compare balanced and unbalanced forces. Describe ways

More information

A N D. c h a p t e r 1 2 M O T I O N F O R C E S

A N D. c h a p t e r 1 2 M O T I O N F O R C E S F O R C E S A N D c h a p t e r 1 2 M O T I O N What is a FORCE? A FORCE is a push or pull that acts on an object. A force can cause a resting object to move OR Accelerate a moving object by: changing

More information

Newton s Laws of Motion. Chapter 4

Newton s Laws of Motion. Chapter 4 Newton s Laws of Motion Chapter 4 Newton s First Law of Motion Force A force is a push or pull. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. Force

More information

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron.

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron. Lecture 3 The Laws of Motion OUTLINE 5.1 The Concept of Force 5.2 Newton s First Law and Inertial Frames 5.3 Mass 5.4 Newton s Second Law 5.5 The Gravitational Force and Weight 5.6 Newton s Third Law 5.8

More information

UNIT D: MECHANICAL SYSTEMS

UNIT D: MECHANICAL SYSTEMS 1 UNIT D: MECHANICAL SYSTEMS Science 8 2 Section 2.0 AN UNDERSTANDING OF MECHANICAL ADVANTAGE AND WORK HELPS IN DETERMINING THE EFFICIENCY OF MACHINES. 1 3 MACHINES MAKE WORK EASIER Topic 2.1 4 WHAT WOULD

More information

Winmeen Tnpsc Group 1 & 2 Study Materials

Winmeen Tnpsc Group 1 & 2 Study Materials 9. Force and Pressure 1. Explain the term Force? Force is a push or a pull acting on an object which changes or tends to change the state of the object. 2. What is the Unit of Force? In the International

More information

Practice Test for Midterm Exam

Practice Test for Midterm Exam A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it

More information

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( )

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( ) AP PHYSICS 1 WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton (1643-1727) Isaac Newton was the greatest English mathematician of his generation. He laid the foundation for differential

More information

The Laws of Motion. Gravity and Friction

The Laws of Motion. Gravity and Friction The Laws of Motion Gravity and Friction What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with the statement

More information

Chapter: Motion, Acceleration, and Forces

Chapter: Motion, Acceleration, and Forces Chapter 3 Table of Contents Chapter: Motion, Acceleration, and Forces Section 1: Describing Motion Section 2: Acceleration Section 3: Motion and Forces 1 Motion Describing Motion Distance and time are

More information

L-8-5 (L-8-5) 1. This graph shows the velocity of a car. Which statement BEST explains how the car is moving?

L-8-5 (L-8-5) 1. This graph shows the velocity of a car. Which statement BEST explains how the car is moving? Name: Date: 1. This graph shows the velocity of a car. Which statement BEST explains how the car is moving? A. Velocity is increasing, so the car is accelerating. B. Velocity is decreasing, so the car

More information

CPS lesson Work and Energy ANSWER KEY

CPS lesson Work and Energy ANSWER KEY CPS lesson Work and Energy ANSWER KEY 1. A ball feeder slowly pushes a bowling ball up a 1-m ramp to a height of 0.5 m above the floor. Neglecting friction, what constant force must be exerted on the 5-kg

More information

9/27/12. Chapter: Motion, Acceleration, and Forces. Motion and Position. Motion. Distance. Relative Motion

9/27/12. Chapter: Motion, Acceleration, and Forces. Motion and Position. Motion. Distance. Relative Motion 9/7/ Table of Contents Chapter: Motion,, and Forces Section : Chapter Section : Section : Motion Distance and time are important. In order to win a race, you must cover the distance in the shortest amount

More information

Page 1. Name:

Page 1. Name: Name: 3834-1 - Page 1 1) If a woman runs 100 meters north and then 70 meters south, her total displacement is A) 170 m south B) 170 m north C) 30 m south D) 30 m north 2) The graph below represents the

More information

3rd Grade Motion and Stability

3rd Grade Motion and Stability Slide 1 / 106 Slide 2 / 106 3rd Grade Motion and Stability 2015-11-09 www.njctl.org Slide 3 / 106 Table of Contents Forces and Motion Review Balanced and Unbalanced Forces Motion prediction from patterns

More information

Chapter 4. Forces in One Dimension

Chapter 4. Forces in One Dimension Chapter 4 Forces in One Dimension Chapter 4 Forces in One Dimension In this chapter you will: *VD Note Use Newton s laws to solve problems. Determine the magnitude and direction of the net force that causes

More information

3. What type of force is the woman applying to cart in the illustration below?

3. What type of force is the woman applying to cart in the illustration below? Name: Forces and Motion STUDY GUIDE Directions: Answer the following questions. 1. What is a force? a. A type of energy b. The rate at which an object performs work c. A push or a pull d. An object that

More information

7 th Grade Science Unit 5 NCFE Review

7 th Grade Science Unit 5 NCFE Review 7 th Grade Science Unit 5 NCFE Review Motion Mo#on: defined as a change in the posi#on of an object results in movement judged rela#ve to a reference point Speed the distance an object covers over #me

More information

Friction: A Force That Opposes Motion

Friction: A Force That Opposes Motion 3 What You Will Learn The magnitude of the force of can vary. Kinetic is a force that, when unbalanced, can change the velocity of a moving object. Static balances an applied force and can prevent motion.

More information

Chapter Four Holt Physics. Forces and the Laws of Motion

Chapter Four Holt Physics. Forces and the Laws of Motion Chapter Four Holt Physics Forces and the Laws of Motion Physics Force and the study of dynamics 1.Forces - a. Force - a push or a pull. It can change the motion of an object; start or stop movement; and,

More information

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below. 1. Which statement about the movement of an object with zero acceleration is true? The object must be at rest. The object must be slowing down. The object may be speeding up. The object may be in motion.

More information

3 Friction: A Force That Opposes Motion

3 Friction: A Force That Opposes Motion CHAPTER 1 SECTION Matter in Motion 3 Friction: A Force That Opposes Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: What is friction? How does friction

More information

Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS

Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Accelerated Physics Rotational Dynamics Problem Set Page 1 of 5 Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Directions: Show all work on a separate piece of paper. Box your final answer. Don t forget

More information

Force and Motion Easy to read Version. Junior Science

Force and Motion Easy to read Version. Junior Science Force and Motion Easy to read Version Junior Science 1 1a The different types of motion Objects that move from one point of space to another over time are said to have motion. Examples include a tortoise

More information

W = Fd. KE = 1 2 mv2

W = Fd. KE = 1 2 mv2 Ch 10 Energy, Work and Simple Machines work: moving an object in the direction of the force exerted upon it (Joules) work W = Fd force (Newtons) (meters) distance object is displaced in the direction of

More information

Marr College Science. Forces. Learning Outcomes and Summary Notes

Marr College Science. Forces. Learning Outcomes and Summary Notes Marr College Science Forces Learning Outcomes and Summary Notes Learning Intentions By the end of this unit I will be able to 1. Describe a force as a push or a pull. 2. Describe the effects of forces

More information

ACTIVITY SHEETS PHYSICS AND CHEMISTRY 2 nd ESO NAME:

ACTIVITY SHEETS PHYSICS AND CHEMISTRY 2 nd ESO NAME: ACTIVITY SHEETS PHYSICS AND CHEMISTRY 2 nd ESO NAME: Lesson 7. FORCES ACTIVITY 1 1.-What happens if you hit or push a ball in these cases? a) The ball is at rest. b) The ball is in motion. c) The ball

More information

FATHER AGNEL SCHOOL, VAISHALI CLASS IX QUESTION BANK PHYSICS

FATHER AGNEL SCHOOL, VAISHALI CLASS IX QUESTION BANK PHYSICS Topic : MOTION 1. Define acceleration and state its SI unit. For motion along a straight line, when do we consider the acceleration to be (i) positive (ii) negative? Give an example of a body in uniform

More information

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 Review Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 The unit of work is the A. Newton B. Watt C. Joule D. Meter E. Second 2/91 The unit of work is the A. Newton

More information

Motion. Definition a change of position

Motion. Definition a change of position Potential energy Definition stored energy an object has because of its position Characteristics the higher up an object is, the greater its potential energy Example book sitting on the desk Kinetic energy

More information

3rd Grade. Forces and Motion Review. Slide 1 / 106 Slide 2 / 106. Slide 4 / 106. Slide 3 / 106. Slide 5 / 106. Slide 6 / 106. Motion and Stability

3rd Grade. Forces and Motion Review. Slide 1 / 106 Slide 2 / 106. Slide 4 / 106. Slide 3 / 106. Slide 5 / 106. Slide 6 / 106. Motion and Stability Slide 1 / 106 Slide 2 / 106 3rd Grade Motion and Stability 2015-11-09 www.njctl.org Slide 3 / 106 Slide 4 / 106 Table of Contents Forces and Motion Review Balanced and Unbalanced Forces Motion prediction

More information

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam #2, Chapters 5-7 Name PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The quantity 1/2 mv2 is A) the potential energy of the object.

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List:

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List: If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List: No Push No Go No Push No Stop No Push No Speed Up No Push No Slow Down

More information

Unit 6: Forces II PRACTICE PROBLEMS

Unit 6: Forces II PRACTICE PROBLEMS Regents Physics Mrs. Long Unit 6: Forces II PRACTICE PROBLEMS Essential Understanding for the Unit: The net force can be determined by using force diagrams in order to show all forces acting, and thereby

More information

Lecture Outline. Chapter 7: Energy Pearson Education, Inc.

Lecture Outline. Chapter 7: Energy Pearson Education, Inc. Lecture Outline Chapter 7: Energy This lecture will help you understand: Energy Work Power Mechanical Energy: Potential and Kinetic Work-Energy Theorem Conservation of Energy Machines Efficiency Recycled

More information

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction Newton s Laws of Motion I. Law of Inertia II. F=ma III. Action-Reaction While most people know what Newton's laws say, many people do not know what they mean (or simply do not believe what they mean).

More information

Copyright by Harcourt, Inc.

Copyright by Harcourt, Inc. Forces Copyright by Harcourt, Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording,

More information

Name Date P Lesson 4 Forces and Simple Machines

Name Date P Lesson 4 Forces and Simple Machines Lesson 4 Forces and Simple Machines OAA Science Lesson 4 40 Lesson 4: Forces and Simple Machines Student s Reference Sheet: 6 Simple Machines: Screw - Swivel Stool - Spiral Stair Case - Inclined Plane

More information

Chapter 09 Multiple Choice Test

Chapter 09 Multiple Choice Test Class: Date: Chapter 09 Multiple Choice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A simple machine can multiply: a. forces only. b. energy only.

More information

Name Class Date. What are the four fundamental forces in nature? How can forces affect the motion of an object? Why is friction sometime necessary?

Name Class Date. What are the four fundamental forces in nature? How can forces affect the motion of an object? Why is friction sometime necessary? CHAPTER 11 SECTION Motion 3 Motion and Force KEY IDEAS As you read this section, keep these questions in mind: What are the four fundamental forces in nature? How can forces affect the motion of an object?

More information

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion.

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion. Chapter 3 Newton s First Law of Motion Inertia Exercises 31 Aristotle on Motion (pages 29 30) Fill in the blanks with the correct terms 1 Aristotle divided motion into two types: and 2 Natural motion on

More information

Chapter 12 - Work and Energy. Section 1 - Work, Power, and Machines

Chapter 12 - Work and Energy. Section 1 - Work, Power, and Machines Chapter 12 - Work and Energy Section 1 - Work, Power, and Machines 1 Imagine trying to lift a car without a jack You might be exerting a lot of force, but not moving the It would feel like you have done

More information