Thermal wind and temperature perturbations

Size: px
Start display at page:

Download "Thermal wind and temperature perturbations"

Transcription

1 Thermal wind and temerature erturbations Robert Lindsay Korty Massachusetts Institute of Technology October 15, 2002 Following the work of Bretherton (1966), we showed in class that a boundary otential temerature erturbation behaves in the same way as a delta function erturbation of otential vorticity would just inside of the boundary. By integrating the definition of seudo-otential vorticity over an infintesimal region adjacent to one of the horizontal boundaries, we showed the mathematical equivalence of a boundary otential temerature anomaly and a delta function q anomaly just inside the boundary. In the case of a lower boundary, the temerature anomalies behave like delta function q anomalies of the same sign; at the uer boundary, they behave like q anomalies of the oosite sign. It can be useful to have an illustration of how boundary θ anomalies behave. The resence of such an anomaly in a quasi-balanced fluid imlies the resence of an anomalous circulation by the thermal wind relation. Recall that the thermal wind equation is valid for geostrohic motions in a hydrostatic fluid. By differentiating the hydrostatic equation, φ = θ π, (1) with resect to and differentiating the definition of geostrohic wind, v g = 1 f φ, (2) with resect to, the thermal wind equation relating vertical wind shear to horizontal gradients of otential temerature may be obtained: 1 θ fπ = v g. (3) Similarly, 1 θ fπ y = u g. (4) So wherever there are gradients of θ on a horizontal boundary (e.g., heading into or coming out of a otential temerature anomaly), there will be an anomalous geostrohic wind, which changes magnitude with height away from the boundary. (Note that this relation also

2 elains why the mean troosheric winds are zonal, increase with height, and strongest in the mid-latitudes: there is a mean north-south gradient of otential temerature from the warm, equatorial latitudes to the cold, olar ones. From the relations above, dθ dy dug d or + dug.) dz In figure 1, a ositive otential temerature anomaly is lotted in red on a lower boundary. This anomaly decays in, y, and z away from its center. As suggested by the shrinking dashed circles directly above the surface anomaly, the anomaly decays with height until at some altitude it vanishes. I have labeled four oints in the lower boundary lane containing the θ anomaly: A, B, C, and D. Let us consider the erturbation winds at each of these four oints, and how they change with height. As one heads east through oint A, the gradient of otential temerature anomaly is increasing (it starts at zero some distance well west of the anomaly and increases as one heads east, assing through oint A, to the center of the anomaly). From the relation eressed θ by equation (3), > 0 imlies that an anomalous, meridional wind will decrease in value with increasing ressure (or increase in value with increasing height). Obviously, the anomalous wind owing to this temerature erturbation must decay by the same altitude as the temerature erturbation itself decays. (At this level, there is no more horizontal gradient in θ, and thus there can be no erturbation motion at this height.) With this constraint, let us now return to how the wind changes with height above oint A. It is robably easiest to think of this in ressure coordinates. Given that the erturbation wind must be zero at the altitude at which all erturbations vanish, as one heads down toward the surface (increasing ressure), the value of v g must decrease. If it starts at zero, it must become negative as one heads down to the surface. Thus, at oint A, there is a strong northerly wind (blowing to the south). A similar analysis may be conducted at oint C, to the east of the erturbation maimum. To the east of the maimum, the value of θ decreases as one heads east through oint C until at some oint, far to the east, the erturbation vanishes. Thus, θ < 0. Again constrained by the fact that all erturbation motions must vanish at thesamealtitudeasθ does, equation (3) tells us that an anomalous meridional wind will increase in value down from this ressure level to the surface. Thus, the wind is southerly at oint C on the lower boundary, and decreases in intensity as one heads u in height. These winds are lotted in cyan in figure 1. Along the line connecting oint D to oint B, the gradient of otential temerature erturbation is in the y direction. From equation (4) the erturbation wind shears can be estimated at oints B and D. Using an analysis similar to that described above, I have lotted the erturbation winds in figure 2 at and above oint B (in magenta) and at and above oint D (in green). Thus, it should be clear from figure 2 that the eistance of a ositive otential temerature anomaly along a lower boundary imlies by thermal wind the eistance of a erturbation circulation which rotates cyclonically and decreases in in-

3 tensity as one heads above the surface. From equation (1) we can also learn that this temerature anomaly creates a negative geootential erturbation (in height coordinates, a negative ressure erturbation). Thus a ositive otential temerature anomaly on a lower boundary behaves eactly as a ositive otential vorticity anomaly would: there is anomalous ositive vorticity and anomalous negative geootential (negative ressure). I would encourage you to eamine figures 3, 4, and 5. They feature a ositive θ anomaly, but at the to boundary rather than the lower one. By eamining the gradient of otential temerature moving in and out of the anomaly, and with the boundary condition that all erturbation winds vanish at some altitude below the uer surface, see if you can elain why the winds rotate anticyclonically. Obviously temerature erturbations that are negative will roduce circulations oosite in direction to the ones eamined here. Try sketching some of these lots, if it would be useful.

4 z y A B D C Figure 1: A ositive otential temerature anomaly eists on the lower boundary (here drawn in the lane containing the and y aes). The anomaly is drawn in red, and decays in intensity away from its center in, y, and z. As suggested by the shrinking dashed circles above the lower boundary, the temerature anomaly decays with height until at some altitude it vanishes. Points A, B, C, and D all lie in the same lower boundary lane as the θ anomaly. The meridional wind at and above oints A and C owing to the gradient of θ in the direction is lotted in cyan. The erturbation winds must vanish at the same altitude as the θ anomaly.

5 z y A B D C Figure 2: As in figure 1, but with erturbation winds lotted at and above oints B (in magenta) and D (in green) also. At B and D, the erturbation winds are zonal as the temerature gradient is in the y direction (see equation (4)).

6 y E surface of to boundary F H G z Figure 3: Points E, F, G, and H lie, along with a ositive otential temerature anomaly, on the uer boundary of a fluid. The temerature anomaly is drawn in red, and dotted circles are drawn beneath the uer boundary to indicate that it decreases in intensity in, y, and height until at some altitude beneath the to of the fluid, it vanishes entirely. The zonal winds owing to the gradient of θ in the y direction are lotted at and below oints F (in magenta) and H (in green). The erturbation winds must vanish at the same altitude as the θ anomaly.

7 y E surface of to boundary F H G z Figure 4: As in figure 3, but with erturbation winds lotted at oints E (in gold) and G (in cyan). As the gradient of θ is in the direction at and below oints E and G, the erturbation winds are meridional.

8 y E surface of to boundary F z H G Figure 5: Figures 3 and 4 combined.

6.7 Thermal wind in pressure coordinates

6.7 Thermal wind in pressure coordinates 176 CHAPTER 6. THE EQUATIONS OF FLUID MOTION 6.7 Thermal wind in ressure coordinates The thermal wind relation aroriate to the atmoshere is untidy when exressed with height as a vertical coordinate (because

More information

Notes on pressure coordinates Robert Lindsay Korty October 1, 2002

Notes on pressure coordinates Robert Lindsay Korty October 1, 2002 Notes on ressure coordinates Robert Lindsay Korty October 1, 2002 Obviously, it makes no difference whether the quasi-geostrohic equations are hrased in height coordinates (where x, y,, t are the indeendent

More information

ATM The thermal wind Fall, 2016 Fovell

ATM The thermal wind Fall, 2016 Fovell ATM 316 - The thermal wind Fall, 2016 Fovell Reca and isobaric coordinates We have seen that for the synotic time and sace scales, the three leading terms in the horizontal equations of motion are du dt

More information

ESCI 342 Atmospheric Dynamics I Lesson 10 Vertical Motion, Pressure Coordinates

ESCI 342 Atmospheric Dynamics I Lesson 10 Vertical Motion, Pressure Coordinates Reading: Martin, Section 4.1 PRESSURE COORDINATES ESCI 342 Atmosheric Dynamics I Lesson 10 Vertical Motion, Pressure Coordinates Pressure is often a convenient vertical coordinate to use in lace of altitude.

More information

Synoptic Meteorology II: Potential Vorticity Inversion and Anomaly Structure April 2015

Synoptic Meteorology II: Potential Vorticity Inversion and Anomaly Structure April 2015 Synoptic Meteorology II: Potential Vorticity Inversion and Anomaly Structure 14-16 April 2015 Readings: Sections 4.2 and 4.4 of Midlatitude Synoptic Meteorology. Potential Vorticity Inversion Introduction

More information

Baroclinic flows can also support Rossby wave propagation. This is most easily

Baroclinic flows can also support Rossby wave propagation. This is most easily 17. Quasi-geostrohic Rossby waves Baroclinic flows can also suort Rossby wave roagation. This is most easily described using quasi-geostrohic theory. We begin by looking at the behavior of small erturbations

More information

In two-dimensional barotropic flow, there is an exact relationship between mass

In two-dimensional barotropic flow, there is an exact relationship between mass 19. Baroclinic Instability In two-dimensional barotropic flow, there is an exact relationship between mass streamfunction ψ and the conserved quantity, vorticity (η) given by η = 2 ψ.the evolution of the

More information

Comments on Vertical Vorticity Advection

Comments on Vertical Vorticity Advection Comments on Vertical Vorticity Advection It shold be fairly intitive that ositive maima in vertical vorticity are associated with cyclones, and ths ositive cyclonic vorticity advection might be a sefl

More information

MET 4302 Midterm Study Guide 19FEB18

MET 4302 Midterm Study Guide 19FEB18 The exam will be 4% short answer and the remainder (6%) longer (1- aragrahs) answer roblems and mathematical derivations. The second section will consists of 6 questions worth 15 oints each. Answer 4.

More information

第四章 : 中纬度的经向环流系统 (III) 授课教师 : 张洋. - Ferrel cell, baroclinic eddies and the westerly jet

第四章 : 中纬度的经向环流系统 (III) 授课教师 : 张洋. - Ferrel cell, baroclinic eddies and the westerly jet 第四章 : 中纬度的经向环流系统 (III) - Ferrel cell, baroclinic eddies and the westerly jet 授课教师 : 张洋 2016. 10. 24 Outline Review! Observations! The Ferrel Cell!! Review: baroclinic instability and baroclinic eddy life

More information

Quasi-geostrophic ocean models

Quasi-geostrophic ocean models Quasi-geostrophic ocean models March 19, 2002 1 Introduction The starting point for theoretical and numerical study of the three dimensional large-scale circulation of the atmosphere and ocean is a vorticity

More information

What did Venus Express tell us about the winds? PPT summary of Hueso et al. 2014

What did Venus Express tell us about the winds? PPT summary of Hueso et al. 2014 What did Venus Express tell us about the winds? PPT summary of Hueso et al. 2014 Observations Data selected from first 2115 orbits (6 Earth years = 9 Venusian days) UV: 66-72 km, VIS and NIR a few km below

More information

Conservation of Energy Thermodynamic Energy Equation

Conservation of Energy Thermodynamic Energy Equation Conseration of Energy Thermodynamic Energy Equation The reious two sections dealt with conseration of momentum (equations of motion) and the conseration of mass (continuity equation). This section addresses

More information

Dynamics of the Zonal-Mean, Time-Mean Tropical Circulation

Dynamics of the Zonal-Mean, Time-Mean Tropical Circulation Dynamics of the Zonal-Mean, Time-Mean Tropical Circulation First consider a hypothetical planet like Earth, but with no continents and no seasons and for which the only friction acting on the atmosphere

More information

Atmospheric Fronts. The material in this section is based largely on. Lectures on Dynamical Meteorology by Roger Smith.

Atmospheric Fronts. The material in this section is based largely on. Lectures on Dynamical Meteorology by Roger Smith. Atmospheric Fronts The material in this section is based largely on Lectures on Dynamical Meteorology by Roger Smith. Atmospheric Fronts 2 Atmospheric Fronts A front is the sloping interfacial region of

More information

Meteorology Lecture 15

Meteorology Lecture 15 Meteorology Lecture 15 Robert Fovell rfovell@albany.edu 1 Important notes These slides show some figures and videos prepared by Robert G. Fovell (RGF) for his Meteorology course, published by The Great

More information

Final Examination, MEA 443 Fall 2008, Lackmann

Final Examination, MEA 443 Fall 2008, Lackmann Place an X here to count it double! Name: Final Examination, MEA 443 Fall 2008, Lackmann If you wish to have the final exam count double and replace your midterm score, place an X in the box above. As

More information

Weather and Climate Laboratory Spring 2009

Weather and Climate Laboratory Spring 2009 MIT OenCourseWare htt://ocw.mit.edu 12.307 Weather and Climate Laboratory Sring 2009 For information about citing these materials or our Terms of Use, visit: htt://ocw.mit.edu/terms. Thermal wind John

More information

The Planetary Circulation System

The Planetary Circulation System 12 The Planetary Circulation System Learning Goals After studying this chapter, students should be able to: 1. describe and account for the global patterns of pressure, wind patterns and ocean currents

More information

Modeling the atmosphere of Jupiter

Modeling the atmosphere of Jupiter Modeling the atmosphere of Jupiter Bruce Turkington UMass Amherst Collaborators: Richard S. Ellis (UMass Professor) Andrew Majda (NYU Professor) Mark DiBattista (NYU Postdoc) Kyle Haven (UMass PhD Student)

More information

Synoptic Meteorology II: Self-Development in the IPV Framework. 5-7 May 2015

Synoptic Meteorology II: Self-Development in the IPV Framework. 5-7 May 2015 Synoptic Meteorology II: Self-Development in the IPV Framework 5-7 May 2015 Readings: Section 5.3.6 of Midlatitude Synoptic Meteorology. Introduction In this and other recent lectures, we have developed

More information

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 4

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 4 Atmoshere, Ocean and Climate Dynamics Answers to Chater 4 1. Show that the buoyancy frequency, Eq.(4.22), may be written in terms of the environmental temerature rofile thus N 2 = g µ dte T E dz + Γ d

More information

1. Read the section on stability in Wallace and Hobbs. W&H 3.53

1. Read the section on stability in Wallace and Hobbs. W&H 3.53 Assignment 2 Due Set 5. Questions marked? are otential candidates for resentation 1. Read the section on stability in Wallace and Hobbs. W&H 3.53 2.? Within the context of the Figure, and the 1st law of

More information

ERTH 465 Fall Lab 5. Absolute Geostrophic Vorticity. 200 points.

ERTH 465 Fall Lab 5. Absolute Geostrophic Vorticity. 200 points. Name Date ERTH 465 Fall 2015 Lab 5 Absolute Geostrophic Vorticity 200 points. 1. All labs are to be kept in a three hole binder. Turn in the binder when you have finished the Lab. 2. Show all work in mathematical

More information

2.6 Primitive equations and vertical coordinates

2.6 Primitive equations and vertical coordinates Chater 2. The continuous equations 2.6 Primitive equations and vertical coordinates As Charney (1951) foresaw, most NWP modelers went back to using the rimitive equations, with the hydrostatic aroximation,

More information

f self = 1/T self (b) With revolution, rotaton period T rot in second and the frequency Ω rot are T yr T yr + T day T rot = T self > f self

f self = 1/T self (b) With revolution, rotaton period T rot in second and the frequency Ω rot are T yr T yr + T day T rot = T self > f self Problem : Units : Q-a Mathematically exress the relationshi between the different units of the hysical variables: i) Temerature: ) Fahrenheit and Celsius; 2) Fahrenheit and Kelvin ii) Length: ) foot and

More information

Dynamics and Kinematics

Dynamics and Kinematics Geophysics Fluid Dynamics () Syllabus Course Time Lectures: Tu, Th 09:30-10:50 Discussion: 3315 Croul Hall Text Book J. R. Holton, "An introduction to Dynamic Meteorology", Academic Press (Ch. 1, 2, 3,

More information

Geophysics Fluid Dynamics (ESS228)

Geophysics Fluid Dynamics (ESS228) Geophysics Fluid Dynamics (ESS228) Course Time Lectures: Tu, Th 09:30-10:50 Discussion: 3315 Croul Hall Text Book J. R. Holton, "An introduction to Dynamic Meteorology", Academic Press (Ch. 1, 2, 3, 4,

More information

Quasi-Geostrophic ω-equation. 1. The atmosphere is approximately hydrostatic. 2. The atmosphere is approximately geostrophic.

Quasi-Geostrophic ω-equation. 1. The atmosphere is approximately hydrostatic. 2. The atmosphere is approximately geostrophic. Quasi-Geostrophic ω-equation For large-scale flow in the atmosphere, we have learned about two very important characteristics:. The atmosphere is approximately hydrostatic.. The atmosphere is approximately

More information

Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport

Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport is which can also be written as (14.1) i.e., #Q x,y

More information

Meteorology 311. General Circulation/Fronts Fall 2017

Meteorology 311. General Circulation/Fronts Fall 2017 Meteorology 311 General Circulation/Fronts Fall 2017 Precipitation Types Rain Snow growth of ice crystals through deposition, accretion, and aggregation. Freezing Rain Rain freezes when it hits the surface.

More information

Synoptic Meteorology I: The Geostrophic Approximation. 30 September, 7 October 2014

Synoptic Meteorology I: The Geostrophic Approximation. 30 September, 7 October 2014 The Equations of Motion Synotic Meteorology I: The Geostrohic Aroimation 30 Setember, 7 October 2014 In their most general form, and resented without formal derivation, the equations of motion alicable

More information

Lecture 1. Equations of motion - Newton s second law in three dimensions. Pressure gradient + force force

Lecture 1. Equations of motion - Newton s second law in three dimensions. Pressure gradient + force force Lecture 3 Lecture 1 Basic dynamics Equations of motion - Newton s second law in three dimensions Acceleration = Pressure Coriolis + gravity + friction gradient + force force This set of equations is the

More information

Find the equation of a plane perpendicular to the line x = 2t + 1, y = 3t + 4, z = t 1 and passing through the point (2, 1, 3).

Find the equation of a plane perpendicular to the line x = 2t + 1, y = 3t + 4, z = t 1 and passing through the point (2, 1, 3). CME 100 Midterm Solutions - Fall 004 1 CME 100 - Midterm Solutions - Fall 004 Problem 1 Find the equation of a lane erendicular to the line x = t + 1, y = 3t + 4, z = t 1 and assing through the oint (,

More information

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written 2. Meridional atmospheric structure; heat and water transport The equator-to-pole temperature difference DT was stronger during the last glacial maximum, with polar temperatures down by at least twice

More information

2 Dynamical basics, part 1

2 Dynamical basics, part 1 Contents 1 Dynamical basics, art 1 3 1.1 What drives the atmosheric circulation?........................ 7 1.2 Conservation laws..................................... 8 1.3 Large-scale circulation: Basic

More information

Lecture 25: Ocean circulation: inferences from geostrophic and thermal wind balance

Lecture 25: Ocean circulation: inferences from geostrophic and thermal wind balance Lecture 25: Ocean circulation: inferences from geostrophic and thermal wind balance November 5, 2003 Today we are going to study vertical sections through the ocean and discuss what we can learn about

More information

Atmospheric dynamics and meteorology

Atmospheric dynamics and meteorology Atmospheric dynamics and meteorology B. Legras, http://www.lmd.ens.fr/legras III Frontogenesis (pre requisite: quasi-geostrophic equation, baroclinic instability in the Eady and Phillips models ) Recommended

More information

General Atmospheric Circulation

General Atmospheric Circulation General Atmospheric Circulation Take away Concepts and Ideas Global circulation: The mean meridional (N-S) circulation Trade winds and westerlies The Jet Stream Earth s climate zones Monsoonal climate

More information

ESCI 342 Atmospheric Dynamics I Lesson 12 Vorticity

ESCI 342 Atmospheric Dynamics I Lesson 12 Vorticity ESCI 34 tmospheric Dynamics I Lesson 1 Vorticity Reference: n Introduction to Dynamic Meteorology (4 rd edition), Holton n Informal Introduction to Theoretical Fluid Mechanics, Lighthill Reading: Martin,

More information

Lecture 10a: The Hadley Cell

Lecture 10a: The Hadley Cell Lecture 10a: The Hadley Cell Geoff Vallis; notes by Jim Thomas and Geoff J. Stanley June 27 In this short lecture we take a look at the general circulation of the atmosphere, and in particular the Hadley

More information

The perturbation pressure, p, can be represented as the sum of a hydrostatic pressure perturbation p h and a nonhydrostatic pressure perturbation p nh

The perturbation pressure, p, can be represented as the sum of a hydrostatic pressure perturbation p h and a nonhydrostatic pressure perturbation p nh z = The perturbation pressure, p, can be represented as the sum of a hydrostatic pressure perturbation p h and a nonhydrostatic pressure perturbation p nh, that is, p = p h + p nh. (.1) The former arises

More information

Lecture 20: Taylor Proudman Theorem

Lecture 20: Taylor Proudman Theorem Lecture 20: Taylor Proudman Theorem October 23, 2003 1 The Taylor-Proudman Theorem We have seen (last time) that if the flow is sufficiently slow and steady (small Rossby number) and frictionless (F small),

More information

a) Derive general expressions for the stream function Ψ and the velocity potential function φ for the combined flow. [12 Marks]

a) Derive general expressions for the stream function Ψ and the velocity potential function φ for the combined flow. [12 Marks] Question 1 A horizontal irrotational flow system results from the combination of a free vortex, rotating anticlockwise, of strength K=πv θ r, located with its centre at the origin, with a uniform flow

More information

The Eady problem of baroclinic instability described in section 19a was shown to

The Eady problem of baroclinic instability described in section 19a was shown to 0. The Charney-Stern Theorem The Eady problem of baroclinic instability described in section 19a was shown to be remarkably similar to the Rayleigh instability of barotropic flow described in Chapter 18.

More information

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017 Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

Lecture 1: Introduction and Review

Lecture 1: Introduction and Review Lecture 1: Introduction and Review Review of fundamental mathematical tools Fundamental and apparent forces Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study

More information

Chapter 1E - Complex Numbers

Chapter 1E - Complex Numbers Fry Texas A&M University Math 150 Spring 2015 Unit 4 20 Chapter 1E - Complex Numbers 16 exists So far the largest (most inclusive) number set we have discussed and the one we have the most experience with

More information

Dynamic Meteorology 1

Dynamic Meteorology 1 Dynamic Meteorology 1 Lecture 14 Sahraei Department of Physics, Razi University http://www.razi.ac.ir/sahraei Buys-Ballot rule (Northern Hemisphere) If the wind blows into your back, the Low will be to

More information

is a maximizer. However this is not the case. We will now give a graphical argument explaining why argue a further condition must be satisfied.

is a maximizer. However this is not the case. We will now give a graphical argument explaining why argue a further condition must be satisfied. D. Maimization with two variables D. Sufficient conditions for a maimum Suppose that the second order conditions hold strictly. It is tempting to believe that this might be enough to ensure that is a maimizer.

More information

C

C C 0.8 0.4 0.2 0.0-0.2-0.6 Fig. 1. SST-wind relation in the North Pacific and Atlantic Oceans. Left panel: COADS SST (color shade), surface wind vectors, and SLP regressed upon the Pacific Decadal Oscillation

More information

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions.

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions. Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

Part-8c Circulation (Cont)

Part-8c Circulation (Cont) Part-8c Circulation (Cont) Global Circulation Means of Transfering Heat Easterlies /Westerlies Polar Front Planetary Waves Gravity Waves Mars Circulation Giant Planet Atmospheres Zones and Belts Global

More information

Can a Simple Two-Layer Model Capture the Structure of Easterly Waves?

Can a Simple Two-Layer Model Capture the Structure of Easterly Waves? Can a Simple Two-Layer Model Capture the Structure of Easterly Waves? Cheryl L. Lacotta 1 Introduction Most tropical storms in the Atlantic, and even many in the eastern Pacific, are due to disturbances

More information

16C.6 Genesis of Atlantic tropical storms from African Easterly Waves a comparison of two contrasting years

16C.6 Genesis of Atlantic tropical storms from African Easterly Waves a comparison of two contrasting years 16C.6 Genesis of Atlantic tropical storms from African Easterly Waves a comparison of two contrasting years Susanna Hopsch 1 Department of Earth and Atmospheric Sciences, University at Albany, Albany,

More information

Lecture 4:the observed mean circulation. Atmosphere, Ocean, Climate Dynamics EESS 146B/246B

Lecture 4:the observed mean circulation. Atmosphere, Ocean, Climate Dynamics EESS 146B/246B Lecture 4:the observed mean circulation Atmosphere, Ocean, Climate Dynamics EESS 146B/246B The observed mean circulation Lateral structure of the surface circulation Vertical structure of the circulation

More information

What is the Madden-Julian Oscillation (MJO)?

What is the Madden-Julian Oscillation (MJO)? What is the Madden-Julian Oscillation (MJO)? Planetary scale, 30 90 day oscillation in zonal wind, precipitation, surface pressure, humidity, etc., that propagates slowly eastward Wavelength = 12,000 20,000

More information

ERTH 465 Fall Lab 5. Absolute Geostrophic Vorticity. 200 points.

ERTH 465 Fall Lab 5. Absolute Geostrophic Vorticity. 200 points. Name Date ERTH 465 Fall 2015 Lab 5 Absolute Geostrophic Vorticity 200 points. 1. All labs are to be kept in a three hole binder. Turn in the binder when you have finished the Lab. 2. Show all work in mathematical

More information

Answer Key for Practice Test #2

Answer Key for Practice Test #2 Answer Key for Practice Test #2 Section 1. Multiple-choice questions. Choose the one alternative that best completes the statement or answers the question. Mark your choice on the optical scan sheet. 1.

More information

Why the Atlantic was surprisingly quiet in 2013

Why the Atlantic was surprisingly quiet in 2013 1 Why the Atlantic was surprisingly quiet in 2013 by William Gray and Phil Klotzbach Preliminary Draft - March 2014 (Final draft by early June) ABSTRACT This paper discusses the causes of the unusual dearth

More information

Radian Measure and Angles on the Cartesian Plane

Radian Measure and Angles on the Cartesian Plane . Radian Measure and Angles on the Cartesian Plane GOAL Use the Cartesian lane to evaluate the trigonometric ratios for angles between and. LEARN ABOUT the Math Recall that the secial triangles shown can

More information

Atmosphere, Ocean and Climate Dynamics Fall 2008

Atmosphere, Ocean and Climate Dynamics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 12.003 Atmosphere, Ocean and Climate Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Problem

More information

Liquid water static energy page 1/8

Liquid water static energy page 1/8 Liquid water static energy age 1/8 1) Thermodynamics It s a good idea to work with thermodynamic variables that are conserved under a known set of conditions, since they can act as assive tracers and rovide

More information

ATSC 201 Final Exam Name: Fall 2008 (total points = 100) Student Number: 1. (2 points) The two main conditions needed for downbursts to form are: and

ATSC 201 Final Exam Name: Fall 2008 (total points = 100) Student Number: 1. (2 points) The two main conditions needed for downbursts to form are: and Prof. Stull (open book) Fall 2008 (total points = 100) Student Number: 1. (2 points) The two main conditions needed for downbursts to form are: and 2. (6 pts) For the most-used imager channels on weather

More information

Graphing Review Part 1: Circles, Ellipses and Lines

Graphing Review Part 1: Circles, Ellipses and Lines Graphing Review Part : Circles, Ellipses and Lines Definition The graph of an equation is the set of ordered pairs, (, y), that satisfy the equation We can represent the graph of a function by sketching

More information

Imperial College London

Imperial College London Solar Influence on Stratosphere-Troposphere Dynamical Coupling Isla Simpson, Joanna D. Haigh, Space and Atmospheric Physics, Imperial College London Mike Blackburn, Department of Meteorology, University

More information

SIO 210 Final Exam December 10, :30 2:30 NTV 330 No books, no notes. Calculators can be used.

SIO 210 Final Exam December 10, :30 2:30 NTV 330 No books, no notes. Calculators can be used. SIO 210 Final Exam December 10, 2003 11:30 2:30 NTV 330 No books, no notes. Calculators can be used. There are three sections to the exam: multiple choice, short answer, and long problems. Points are given

More information

z g + F w (2.56) p(x, y, z, t) = p(z) + p (x, y, z, t) (2.120) ρ(x, y, z, t) = ρ(z) + ρ (x, y, z, t), (2.121)

z g + F w (2.56) p(x, y, z, t) = p(z) + p (x, y, z, t) (2.120) ρ(x, y, z, t) = ρ(z) + ρ (x, y, z, t), (2.121) = + dw dt = 1 ρ p z g + F w (.56) Let us describe the total pressure p and density ρ as the sum of a horizontally homogeneous base state pressure and density, and a deviation from this base state, that

More information

Meteorology Lecture 18

Meteorology Lecture 18 Meteorology Lecture 18 Robert Fovell rfovell@albany.edu 1 Important notes These slides show some figures and videos prepared by Robert G. Fovell (RGF) for his Meteorology course, published by The Great

More information

Introduction to Isentropic Coordinates: a new view of mean meridional & eddy circulations. Cristiana Stan

Introduction to Isentropic Coordinates: a new view of mean meridional & eddy circulations. Cristiana Stan Introduction to Isentropic Coordinates: a new view of mean meridional & eddy circulations Cristiana Stan School and Conference on the General Circulation of the Atmosphere and Oceans: a Modern Perspective

More information

Nonlinear baroclinic dynamics of surface cyclones crossing a zonal jet

Nonlinear baroclinic dynamics of surface cyclones crossing a zonal jet Nonlinear baroclinic dynamics of surface cyclones crossing a zonal jet Jean-Baptiste GILET, Matthieu Plu and Gwendal Rivière CNRM/GAME (Météo-France, CNRS) 3rd THORPEX International Science Symposium Monterey,

More information

Examples of Pressure Gradient. Pressure Gradient Force. Chapter 7: Forces and Force Balances. Forces that Affect Atmospheric Motion 2/2/2015

Examples of Pressure Gradient. Pressure Gradient Force. Chapter 7: Forces and Force Balances. Forces that Affect Atmospheric Motion 2/2/2015 Chapter 7: Forces and Force Balances Forces that Affect Atmospheric Motion Fundamental force - Apparent force - Pressure gradient force Gravitational force Frictional force Centrifugal force Forces that

More information

1/25/2010. Circulation and vorticity are the two primary

1/25/2010. Circulation and vorticity are the two primary Lecture 4: Circulation and Vorticity Measurement of Rotation Circulation Bjerknes Circulation Theorem Vorticity Potential Vorticity Conservation of Potential Vorticity Circulation and vorticity are the

More information

Measurement of Rotation. Circulation. Example. Lecture 4: Circulation and Vorticity 1/31/2017

Measurement of Rotation. Circulation. Example. Lecture 4: Circulation and Vorticity 1/31/2017 Lecture 4: Circulation and Vorticity Measurement of Rotation Circulation Bjerknes Circulation Theorem Vorticity Potential Vorticity Conservation of Potential Vorticity Circulation and vorticity are the

More information

A mechanistic model study of quasi-stationary wave reflection. D.A. Ortland T.J. Dunkerton NorthWest Research Associates Bellevue WA

A mechanistic model study of quasi-stationary wave reflection. D.A. Ortland T.J. Dunkerton NorthWest Research Associates Bellevue WA A mechanistic model study of quasi-stationary wave reflection D.A. Ortland T.J. Dunkerton ortland@nwra.com NorthWest Research Associates Bellevue WA Quasi-stationary flow Describe in terms of zonal mean

More information

Physical Oceanography, MSCI 3001 Oceanographic Processes, MSCI Dr. Katrin Meissner Ocean Dynamics.

Physical Oceanography, MSCI 3001 Oceanographic Processes, MSCI Dr. Katrin Meissner Ocean Dynamics. Physical Oceanography, MSCI 3001 Oceanographic Processes, MSCI 5004 Dr. Katrin Meissner k.meissner@unsw.e.au Ocean Dynamics The Equations of Motion d u dt = 1 ρ Σ F dt = 1 ρ ΣF x dt = 1 ρ ΣF y dw dt =

More information

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu Lecture 2: Basic Conservation Laws Conservation Law of Momentum Newton s 2 nd Law of Momentum = absolute velocity viewed in an inertial system = rate of change of Ua following the motion in an inertial

More information

2. Baroclinic Instability and Midlatitude Dynamics

2. Baroclinic Instability and Midlatitude Dynamics 2. Baroclinic Instability and Midlatitude Dynamics Midlatitude Jet Stream Climatology (Atlantic and Pacific) Copyright 26 Emily Shuckburgh, University of Cambridge. Not to be quoted or reproduced without

More information

A few examples Shallow water equation derivation and solutions. Goal: Develop the mathematical foundation of tropical waves

A few examples Shallow water equation derivation and solutions. Goal: Develop the mathematical foundation of tropical waves A few examples Shallow water equation derivation and solutions Goal: Develop the mathematical foundation of tropical waves Previously: MCS Hovmoller Propagating w/ wave velocity From Chen et al (1996)

More information

Topic 30 Notes Jeremy Orloff

Topic 30 Notes Jeremy Orloff Toic 30 Notes Jeremy Orloff 30 Alications to oulation biology 30.1 Modeling examles 30.1.1 Volterra redator-rey model The Volterra redator-rey system models the oulations of two secies with a redatorrey

More information

The Arctic Energy Budget

The Arctic Energy Budget The Arctic Energy Budget The global heat engine [courtesy Kevin Trenberth, NCAR]. Differential solar heating between low and high latitudes gives rise to a circulation of the atmosphere and ocean that

More information

Chapter 9. Barotropic Instability. 9.1 Linearized governing equations

Chapter 9. Barotropic Instability. 9.1 Linearized governing equations Chapter 9 Barotropic Instability The ossby wave is the building block of low ossby number geophysical fluid dynamics. In this chapter we learn how ossby waves can interact with each other to produce a

More information

EESC V2100 The Climate System spring 2004 Lecture 4: Laws of Atmospheric Motion and Weather

EESC V2100 The Climate System spring 2004 Lecture 4: Laws of Atmospheric Motion and Weather EESC V2100 The Climate System spring 2004 Lecture 4: Laws of Atmospheric Motion and Weather Yochanan Kushnir Lamont Doherty Earth Observatory of Columbia University Palisades, NY 10964, USA kushnir@ldeo.columbia.edu

More information

3. Midlatitude Storm Tracks and the North Atlantic Oscillation

3. Midlatitude Storm Tracks and the North Atlantic Oscillation 3. Midlatitude Storm Tracks and the North Atlantic Oscillation Copyright 2006 Emily Shuckburgh, University of Cambridge. Not to be quoted or reproduced without permission. EFS 3/1 Review of key results

More information

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its.

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its. Fry Texas A&M University Fall 2016 Math 150 Notes Chapter 9 Page 248 Chapter 9 -- Vectors Remember that is the set of real numbers, often represented by the number line, 2 is the notation for the 2-dimensional

More information

Lecture 12: Angular Momentum and the Hadley Circulation

Lecture 12: Angular Momentum and the Hadley Circulation Lecture 12: Angular Momentum and the Hadley Circulation September 30, 2003 We learnt last time that there is a planetary radiative drive net warming in the tropics, cooling over the pole which induces

More information

Lecture 11: Meridonal structure of the atmosphere

Lecture 11: Meridonal structure of the atmosphere Lecture 11: Meridonal structure of the atmosphere September 28, 2003 1 Meridional structure of the atmosphere In previous lectures we have focussed on the vertical structure of the atmosphere. Today, we

More information

Balance. in the vertical too

Balance. in the vertical too Balance. in the vertical too Gradient wind balance f n Balanced flow (no friction) More complicated (3- way balance), however, better approximation than geostrophic (as allows for centrifugal acceleration

More information

5D.6 EASTERLY WAVE STRUCTURAL EVOLUTION OVER WEST AFRICA AND THE EAST ATLANTIC 1. INTRODUCTION 2. COMPOSITE GENERATION

5D.6 EASTERLY WAVE STRUCTURAL EVOLUTION OVER WEST AFRICA AND THE EAST ATLANTIC 1. INTRODUCTION 2. COMPOSITE GENERATION 5D.6 EASTERLY WAVE STRUCTURAL EVOLUTION OVER WEST AFRICA AND THE EAST ATLANTIC Matthew A. Janiga* University at Albany, Albany, NY 1. INTRODUCTION African easterly waves (AEWs) are synoptic-scale disturbances

More information

Meteorology Lecture 24

Meteorology Lecture 24 Meteorology Lecture 24 Robert Fovell rfovell@albany.edu 1 Important notes These slides show some figures and videos prepared by Robert G. Fovell (RGF) for his Meteorology course, published by The Great

More information

and 24 mm, hPa lapse rates between 3 and 4 K km 1, lifted index values

and 24 mm, hPa lapse rates between 3 and 4 K km 1, lifted index values 3.2 Composite analysis 3.2.1 Pure gradient composites The composite initial NE report in the pure gradient northwest composite (N = 32) occurs where the mean sea level pressure (MSLP) gradient is strongest

More information

1/27/2010. With this method, all filed variables are separated into. from the basic state: Assumptions 1: : the basic state variables must

1/27/2010. With this method, all filed variables are separated into. from the basic state: Assumptions 1: : the basic state variables must Lecture 5: Waves in Atmosphere Perturbation Method With this method, all filed variables are separated into two parts: (a) a basic state part and (b) a deviation from the basic state: Perturbation Method

More information

Winds and Global Circulation

Winds and Global Circulation Winds and Global Circulation Atmospheric Pressure Winds Global Wind and Pressure Patterns Oceans and Ocean Currents El Nino How is Energy Transported to its escape zones? Both atmospheric and ocean transport

More information

Steady Flow: rad conv. where. E c T gz L q 2. p v 2 V. Integrate from surface to top of atmosphere: rad TOA rad conv surface

Steady Flow: rad conv. where. E c T gz L q 2. p v 2 V. Integrate from surface to top of atmosphere: rad TOA rad conv surface The Three-Dimensional Circulation 1 Steady Flow: F k ˆ F k ˆ VE 0, rad conv where 1 E c T gz L q 2 p v 2 V Integrate from surface to top of atmosphere: VE F FF F 0 rad TOA rad conv surface 2 What causes

More information

Introduction of products for Climate System Monitoring

Introduction of products for Climate System Monitoring Introduction of products for Climate System Monitoring 1 Typical flow of making one month forecast Textbook P.66 Observed data Atmospheric and Oceanic conditions Analysis Numerical model Ensemble forecast

More information

Using simplified vorticity equation,* by assumption 1 above: *Metr 430 handout on Circulation and Vorticity. Equations (4) and (5) on that handout

Using simplified vorticity equation,* by assumption 1 above: *Metr 430 handout on Circulation and Vorticity. Equations (4) and (5) on that handout Rossby Wave Equation A. Assumptions 1. Non-divergence 2. Initially, zonal flow, or nearly zonal flow in which u>>v>>w. 3. Initial westerly wind is geostrophic and does not vary along the x-axis and equations

More information

Comparison Figures from the New 22-Year Daily Eddy Dataset (January April 2015)

Comparison Figures from the New 22-Year Daily Eddy Dataset (January April 2015) Comparison Figures from the New 22-Year Daily Eddy Dataset (January 1993 - April 2015) The figures on the following pages were constructed from the new version of the eddy dataset that is available online

More information

Preliminary Physics. Moving About. DUXCollege. Week 2. Student name:. Class code:.. Teacher name:.

Preliminary Physics. Moving About. DUXCollege. Week 2. Student name:. Class code:.. Teacher name:. Week 2 Student name:. Class code:.. Teacher name:. DUXCollege Week 2 Theory 1 Present information graphically of: o Displacement vs time o Velocity vs time for objects with uniform and non-uniform linear

More information

Fronts in November 1998 Storm

Fronts in November 1998 Storm Fronts in November 1998 Storm Much of the significant weather observed in association with extratropical storms tends to be concentrated within narrow bands called frontal zones. Fronts in November 1998

More information