Comments on Vertical Vorticity Advection

Size: px
Start display at page:

Download "Comments on Vertical Vorticity Advection"

Transcription

1 Comments on Vertical Vorticity Advection It shold be fairly intitive that ositive maima in vertical vorticity are associated with cyclones, and ths ositive cyclonic vorticity advection might be a sefl forecast tool. NOTE however that the evoltion of synotic-scale meteorological systems is governed by more than jst vertical vorticity advection. ather, its the change in the vertical shear of the horizontal wind associated (i.e., forced by) with differential [i.e., f(z)] vorticity advection that drives an ageostrohic vertical circlation which adiabatically adjsts the horizontal temeratre gradients in order to maintain thermal wind balance. The divergence/convergence associated with the vertical circlation imacts the vorticity distribtion throghot the trooshere (throgh stretching) -- not jst aloft. The vertical circlation that reslts from QG differential CVA tends to be an order of magnitde larger than that indced via bondary layer circlations (and ths we neglect the Ekman generated vertical motion). Derivation of the QG height tendency eqation GOAL: We want to eliminate ω in the QGVE and QGTE Note that if we can do this, then as Holton says, we can determine the characteristics (i.e. the evolving height field) withot any knowledge of ω! FIST: ewrite or QG vorticity and thermodynamic eqations so that they are a fnction of Φ and ω only. We IGNOE the diabatic heating term in the thermo eqation (althogh it may be imortant!). From or QG thermo eqn... T T t g T g σ ω y - Q c neglect QGTE Using the following in the QGTE χ Φ --, and Φ -- t T - T -- Φ --

2 We have: -- T T t g T g σω y -- t g g y -- Φ -- σω and, t g g Φ -- y σω Φ -- Vg Φ -- t σω χ * What haened to the ressre, i.e. why no derivatives of? ewriting the eqation above we have χ Vg Φ -- σω 1 So how/why does the vertical derivative of the geootential tendency change? Or how does the thickness change? [ecall that χ ( Φ t) t( Φ ) ] What is term 1? Here are a cole of ways to look at it with the oint being that yo sholdn t lose site of the basic relationshi between thickness and temeratre! First consider a cold advection attern (-z section): We can always go back to temeratre here to show the same thing, i.e. χ at t Φ+ Φ Φ g Φ -- g > Φ -- ( ) g Φ Φ COLD (smaller thickness) lower heights -- Φ Vg Φ -- Φ -- t ( T) Vg Φ -- t > < (large -) < (small -) -- Φ Φ [-- ( + ) -- ( ) ] < from above time Φ -- ( + ) ( T) t + + WAM (greater thickness) higher heights term 1 > χ > at Φ -- T < if CAA T n + 1 T n 1 t + HOT > (T n-1 > T n+1 ) n-1 n n+1

3 Now consider a region of warm advection (where I have jst reversed the temeratre/thickness gradient given in the CAA eamle above), this time let s look at it in (-y) lane χ Φ -- t Vg Φ -- ** From the figre below we see that at the bo in the center of the domain, we are increasing the thickness (between two ressre srfaces) and therefore the trend (or tendency) in Φ Φ( 1 ) Φ( ) is to become more negative in time! It s like shing aart the ressre srfaces, e.g. the figre below. y large thickness WAM g small thickness COLD Φ -- gz Φ warm advection increasing thickness time 1 In the eqation (**) above, we note that for warm adv. the wind has a comonent in the direction oosite thickness (temeratre) gradient. Vg Φ V T g -- T g > T >< t WAA Note that the thickness gradient is oosite Φ -- becase Φ -- ( T)!!!!!!! What is term? The second term, which involves ω, yields χ >, if ω < (rising motion), and χ <, if ω > (sinking motion) Hence, rising motion is associated with decreasing thickness (cooling), while sinking motion is associated with increasing thickness (warming). As yo will see later, this resonse (i.e. the verti-

4 cal motion is considered a resonse to the forcing ) is eactly what is needed to maintain hydrostatic balance (the QG atmoshere is hydrostatic) in the resence of height rises/falls. ecall we set ot to eliminate ω in the QGVE and QGTE, we have a modified eqation for the QGTE above (*). We can do something similar for the QGVE Alying t g g y 1 ζ g --- Φ f ζ g ω f - βv g We have... t g g y f Φ ω f - βv g earranging Φ -- t f V 1 g f --- Φ ω f βv g + f - χ 1 Bt term above is jst f V g f, therefore χ f V 1 g --- Φ + f f + f ω - This eqation says that the Lalacian of the geootential tendency is eqal to the advection of absolte (geostrohic) vorticity by the geostrohic wind ls the vorticity generation de to the stretching (divergence) of the ageostrohic wind. However we still have 3 nknowns (χ, Φ, ω and two eqations...so still want to get rid one of the variables (ω)! Note that ω (re geostrohic motion) is a soltion to Holton eqations 6.1 and 6. for the secial cases of barotroic flow (no -deendence) zonally symmetric flow (no deendence) Ine of these two conditions are not satisfied, setting ω for 6.1 and 6. yields two indeendent eqations for χχ(φ) which is overdetermined (i.e. yo d get two searate soltions for χ!).

5 Conseqently the vertical motion lays a critical role in or QG system by coling the two eqations. We re almost there now... We now mltily Holton ~6.13b by and then differentiate w.r.t.? (Pressre - shold be obvios since we are trying to eliminate ω!) σ χ ( σ) Φ Vg -- σω --- χ σ ---Vg σ Φ -- f oω And then differentiating w.r.t. ressre... f --- oχ σ ---Vg Φ -- f σ oω f o σ --- χ f ---Vg o Φ -- ω f σ o - Now we can eliminate ω by combining (adding) or two new eqations (hybrid QGVE and a differentiated form of the QGTE), f --- oχ + σ χ f ---Vg o Φ -- ω f σ o - f V 1 g f --- Φ + f + f ω - We do this tye of thing all the time - and have to - in order to eliminate nknowns in many or systems of eqations (we then tyically go back and solve for the eliminated qantities once other qantities are known - hint!). Anyway, rearranging things above, we have... Geootential Tendency Eqation A B f --- o + χ σ f absolte vorticity advection ---Vg o Φ -- σ f V 1 g f --- Φ + f C differential thickness advection

ESCI 342 Atmospheric Dynamics I Lesson 10 Vertical Motion, Pressure Coordinates

ESCI 342 Atmospheric Dynamics I Lesson 10 Vertical Motion, Pressure Coordinates Reading: Martin, Section 4.1 PRESSURE COORDINATES ESCI 342 Atmosheric Dynamics I Lesson 10 Vertical Motion, Pressure Coordinates Pressure is often a convenient vertical coordinate to use in lace of altitude.

More information

Thermal wind and temperature perturbations

Thermal wind and temperature perturbations Thermal wind and temerature erturbations Robert Lindsay Korty Massachusetts Institute of Technology October 15, 2002 Following the work of Bretherton (1966), we showed in class that a boundary otential

More information

Synoptic Meteorology I: The Geostrophic Approximation. 30 September, 7 October 2014

Synoptic Meteorology I: The Geostrophic Approximation. 30 September, 7 October 2014 The Equations of Motion Synotic Meteorology I: The Geostrohic Aroimation 30 Setember, 7 October 2014 In their most general form, and resented without formal derivation, the equations of motion alicable

More information

Synoptic Meteorology I. Some Thermodynamic Concepts

Synoptic Meteorology I. Some Thermodynamic Concepts Synotic Meteoroloy I Some hermodynamic Concets Geootential Heiht Geootential Heiht (h): the otential enery of a nit mass lifted from srface to. Φ d 0 -Since constant in the trooshere, we can write Φ Δ

More information

Quasi-Geostrophic ω-equation. 1. The atmosphere is approximately hydrostatic. 2. The atmosphere is approximately geostrophic.

Quasi-Geostrophic ω-equation. 1. The atmosphere is approximately hydrostatic. 2. The atmosphere is approximately geostrophic. Quasi-Geostrophic ω-equation For large-scale flow in the atmosphere, we have learned about two very important characteristics:. The atmosphere is approximately hydrostatic.. The atmosphere is approximately

More information

STATIC, STAGNATION, AND DYNAMIC PRESSURES

STATIC, STAGNATION, AND DYNAMIC PRESSURES STATIC, STAGNATION, AND DYNAMIC PRESSURES Bernolli eqation is g constant In this eqation is called static ressre, becase it is the ressre that wold be measred by an instrment that is static with resect

More information

Fluid Dynamics. Type of Flows Continuity Equation Bernoulli Equation Steady Flow Energy Equation Applications of Bernoulli Equation

Fluid Dynamics. Type of Flows Continuity Equation Bernoulli Equation Steady Flow Energy Equation Applications of Bernoulli Equation Tye of Flows Continity Eqation Bernolli Eqation Steady Flow Energy Eqation Alications of Bernolli Eqation Flid Dynamics Streamlines Lines having the direction of the flid velocity Flids cannot cross a

More information

Baroclinic flows can also support Rossby wave propagation. This is most easily

Baroclinic flows can also support Rossby wave propagation. This is most easily 17. Quasi-geostrohic Rossby waves Baroclinic flows can also suort Rossby wave roagation. This is most easily described using quasi-geostrohic theory. We begin by looking at the behavior of small erturbations

More information

5. The Bernoulli Equation

5. The Bernoulli Equation 5. The Bernolli Eqation [This material relates predominantly to modles ELP034, ELP035] 5. Work and Energy 5. Bernolli s Eqation 5.3 An example of the se of Bernolli s eqation 5.4 Pressre head, velocity

More information

Quasi-Geostrophic Implications

Quasi-Geostrophic Implications Chapter 10 Quasi-Geostrophic Implications When you look at a weather chart with all its isolines and plotted data, you need a framework upon which to interpret what you see. Quasi-geostrophic theory provides

More information

4 Exact laminar boundary layer solutions

4 Exact laminar boundary layer solutions 4 Eact laminar bondary layer soltions 4.1 Bondary layer on a flat plate (Blasis 1908 In Sec. 3, we derived the bondary layer eqations for 2D incompressible flow of constant viscosity past a weakly crved

More information

Momentum Equation. Necessary because body is not made up of a fixed assembly of particles Its volume is the same however Imaginary

Momentum Equation. Necessary because body is not made up of a fixed assembly of particles Its volume is the same however Imaginary Momentm Eqation Interest in the momentm eqation: Qantification of proplsion rates esign strctres for power generation esign of pipeline systems to withstand forces at bends and other places where the flow

More information

Spring Semester 2011 April 5, 2011

Spring Semester 2011 April 5, 2011 METR 130: Lectre 4 - Reynolds Averaged Conservation Eqations - Trblent Flxes (Definition and typical ABL profiles, CBL and SBL) - Trblence Closre Problem & Parameterization Spring Semester 011 April 5,

More information

2.6 Primitive equations and vertical coordinates

2.6 Primitive equations and vertical coordinates Chater 2. The continuous equations 2.6 Primitive equations and vertical coordinates As Charney (1951) foresaw, most NWP modelers went back to using the rimitive equations, with the hydrostatic aroximation,

More information

STEP Support Programme. STEP III Hyperbolic Functions: Solutions

STEP Support Programme. STEP III Hyperbolic Functions: Solutions STEP Spport Programme STEP III Hyperbolic Fnctions: Soltions Start by sing the sbstittion t cosh x. This gives: sinh x cosh a cosh x cosh a sinh x t sinh x dt t dt t + ln t ln t + ln cosh a ln ln cosh

More information

The Vorticity Equation

The Vorticity Equation The Vorticit Eqation Potential orticit Circlation theorem is reall good Circlation theorem imlies a consered qantit dp dt 0 P g 2 PV or barotroic lid General orm o Ertel s otential orticit: P g const Consider

More information

FRONT TRACKING FOR A MODEL OF IMMISCIBLE GAS FLOW WITH LARGE DATA

FRONT TRACKING FOR A MODEL OF IMMISCIBLE GAS FLOW WITH LARGE DATA FONT TACKING FO A MODEL OF IMMISCIBLE GAS FLOW WITH LAGE DATA HELGE HOLDEN, NILS HENIK ISEBO, AND HILDE SANDE Abstract. In this aer we stdy front tracking for a model of one dimensional, immiscible flow

More information

Rossby waves (waves in vorticity)

Rossby waves (waves in vorticity) Rossb waes (waes in orticit) Stationar (toograhicall orced) waes NCEP Reanalsis Z500 Janar mean 2 3 Vorticit eqation z w z w z w t 2 1 Change in relatie (ertical comonent o) orticit at a oint, Adection

More information

Synoptic Meterorology I. Some Thermodynamic Concepts

Synoptic Meterorology I. Some Thermodynamic Concepts Synotic Meteroroloy I Some hermoynamic Concets Geootential Heiht Geootential Heiht (h): the otential enery of a nit mass lifte from srface to. Φ 0 -Since constant in the trooshere, we can write Φ m m m

More information

Gravity Waves in Shear and Implications for Organized Convection

Gravity Waves in Shear and Implications for Organized Convection SEPTEMBER 2009 S T E C H M A N N A N D M A J D A 2579 Gravity Waves in Shear and Imlications for Organized Convection SAMUEL N. STECHMANN Deartment of Mathematics, and Deartment of Atmosheric and Oceanic

More information

A Simulation-based Spatial Decision Support System for a New Airborne Weather Data Acquisition System

A Simulation-based Spatial Decision Support System for a New Airborne Weather Data Acquisition System A Simlation-based Satial Decision Sort System for a New Airborne Weather Data Acqisition System Erol Ozan Deartment of Engineering Management Old Dominion University Norfol, VA 23529 Pal Kaffmann Deartment

More information

Chapter 6 Momentum Transfer in an External Laminar Boundary Layer

Chapter 6 Momentum Transfer in an External Laminar Boundary Layer 6. Similarit Soltions Chapter 6 Momentm Transfer in an Eternal Laminar Bondar Laer Consider a laminar incompressible bondar laer with constant properties. Assme the flow is stead and two-dimensional aligned

More information

4 Primitive Equations

4 Primitive Equations 4 Primitive Eqations 4.1 Spherical coordinates 4.1.1 Usefl identities We now introdce the special case of spherical coordinates: (,, r) (longitde, latitde, radial distance from Earth s center), with 0

More information

Lecture 5. Differential Analysis of Fluid Flow Navier-Stockes equation

Lecture 5. Differential Analysis of Fluid Flow Navier-Stockes equation Lectre 5 Differential Analsis of Flid Flo Naier-Stockes eqation Differential analsis of Flid Flo The aim: to rodce differential eqation describing the motion of flid in detail Flid Element Kinematics An

More information

Chapter 2 Introduction to the Stiffness (Displacement) Method. The Stiffness (Displacement) Method

Chapter 2 Introduction to the Stiffness (Displacement) Method. The Stiffness (Displacement) Method CIVL 7/87 Chater - The Stiffness Method / Chater Introdction to the Stiffness (Dislacement) Method Learning Objectives To define the stiffness matrix To derive the stiffness matrix for a sring element

More information

Conservation of Energy Thermodynamic Energy Equation

Conservation of Energy Thermodynamic Energy Equation Conseration of Energy Thermodynamic Energy Equation The reious two sections dealt with conseration of momentum (equations of motion) and the conseration of mass (continuity equation). This section addresses

More information

The dynamics of high and low pressure systems

The dynamics of high and low pressure systems The dynamics of high and low pressure systems Newton s second law for a parcel of air in an inertial coordinate system (a coordinate system in which the coordinate axes do not change direction and are

More information

Viscous Dissipation and Heat Absorption effect on Natural Convection Flow with Uniform Surface Temperature along a Vertical Wavy Surface

Viscous Dissipation and Heat Absorption effect on Natural Convection Flow with Uniform Surface Temperature along a Vertical Wavy Surface Aailable at htt://am.ed/aam Al. Al. Math. ISSN: 93-966 Alications and Alied Mathematics: An International Jornal (AAM) Secial Isse No. (Ma 6),. 8 8th International Mathematics Conference, March,, IUB Cams,

More information

6.7 Thermal wind in pressure coordinates

6.7 Thermal wind in pressure coordinates 176 CHAPTER 6. THE EQUATIONS OF FLUID MOTION 6.7 Thermal wind in ressure coordinates The thermal wind relation aroriate to the atmoshere is untidy when exressed with height as a vertical coordinate (because

More information

Inertial Instability of Arbitrarily Meandering Currents Governed by the Eccentrically Cyclogeostrophic Equation

Inertial Instability of Arbitrarily Meandering Currents Governed by the Eccentrically Cyclogeostrophic Equation Jornal of Oceanography, Vol. 59, pp. 163 to 17, 3 Inertial Instability of Arbitrarily Meandering Crrents Governed by the Eccentrically Cyclogeostrophic Eqation HIDEO KAWAI* 131-81 Shibagahara, Kse, Joyo,

More information

Class exercises Chapter 3. Elementary Applications of the Basic Equations

Class exercises Chapter 3. Elementary Applications of the Basic Equations Class exercises Chapter 3. Elementary Applications of the Basic Equations Section 3.1 Basic Equations in Isobaric Coordinates 3.1 For some (in fact many) applications we assume that the change of the Coriolis

More information

Fluids Lecture 3 Notes

Fluids Lecture 3 Notes Fids Lectre 3 Notes 1. 2- Aerodynamic Forces and oments 2. Center of Pressre 3. Nondimensiona Coefficients Reading: Anderson 1.5 1.6 Aerodynamics Forces and oments Srface force distribtion The fid fowing

More information

ATM The thermal wind Fall, 2016 Fovell

ATM The thermal wind Fall, 2016 Fovell ATM 316 - The thermal wind Fall, 2016 Fovell Reca and isobaric coordinates We have seen that for the synotic time and sace scales, the three leading terms in the horizontal equations of motion are du dt

More information

Change of Variables. f(x, y) da = (1) If the transformation T hasn t already been given, come up with the transformation to use.

Change of Variables. f(x, y) da = (1) If the transformation T hasn t already been given, come up with the transformation to use. MATH 2Q Spring 26 Daid Nichols Change of Variables Change of ariables in mltiple integrals is complicated, bt it can be broken down into steps as follows. The starting point is a doble integral in & y.

More information

3 2D Elastostatic Problems in Cartesian Coordinates

3 2D Elastostatic Problems in Cartesian Coordinates D lastostatic Problems in Cartesian Coordinates Two dimensional elastostatic problems are discssed in this Chapter, that is, static problems of either plane stress or plane strain. Cartesian coordinates

More information

OZO v.1.0. Rantanen, Mika

OZO v.1.0. Rantanen, Mika htts://helda.helsinki.fi OZO v.1.0 Rantanen, Mika 2017-02-21 Rantanen, M, Räisänen, J, Lento, J, Steanyuk, O, Räty, O, Sinclair, V A & Järvinen, H 2017, ' OZO v.1.0 : software for solving a generalised

More information

Weather and Climate Laboratory Spring 2009

Weather and Climate Laboratory Spring 2009 MIT OenCourseWare htt://ocw.mit.edu 12.307 Weather and Climate Laboratory Sring 2009 For information about citing these materials or our Terms of Use, visit: htt://ocw.mit.edu/terms. Thermal wind John

More information

EXERCISES WAVE EQUATION. In Problems 1 and 2 solve the heat equation (1) subject to the given conditions. Assume a rod of length L.

EXERCISES WAVE EQUATION. In Problems 1 and 2 solve the heat equation (1) subject to the given conditions. Assume a rod of length L. .4 WAVE EQUATION 445 EXERCISES.3 In Problems and solve the heat eqation () sbject to the given conditions. Assme a rod of length.. (, t), (, t) (, ),, > >. (, t), (, t) (, ) ( ) 3. Find the temperatre

More information

Reduction of over-determined systems of differential equations

Reduction of over-determined systems of differential equations Redction of oer-determined systems of differential eqations Maim Zaytse 1) 1, ) and Vyachesla Akkerman 1) Nclear Safety Institte, Rssian Academy of Sciences, Moscow, 115191 Rssia ) Department of Mechanical

More information

第四章 : 中纬度的经向环流系统 (III) 授课教师 : 张洋. - Ferrel cell, baroclinic eddies and the westerly jet

第四章 : 中纬度的经向环流系统 (III) 授课教师 : 张洋. - Ferrel cell, baroclinic eddies and the westerly jet 第四章 : 中纬度的经向环流系统 (III) - Ferrel cell, baroclinic eddies and the westerly jet 授课教师 : 张洋 2016. 10. 24 Outline Review! Observations! The Ferrel Cell!! Review: baroclinic instability and baroclinic eddy life

More information

Lec 10: Interpreting Weather Maps

Lec 10: Interpreting Weather Maps Lec 10: Interpreting Weather Maps Case Study: October 2011 Nor easter FIU MET 3502 Synoptic Hurricane Forecasts Genesis: on large scale weather maps or satellite images, look for tropical waves (Africa

More information

f self = 1/T self (b) With revolution, rotaton period T rot in second and the frequency Ω rot are T yr T yr + T day T rot = T self > f self

f self = 1/T self (b) With revolution, rotaton period T rot in second and the frequency Ω rot are T yr T yr + T day T rot = T self > f self Problem : Units : Q-a Mathematically exress the relationshi between the different units of the hysical variables: i) Temerature: ) Fahrenheit and Celsius; 2) Fahrenheit and Kelvin ii) Length: ) foot and

More information

Burgers Equation. A. Salih. Department of Aerospace Engineering Indian Institute of Space Science and Technology, Thiruvananthapuram 18 February 2016

Burgers Equation. A. Salih. Department of Aerospace Engineering Indian Institute of Space Science and Technology, Thiruvananthapuram 18 February 2016 Brgers Eqation A. Salih Department of Aerospace Engineering Indian Institte of Space Science and Technology, Thirvananthapram 18 Febrary 216 1 The Brgers Eqation Brgers eqation is obtained as a reslt of

More information

On the importance of horizontal turbulent transport in high resolution mesoscale simulations over cities. A. Martilli (CIEMAT, Spain), B. R.

On the importance of horizontal turbulent transport in high resolution mesoscale simulations over cities. A. Martilli (CIEMAT, Spain), B. R. On the importance of horizontal trblent transport in high resoltion mesoscale simlations over cities. A. Martilli (CIEMAT, Spain), B. R. Rotnno, P. Sllivan, E. G. Patton, M. LeMone (NCAR, USA) In an rban

More information

Balance. in the vertical too

Balance. in the vertical too Balance. in the vertical too Gradient wind balance f n Balanced flow (no friction) More complicated (3- way balance), however, better approximation than geostrophic (as allows for centrifugal acceleration

More information

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics. Fall Semester Homework Problem Set Number 10 Solutions

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics. Fall Semester Homework Problem Set Number 10 Solutions Chem 4501 Introdction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics Fall Semester 2017 Homework Problem Set Nmber 10 Soltions 1. McQarrie and Simon, 10-4. Paraphrase: Apply Eler s theorem

More information

MET 4302 Midterm Study Guide 19FEB18

MET 4302 Midterm Study Guide 19FEB18 The exam will be 4% short answer and the remainder (6%) longer (1- aragrahs) answer roblems and mathematical derivations. The second section will consists of 6 questions worth 15 oints each. Answer 4.

More information

GEF2200 vår 2017 Løsningsforslag sett 1

GEF2200 vår 2017 Løsningsforslag sett 1 GEF2200 vår 2017 Løsningsforslag sett 1 A.1.T R is the universal gas constant, with value 8.3143JK 1 mol 1. R is the gas constant for a secic gas, given by R R M (1) where M is the molecular weight of

More information

ERTH 465 Fall Lab 5. Absolute Geostrophic Vorticity. 200 points.

ERTH 465 Fall Lab 5. Absolute Geostrophic Vorticity. 200 points. Name Date ERTH 465 Fall 2015 Lab 5 Absolute Geostrophic Vorticity 200 points. 1. All labs are to be kept in a three hole binder. Turn in the binder when you have finished the Lab. 2. Show all work in mathematical

More information

PV Generation in the Boundary Layer

PV Generation in the Boundary Layer 1 PV Generation in the Boundary Layer Robert Plant 18th February 2003 (With thanks to S. Belcher) 2 Introduction How does the boundary layer modify the behaviour of weather systems? Often regarded as a

More information

Kragujevac J. Sci. 34 (2012) UDC 532.5: :537.63

Kragujevac J. Sci. 34 (2012) UDC 532.5: :537.63 5 Kragjevac J. Sci. 34 () 5-. UDC 53.5: 536.4:537.63 UNSTEADY MHD FLOW AND HEAT TRANSFER BETWEEN PARALLEL POROUS PLATES WITH EXPONENTIAL DECAYING PRESSURE GRADIENT Hazem A. Attia and Mostafa A. M. Abdeen

More information

3.4-Miscellaneous Equations

3.4-Miscellaneous Equations .-Miscellaneos Eqations Factoring Higher Degree Polynomials: Many higher degree polynomials can be solved by factoring. Of particlar vale is the method of factoring by groping, however all types of factoring

More information

Derivation of the basic equations of fluid flows. No. Conservation of mass of a solute (applies to non-sinking particles at low concentration).

Derivation of the basic equations of fluid flows. No. Conservation of mass of a solute (applies to non-sinking particles at low concentration). Deriation of the basic eqations of flid flos. No article in the flid at this stage (net eek). Conseration of mass of the flid. Conseration of mass of a solte (alies to non-sinking articles at lo concentration).

More information

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation:

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation: Math 263 Assignment #3 Soltions 1. A fnction z f(x, ) is called harmonic if it satisfies Laplace s eqation: 2 + 2 z 2 0 Determine whether or not the following are harmonic. (a) z x 2 + 2. We se the one-variable

More information

Vectors in Rn un. This definition of norm is an extension of the Pythagorean Theorem. Consider the vector u = (5, 8) in R 2

Vectors in Rn un. This definition of norm is an extension of the Pythagorean Theorem. Consider the vector u = (5, 8) in R 2 MATH 307 Vectors in Rn Dr. Neal, WKU Matrices of dimension 1 n can be thoght of as coordinates, or ectors, in n- dimensional space R n. We can perform special calclations on these ectors. In particlar,

More information

A New Approach to Direct Sequential Simulation that Accounts for the Proportional Effect: Direct Lognormal Simulation

A New Approach to Direct Sequential Simulation that Accounts for the Proportional Effect: Direct Lognormal Simulation A ew Approach to Direct eqential imlation that Acconts for the Proportional ffect: Direct ognormal imlation John Manchk, Oy eangthong and Clayton Detsch Department of Civil & nvironmental ngineering University

More information

Discontinuous Fluctuation Distribution for Time-Dependent Problems

Discontinuous Fluctuation Distribution for Time-Dependent Problems Discontinos Flctation Distribtion for Time-Dependent Problems Matthew Hbbard School of Compting, University of Leeds, Leeds, LS2 9JT, UK meh@comp.leeds.ac.k Introdction For some years now, the flctation

More information

EAS372 Open Book Final Exam 11 April, 2013

EAS372 Open Book Final Exam 11 April, 2013 EAS372 Open Book Final Exam 11 April, 2013 Professor: J.D. Wilson Time available: 2 hours Value: 30% Please check the Terminology, Equations and Data section before beginning your responses. Answer all

More information

Classify by number of ports and examine the possible structures that result. Using only one-port elements, no more than two elements can be assembled.

Classify by number of ports and examine the possible structures that result. Using only one-port elements, no more than two elements can be assembled. Jnction elements in network models. Classify by nmber of ports and examine the possible strctres that reslt. Using only one-port elements, no more than two elements can be assembled. Combining two two-ports

More information

FRÉCHET KERNELS AND THE ADJOINT METHOD

FRÉCHET KERNELS AND THE ADJOINT METHOD PART II FRÉCHET KERNES AND THE ADJOINT METHOD 1. Setp of the tomographic problem: Why gradients? 2. The adjoint method 3. Practical 4. Special topics (sorce imaging and time reversal) Setp of the tomographic

More information

Atmospheric Dynamics: lecture 11

Atmospheric Dynamics: lecture 11 Atmospheric Dynamics: lecture 11 (http://www.staff.science.uu.nl/~delde102/) Chapter 9 Baroclinic waves and cyclogenesis What is a baroclinic wave? Quasi-geostrophic equations Omega equation Original articles:

More information

Introducing Ideal Flow

Introducing Ideal Flow D f f f p D p D p D f T k p D e The Continit eqation The Naier Stokes eqations The iscos Flo Energ Eqation These form a closed set hen to thermodnamic relations are specified Introdcing Ideal Flo Getting

More information

Lecture Notes: Finite Element Analysis, J.E. Akin, Rice University

Lecture Notes: Finite Element Analysis, J.E. Akin, Rice University 9. TRUSS ANALYSIS... 1 9.1 PLANAR TRUSS... 1 9. SPACE TRUSS... 11 9.3 SUMMARY... 1 9.4 EXERCISES... 15 9. Trss analysis 9.1 Planar trss: The differential eqation for the eqilibrim of an elastic bar (above)

More information

Pressure coefficient evaluation on the surface of the SONDA III model tested in the TTP Pilot Transonic Wind Tunnel

Pressure coefficient evaluation on the surface of the SONDA III model tested in the TTP Pilot Transonic Wind Tunnel Jornal of Physics: Conference Series OPEN ACCESS Pressre coefficient evalation on the srface of the SONDA III model tested in the TTP Pilot Transonic Wind Tnnel To cite this article: M L C C Reis et al

More information

FRTN10 Exercise 12. Synthesis by Convex Optimization

FRTN10 Exercise 12. Synthesis by Convex Optimization FRTN Exercise 2. 2. We want to design a controller C for the stable SISO process P as shown in Figre 2. sing the Yola parametrization and convex optimization. To do this, the control loop mst first be

More information

By Dr. Salah Salman. Problem (1)

By Dr. Salah Salman. Problem (1) Chemical Eng. De. Problem ( Solved Problems Samles in Flid Flow 0 A late of size 60 cm x 60 cm slides over a lane inclined to the horizontal at an angle of 0. It is searated from the lane with a film of

More information

Vorticity in natural coordinates

Vorticity in natural coordinates Vorticity in natural coordinates (see Holton pg 95, section 4.2.) Let s consider the vertical vorticity component only, i.e. ζ kˆ ω, we have ω u dl kˆ ω lim --- lim ----------------- curve is in xy plane

More information

Fronts & Frontogenesis

Fronts & Frontogenesis Fronts & Frontogenesis Fronts & Frontogenesis In a landmark paper, Sawyer (1956) stated that although the Norwegian system of frontal analysis has been generally accepted by weather forecasters since the

More information

LINEAR COMBINATIONS AND SUBSPACES

LINEAR COMBINATIONS AND SUBSPACES CS131 Part II, Linear Algebra and Matrices CS131 Mathematics for Compter Scientists II Note 5 LINEAR COMBINATIONS AND SUBSPACES Linear combinations. In R 2 the vector (5, 3) can be written in the form

More information

Geopotential tendency and vertical motion

Geopotential tendency and vertical motion Geopotential tendency and vertical motion Recall PV inversion Knowin the PV, we can estimate everythin else! (Temperature, wind, eopotential ) In QG, since the flow is eostrophic, we can obtain the wind

More information

= vorticity dilution + tilting horizontal vortices + microscopic solenoid

= vorticity dilution + tilting horizontal vortices + microscopic solenoid 4.4 Vorticity Eq 4.4.1 Cartesian Coordinates Because ζ = ˆk V, gives D(ζ + f) x minus [v momentum eq. in Cartesian Coordinates] y [u momentum eq. in Cartesian Coordinates] = vorticity dilution + tilting

More information

CONTROL SYSTEM WITH AIR BLEED FLAPS FOR SUPERSONIC AIR INTAKES

CONTROL SYSTEM WITH AIR BLEED FLAPS FOR SUPERSONIC AIR INTAKES CONTROL SYSTEM WIT AIR BLEED FLAPS FOR SUPERSONIC AIR INTAKES Aleandr Nicolae TUDOSIE University of Craiova, E-mail:atdosie@elth.cv.ro Abstract-The aer deals with an atomatic control system for a class

More information

1 Differential Equations for Solid Mechanics

1 Differential Equations for Solid Mechanics 1 Differential Eqations for Solid Mechanics Simple problems involving homogeneos stress states have been considered so far, wherein the stress is the same throghot the component nder std. An eception to

More information

Prandl established a universal velocity profile for flow parallel to the bed given by

Prandl established a universal velocity profile for flow parallel to the bed given by EM 0--00 (Part VI) (g) The nderlayers shold be at least three thicknesses of the W 50 stone, bt never less than 0.3 m (Ahrens 98b). The thickness can be calclated sing Eqation VI-5-9 with a coefficient

More information

A theory for TISO: Equatorial Coupled Moist Waves by Frictional feedback (ECMWF)

A theory for TISO: Equatorial Coupled Moist Waves by Frictional feedback (ECMWF) A theory for TISO: Eqatorial Coled Moist Waes by Frictional feedback (ECMWF) Bin Wang Deartment of Meteorology and IPRC, Uniersity of Hawaii Otline 1. What a theory shold exlain 2. Reiew of theories 3.

More information

1. Read the section on stability in Wallace and Hobbs. W&H 3.53

1. Read the section on stability in Wallace and Hobbs. W&H 3.53 Assignment 2 Due Set 5. Questions marked? are otential candidates for resentation 1. Read the section on stability in Wallace and Hobbs. W&H 3.53 2.? Within the context of the Figure, and the 1st law of

More information

3.1 Experimental Design

3.1 Experimental Design 3 Relay Feedback Åström and Hägglnd [1] sggest the relay feedback test to generate sstained oscillation as an alternative to the conventional continos cycling techniqe. It is very effective in determining

More information

Formal Methods for Deriving Element Equations

Formal Methods for Deriving Element Equations Formal Methods for Deriving Element Eqations And the importance of Shape Fnctions Formal Methods In previos lectres we obtained a bar element s stiffness eqations sing the Direct Method to obtain eact

More information

Essentials of optimal control theory in ECON 4140

Essentials of optimal control theory in ECON 4140 Essentials of optimal control theory in ECON 4140 Things yo need to know (and a detail yo need not care abot). A few words abot dynamic optimization in general. Dynamic optimization can be thoght of as

More information

GH = Differential temperature advection term

GH = Differential temperature advection term QG Theory and Applications: Height Tendency Equation Atmos 5110 Synoptic Dynamic Meteorology I Instructor: Jim Steenburgh jim.steenburgh@utah.edu 801-581-8727 Suite 480/Office 488 INSCC Suggested reading:

More information

where p oo is a reference level constant pressure (often 10 5 Pa). Since θ is conserved for adiabatic motions, a prognostic temperature equation is:

where p oo is a reference level constant pressure (often 10 5 Pa). Since θ is conserved for adiabatic motions, a prognostic temperature equation is: 1 Appendix C Useful Equations Purposes: Provide foundation equations and sketch some derivations. These equations are used as starting places for discussions in various parts of the book. C.1. Thermodynamic

More information

Numerical Simulation of Three Dimensional Flow in Water Tank of Marine Fish Larvae

Numerical Simulation of Three Dimensional Flow in Water Tank of Marine Fish Larvae Copyright c 27 ICCES ICCES, vol.4, no.1, pp.19-24, 27 Nmerical Simlation of Three Dimensional Flo in Water Tank of Marine Fish Larvae Shigeaki Shiotani 1, Atsshi Hagiara 2 and Yoshitaka Sakakra 3 Smmary

More information

DANISH METEOROLOGICAL INSTITUTE

DANISH METEOROLOGICAL INSTITUTE DANISH METEOROLOGICAL INSTITUTE SCIENTIFIC REPORT 3-11 Quasigeostrophic interpretation of extratropical cyclogenesis Niels Woetmann Nielsen COPENHAGEN 23 ISSN Nr. 9-3263 (printed) ISSN Nr. 1399-1949 (online)

More information

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere Need to introduce a new measure of the buoyancy Potential temperature θ In a compressible fluid, the relevant measure

More information

EAS372 Open Book Final Exam 11 April, 2013

EAS372 Open Book Final Exam 11 April, 2013 EAS372 Open Book Final Exam 11 April, 2013 Professor: J.D. Wilson Time available: 2 hours Value: 30% Please check the Terminology, Equations and Data section before beginning your responses. Answer all

More information

ON THE LIMITS OF THE BETZ S EFFICIENCY COEFFICIENT OF WIND TURBINES WITH THE HORIZONTALLY SHAFT

ON THE LIMITS OF THE BETZ S EFFICIENCY COEFFICIENT OF WIND TURBINES WITH THE HORIZONTALLY SHAFT ON THE LIMITS OF THE BETZ S EFFICIENCY COEFFICIENT OF WIND TURBINES WITH THE HORIZONTALLY SHAFT Prof.dr. ing. Petre Terzi SOCIETATEA PENTRU PROMOVAREA ENERGIILOR REGENERABILE, INEPUIZABILE SI NOI SPERIN

More information

6 Two-layer shallow water theory.

6 Two-layer shallow water theory. 6 Two-layer shallow water theory. Wewillnowgoontolookatashallowwatersystemthathastwolayersofdifferent density. This is the next level of complexity and a simple starting point for understanding the behaviour

More information

Turbulence and boundary layers

Turbulence and boundary layers Trblence and bondary layers Weather and trblence Big whorls hae little whorls which feed on the elocity; and little whorls hae lesser whorls and so on to iscosity Lewis Fry Richardson Momentm eqations

More information

Integration of Basic Functions. Session 7 : 9/23 1

Integration of Basic Functions. Session 7 : 9/23 1 Integration o Basic Fnctions Session 7 : 9/3 Antiderivation Integration Deinition: Taking the antiderivative, or integral, o some nction F(), reslts in the nction () i ()F() Pt simply: i yo take the integral

More information

ERTH 465 Fall Lab 5. Absolute Geostrophic Vorticity. 200 points.

ERTH 465 Fall Lab 5. Absolute Geostrophic Vorticity. 200 points. Name Date ERTH 465 Fall 2015 Lab 5 Absolute Geostrophic Vorticity 200 points. 1. All labs are to be kept in a three hole binder. Turn in the binder when you have finished the Lab. 2. Show all work in mathematical

More information

1. INTRODUCTION. A solution for the dark matter mystery based on Euclidean relativity. Frédéric LASSIAILLE 2009 Page 1 14/05/2010. Frédéric LASSIAILLE

1. INTRODUCTION. A solution for the dark matter mystery based on Euclidean relativity. Frédéric LASSIAILLE 2009 Page 1 14/05/2010. Frédéric LASSIAILLE Frédéric LASSIAILLE 2009 Page 1 14/05/2010 Frédéric LASSIAILLE email: lmimi2003@hotmail.com http://lmi.chez-alice.fr/anglais A soltion for the dark matter mystery based on Eclidean relativity The stdy

More information

Module 4. Analysis of Statically Indeterminate Structures by the Direct Stiffness Method. Version 2 CE IIT, Kharagpur

Module 4. Analysis of Statically Indeterminate Structures by the Direct Stiffness Method. Version 2 CE IIT, Kharagpur Modle Analysis of Statically Indeterminate Strctres by the Direct Stiffness Method Version CE IIT, Kharagr Lesson The Direct Stiffness Method: Trss Analysis (Contined) Version CE IIT, Kharagr Instrctional

More information

ECON3120/4120 Mathematics 2, spring 2009

ECON3120/4120 Mathematics 2, spring 2009 University of Oslo Department of Economics Arne Strøm ECON3/4 Mathematics, spring 9 Problem soltions for Seminar 4, 6 Febrary 9 (For practical reasons some of the soltions may inclde problem parts that

More information

FEA Solution Procedure

FEA Solution Procedure EA Soltion Procedre (demonstrated with a -D bar element problem) EA Procedre for Static Analysis. Prepare the E model a. discretize (mesh) the strctre b. prescribe loads c. prescribe spports. Perform calclations

More information

Elements. Using ABSTRACT. 1. Introduction. Anish Bangalore, India. tioned devices. often consist packed. This offering both.

Elements. Using ABSTRACT. 1. Introduction. Anish Bangalore, India. tioned devices. often consist packed. This offering both. Jornal of Alied Mathematics and Physics,, 201, 1, 20-25 Pblished Online November 201 (htt://www.scir.org/jornal/jam) htt://dx.doi.org/10.426/jam..201.16005 A Monolithic, FEM-Based Aroach for the Coled

More information

5.5 U-substitution. Solution. Z

5.5 U-substitution. Solution. Z CHAPTER 5. THE DEFINITE INTEGRAL 22 5.5 U-sbstittion Eample. (a) Fin the erivative of sin( 2 ). (b) Fin the anti-erivative cos( 2 ). Soltion. (a) We se the chain rle: sin(2 )=cos( 2 )( 2 ) 0 =cos( 2 )2

More information

Designing Parametric Cubic Curves. Prof. George Wolberg Dept. of Computer Science City College of New York

Designing Parametric Cubic Curves. Prof. George Wolberg Dept. of Computer Science City College of New York Designing Parametric Cbic Crves Prof. George Wolberg Det. of Comter Science City College of New York Objectives Introdce the tyes of crves - Interolating -Hermite - Bezier - B-Sline Analyze their erformance

More information

Applying Laminar and Turbulent Flow and measuring Velocity Profile Using MATLAB

Applying Laminar and Turbulent Flow and measuring Velocity Profile Using MATLAB IOS Jornal of Mathematics (IOS-JM) e-issn: 78-578, p-issn: 319-765X. Volme 13, Isse 6 Ver. II (Nov. - Dec. 17), PP 5-59 www.iosrjornals.org Applying Laminar and Trblent Flow and measring Velocity Profile

More information

The Second Law: The Machinery

The Second Law: The Machinery The Second Law: The Machinery Chater 5 of Atkins: The Second Law: The Concets Sections 3.7-3.9 8th Ed, 3.3 9th Ed; 3.4 10 Ed.; 3E 11th Ed. Combining First and Second Laws Proerties of the Internal Energy

More information

Numerical Simulation of Density Currents over a Slope under the Condition of Cooling Period in Lake Biwa

Numerical Simulation of Density Currents over a Slope under the Condition of Cooling Period in Lake Biwa Nmerical Simlation of Densit Crrents oer a Slope nder the Condition of Cooling Period in Lake Bia Takashi Hosoda Professor, Department of Urban Management, Koto Uniersit, C1-3-65, Kotodai-Katsra, Nishiko-k,

More information