Modelling crystal growth with the phase-field method Mathis Plapp

Size: px
Start display at page:

Download "Modelling crystal growth with the phase-field method Mathis Plapp"

Transcription

1 Modelling crystal growth with the phase-field method Mathis Plapp Laboratoire de Physique de la Matière Condensée CNRS/Ecole Polytechnique, Palaiseau, France

2 Solidification microstructures Hexagonal cells (Sn-Pb) Dendrites (Co-Cr) Eutectic colonies Peritectic composite (Fe-Ni)

3 Some basic facts Relevant physics : Transport of heat and components by diffusion and convection Interfacial properties: surface tension and kinetics Relevant length scales : Diffusion length l D = D/V ~ mm Capillary length d 0 ~ nm Structural details such as tip radius ρ ~ d 0 l D ~ µm Numerical problem : Complex time-dependent geometry

4 Some basic facts Relevant physics : Transport of heat and components by diffusion and convection Interfacial properties: surface tension and kinetics Relevant length scales : Diffusion length l D = D/V ~ mm Capillary length d 0 ~ nm ρ ~ d 0 l D Structural details such as tip radius ~ µm Numerical problem : Complex time-dependent geometry

5 Dendritic growth of a pure substance Benchmark experiments: Slow growth (Glicksman, Bilgram): Undercoolings ~ 1 K Growth speeds ~ 1 µm/s Tip radius ~ 10 µm Fast growth (Herlach, Flemings): Succinonitrile dendrite IDGE experiment (space) M. Glicksman et al. Undercoolings ~ 100 K Growth speeds > 10 m/s (!) Tip radius < 0.1 µm

6 Physics of solidification (pure substance) liquid solid Lv On the interface: Stefan condition (energy conservation) n = J Q = nˆ ( c D T c D T ) S S On the interface: Gibbs-Thomson condition (interface response) S L L L T int = T m γt L m κ v µ n k In the bulk: transport Here: assume diffusion only t T = D S,L 2 T

7 Simplest case: symmetric model Assume: D = D D c = c c S L = S L = Define: u = T T L / c m v u n int t = Dnˆ u = d = D ( u u ) 0 2 u S κ βv n L γt d0 = L c β = Lµ m 2 k c capillary length kinetic coefficient Dendrites: form for anisotropic interfaces: γ(nˆ ) β(nˆ )

8 Phase-field model: physical background Free energy functional: F = V f( φ) K 2 ( φ) + Hf ( φ) = φ 2 H : energy/volume K : energy/length / 2 + φ 4 / 4 γ ~ KH W ~ K / H φ: order parameter or indicator function

9 Phase-field model: coupling to temperature Dimensionless free energy functional: F = V W 2 g : tilting function 2 ( φ) / 2 + f( φ) + λug( φ)

10 Phase-field model: equations t u τ ( ) x,t δf = δφ ( x,t) 1 u x,t + 2 Phase-field parameters: W, τ, λ Physical parameters: d 0, β Matched asymptotic expansions: t φ ( ) 2 ( ) ( ) x,t = D W = a τ W 0 β = a1 a2 λ λw D d 1 t φ x,t

11 Principle of matched asymptotic expansions liquid W W << R W << D / vn solid inner region outer region inner region (scale W): calculation with constant κ and v n outer region (macroscale): simple solution because φ constant matching of the two solutions close to the interface

12 Illustration: steady-state growth

13 Asymptotic matching φ u x/w

14 Quantitative simulations 500 a) ρ/d W/d 0 SCN alloy (Georgelin and Pocheau) Cell spacing: 22.5 µm Capillary length: 13 nm Pulling speed: 32 µm/s Temperature gradient: 140 K/cm Ω b) W/d 0

15 Multi-scale algorithms Adaptive meshing or multiple grids: It works but it is complicated! Adaptive finite elements (Provatas et al.)

16 Hybrid Phase-field Mont-Carlo scheme

17 Example in 3D: A dendrite Anisotropy: W W( nˆ ) τ τ( nˆ ) nˆ = φ φ

18 Comparison with theory Growth at low undercooling ( =0.1) σ * = 2d ρ 0 2 D v Selection constant (depends on anisotropy)

19 Tip shape Tip shape (simulated) z(r, φ) 2 r = 2 Tip shape is independent of anisotropy strength (!) Mean shape is the Ivantsov paraboloid Q( φ)r 4

20 Rapid solidification of Nickel Kinetic parameters are important for rapid solidification Very difficult to measure Solution: use molecular dynamics (collaboration with M. Asta, J. Hoyt) Data points: circles: Willnecker et al. squares: Lum et al. triangles: simulations

21 Eutectic solidification Al-Cu (Trivedi et al) CBr 4 -C 2 Cl 6 (S. Akamatsu, G. Faivre)

22 Lamellar microstructures in Al-Cu Walker & Trivedi (2007)

23 Characteristic spacing Jackson and Hunt (1966) c α ce < < c β Important variables: Λ = λ/λ min Sample composition c T = 1 T 2 min λ λ min V λ 2 min const + λ min λ

24 Eutectic phase-field model Based on Access approach, but with different interpolations Each phase is represented by a phase field p i with i=α,β,l Constraint : p α + p β + p L = 1

25 «Ideal» interfaces p 3 = 0 p 1 =1-p 2 One variable

26 Generic situation p 3 varies (third-phase adsorption) Two variables

27 Visualization in the Gibbs simplex One independent variable Two independent variables

28 Construction of the interpolation functions Original Access model: f = p TW i j 2 Present model: ( ) 2 f TW = i p 2 i i p 2 j 1 2 Tilting function: g = p 151 ( p ) 1+ p ( p p ) i i p i { [ ] ( )} p 9p 5 / 4 i i j k works! i i

29 Benchmark: equal volume fractions W : thickness of the diffuse interface λ : lamellar spacing ( = width of a lamella pair)

30 Large system: eutectic composition

31 From lamellae to rods and back The composition is slowly varied: c = 0.3 c = Liu,Lee,Enlow,Trivedi

32 Other applications of phase-field models Solid-solid transformation (precipitation, martensites): includes elasticity Epitaxial growth Fracture Grain growth Nucleation and branch formation: includes fluctuations Solidification with convection: includes hydrodynamics Fluid-fluid interfaces, multiphase flows, wetting Membranes, biological structures Electrodeposition: includes electric field Electromigration Long-term goal: connect length scales to obtain predictive capabilities (computational materials science)

33 Scaling transients in dendritic growth Steady-state growth : understood Ivantsov solution (1947) = Pexp P e s s ( P) ds = P = ρv 2D T m T L / c Undercooling Peclet number Solvability theory ( ) : Surface tension is singular perturbation σ * = 2Dd 2 ρ v The constant σ* depends on anisotropy 0 Question : can we understand the transient regime?

34 Simpler problem : anisotropic Laplacian growth liquid solid v = n u L 2 u nˆ = uint 0 0 [ 1 εcos( θ) ]κ = d 4 u ln r r

35 Large-scale field by conformal mapping z = x + ψ = dψ dz u = + iy iw L 4 = z 1 2 z cosh 4 z / L 1 ( ) 2 Arm shape : Y(x, t) t [ L( t )] u = dt = y t L 4 x x 4 dt

36 Scaling assumption Suppose that : ( ) α L t = At Then Y(x, t) = 1 α t αa ( 1 α) / α 1 x L x / L s ( 1 α) / α ds 1 s 4 Scaling form of the arm shape : Y(x, t) ( α x / ) β = t t Y ~ with α + β = 1 (because of constant flux)

37 Tip condition Close to the tip, the shape is a parabola Tip radius : ρ = 1 x / Y 2β α ~ t 2 2 Use that for dendrites ρ 2 v = const. : ρ 2 v ~ t 4β 2α t α 1 Therefore : 4 β α 1 = 0 α + β = 1 α = 3 / 5 β = 2 / 5

38 Unscaled shapes 600 y (lattice units) x (lattice units)

39 Scaled shapes y/t 2/ x/t 3/5

40 Back to the diffusion problem

41 Scale separation Similarity solution for diffusion : growing sphere (Zener) R 1/ 2 R ~ t = Dt 2 P s In 2D : P s / ln 0 In 3D : P s 2 0 For small undercooling, the dendrite grows in the central region of the spherical solution (almost Laplace) until the arms catch up with the spherical envelope

42 For small undercooling: scaling applies! α = d ln L d ln t (a) ν α =0.02 =0.05 =0.1 =0.25 =0.5 Laplacian ν = d ln V d ln t t/t 0

43 In contrast : noise-reduced DLA ρ ~ const. 2 β α = 0 α + β = 1 α = 2 / 3 β = 1/ 3

44 Application: 3D dendrite shape y x Idea (E. Brener) : far behind the tip, slices are like 2D evolution

45 Shape of the dendrite fins 0 5 z simulation data polynomial fit, n=10 power law fit, n= x

46 Open question : Three dimensions? Ad hoc generalization of the scaling : axisymmetric branches R(z, t) ( α z / ) β = t t R ~ Spherical diffusion field in 3D : flux ~t 3/2 α + 2 β = 3 / 2 Tip condition ρ 2 v = const. : 4 β α 1 = 0 α = 2 / 3 β = 5 / 12

47 Simulation results in 3D 2.0 (b) ν α =0.01 =0.05 =0.1 α=2/3, ν=3/ t/t 0 Prediction from scaling theory : α=2/3, ν=3/2

48 Acknowledgments Collaborators Roger Folch, Andrea Parisi, Jesper Mellenthin (Laboratoire PMC, CNRS/Ecole Polytechnique) Alain Karma, Jean Bragard, Youngyih Lee, Blas Echebarria (Physics Department, Northeastern University, Boston) Gabriel Faivre, Silvère Akamatsu, Sabine Bottin-Rousseau (INSP, CNRS/Université Paris VI) Support Centre National de la Rescherche Scientifique (CNRS) Ecole Polytechnique Centre National des Etudes Spatiales (CNES) NASA

PHASE FIELD MODELS, ADAPTIVE MESH REFINEMENT AND LEVEL SETS FOR SOLIDIFICATION PROBLEMS

PHASE FIELD MODELS, ADAPTIVE MESH REFINEMENT AND LEVEL SETS FOR SOLIDIFICATION PROBLEMS PHASE FIELD MODELS, ADAPTIVE MESH REFINEMENT AND LEVEL SETS FOR SOLIDIFICATION PROBLEMS Department of Physics University of Illinois at Urbana-Champaign COWORKERS AND COLLABORATORS Phase-field calculations

More information

Phase-field modeling of the dendrite orientation transition in Al-Zn alloys

Phase-field modeling of the dendrite orientation transition in Al-Zn alloys Phase-field modeling of the dendrite orientation transition in Al-Zn alloys Jonathan Friedli, Paolo Di Napoli, Michel Rappaz and Jonathan A. Dantzig Laboratoire de simulation des matériaux, Institut des

More information

Experimental investigation of free dendritic growth of succinonitrile-acetone alloys

Experimental investigation of free dendritic growth of succinonitrile-acetone alloys University of Iowa Iowa Research Online Theses and Dissertations Fall 29 Experimental investigation of free dendritic growth of succinonitrile-acetone alloys Antonio Jose Melendez Ramirez University of

More information

Modelling of interfaces and free boundaries

Modelling of interfaces and free boundaries University of Regensburg Regensburg, March 2009 Outline 1 Introduction 2 Obstacle problems 3 Stefan problem 4 Shape optimization Introduction What is a free boundary problem? Solve a partial differential

More information

Phase-field simulations of dendritic crystal growth in a forced flow

Phase-field simulations of dendritic crystal growth in a forced flow PHYSICAL REVIEW E, VOLUME 63, 061601 Phase-field simulations of dendritic crystal growth in a forced flow X. Tong, 1 C. Beckermann, 1, * A. Karma, 2 and Q. Li 1 1 Department of Mechanical Engineering,

More information

Feedback control of unstable cellular solidification fronts

Feedback control of unstable cellular solidification fronts Feedback control of unstable cellular solidification fronts A. J. Pons, 1, * A. Karma, 1 S. Akamatsu, 2, M. Newey, 2 A. Pomerance, 2 H. Singer, 2, and W. Losert 2 1 Physics Department and Center for Interdisciplinary

More information

Scaling behavior of three-dimensional dendrites

Scaling behavior of three-dimensional dendrites PHYSICAL REVIEW E VOLUME 57, NUMBER 3 MARCH 1998 Scaling behavior of three-dimensional dendrites Q. Li and C. Beckermann * Department of Mechanical Engineering, The University of Iowa, Iowa City, Iowa

More information

Adaptive Mesh Refinement Computation of Solidification Microstructures Using Dynamic Data Structures

Adaptive Mesh Refinement Computation of Solidification Microstructures Using Dynamic Data Structures Journal of Computational Physics 148, 265 290 (1999) Article ID jcph.1998.6122, available online at http://www.idealibrary.com on Adaptive Mesh Refinement Computation of Solidification Microstructures

More information

Errata for SOLIDIFICATION (First Edition, 2009)

Errata for SOLIDIFICATION (First Edition, 2009) Errata for SOLIDIFICATION (First Edition, 29) J. A. Dantzig and M. Rappaz March 2, 217 Chapter 1: Overview Page 2, first line: the definition of r should have a square root. i.e., r = (ξ 2 + y 2 + z 2

More information

Transient growth and interaction of equiaxed dendrites

Transient growth and interaction of equiaxed dendrites Journal of Crystal Growth 275 (2005) 624 638 www.elsevier.com/locate/jcrysgro Transient growth and interaction of equiaxed dendrites I. Steinbach a, H.-J. Diepers a, C. Beckermann b, a ACCESS e.v., RWTH-Aachen,

More information

Dendritic Growth with Fluid Flow in Pure Materials

Dendritic Growth with Fluid Flow in Pure Materials Dendritic Growth with Fluid Flow in Pure Materials Jun-Ho Jeong 1, Jonathan A. Dantzig 1 and Nigel Goldenfeld 2 1 Department of Mechanical and Industrial Engineering 2 Department of Physics University

More information

Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion

Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion PHYSICAL REVIEW E 69, 051607 (004) Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion J. C. Ramirez, 1 C. Beckermann, 1, * A. Karma, and H.-J. Diepers,3 1 Department

More information

Computations of Dendrites in 3-D and Comparison with Microgravity Experiments

Computations of Dendrites in 3-D and Comparison with Microgravity Experiments Journal of Statistical Physics, Vol. 110, Nos. 3 6, March 2003 ( 2003) Computations of Dendrites in 3-D and Comparison with Microgravity Experiments Y. B. Altundas 1 and G. Caginalp 1 Received September

More information

Onset of sidebranching in directional solidification

Onset of sidebranching in directional solidification PHYSICAL REVIEW E 8, 268 2 Onset of sidebranching in directional solidification Blas Echebarria Departament de Física Aplicada, Universitat Politècnica de Catalunya, Av. Dr. Marañón 44-5, 828 Barcelona,

More information

Quantitative phase-field modeling of dendritic growth in two and three dimensions

Quantitative phase-field modeling of dendritic growth in two and three dimensions PHYSICAL REVIEW E VOLUME 57, NUMBER 4 APRIL 1998 Quantitative phase-field modeling of dendritic growth in two and three dimensions Alain Karma and Wouter-Jan Rappel Department of Physics and Center for

More information

Errata for SOLIDIFICATION (Second Edition, 2016)

Errata for SOLIDIFICATION (Second Edition, 2016) Errata for SOLIDIFICATION (Second Edition, 2016) J. A. Dantzig and M. Rappaz September 6, 2017 Nomenclature There are several minor typographical errors in this table. Please download the corrected version

More information

Growth of Secondary Dendrite Arms of Fe C Alloy during Transient Directional Solidification by Phase-field Method

Growth of Secondary Dendrite Arms of Fe C Alloy during Transient Directional Solidification by Phase-field Method , pp. 43 436 Growth of Secondary Dendrite Arms of Fe C Alloy during Transient Directional Solidification by Phase-field Method Yu XIE, 1) Hongbiao DONG 1) * and Jonathan DANTZIG,3) 1) Department of Engineering,

More information

Density Functional Modeling of Nanocrystalline Materials

Density Functional Modeling of Nanocrystalline Materials Density Functional Modeling of Nanocrystalline Materials A new approach for modeling atomic scale properties in materials Peter Stefanovic Supervisor: Nikolas Provatas 70 / Part 1-7 February 007 Density

More information

Phase-Field Models. Mathis Plapp

Phase-Field Models. Mathis Plapp Phase-Field Models Mathis Plapp Physique de la Matière Condensée, École Polytechnique, CNRS, 91128 Palaiseau, France Abstract. Phase-field models have become popular in recent years to describe a host

More information

Quantitative phase-field model for phase transformations in multi-component alloys

Quantitative phase-field model for phase transformations in multi-component alloys Quantitative phase-field model for phase transformations in multi-component alloys Zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften der Fakultät für Maschinenbau Karlsruher Institut

More information

GFD 2006 Lecture 2: Diffusion-controlled solidification

GFD 2006 Lecture 2: Diffusion-controlled solidification GFD 2006 Lecture 2: Diffusion-controlled solidification Grae Worster; notes by Victor Tsai and Dan Goldberg March 15, 2007 1 Finishing off Lecture 1 As shown in Lecture 1, an approximation for the diffusion

More information

Phase-field investigation on the non-equilibrium interface dynamics of rapid alloy solidification

Phase-field investigation on the non-equilibrium interface dynamics of rapid alloy solidification Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2011 Phase-field investigation on the non-equilibrium interface dynamics of rapid alloy solidification Jeong

More information

SIMULATION OF DENDRITIC CRYSTAL GROWTH OF PURE Ni USING THE PHASE-FIELD MODEL

SIMULATION OF DENDRITIC CRYSTAL GROWTH OF PURE Ni USING THE PHASE-FIELD MODEL 46 Rev. Adv. Mater. Sci. 33 (13) 46-5 Yu. Zhao and H. Hou SIMULATION OF DENDRITIC CRYSTAL GROWTH OF PURE Ni USING THE PHASE-FIELD MODEL Yuhong Zhao and Hua Hou College of Materials Science & Engineering,

More information

Abstract. The phase field model is used to compute numerically the temporal evolution

Abstract. The phase field model is used to compute numerically the temporal evolution Computations of dendrites in 3-D and comparison with microgravity experiments Y. B. Altundas and G. Caginalp University of Pittsburgh Pittsburgh, PA 15260 ybast@pitt.edu caginalp@pitt.edu Abstract. The

More information

5.2 Surface Tension Capillary Pressure: The Young-Laplace Equation. Figure 5.1 Origin of surface tension at liquid-vapor interface.

5.2 Surface Tension Capillary Pressure: The Young-Laplace Equation. Figure 5.1 Origin of surface tension at liquid-vapor interface. 5.2.1 Capillary Pressure: The Young-Laplace Equation Vapor Fo Fs Fs Fi Figure 5.1 Origin of surface tension at liquid-vapor interface. Liquid 1 5.2.1 Capillary Pressure: The Young-Laplace Equation Figure

More information

MULTISCALE MODELING OF SOLIDIFICATION: PHASE-FIELD METHODS TO ADAPTIVE MESH REFINEMENT

MULTISCALE MODELING OF SOLIDIFICATION: PHASE-FIELD METHODS TO ADAPTIVE MESH REFINEMENT International Journal of Modern Physics B Vol. 19, No. 31 (2005) 4525 4565 c World Scientific Publishing Company20 December 2005 MULTISCALE MODELING OF SOLIDIFICATION: PHASE-FIELD METHODS TO ADAPTIVE MESH

More information

A Multi-Mesh Adaptive Finite Element Approximation to Phase Field Models

A Multi-Mesh Adaptive Finite Element Approximation to Phase Field Models COMMUNICATIONS IN COMPUTATIONAL PHYSICS Vol. 5, No. 5, pp. 1012-1029 Commun. Comput. Phys. May 2009 A Multi-Mesh Adaptive Finite Element Approximation to Phase Field Models Xianliang Hu 1,2, Ruo Li 3,

More information

SIMULATION OF POLYMER CRYSTAL GROWTH WITH VARIOUS MORPHOLOGIES USING A PHASE-FIELD MODEL

SIMULATION OF POLYMER CRYSTAL GROWTH WITH VARIOUS MORPHOLOGIES USING A PHASE-FIELD MODEL SIMULATION OF POLYMER CRYSTAL GROWTH WITH VARIOUS MORPHOLOGIES USING A PHASE-FIELD MODEL M. Asle Zaeem,*, S. Nouranian, Mark F. Horstemeyer Department of Materials Science and Engineering Missouri University

More information

Phase-field model of dendritic sidebranching with thermal noise

Phase-field model of dendritic sidebranching with thermal noise PHYSICAL REVIEW E VOLUME 60, NUMBER 4 OCTOBER 1999 Phase-field model of dendritic sidebranching with thermal noise Alain Karma 1 and Wouter-Jan Rappel 1 Department of Physics and Center for Interdisciplinary

More information

Mesoscopic modelling of columnar solidification

Mesoscopic modelling of columnar solidification IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Mesoscopic modelling of columnar solidification To cite this article: M Založnik et al 2016 IOP Conf. Ser.: Mater. Sci. Eng. 117

More information

Selection of doublet cellular patterns in directional solidification through spatially periodic perturbations

Selection of doublet cellular patterns in directional solidification through spatially periodic perturbations PHYSICAL REVIEW E VOLUME 58, NUMBER 6 DECEMBER 1998 Selection of doublet cellular patterns in directional solidification through spatially periodic perturbations W. Losert, D. A. Stillman, and H. Z. Cummins

More information

Theoretical Developments in Group Combustion of Droplets and Sprays

Theoretical Developments in Group Combustion of Droplets and Sprays Theoretical Developments in Group Combustion of Droplets and Sprays William A. Sirignano University of California, Irvine Collaborations: Guang Wu, current student; Randall Imaoka, former student, US Navy;

More information

VIII. Phase Transformations. Lecture 38: Nucleation and Spinodal Decomposition

VIII. Phase Transformations. Lecture 38: Nucleation and Spinodal Decomposition VIII. Phase Transformations Lecture 38: Nucleation and Spinodal Decomposition MIT Student In this lecture we will study the onset of phase transformation for phases that differ only in their equilibrium

More information

Thermoelectric magnetohydrodynamic effects on the crystal growth rate of undercooled Ni dendrites

Thermoelectric magnetohydrodynamic effects on the crystal growth rate of undercooled Ni dendrites rsta.royalsocietypublishing.org Research Downloaded from http://rsta.royalsocietypublishing.org/ on November 7, 2018 Thermoelectric magnetohydrodynamic effects on the crystal growth rate of undercooled

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 1 Sep 1999

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 1 Sep 1999 Three-dimensional dendrite tip morphology at low undercooling Alain Karma, Youngyih H. Lee, and Mathis Plapp Physics Department and Center for Interdisciplinary Research on Comple Systems, Northeastern

More information

arxiv: v1 [cond-mat.mtrl-sci] 26 Oct 2012

arxiv: v1 [cond-mat.mtrl-sci] 26 Oct 2012 A Phase Field Crystal study of Solute Trapping Harith Humadi and Jeffrey J. Hoyt Department of Materials Science and Engineering and Brockhouse Institute for Materials Research, McMaster University, 1280

More information

Upscaling from Mesoscopic to Macroscopic Solidification Models by Volume Averaging

Upscaling from Mesoscopic to Macroscopic Solidification Models by Volume Averaging Upscaling from Mesoscopic to Macroscopic Solidification Models by olume Averaging Miha Založnik 1), Youssef Souhar 1), Christoph Beckermann ), Hervé Combeau 1) 1 Institut Jean Lamour, CNRS Université de

More information

c 2006 by Badrinarayan P. Athreya. All rights reserved

c 2006 by Badrinarayan P. Athreya. All rights reserved c 2006 by Badrinarayan P. Athreya. All rights reserved PHASE-FIELDS AND THE RENORMALIZATION GROUP: A CONTINUUM APPROACH TO MULTISCALE MODELING OF MATERIALS BY BADRINARAYAN P. ATHREYA B. E., University

More information

Ternary eutectic dendrites: Pattern formation and scaling properties

Ternary eutectic dendrites: Pattern formation and scaling properties Ternary eutectic dendrites: Pattern formation and scaling properties László Rátkai, 1 Attila Szállás, 1 Tamás Pusztai, 1 Tetsuo Mohri, 2 1, 3, a) and László Gránásy 1) Institute for Solid State Physics

More information

NOMENCLATURE AND DIMENSIONLESS GROUPS

NOMENCLATURE AND DIMENSIONLESS GROUPS NOMENCLATURE AND DIMENSIONLESS GROUPS PRINCIPAL NOMENCLATURE A book that covers as many topics as this one does is bound to encounter some problems with nomenclature. We have tried to use standard notation

More information

Field Method of Simulation of Phase Transformations in Materials. Alex Umantsev Fayetteville State University, Fayetteville, NC

Field Method of Simulation of Phase Transformations in Materials. Alex Umantsev Fayetteville State University, Fayetteville, NC Field Method of Simulation of Phase Transformations in Materials Alex Umantsev Fayetteville State University, Fayetteville, NC What do we need to account for? Multi-phase states: thermodynamic systems

More information

Laplacian transport towards irregular interfaces: the mathematics

Laplacian transport towards irregular interfaces: the mathematics Laplacian transport towards irregular interfaces: the mathematics Denis S GREBENKOV Laboratoire de Physique de la Matière Condensée CNRS Ecole Polytechnique, France Email: denisgrebenkov@polytechniqueedu

More information

THE CAHN-HILLIARD EQUATION WITH A LOGARITHMIC POTENTIAL AND DYNAMIC BOUNDARY CONDITIONS

THE CAHN-HILLIARD EQUATION WITH A LOGARITHMIC POTENTIAL AND DYNAMIC BOUNDARY CONDITIONS THE CAHN-HILLIARD EQUATION WITH A LOGARITHMIC POTENTIAL AND DYNAMIC BOUNDARY CONDITIONS Alain Miranville Université de Poitiers, France Collaborators : L. Cherfils, G. Gilardi, G.R. Goldstein, G. Schimperna,

More information

Classical solutions for the quasi-stationary Stefan problem with surface tension

Classical solutions for the quasi-stationary Stefan problem with surface tension Classical solutions for the quasi-stationary Stefan problem with surface tension Joachim Escher, Gieri Simonett We show that the quasi-stationary two-phase Stefan problem with surface tension has a unique

More information

PHASE-FIELD MODELLING OF NONEQUILIBRIUM PARTITIONING DURING RAPID SOLIDIFICATION IN A NON-DILUTE BINARY ALLOY. Denis Danilov, Britta Nestler

PHASE-FIELD MODELLING OF NONEQUILIBRIUM PARTITIONING DURING RAPID SOLIDIFICATION IN A NON-DILUTE BINARY ALLOY. Denis Danilov, Britta Nestler First published in: DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Volume 15, Number 4, August 2006 pp. 1035 1047 PHASE-FIELD MODELLING OF NONEQUILIBRIUM PARTITIONING DURING

More information

Modeling structural transformations in binary alloys with phase field crystals

Modeling structural transformations in binary alloys with phase field crystals PHYSICAL REVIEW B 84,064104(2011) Modeling structural transformations in binary alloys with phase field crystals Michael Greenwood, 1,2 Nana Ofori-Opoku, 2 Jörg Rottler, 1 and Nikolas Provatas 2 1 Department

More information

Atomic Transport & Phase Transformations Lecture III-1

Atomic Transport & Phase Transformations Lecture III-1 Atomic Transport & Phase Transformations Lecture III-1 PD Dr. Nikolay Zotov zotov@imw.uni-stuttgart.de Atomic Transport & Phase Transformations Part III Lectures Solid State Reactions Short Description

More information

Analysis of interface kinetics: solutions of the Gibbs-Thomson-type equation and of the kinetic rate theory

Analysis of interface kinetics: solutions of the Gibbs-Thomson-type equation and of the kinetic rate theory IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Analysis of interface kinetics: solutions of the Gibbs-Thomson-type equation and of the kinetic rate theory To cite this article:

More information

A sharp diffuse interface tracking method for approximating evolving interfaces

A sharp diffuse interface tracking method for approximating evolving interfaces A sharp diffuse interface tracking method for approximating evolving interfaces Vanessa Styles and Charlie Elliott University of Sussex Overview Introduction Phase field models Double well and double obstacle

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 03-16 LITERTURE STUDY: NUMERICAL METHODS FOR SOLVING STEFAN PROBLEMS E.JAVIERRE-PÉREZ1 ISSN 1389-6520 Reports of the Department of Applied Mathematical Analysis Delft

More information

Calculation of the crystal-melt interfacial free energy of succinonitrile from molecular simulation

Calculation of the crystal-melt interfacial free energy of succinonitrile from molecular simulation THE JOURNAL OF CHEMICAL PHYSICS 124, 044707 2006 Calculation of the crystal-melt interfacial free energy of succinonitrile from molecular simulation Xiaobing Feng and Brian B. Laird a Department of Chemistry,

More information

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight MATHEMATICAL TRIPOS Part III Friday 31 May 00 9 to 1 PAPER 71 COSMOLOGY Attempt THREE questions There are seven questions in total The questions carry equal weight You may make free use of the information

More information

Surfaces and Interfaces

Surfaces and Interfaces 1/16 Surfaces and Interfaces Fouad MAROUN Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique CNRS Palaiseau, France 2/16 Outline Definition of surfaces and interfaces and 3 examples in

More information

FORMULA SHEET. General formulas:

FORMULA SHEET. General formulas: FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to

More information

5. FVM discretization and Solution Procedure

5. FVM discretization and Solution Procedure 5. FVM discretization and Solution Procedure 1. The fluid domain is divided into a finite number of control volumes (cells of a computational grid). 2. Integral form of the conservation equations are discretized

More information

Convective Mass Transfer

Convective Mass Transfer Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface

More information

Lecture 1 Modeling and simulation for the growth of thin films

Lecture 1 Modeling and simulation for the growth of thin films Lecture 1 Modeling and simulation for the growth of thin films Russel Caflisch Mathematics Department Materials Science and Engineering Department UCLA & IPAM www.math.ucla.edu/~material 1 Outline Epitaxial

More information

Dendritic solidification of binary alloys

Dendritic solidification of binary alloys University of Ljubljana Faculty of Mathematics and Physics Department of Physics Seminar I b - 3rd year, 2nd cycle Dendritic solidification of binary alloys Author: Tadej Dobravec Mentor: prof. dr. Božidar

More information

Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang,

Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang, Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang, yfwang09@stanford.edu 1. Problem setting In this project, we present a benchmark simulation for segmented flows, which contain

More information

Atomic Transport & Phase Transformations Lecture III-2

Atomic Transport & Phase Transformations Lecture III-2 Atomic Transport & Phase Transformations Lecture III-2 PD Dr. Nikolay Zotov zotov@imw.uni-stuttgart.de Atomic Transport & Phase Transformations Part III Lectures Solid State Reactions Short Description

More information

Equilibria in Materials

Equilibria in Materials 009 fall Advanced Physical Metallurgy Phase Equilibria in Materials 10. 13. 009 Eun Soo Park Office: 33-316 Telephone: 880-71 Email: espark@snu.ac.kr Office hours: by an appointment 1 Contents for previous

More information

Phase-Field Modeling of Technical Alloy Systems Problems and Solutions

Phase-Field Modeling of Technical Alloy Systems Problems and Solutions Thermo-Calc User Meeting, Sept 8-9 2011, Aachen Phase-Field Modeling of Technical Alloy Systems Problems and Solutions B. Böttger ACCESS e.v., RWTH Aachen University, Germany Outline 1. Introduction 2.

More information

Dendritic Growth Morphologies in Al-Zn Alloys Part II: Phase-Field Computations

Dendritic Growth Morphologies in Al-Zn Alloys Part II: Phase-Field Computations Dendritic Growth Morphologies in Al-Zn Alloys Part II: Phase-Field Computations J.A. DANTZIG, PAOLO DI NAPOLI, J. FRIEDLI, and M. RAPPAZ In Part I of this article, the role of the Zn content in the development

More information

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University (Super) Fluid Dynamics Thomas Schaefer, North Carolina State University Hydrodynamics Hydrodynamics (undergraduate version): Newton s law for continuous, deformable media. Fluids: Gases, liquids, plasmas,...

More information

Generalized Phase Field Models with Anisotropy and Non-Local Potentials

Generalized Phase Field Models with Anisotropy and Non-Local Potentials Generalized Phase Field Models with Anisotropy and Non-Local Potentials Gunduz Caginalp University of Pittsburgh caginalp@pitt.edu December 6, 2011 Gunduz Caginalp (Institute) Generalized Phase Field December

More information

PHASE-FIELD APPROACH TO CRYSTAL GROWTH

PHASE-FIELD APPROACH TO CRYSTAL GROWTH Proceedings of the Czech Japanese Seminar in Applied Mathematics 2010 Czech Technical University in Prague, August 30 - September 4, 2010 pp. 18 25 PHASE-FIELD APPROACH TO CRYSTAL GROWTH HUNG HOANG DIEU

More information

Crystals in and out of equilibrium

Crystals in and out of equilibrium Crystals in and out of equilibrium Yukio Saito Dept. Physics, Keio Univ., Japan 2015.9 Porquerolle, France 1.Introduction Technical innovation often requires new materials. Purified Si Semiconductor Industry,

More information

Phase-field simulations

Phase-field simulations Phase-field simulations by Murtazo Nazarov June 2006 Master of Science Thesis from Royal Institute of Technology Department of Mechanics SE-100 44 Stockholm, Sweden To my dear sister, Ohista ii Acknowledgements

More information

The Squirmer model and the Boundary Element Method

The Squirmer model and the Boundary Element Method Hauptseminar : Active Matter The Squirmer model and the Boundary Element Method Miru Lee April 6, 017 Physics epartment, University of Stuttgart 1 Introduction A micro scale swimmer exhibits directional

More information

3.5 Vorticity Equation

3.5 Vorticity Equation .0 - Marine Hydrodynamics, Spring 005 Lecture 9.0 - Marine Hydrodynamics Lecture 9 Lecture 9 is structured as follows: In paragraph 3.5 we return to the full Navier-Stokes equations (unsteady, viscous

More information

The influence of axial orientation of spheroidal particles on the adsorption

The influence of axial orientation of spheroidal particles on the adsorption The influence of axial orientation of spheroidal particles on the adsorption rate in a granular porous medium F. A. Coutelieris National Center for Scientific Research Demokritos, 1510 Aghia Paraskevi

More information

Modeling of free dendritic growth of succinonitrile acetone alloys with thermosolutal melt convection

Modeling of free dendritic growth of succinonitrile acetone alloys with thermosolutal melt convection Journal of Crystal Growth 236 (2002) 482 498 Modeling of free dendritic growth of succinonitrile acetone alloys with thermosolutal melt convection Q. Li, C. Beckermann* Department of Mechanical and Industrial

More information

Chapter 10: Steady Heat Conduction

Chapter 10: Steady Heat Conduction Chapter 0: Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another hermodynamics gives no indication of

More information

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is 1 I. BROWNIAN MOTION The dynamics of small particles whose size is roughly 1 µmt or smaller, in a fluid at room temperature, is extremely erratic, and is called Brownian motion. The velocity of such particles

More information

Outline of the talk How to describe restricted diffusion? How to monitor restricted diffusion? Laplacian eigenfunctions in NMR Other applications Loca

Outline of the talk How to describe restricted diffusion? How to monitor restricted diffusion? Laplacian eigenfunctions in NMR Other applications Loca Laplacian Eigenfunctions in NMR Denis S. Grebenkov Laboratoire de Physique de la Matière Condensée CNRS Ecole Polytechnique, Palaiseau, France IPAM Workshop «Laplacian Eigenvalues and Eigenfunctions» February

More information

Multiscale, multiphysics modeling of turbulent transport and heating in collisionless, magnetized plasmas

Multiscale, multiphysics modeling of turbulent transport and heating in collisionless, magnetized plasmas Multiscale, multiphysics modeling of turbulent transport and heating in collisionless, magnetized plasmas Michael Barnes Plasma Science & Fusion Center Massachusetts Institute of Technology Collaborators:

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 6 Oct 2003

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 6 Oct 2003 arxiv:cond-mat/0310095v1 [cond-mat.mtrl-sci] 6 Oct 2003 Linear morphological stability analysis of the solid-liquid interface in rapid solidification of a binary system P. K. Galenko* 1 and D. A. Danilov**

More information

Thickness and Shape of Films Driven by a Marangoni Flow

Thickness and Shape of Films Driven by a Marangoni Flow Langmuir 1996, 12, 5875-5880 5875 Thickness and Shape of Films Driven by a Marangoni Flow X. Fanton, A. M. Cazabat,* and D. Quéré Laboratoire de Physique de la Matière Condensée, Collège de France, 11

More information

Precipitation. Size! Shape! Size distribution! Agglomeration!

Precipitation. Size! Shape! Size distribution! Agglomeration! Precipitation Size! Shape! Size distribution! Agglomeration! Precipitation Four major questions: 1. Why do molecules/ions precipitate? 2. What determines the size? 3. What determines the size distribution?

More information

Moving layers and interfaces : a thermodynamical approach of Wear Contact

Moving layers and interfaces : a thermodynamical approach of Wear Contact Moving layers and interfaces : a thermodynamical approach of Wear Contact C. Stolz M. Peigney, M. Dragon-Louiset LMS, CNRS-UMR7649, Ecole polytechnique, Palaiseau LaMSID, CNRS-UMR2832, EdF R&D, Clamart

More information

Faculty of Engineering

Faculty of Engineering Faculty of Enineerin Can the introduction of cross terms, from a eneralised variational procedure in the phase-field modellin of alloy solidification, act as a natural anti-solute trappin current? Dr Peter

More information

contact line dynamics

contact line dynamics contact line dynamics part 2: hydrodynamics dynamic contact angle? lubrication: Cox-Voinov theory maximum speed for instability corner shape? dimensional analysis: speed U position r viscosity η pressure

More information

The Influence of Hydrodynamic Flow on Microstructure Evolution During Solidification

The Influence of Hydrodynamic Flow on Microstructure Evolution During Solidification The Influence of Hydrodynamic Flow on Microstructure Evolution During Solidification Von der Fakultät für Georessourcen und Materialtechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen zur

More information

Near Field Asymptotic Formulation for Dendritic Growth Due to Buoyancy

Near Field Asymptotic Formulation for Dendritic Growth Due to Buoyancy Advances in Theoretical and Applied Mathematics. ISSN 973-4554 Volume 11 Number 4 16 pp. 437 44 Research India Publications http://www.ripublication.com/atam.htm Near Field Asymptotic Formulation for Dendritic

More information

For one such collision, a new particle, "k", is formed of volume v k = v i + v j. The rate of formation of "k" particles is, N ij

For one such collision, a new particle, k, is formed of volume v k = v i + v j. The rate of formation of k particles is, N ij Coagulation Theory and The Smoluchowski Equation: Coagulation is defined as growth of particles by collisions among particles. It is usually associated with dense, 3-d growth, in contrast to aggregation

More information

Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models

Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1, Christian Ratsch 1,2, David Shao 1 and Dimitri Vvedensky 3 1 UCLA,

More information

Effect of Temperature on Materials. June 20, Kamran M. Nemati. Phase Diagram

Effect of Temperature on Materials. June 20, Kamran M. Nemati. Phase Diagram Effect of Temperature on Materials June 20, 2008 Kamran M. Nemati Phase Diagram Objective Phase diagrams are graphical representations of what phases are present in a material-system at various temperatures,

More information

Part I.

Part I. Part I bblee@unimp . Introduction to Mass Transfer and Diffusion 2. Molecular Diffusion in Gasses 3. Molecular Diffusion in Liquids Part I 4. Molecular Diffusion in Biological Solutions and Gels 5. Molecular

More information

A PRACTICALLY UNCONDITIONALLY GRADIENT STABLE SCHEME FOR THE N-COMPONENT CAHN HILLIARD SYSTEM

A PRACTICALLY UNCONDITIONALLY GRADIENT STABLE SCHEME FOR THE N-COMPONENT CAHN HILLIARD SYSTEM A PRACTICALLY UNCONDITIONALLY GRADIENT STABLE SCHEME FOR THE N-COMPONENT CAHN HILLIARD SYSTEM Hyun Geun LEE 1, Jeong-Whan CHOI 1 and Junseok KIM 1 1) Department of Mathematics, Korea University, Seoul

More information

Universität Regensburg Mathematik

Universität Regensburg Mathematik Universität Regensburg Mathematik On the stable discretization of strongly anisotropic phase field models with applications to crystal growth John W. Barrett, Harald Garcke and Robert Nürnberg Preprint

More information

emulsions, and foams March 21 22, 2009

emulsions, and foams March 21 22, 2009 Wetting and adhesion Dispersions in liquids: suspensions, emulsions, and foams ACS National Meeting March 21 22, 2009 Salt Lake City Ian Morrison 2009 Ian Morrison 2009 Lecure 2 - Wetting and adhesion

More information

Segmentation using deformable models

Segmentation using deformable models Segmentation using deformable models Isabelle Bloch http://www.tsi.enst.fr/ bloch Téécom ParisTech - CNRS UMR 5141 LTCI Paris - France Modèles déformables p.1/43 Introduction Deformable models = evolution

More information

PHASE-FIELD MODELS FOR MICROSTRUCTURE EVOLUTION

PHASE-FIELD MODELS FOR MICROSTRUCTURE EVOLUTION Annu. Rev. Mater. Res. 2002. 32:113 40 doi: 10.1146/annurev.matsci.32.112001.132041 Copyright c 2002 by Annual Reviews. All rights reserved PHASE-FIELD MODELS FOR MICROSTRUCTURE EVOLUTION Long-Qing Chen

More information

Reaction at the Interfaces

Reaction at the Interfaces Reaction at the Interfaces Lecture 1 On the course Physics and Chemistry of Interfaces by HansJürgen Butt, Karlheinz Graf, and Michael Kappl Wiley VCH; 2nd edition (2006) http://homes.nano.aau.dk/lg/surface2009.htm

More information

An Adsorption Desorption-Controlled Surfactant on a Deforming Droplet

An Adsorption Desorption-Controlled Surfactant on a Deforming Droplet JOURNAL OF COLLOID AND INTERFACE SCIENCE 208, 68 80 (1998) ARTICLE NO. CS985816 An Adsorption Desorption-Controlled Surfactant on a Deforming Droplet Charles D. Eggleton* and Kathleen J. Stebe,1 *Department

More information

Supporting Information: On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena

Supporting Information: On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena Supporting Information: On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena Saurabh Nath and Jonathan B. Boreyko Department of Biomedical Engineering and Mechanics, Virginia

More information

Vorticity Equation Marine Hydrodynamics Lecture 9. Return to viscous incompressible flow. N-S equation: v. Now: v = v + = 0 incompressible

Vorticity Equation Marine Hydrodynamics Lecture 9. Return to viscous incompressible flow. N-S equation: v. Now: v = v + = 0 incompressible 13.01 Marine Hydrodynamics, Fall 004 Lecture 9 Copyright c 004 MIT - Department of Ocean Engineering, All rights reserved. Vorticity Equation 13.01 - Marine Hydrodynamics Lecture 9 Return to viscous incompressible

More information

Breakdown of classical nucleation theory in nucleation kinetics

Breakdown of classical nucleation theory in nucleation kinetics Chapter 6 Breakdown of classical nucleation theory in nucleation kinetics In this chapter we present results of a study of nucleation of nematic droplets from the metastable isotropic phase. To the best

More information

The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and engineering.

The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and engineering. Lecture 16 Applications of Conformal Mapping MATH-GA 451.001 Complex Variables The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information