For one such collision, a new particle, "k", is formed of volume v k = v i + v j. The rate of formation of "k" particles is, N ij

Size: px
Start display at page:

Download "For one such collision, a new particle, "k", is formed of volume v k = v i + v j. The rate of formation of "k" particles is, N ij"

Transcription

1 Coagulation Theory and The Smoluchowski Equation: Coagulation is defined as growth of particles by collisions among particles. It is usually associated with dense, 3-d growth, in contrast to aggregation which leads to low dimension, branched structures. The process of coagulation usually is associated with sintering and coalescence of particles by Gibbs-Thompson maturing and through strong van der Waals bonding of the particles. Then the result of coagulation is usually considered a solid 3-d particle. Agglomeration is similar to coagulation but, for the most part, does not include coalescence of the particles so that an agglomerate can be "broken down" in to the units of which it is made while a coagulated particle can not be broken down exactly into the subparticles from which it grew. In aerosol and other gas phase growth the time rate of change of particle size distribution is of primary interest. In a general sense we can consider two types of particles, with volumes, v i and v j. The rate of collision between i and j particles is N ij. For spherical particles, each diameter of particles has a unique volume. The collision of two particles leads immediately to the growth of a new particle with the summed volume of the two contributing particles. The concentration of particles "i" is n i and that of "j" is n j. We can define the collision frequency function,, by, N ij = (v i, v j, T, P, etc.) n i n j For one such collision, a new particle, "k", is formed of volume v k = v i + v j. The rate of formation of "k" particles is, N ij i+ j = k The rate of loss of particles "k" due to collision with other particles is, Then, i= N ik dn k = N ij N ik i + j= k i= = β( v i,v j ) n i n j n k β v i,v k i + j= k i= n i This is the Smoluchowski equation (97). The equation converts the problem of the determining the evolution of a spectrum of particle sizes to the problem of determining the collision frequency function,. The functional form for depends on the transport mechanisms at play in the system. The equation is based on instantaneous bonding of particles after collision.

2 Determination of for Brownian Motion of Particles: For nanoparticles (particles smaller than µm) Brownian motion governs the collision frequency. For a spherical particle of radius a i with a coordinate system fixed on its center, and particles, a j, surrounding it and subjected to Brownian motion, the a j particles diffuse to the surface of a i. a i is a perfect sink since the particles bond by van der Waals interactions. We consider that n j = at a i +a j. Fick s second law for the spherical particle, a i, is given by, t = D r δn δr r r We have at r = a i +a j, n j = for all t, and for r > a i +a j, at time t =, n j = n. Fick s second law can be rewritten in terms of the dimensionless parameters, x = r ( a a i j ) w = n n r a i a j n and a i + a j = n n n ( x +) so t = ( x) w t x r = a i a j w = ( x ) r n r + n n n x r = n n ( a i + a j )n + ( x) n r w r = ( a i +a j )n r + ( x) n n r x n r r and w x = n n ( x + ) n n x, and, w x = n x ( x+) n n x and w t = x+ ( x+) r ( δnδr) ( = D = D x+ ) n n t n r r n r r + r = D ( x+) a i a ( j ) n xa ( i a j )+( a i a j ) x + ( a a i j) n = D ( x+ ) n x n ( x+) x + x = D x+ n D n x n x = D w ( a i +a j ) x The boundary conditions become x = ; w = for all t and x > ;t =, w =. This is a -d diffusion equation so the solution is,

3 w = erf x a + a i j Dt or n n n = a i +a j r erf r a i + a ( ( j )) ( Dt) The steady state solution is obtained at t =>, w=>, so n n n a i + a j r Fick s first law can be used to calculate the flux of a j particles to a i (at r = a i + a j ), J = D j r r= a i +a j and the rate of collision, F(t), is given by, F(t) = 4πD r j r r= a i + a j From the expression for n above, F(t) = 4πD( a i + a j )n + a i + a j ( πdt) At steady state, t >> (a i + a j ) /D, F(t) = 4πD( a i + a j )n which is minimum value of the time function since j particles have, for the most part diffused away or coagulated. We must also consider Brownian diffusion of the i particle which was fixed in the previous assessment. The Einstein equation gives the relative displacement of i and j particles, D ij = ( x i x j ) t ( = x i) t ( + x x i j) t + ( x j ) t ( = x i) t + ( x j ) t = D i + D j since the two particles are not correlated in motion, i.e. the motion is random. The collision frequency function, (v i, v j ), ( v i,v j ) = 4π ( D i + D j )( a i + a j ) 3

4 for steady state. For.µm particles the time constant deciding steady state is about x -3 sec allowing for this approximation. The Stokes-Einstein equation gives D =kt/(3πµd p ) for the continuum regime, so ( v i,v j ) = kt 3µ /3 v + i v j /3 v /3 /3 ( i + v i ) Continuum Range In the free molecular regime the functions described in the previous section are used for D and, ( v i,v j ) = 3 6kT 4π ρ p + v i v j / / v /3 /3 ( i + v i ) Free Molecular Range which is based on the kinetic theory of gasses. An interpolation function can be found in Fuchs, NA Mechanics of Aerosols, Pergamon Press, NY (964). This function shows a maximum collision frequency for Kn 5. Collision frequency is highest for particles with widely separated sizes, favoring monomer cluster growth for instance. Development of a Particle Size Distribution by Coagualtion: For a monodisperse system undergoing coagulation, initially v i = v j, = K = 8kT 3µ Continuum Range, Monodisperse This can be inserted in to the Smoluchowski equation to yield, k = K i + j= k n i n j Kn k n i i= The total number of particles per unit volume, N =Σn i. The Smoluchowski equation can be written for the rate of change for the total particle number per unit volume, N = K k= i + j= k n i n j KN = K N so, = N ( t = ) + ( t /τ ) N N = t = + KN ( t = )t / 4

5 The discrete size distribution can be obtained by considering the solution to the kinetic growth equations for a series of sizes, for k =, and for k =, dn = Kn N or n = N t = + t/τ dn ( t /τ ) 3 = Kn Kn N or n = N t = + t /τ In general, ( t /τ) k k+ Continuum range, Constant Collision Frequency from n k = N t = + t /τ Monodisperse System where τ = /(K N ()) = 3µ/(4kT N ()). For k > the distribution has a maximum in time as shown in the figure from Smoluchowski (in Friedlander s book) below. For higher k the peak occurs at longer times. Since particles are growing, the total number decays with time. This model is appropriate for small t/τ, where the particle size distribution is close to monodisperse. This might be applicable to a batch system, or a plug flow reactor. At long times the curves shown for particle size as a function of time begin to show a similar shape, although shifted in time and k. This is the source of a self-preserving shape to the size distribution. That is, the size distribution, when scaled with dimensionless numbers, retains the same shape, so is called self-preserving. For the result of the Smoluchowski equation for constant collision frequency the self-preserving distribution has the form, N k ~e -η where η = k/<k> and,k.=n ()/N (t). We can rearrange the size distribution as, n k N () N = ( t /τ) k ( + t /τ ) k n k N () N = ( t /τ) k ( + t /τ ) = + τ k t k = + τ t t /τ ( k )τ / t For large t/τ, 5

6 Friedlander SK, Smoke Dust and Haze, and + τ t t / τ n k N () N since τ = <k>-, η = (k-)/(<k>-). Then the asymptotic limit of the size distribution is selfpreserving. Similarity Solutions for Particle Size Distributions due to Coagulation (Self Preserving): If it is assumed that the fraction of particles in a given size range is a function of the particle volume normalized by the average particle volume then, e = e η n( v,t)n ()dv =ψ v v d N < v > < v > 6

7 where <v> = φ/n, and ψ is a function describing the particle size distribution which is not time dependent. Since n is the particle number per unit volume both sides of this equation are dimensionless. Since d(v/<v>) = dv/<v> = (N /φ)dv, = N n v,t φ ψ η N = ndv, φ = nvdv, n(v) when v or. where η = v/<v> = N v/φ, for n p (d p, t) can also be obtained, An expression = N 4 / 3 n d d p,t φ /3 ψ d η d where η d = d p (N /φ) /3. For Brownian coagulation we have, ( v i,v j ) = kt 3µ /3 v + i v j /3 v /3 /3 ( i + v i ) Continuum Range For a continuous distribution function the coagulation equation is, t = v which becomes, N dn β ( < v >,(v <v>) )n<v> nv <v> d<v> βv,<v> nv n<v> d<v> ψ + η dψ dη = kt η 3µ ψ ( η )ψ η η kt 3µ ψ η Continuous Distribution ψ η η /3 + ( η η ) /3 [ ] [ ] η /3 + η /3 when the similarity form is substituted (4 th equation above). η /3+ η η η /3+ η /3 d η For a continuous distribution the change in total number concentration with time is, /3 d η dn = βv,v nv n( v)dvd v Continuous Distribution 7

8 By substitution of the similarity distribution for n(v,t) and the continuum definition of β, we obtain, dn = kt 3µ ( + ab )N where a = η /3 ψdη and b = η /3 ψdη Continuum Regime This has the same functionality as Brownian coagulation from a monodisperse system, dn = K N. This expression can be used in the continuous distribution function above (long function) and an ordinary intergrodifferential equation for ψ in terms of η results. This means that the similarity solution for Brownian coagulation is a possible particular solution. The solution can be found using the integral definitions of N and φ given above. The function is solved for the upper and lower ends of the distribution and then the complete distribution can be obtained numerically using these limits. The numerical solution is shown below (from Friedlander s book) Shown below is a comparison of experimental measurements on coagulation in tobacco smoke with the predictions of the figure above. 8

9 Similarity Solution in the Free Molecular Regime: Generally, when the collision frequency function, β(v, <v>), is a homogeneous function of v, it can be transformed to an ordinary integrodifferential equation. If an ordinary integrodifferential equation can be made it must also satisfy the integral boundary conditions and constraints. For the free molecular range we have, ( v i,v j ) = 3 6kT 4π ρ p + v i v j / / v /3 /3 ( i + v i ) Free Molecular Range This is a homogeneous function of order /6 in particle volume. The similarity transformation can be made and a numerical solution can be found. The rate of change of the total number of particles is given by, dn = α 3 4π /6 6kT ρ p / φ /6 N /6 where a is an integral function of ψ with a value of about An example of numerical simulation (Monte Carlo) versus experimental observation for particle size distribution is shown below from Friedlander s text. 9

10 The self-preserving distribution can be approximated by a log-normal distribution function with σ g =.44 for the continuum regime and σ g =.46 for the free molecular regime. If the initial distribution of particles is also a log-normal distribution, the time to reach the self-preserving distribution (SPD), t sp, is a function of the initial distribution, σ g,

11 3 t sp = τ f 4π /6 6kT ρ p / v /6 N Free Molecular which is due to Vemury, S and Pratsinis, SE (995)J. Aerosol Sci., 75. For nm particles at 8 K the SPD is reached in on the order of microsecond. The figure below from Vemury (Friedlander) shows this behavior. The dip corresponds to the SPD geometric standard deviation. For initially monodisperse distributions the time to reach SPD was also calculated by Vemury/Pratsinis, 3 t sp = 5 4π /6 6kT ρ p / v /6 N t sp = 3 ktn 3µ Free Molecular Range Continuum Range

Aggregate Growth: R =αn 1/ d f

Aggregate Growth: R =αn 1/ d f Aggregate Growth: Mass-ractal aggregates are partly described by the mass-ractal dimension, d, that deines the relationship between size and mass, R =αn 1/ d where α is the lacunarity constant, R is the

More information

Particle Dynamics: Brownian Diffusion

Particle Dynamics: Brownian Diffusion Particle Dynamics: Brownian Diffusion Prof. Sotiris E. Pratsinis Particle Technology Laboratory Department of Mechanical and Process Engineering, ETH Zürich, Switzerland www.ptl.ethz.ch 1 or or or or nucleation

More information

A Simple Numerical Algorithm and Software for Solution of Nucleation, Surface Growth, and Coagulation Problems

A Simple Numerical Algorithm and Software for Solution of Nucleation, Surface Growth, and Coagulation Problems Aerosol Science and Technology, 37:892 898, 2003 Copyright c American Association for Aerosol Research ISSN: 0278-6826 print / 1521-7388 online DOI: 10.1080/02786820390225826 A Simple Numerical Algorithm

More information

A New Moment Method for Solving the Coagulation Equation for Particles in Brownian Motion

A New Moment Method for Solving the Coagulation Equation for Particles in Brownian Motion Aerosol Science and Technology ISSN: 78-686 (Prin 5-7388 (Online Journal homepage: http://www.tandfonline.com/loi/uast A New Moment Method for Solving the Coagulation Equation for Particles in Brownian

More information

Crossover from ballistic to Epstein diffusion in the freemolecular

Crossover from ballistic to Epstein diffusion in the freemolecular This is the author s final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher s web site or your institution s library. Crossover

More information

C C C C 2 C 2 C 2 C + u + v + (w + w P ) = D t x y z X. (1a) y 2 + D Z. z 2

C C C C 2 C 2 C 2 C + u + v + (w + w P ) = D t x y z X. (1a) y 2 + D Z. z 2 This chapter provides an introduction to the transport of particles that are either more dense (e.g. mineral sediment) or less dense (e.g. bubbles) than the fluid. A method of estimating the settling velocity

More information

Population balance modeling -an application in particle technology

Population balance modeling -an application in particle technology Population balance modeling -an application in particle technology Sheryl Ehrman IITB and University of Maryland Link to Matlab: www.glue.umd.edu/~sehrman/popbal.htm Outline Aerosol reactors in industry

More information

Modeling and simulation of multi-component aerosol dynamics

Modeling and simulation of multi-component aerosol dynamics Modeling and simulation of multi-component aerosol dynamics Y. Efendiev March 1, 23 Abstract In the paper we consider modeling of heterogeneous aerosol coagulation where the heterogeneous aerosol particles

More information

Chapter 7 Kinetics and Structure of Colloidal Aggregates

Chapter 7 Kinetics and Structure of Colloidal Aggregates Chapter 7 Kinetics and Structure of Colloidal Aggregates 7.1 Diffusion Limited Cluster Aggregation DLCA 7.1.1 Aggregation Rate Constant DLCA In the case where no repulsive barrier exists between the particles,

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION MODELING OF ALUMINUM NANOPARTICLE FORMATION R. Schefflan D. Kalyon S. Kovenklioglu Stevens Institute of Technology Highly Filled Materials Institute Castle Point Station Hoboken, N.J. 73 ABSTRACT Picatinny

More information

Kinetic Monte Carlo simulation of the effect of coalescence energy release on the size and shape evolution of nanoparticles grown as an aerosol

Kinetic Monte Carlo simulation of the effect of coalescence energy release on the size and shape evolution of nanoparticles grown as an aerosol JOURNAL OF CHEMICAL PHYSICS VOLUME 119, NUMBER 6 8 AUGUST 2003 Kinetic Monte Carlo simulation of the effect of coalescence energy release on the size and shape evolution of nanoparticles grown as an aerosol

More information

Energy accumulation in nanoparticle collision and coalescence processes

Energy accumulation in nanoparticle collision and coalescence processes Aerosol Science 33 (2002) 357 368 www.elsevier.com/locate/jaerosci Energy accumulation in nanoparticle collision and coalescence processes Kari E.J. Lehtinen a;b; 1, Michael R. Zachariah a;b; a Department

More information

Micromechanics of Colloidal Suspensions: Dynamics of shear-induced aggregation

Micromechanics of Colloidal Suspensions: Dynamics of shear-induced aggregation : Dynamics of shear-induced aggregation G. Frungieri, J. Debona, M. Vanni Politecnico di Torino Dept. of Applied Science and Technology Lagrangian transport: from complex flows to complex fluids Lecce,

More information

INSTANTANEOUS AEROSOL DYNAMICS IN A TURBULENT FLOW

INSTANTANEOUS AEROSOL DYNAMICS IN A TURBULENT FLOW 1492 THERMAL SCIENCE, Year 2012, Vol. 16, No. 5, pp. 1492-1496 INSTANTANEOUS AEROSOL DYNAMICS IN A TURBULENT FLOW by Kun ZHOU * Clean Combustion Research Center, King Abdullah University of Science and

More information

Brownian Motion: Fokker-Planck Equation

Brownian Motion: Fokker-Planck Equation Chapter 7 Brownian Motion: Fokker-Planck Equation The Fokker-Planck equation is the equation governing the time evolution of the probability density of the Brownian particla. It is a second order differential

More information

Modeling of Mature Soot Dynamics and Optical Properties

Modeling of Mature Soot Dynamics and Optical Properties Modeling of Mature Soot Dynamics and Optical Properties Georgios A. Kelesidis, Sotiris E. Pratsinis Particle Technology Laboratory, ETH Zurich, Zurich, Switzerland Aleksandar Duric, Martin Allemann Siemens

More information

Chapter 9 Generation of (Nano)Particles by Growth

Chapter 9 Generation of (Nano)Particles by Growth Chapter 9 Generation of (Nano)Particles by Growth 9.1 Nucleation (1) Supersaturation Thermodynamics assumes a phase change takes place when there reaches Saturation of vapor in a gas, Saturation of solute

More information

Monte Carlo Simulation of Multicomponent Aerosols Undergoing Simultaneous Coagulation and Condensation

Monte Carlo Simulation of Multicomponent Aerosols Undergoing Simultaneous Coagulation and Condensation Aerosol Science and Technology ISSN: 0278-6826 (Print) 1521-7388 (Online) Journal homepage: http://www.tandfonline.com/loi/uast20 Monte Carlo Simulation of Multicomponent Aerosols Undergoing Simultaneous

More information

Lecture 3: From Random Walks to Continuum Diffusion

Lecture 3: From Random Walks to Continuum Diffusion Lecture 3: From Random Walks to Continuum Diffusion Martin Z. Bazant Department of Mathematics, MIT February 3, 6 Overview In the previous lecture (by Prof. Yip), we discussed how individual particles

More information

Direct observation of aggregative nanoparticle growth: Kinetic modeling of the size distribution and growth rate

Direct observation of aggregative nanoparticle growth: Kinetic modeling of the size distribution and growth rate Direct observation of aggregative nanoparticle growth: Kinetic modeling of the size distribution and growth rate Taylor J. Woehl, * Chiwoo Park, James E. Evans, Ilke Arslan, William D. Ristenpart, and

More information

Scientific Computing II

Scientific Computing II Scientific Computing II Molecular Dynamics Simulation Michael Bader SCCS Summer Term 2015 Molecular Dynamics Simulation, Summer Term 2015 1 Continuum Mechanics for Fluid Mechanics? Molecular Dynamics the

More information

Chapter 7. Entanglements

Chapter 7. Entanglements Chapter 7. Entanglements The upturn in zero shear rate viscosity versus molecular weight that is prominent on a log-log plot is attributed to the onset of entanglements between chains since it usually

More information

Coagulation and Fragmentation: The Variation of Shear Rate and the Time Lag for Attainment of Steady State

Coagulation and Fragmentation: The Variation of Shear Rate and the Time Lag for Attainment of Steady State 3074 Ind. Eng. Chem. Res. 1996, 35, 3074-3080 Coagulation and Fragmentation: The Variation of Shear Rate and the Time Lag for Attainment of Steady State Patrick T. Spicer, Sotiris E. Pratsinis,* and Michael

More information

Implementation of a discrete nodal model to probe the effect of size-dependent surface tension on nanoparticle formation and growth

Implementation of a discrete nodal model to probe the effect of size-dependent surface tension on nanoparticle formation and growth Aerosol Science 37 (2006) 1388 1399 www.elsevier.com/locate/jaerosci Implementation of a discrete nodal model to probe the effect of size-dependent surface tension on nanoparticle formation and growth

More information

2.7 Aerosols and coagulation

2.7 Aerosols and coagulation 1 Note on 1.63 Advanced Environmental Fluid Mechanic Intructor: C. C. Mei, 1 ccmei@mit.edu, 1 617 53 994 December 1,.7 Aerool and coagulation [Ref]: Preent, Kinetic Theory of Gae Fuch, Mechanic of Aerool

More information

Instantaneous gelation in Smoluchowski s coagulation equation revisited

Instantaneous gelation in Smoluchowski s coagulation equation revisited Instantaneous gelation in Smoluchowski s coagulation equation revisited Colm Connaughton Mathematics Institute and Centre for Complexity Science, University of Warwick, UK Collaborators: R. Ball (Warwick),

More information

Reaction and Diffusion in a Porous Catalyst Pellet. by Richard K. Herz

Reaction and Diffusion in a Porous Catalyst Pellet. by Richard K. Herz Reaction and Diffusion in a Porous Catalyst Pellet by Richard K. Herz Solid catalysts are often called "heterogeneous catalysts" meaning that they are in a different phase from fluid reactants

More information

Stability of colloidal systems

Stability of colloidal systems Stability of colloidal systems Colloidal stability DLVO theory Electric double layer in colloidal systems Processes to induce charges at surfaces Key parameters for electric forces (ζ-potential, Debye

More information

THE VERIFICATION OF THE TAYLOR-EXPANSION MOMENT METHOD IN SOLVING AEROSOL BREAKAGE

THE VERIFICATION OF THE TAYLOR-EXPANSION MOMENT METHOD IN SOLVING AEROSOL BREAKAGE 144 THERMAL SCIENCE, Year 1, Vol. 16, No. 5, pp. 144-148 THE VERIFICATION OF THE TAYLOR-EXPANSION MOMENT METHOD IN SOLVING AEROSOL BREAKAGE by Ming-Zhou YU a,b * and Kai ZHANG a a College of Science, China

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Estimation of diffusion Coefficient Dr. Zifei Liu Diffusion mass transfer Diffusion mass transfer refers to mass in transit due to a species concentration

More information

Diffusion. Diffusion = the spontaneous intermingling of the particles of two or more substances as a result of random thermal motion

Diffusion. Diffusion = the spontaneous intermingling of the particles of two or more substances as a result of random thermal motion Diffusion Diffusion = the spontaneous intermingling of the particles of two or more substances as a result of random thermal motion Fick s First Law Γ ΔN AΔt Γ = flux ΔN = number of particles crossing

More information

precipitation in a Confined Impinging Jets Reactor by means of

precipitation in a Confined Impinging Jets Reactor by means of Modeling of nanoparticles precipitation in a Confined Impinging Jets Reactor by means of Computational Fluid Dynamics E. Gavi, D.L. Marchisio, A.A. Barresi Politecnico di Torino, Department of Material

More information

Kinetic Theory for Binary Granular Mixtures at Low Density

Kinetic Theory for Binary Granular Mixtures at Low Density 10 Kinetic Theory for Binary Granular Mixtures at Low Density V. Garzó Departamento de Física, Universidad de Extremadura, E-06071 Badajoz, Spain vicenteg@unex.es Many features of granular media can be

More information

author's personal copy

author's personal copy Mechanics Research Communications 40 (2012) 46 51 Contents lists available at SciVerse ScienceDirect Mechanics Research Communications jo ur nal homep age : www.elsevier.com/locate/mechrescom Verifying

More information

Precipitation. Size! Shape! Size distribution! Agglomeration!

Precipitation. Size! Shape! Size distribution! Agglomeration! Precipitation Size! Shape! Size distribution! Agglomeration! Precipitation Four major questions: 1. Why do molecules/ions precipitate? 2. What determines the size? 3. What determines the size distribution?

More information

SPRING 2011 Phys 450 Solution set 2

SPRING 2011 Phys 450 Solution set 2 SPRING 011 Phys 450 Solution set Problem 1 (a) Estimate the diameter of a ater molecule from its self-diffusion coefficient, and using the Stokes-Einstein relation, assuming that it is a spherical molecule.

More information

arxiv: v1 [physics.ao-ph] 23 Feb 2015

arxiv: v1 [physics.ao-ph] 23 Feb 2015 Approximate analytical solutions to the condensation-coagulation equation of aerosols arxiv:5.6399v [physics.ao-ph] 3 Feb 5 Naftali Smith, Nir J. Shaviv,, Henrik Svensmark 3 Racah Institute of Physics,

More information

A new differentially weighted operator splitting Monte Carlo method for aerosol dynamics

A new differentially weighted operator splitting Monte Carlo method for aerosol dynamics This paper is part of the Proceedings of the 24 International Conference th on Modelling, Monitoring and Management of Air Pollution (AIR 2016) www.witconferences.com A new differentially weighted operator

More information

Chapter 7 Mixing and Granulation

Chapter 7 Mixing and Granulation Chapter 7 Mixing and Granulation 7.1 Mixing and Segregation (Chapter 9) Mixing vs. segregation (1) Types of Mixture * Perfect mixing Random mixing Segregating mixing Figure 9.1 (2) Segregation 1) Causes

More information

NUMERICAL MODELING OF FINE PARTICLE FRACTAL AGGREGATES IN TURBULENT FLOW

NUMERICAL MODELING OF FINE PARTICLE FRACTAL AGGREGATES IN TURBULENT FLOW THERMAL SCIENCE, Year 2015, Vol. 19, No. 4, pp. 1189-1193 1189 NUMERICAL MODELING OF FINE PARTICLE FRACTAL AGGREGATES IN TURBULENT FLOW by Feifeng CAO a, Zhanhong WAN b,c*, Minmin WANG b, Zhenjiang YOU

More information

Clouds associated with cold and warm fronts. Whiteman (2000)

Clouds associated with cold and warm fronts. Whiteman (2000) Clouds associated with cold and warm fronts Whiteman (2000) Dalton s law of partial pressures! The total pressure exerted by a mixture of gases equals the sum of the partial pressure of the gases! Partial

More information

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany Preliminaries Learning Goals Phase Equilibria Phase diagrams and classical thermodynamics

More information

Biomolecular hydrodynamics

Biomolecular hydrodynamics Biomolecular hydrodynamics Chem 341, Fall, 2014 1 Frictional coefficients Consider a particle moving with velocity v under the influence of some external force F (say a graviational or electrostatic external

More information

collisions of electrons. In semiconductor, in certain temperature ranges the conductivity increases rapidly by increasing temperature

collisions of electrons. In semiconductor, in certain temperature ranges the conductivity increases rapidly by increasing temperature 1.9. Temperature Dependence of Semiconductor Conductivity Such dependence is one most important in semiconductor. In metals, Conductivity decreases by increasing temperature due to greater frequency of

More information

2. Molecules in Motion

2. Molecules in Motion 2. Molecules in Motion Kinetic Theory of Gases (microscopic viewpoint) assumptions (1) particles of mass m and diameter d; ceaseless random motion (2) dilute gas: d λ, λ = mean free path = average distance

More information

Sheldon K. Friedlander 17 November February 2007

Sheldon K. Friedlander 17 November February 2007 Sheldon K. Friedlander 17 November 1927 9 February 2007 Professor Sheldon K. Friedlander passed away in his Pacific Palisades home in California on 9 February 2007. Friedlander was known to all involved

More information

Modeling and Simulating Gold Nanoparticle Interactions on a Liquid-Air Interface

Modeling and Simulating Gold Nanoparticle Interactions on a Liquid-Air Interface Modeling and Simulating Gold Nanoparticle Interactions on a Liquid-Air Interface Jennifer Jin 1 and Dr. Jacques Amar 2 1 Mary Baldwin College, 2 Department of Physics & Astronomy, University of Toledo

More information

Modeling of Micro-Fluidics by a Dissipative Particle Dynamics Method. Justyna Czerwinska

Modeling of Micro-Fluidics by a Dissipative Particle Dynamics Method. Justyna Czerwinska Modeling of Micro-Fluidics by a Dissipative Particle Dynamics Method Justyna Czerwinska Scales and Physical Models years Time hours Engineering Design Limit Process Design minutes Continious Mechanics

More information

AGITATION AND AERATION

AGITATION AND AERATION AGITATION AND AERATION Although in many aerobic cultures, gas sparging provides the method for both mixing and aeration - it is important that these two aspects of fermenter design be considered separately.

More information

APERITIFS. Chapter Diffusion

APERITIFS. Chapter Diffusion Chapter 1 APERITIFS Broadly speaking, non-equilibrium statistical physics describes the time-dependent evolution of many-particle systems. The individual particles are elemental interacting entities which,

More information

Colloid stability. Lyophobic sols. Stabilization of colloids.

Colloid stability. Lyophobic sols. Stabilization of colloids. Colloid stability. Lyophobic sols. Stabilization of colloids. Lyophilic and lyophobic sols Sols (lyosols) are dispersed colloidal size particles in a liquid medium (=solid/liquid dispersions) These sols

More information

Mass transfer by migration & diffusion (Ch. 4)

Mass transfer by migration & diffusion (Ch. 4) Mass transfer by migration & diffusion (Ch. 4) Mass transfer equation Migration Mixed migration & diffusion near an electrode Mass transfer during electrolysis Effect of excess electrolyte Diffusion Microscopic

More information

Wet Collectors. Type 1: Spray Chamber Scrubber 10/30/2013. EVE 402 Air Pollution Generation and Control. Chapter #5 Lectures (Part 5)

Wet Collectors. Type 1: Spray Chamber Scrubber 10/30/2013. EVE 402 Air Pollution Generation and Control. Chapter #5 Lectures (Part 5) EVE 40 Air Pollution eneration and Control Chapter #5 Lectures (Part 5) Wet Collectors Water is used to either capture particulate or increase aerosol size Hygroscopic particles (those that attract and

More information

Biomolecular hydrodynamics

Biomolecular hydrodynamics Biomolecular hydrodynamics David Case Rutgers, Spring, 2009 February 1, 2009 Why study hydrodynamical methods? The methods we study in this section are low resolution ones one studies diffusional motion

More information

Diffusion in the cell

Diffusion in the cell Diffusion in the cell Single particle (random walk) Microscopic view Macroscopic view Measuring diffusion Diffusion occurs via Brownian motion (passive) Ex.: D = 100 μm 2 /s for typical protein in water

More information

Using DNS to Understand Aerosol Dynamics

Using DNS to Understand Aerosol Dynamics APS Division of Fluid Dynamics Meeting East Rutherford, NJ November 23-25, 2003 Using DNS to Understand Aerosol Dynamics Lance R. Collins Sibley School of Mechanical & Aerospace Engineering Cornell University

More information

SYNTHESIS OF INORGANIC NANOPARTICLES IN SUPERCRITICAL FLUIDS. A SIMPLE MODEL TO PREDICT PARTICLE SIZE

SYNTHESIS OF INORGANIC NANOPARTICLES IN SUPERCRITICAL FLUIDS. A SIMPLE MODEL TO PREDICT PARTICLE SIZE SYNTHESIS OF INORGANIC NANOPARTICLES IN SUPERCRITICAL FLUIDS. A SIMPLE MODEL TO PREDICT PARTICLE SIZE A. Erriguible 1, F. Marias 2, F. Cansell 3, C. Aymonier* 3 1 Laboratoire TREFLE (UMR C.N.R.S. 8508),

More information

Fluid Neutral Momentum Transport Reference Problem D. P. Stotler, PPPL S. I. Krasheninnikov, UCSD

Fluid Neutral Momentum Transport Reference Problem D. P. Stotler, PPPL S. I. Krasheninnikov, UCSD Fluid Neutral Momentum Transport Reference Problem D. P. Stotler, PPPL S. I. Krasheninnikov, UCSD 1 Summary Type of problem: kinetic or fluid neutral transport Physics or algorithm stressed: thermal force

More information

Modeling and simulation of nanoparticle aggregation in colloidal systems

Modeling and simulation of nanoparticle aggregation in colloidal systems Retrospective Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2008 Modeling and simulation of nanoparticle aggregation in colloidal systems Sergiy Markutsya Iowa State

More information

CHE 611 Advanced Chemical Reaction Engineering

CHE 611 Advanced Chemical Reaction Engineering CHE 611 Advanced Chemical Reaction Engineering Dr. Muhammad Rashid Usman Institute of Chemical Engineering and Technology University of the Punjab, Lahore 54590 mrusman.icet@pu.edu.pk 1 Diffusion and reaction

More information

Modeling and Parameter Estimation of Interpenetrating

Modeling and Parameter Estimation of Interpenetrating Modeling and Parameter Estimation of Interpenetrating Polymer Network Process EWO Spring Meeting March, 2009 Weijie Lin Advisors: Lorenz T. Biegler, Annette Jacobson Department of Chemical Engineering,

More information

Fokker-Planck Equation with Detailed Balance

Fokker-Planck Equation with Detailed Balance Appendix E Fokker-Planck Equation with Detailed Balance A stochastic process is simply a function of two variables, one is the time, the other is a stochastic variable X, defined by specifying: a: the

More information

Star & Planet Formation 2017 Lecture 10: Particle growth I From dust to planetesimals. Review paper: Blum & Wurm 2008 ARAA

Star & Planet Formation 2017 Lecture 10: Particle growth I From dust to planetesimals. Review paper: Blum & Wurm 2008 ARAA Star & Planet Formation 2017 Lecture 10: Particle growth I From dust to planetesimals Review paper: Blum & Wurm 2008 ARAA Lecture 9: Particle motions in a gaseous disk 1. Planet formation I. From dust

More information

Diffusion of a density in a static fluid

Diffusion of a density in a static fluid Diffusion of a density in a static fluid u(x, y, z, t), density (M/L 3 ) of a substance (dye). Diffusion: motion of particles from places where the density is higher to places where it is lower, due to

More information

flame synthesis of inorganic nanoparticles

flame synthesis of inorganic nanoparticles flame synthesis of inorganic nanoparticles Shraddha Shekar and Jethro Akroyd Markus KRAFT Karlsruhe 12 July 2010 Part 1 Introduction Precursor (TES) Mesoporous silica nanoparticles Aim: To answer the following

More information

Analysis of Particle Contamination in Plasma Reactor by 2-Sized Particle Growth Model

Analysis of Particle Contamination in Plasma Reactor by 2-Sized Particle Growth Model Korean J. Chem. Eng., 20(2), 392-398 (2003) Analysis of Particle Contamination in Plasma Reactor by 2-Sized Particle Growth Model Dong-Joo Kim, Pil Jo Lyoo* and Kyo-Seon Kim Department of Chemical Engineering,

More information

The Truth about diffusion (in liquids)

The Truth about diffusion (in liquids) The Truth about diffusion (in liquids) Aleksandar Donev Courant Institute, New York University & Eric Vanden-Eijnden, Courant In honor of Berni Julian Alder LLNL, August 20th 2015 A. Donev (CIMS) Diffusion

More information

Multi-Scale Modeling of Turbulence and Microphysics in Clouds. Steven K. Krueger University of Utah

Multi-Scale Modeling of Turbulence and Microphysics in Clouds. Steven K. Krueger University of Utah Multi-Scale Modeling of Turbulence and Microphysics in Clouds Steven K. Krueger University of Utah 10,000 km Scales of Atmospheric Motion 1000 km 100 km 10 km 1 km 100 m 10 m 1 m 100 mm 10 mm 1 mm Planetary

More information

Lecture 3 Semiconductor Physics (II) Carrier Transport

Lecture 3 Semiconductor Physics (II) Carrier Transport Lecture 3 Semiconductor Physics (II) Carrier Transport Thermal Motion Carrier Drift Carrier Diffusion Outline Reading Assignment: Howe and Sodini; Chapter 2, Sect. 2.4-2.6 6.012 Spring 2009 Lecture 3 1

More information

Supplementary Information. SI Text 1: Derivation and assumptions of the effective temperature model

Supplementary Information. SI Text 1: Derivation and assumptions of the effective temperature model Supplementary Information SI Text 1: Derivation and assumptions of the effective temperature model We assume that the displacements of intracellular particles are due to passive thermal activity and active

More information

On the hydrodynamic diffusion of rigid particles

On the hydrodynamic diffusion of rigid particles On the hydrodynamic diffusion of rigid particles O. Gonzalez Introduction Basic problem. Characterize how the diffusion and sedimentation properties of particles depend on their shape. Diffusion: Sedimentation:

More information

12.009/ Problem Set 2

12.009/ Problem Set 2 12.009/18.352 Problem Set 2 Due Thursday, 26 February 2015 100 points total Problem 1: 15 pts (a,b)=(10,5) Problem 2: 45 pts (a,b,c,d,e,f)=(5,5,5,10,10,10) Problem 3: 40 pts (a,b,c,d,e,f)=(5,5,5,5,10,10)

More information

Reactor Physics: Basic Definitions and Perspectives. Table of Contents

Reactor Physics: Basic Definitions and Perspectives. Table of Contents Reactor Physics - Basic Definitions and Perspectives Reactor Physics: Basic Definitions and Perspectives prepared by Wm. J. Garland, Professor, Department of Engineering Physics, McMaster University, Hamilton,

More information

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or Physics 7b: Statistical Mechanics Brownian Motion Brownian motion is the motion of a particle due to the buffeting by the molecules in a gas or liquid. The particle must be small enough that the effects

More information

Numerical Methods for Problems with Moving Fronts Orthogonal Collocation on Finite Elements

Numerical Methods for Problems with Moving Fronts Orthogonal Collocation on Finite Elements Electronic Text Provided with the Book Numerical Methods for Problems with Moving Fronts by Bruce A. Finlayson Ravenna Park Publishing, Inc., 635 22nd Ave. N. E., Seattle, WA 985-699 26-524-3375; ravenna@halcyon.com;www.halcyon.com/ravenna

More information

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 21 Nov 2003

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 21 Nov 2003 Diffusion of impurities in a granular gas Vicente Garzó Departamento de Física, Universidad de Extremadura, E-0607 Badajoz, Spain arxiv:cond-mat/0309639v [cond-mat.stat-mech] Nov 003 José María Montanero

More information

Protein Dynamics, Allostery and Function

Protein Dynamics, Allostery and Function Protein Dynamics, Allostery and Function Lecture 3. Protein Dynamics Xiaolin Cheng UT/ORNL Center for Molecular Biophysics SJTU Summer School 2017 1 Obtaining Dynamic Information Experimental Approaches

More information

Stochastic Particle Methods for Rarefied Gases

Stochastic Particle Methods for Rarefied Gases CCES Seminar WS 2/3 Stochastic Particle Methods for Rarefied Gases Julian Köllermeier RWTH Aachen University Supervisor: Prof. Dr. Manuel Torrilhon Center for Computational Engineering Science Mathematics

More information

Caustics & collision velocities in turbulent aerosols

Caustics & collision velocities in turbulent aerosols Caustics & collision velocities in turbulent aerosols B. Mehlig, Göteborg University, Sweden Bernhard.Mehlig@physics.gu.se based on joint work with M. Wilkinson and K. Gustavsson. log Ku log St Formulation

More information

BENG 221 Mathematical Methods in Bioengineering. Fall 2017 Midterm

BENG 221 Mathematical Methods in Bioengineering. Fall 2017 Midterm BENG Mathematical Methods in Bioengineering Fall 07 Midterm NAME: Open book, open notes. 80 minutes limit (end of class). No communication other than with instructor and TAs. No computers or internet,

More information

BME Engineering Molecular Cell Biology. Basics of the Diffusion Theory. The Cytoskeleton (I)

BME Engineering Molecular Cell Biology. Basics of the Diffusion Theory. The Cytoskeleton (I) BME 42-620 Engineering Molecular Cell Biology Lecture 07: Basics of the Diffusion Theory The Cytoskeleton (I) BME42-620 Lecture 07, September 20, 2011 1 Outline Diffusion: microscopic theory Diffusion:

More information

Brownian motion and the Central Limit Theorem

Brownian motion and the Central Limit Theorem Brownian motion and the Central Limit Theorem Amir Bar January 4, 3 Based on Shang-Keng Ma, Statistical Mechanics, sections.,.7 and the course s notes section 6. Introduction In this tutorial we shall

More information

Evaluation of diffusion models for airborne nanoparticles transport and dispersion

Evaluation of diffusion models for airborne nanoparticles transport and dispersion Advances in Fluid Mechanics VII 111 Evaluation of diffusion models for airborne nanoparticles transport and dispersion F. Morency 1, S. Hallé 1, L. Dufresne 1 & C. Émond 2 1 École de technologie supérieure,

More information

2 D. Terminal velocity can be solved for by equating Fd and Fg Fg = 1/6πd 3 g ρ LIQ = 1/8 Cd π d 2 ρ air u

2 D. Terminal velocity can be solved for by equating Fd and Fg Fg = 1/6πd 3 g ρ LIQ = 1/8 Cd π d 2 ρ air u ecture 8 Collection Growth of iquid Hydrometeors. I. Terminal velocity The terminal velocity of an object is the maximum speed an object will accelerate to by gravity. At terminal velocity, a balance of

More information

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature Chapter 1 Continuum mechanics review We will assume some familiarity with continuum mechanics as discussed in the context of an introductory geodynamics course; a good reference for such problems is Turcotte

More information

Diffusion equation, flux, diffusion coefficient scaling. Diffusion in fully ionized plasma vs. weakly ionized plasma. n => Coulomb collision frequency

Diffusion equation, flux, diffusion coefficient scaling. Diffusion in fully ionized plasma vs. weakly ionized plasma. n => Coulomb collision frequency Last Time Diffusion in plasma: the main reason why we need to control it (i.e. using magnetic field) Diffusion equation, flux, diffusion coefficient scaling o o t nx,t Dn D2 nx,t o D ~ L 2 T Diffusion

More information

Biomolecular hydrodynamics

Biomolecular hydrodynamics Biomolecular hydrodynamics David Case Rutgers, Spring, 2014 January 29, 2014 Why study hydrodynamical methods? The methods we study in this section are low resolution ones one studies diffusional motion

More information

Carriers Concentration and Current in Semiconductors

Carriers Concentration and Current in Semiconductors Carriers Concentration and Current in Semiconductors Carrier Transport Two driving forces for carrier transport: electric field and spatial variation of the carrier concentration. Both driving forces lead

More information

Major Concepts Lecture #11 Rigoberto Hernandez. TST & Transport 1

Major Concepts Lecture #11 Rigoberto Hernandez. TST & Transport 1 Major Concepts Onsager s Regression Hypothesis Relaxation of a perturbation Regression of fluctuations Fluctuation-Dissipation Theorem Proof of FDT & relation to Onsager s Regression Hypothesis Response

More information

Statistical Mechanics of Active Matter

Statistical Mechanics of Active Matter Statistical Mechanics of Active Matter Umberto Marini Bettolo Marconi University of Camerino, Italy Naples, 24 May,2017 Umberto Marini Bettolo Marconi (2017) Statistical Mechanics of Active Matter 2017

More information

LANGEVIN THEORY OF BROWNIAN MOTION. Contents. 1 Langevin theory. 1 Langevin theory 1. 2 The Ornstein-Uhlenbeck process 8

LANGEVIN THEORY OF BROWNIAN MOTION. Contents. 1 Langevin theory. 1 Langevin theory 1. 2 The Ornstein-Uhlenbeck process 8 Contents LANGEVIN THEORY OF BROWNIAN MOTION 1 Langevin theory 1 2 The Ornstein-Uhlenbeck process 8 1 Langevin theory Einstein (as well as Smoluchowski) was well aware that the theory of Brownian motion

More information

Fluid Mechanics Theory I

Fluid Mechanics Theory I Fluid Mechanics Theory I Last Class: 1. Introduction 2. MicroTAS or Lab on a Chip 3. Microfluidics Length Scale 4. Fundamentals 5. Different Aspects of Microfluidcs Today s Contents: 1. Introduction to

More information

Electric Circuits Fall 2015 Solution #5

Electric Circuits Fall 2015 Solution #5 RULES: Please try to work on your own. Discussion is permissible, but identical submissions are unacceptable! Please show all intermeate steps: a correct solution without an explanation will get zero cret.

More information

Perfect Gases Transport Phenomena

Perfect Gases Transport Phenomena Perfect Gases Transport Phenomena We have been able to relate quite a few macroscopic properties of gasses such as P, V, T to molecular behaviour on microscale. We saw how macroscopic pressure is related

More information

SIMPLE MCP TRANSPORT MODEL

SIMPLE MCP TRANSPORT MODEL SIMPLE MCP TRANSPORT MODEL ANGEL YANGUAS-GIL 1. Desorption kinetics in a cylindrical pore in presence of physisorption After the end of a dose, pores in a substrate are ideally saturated with a constant

More information

Appendix 4. Appendix 4A Heat Capacity of Ideal Gases

Appendix 4. Appendix 4A Heat Capacity of Ideal Gases Appendix 4 W-143 Appendix 4A Heat Capacity of Ideal Gases We can determine the heat capacity from the energy content of materials as a function of temperature. The simplest material to model is an ideal

More information

Fluid-Particles Interaction Models Asymptotics, Theory and Numerics I

Fluid-Particles Interaction Models Asymptotics, Theory and Numerics I Fluid-Particles Interaction Models Asymptotics, Theory and Numerics I J. A. Carrillo collaborators: T. Goudon (Lille), P. Lafitte (Lille) and F. Vecil (UAB) (CPDE 2005), (JCP, 2008), (JSC, 2008) ICREA

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Stokes' law and Reynold number Dr. Zifei Liu The motion of a particle in a fluid environment, such as air or water m dv =F(t) - F dt d - 1 4 2 3 πr3

More information

Chapter 3 New Particle Formation from Photooxidation of Diiodomethane (CH 2 I 2 )*

Chapter 3 New Particle Formation from Photooxidation of Diiodomethane (CH 2 I 2 )* 23 Chapter 3 New Particle Formation from Photooxidation of Diiodomethane (CH 2 I 2 )* * This chapter is reproduced by permission from New Particle Formation from Photooxidation of Diiodomethane (CH 2 I

More information

Lecture 6 Molecular motion and Transport p roperties properties

Lecture 6 Molecular motion and Transport p roperties properties Lecture 6 Molecular motion and Transport properties Molecular motion The Aim: Describe the migration of properties through the matter using simple random motion picture Within this lecture: Transport properties

More information