Using DNS to Understand Aerosol Dynamics

Size: px
Start display at page:

Download "Using DNS to Understand Aerosol Dynamics"

Transcription

1 APS Division of Fluid Dynamics Meeting East Rutherford, NJ November 23-25, 2003 Using DNS to Understand Aerosol Dynamics Lance R. Collins Sibley School of Mechanical & Aerospace Engineering Cornell University

2 Direct Numerical Simulations of Microstructures Aerosols! Dispersion! Turbulence modulation! Coagulation Droplets*! Breakup! Coalescence * M. Loewenberg J. Blawzdziewicz V. Cristini Polymer Molecules! Orientation! Stretch! Drag Reduction * J. G. Brasseur

3 Outline " Background on aerosols " Direct numerical simulations (DNS) " Numerical Results " Theory " Experiments " Summary

4 Examples Cloud Condensation Nuclei (CCN) DuPont TiO 2 Process Ti Cl 4 Region II Buoyancy Air, T = 2000 K Region I Region III R. Shaw, ARFM 2003 Ti Cl 4

5 Turbulent clustering Aerosol particles in a turbulent flow field cluster outside of vortices due to a centrifugal effect, sometimes referred to as preferential concentration. Maxey (1987) Squires & Eaton (1991) Wang & Maxey (1993) Vortices Strain Region

6 Snapshot of particle clustering in DNS Snapshot from a DNS (St=1 and R λ = 54). The green tubes are vortex tubes where fluid circulates rapidly and the white shows where the particle concentration is greater than 10 times the mean. How does this affect coalescence rates? How does this affect coalescence rates?

7 Direct numerical simulation dilute loading of spheres u = 0 u t + u u + p ρ = ν 2 u + F

8 Particle update dx p (i) dt = v p (i) η d η << 1 dv p (i) dt [ = u(x (i) (i) p,t) v p ] (i) + F (ij) τ p Stokes drag (i) 1 ρ p τ p = d 18 ρ η 2 j i collisions (neighborhood search)

9 Particle-particle interactions Elastic Rebound: Coalescence: Interpenetration:

10 Parameters Flow: U turbulence intensity ε dissipation rate ν kinematic viscosity Particles: d ρ p n diameter density loading R λ 15 U 2 νε St = τ p d η Φ τ η Stokes number size parameter volumetric loading

11 Parameter Ranges System R λ St d/η Φ Clouds <10 6 DNS * <10 5 Exp't > <10 5 We are not able to simulate atmospheric Reynolds numbers It s therefore critical that we understand the importance of this parameter (from experiments, theory, etc.) * High end DNS is , corresponding to R λ ~ 1000 Gotoh & Fukayama (2001)

12 Limiting theories for collision Saffman and Turner (1956) Zero Stokes number: N c = 1 2 n2 d 3 8π ε 15 ν 1/2 Abrahamson (1975) Infinite Stokes number: N c = 1 2 n2 d 2 16π v 2 p 3 1/2 Brunk, Koch & Lion (1998) Wang, Wexler and Zhou (1998) n v p 2 number density particle kinetic energy Reade & Collins (1998)

13 Collision vs Stokes number Sundaram & Collins (1997)

14 Evolution of size distribution St 1 = 0.2 d 1 = d 1 = d 1 = Number Number d 1 = St = Inf St = Size 30 St 1 = 0.2 St 1 = 0.3 St 1 = 0.5 St 1 = Number St = Inf St = St 1 = 0.7 Size d 1 = d 1 = d 1 = Reade & Collins JFM (2000) 10 0 St = Inf St = Size

15 General collision formula N c = π d ij 2 ni n j g ij (d ij ) 0 ( w) P ij (w d ij ) dw d ij = (d i + d j )/2 g ij (r) = radial distribution function (RDF) w = relative velocity P(w r) = PDF of relative velocity RDF corrects for preferential concentration (dominant effect at low Stokes numbers) Sundaram & Collins (1997) Wang, Wexler and Zhou (1998)

16 RDF g(r) # pairs expected # pairs Parametric Dependence! volume fraction! Stokes number! size parameter! Reynolds number

17 Stokes number dependence Re = 82.5 Re = 69.7 Re = 54.5 Re = RDF St 3 4

18 Bi-disperse St dependence Suppression of off-diagonal collisions broadens the distribution

19 Size parameter RDF ghost d/η = d/η = d/η = r / η

20 RDF - 1 RDF Re λ = 65 Re λ = 81 Re λ = 107 Re λ = 152 St = (r/η) Re λ = 65 Re λ = 81 Re λ = 107 Re λ = 152 Reynolds Number Dependence St = (r/η) RDF - 1 RDF Re λ = 65 Re λ = 81 Re λ = 107 Re λ = 152 St = (r/η) Re λ = 65 Re λ = 81 Re λ = 107 Re λ = 152 St = (r/η)

21 Physics of clustering r(t) Maxey (1987) Rotation Frame moving with a test particle Strain

22 Recent Theoretical Developments! Wang, Wexler & Zhou (2000) relative velocity clustering effect! Falkovich, Fouxon and Stepanov (2002) clustering effect in clouds! Zaichik & Alipchenkov (2003) relative velocity clustering! Chun, Koch, Ahluwalia & Collins (2003) clustering (St << 1) g r = c 0 η c 0 c 1 η r ( R λ, St, Φ) ( R λ, St, Φ) RDF c Re λ = 65 Re λ = 81 Re λ = 107 Re λ = (r/η)

23 Chun et al. (2003) St<<1 ( ) g t = 1 r 2 Arg r 2 r + 1 r 2 r r2 Br 2 g r A = St ( S 2 3 τ ) p R2 nonlocal diffusion p η S 2 St p = σ 2 ε ε T 2 εε ρ εςσ ε σ ς ε 2 Steady State g(r) = c 0 η r c 1 c 1 = A / B = 6.6 St 2 c 1 = 3.6 St ( S 2 ) p R2 p T ες, St R 2 St p DNS = ρ εςσ ε σ ς T ε 2 ςε σ 2 ς ε 2 Stoch Theory T ςς

24 Chun et al. (2003) Bidisperse! Fluid accelerations give rise to relative diffusion η 2 g AB (r) = c 0 r r c r c = B' St A St B η c 1 /2

25 Reynolds Number Dependence c 1 = 3.6 St ( S 2 ) p R2 p inc R λ 0.4 S 2 and R inc R λ St

26 Experimental 3D Particle Imaging Professor Hui Meng Why 3D? RDF g 3D (r) g 2D (r), δ / η = 0.64 g 2D (r), δ / η = 1.28 g 2D (r), δ / η = r / η! Cover a Broader Range of R λ! Validate DNS and Theory Holtzer & Collins (2002)

27 Preliminary Results DNS HPIV 1 HPIV RDF r / η

28 Particle Tracking Eberhard Bodenschatz and Zellman Warhaft Wind Tunnel (active grid) QuickTime and a YUV420 codec decompressor are needed to see this picture.! Track droplets Multiple (4) cameras High speed (above 50,000 fps) Integral time and length scales! Measure accelerations Compare with DNS Test theoretical predictions Droplets microns

29 Summary " Particle clustering in turbulent flows " Increases collision frequency 1-2 orders of magnitude " Strongly favors like collisions; broadens particle size distribution " Theoretical predictions for RDF " Stokes number dependence " Size parameter " Reynolds number dependence remains in dispute (key for cloud physics) " Experiments " Validate DNS and theory " Increase the range of Reynolds numbers " Enabling Technologies " 3D imaging essential " Holographic imaging (RDF at an instant) " High-Speed Stereoscopic Tracking (Lagrangian statistics) DNS has continuously guided theoretical and experimental work DNS has continuously guided theoretical and experimental work

30 Acknowledgments Colleagues! Prof. Hui Meng (SUNY-Buffalo)! Prof. Don Koch (Cornell)! Prof. E. Bodenschatz! Prof. Z. Warhaft! Prof. R. Shaw (Mich. Tech)! Prof. M. Loewenberg (Yale) Grad Students and Postdoc! S. Sundaram (CFD Research)! W. Reade (Kimberly Clark)! A. Keswani (Goldman Sachs)! A. Ahluwalia (Epic Sys.)! S. Rani Undergraduate Students! Carolyn Nestleroth! Melissa Feeney! Anthony Fick NAG CTS PHY

31 Future Work " High-resolution DNS (JC.001) " Effect of shear flow " Hydrodynamic interactions " Extend theory to coalescing system " Experimental measurements " HPIV at an instant " Lagrangian statistics RDF ghost particles finite particle DNS - 5% DNS - 25% r / η

Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence

Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence Rohit Dhariwal PI: Sarma L. Rani Department of Mechanical and Aerospace Engineering The

More information

Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence

Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence Rohit Dhariwal and Vijaya Rani PI: Sarma L. Rani Department of Mechanical and Aerospace

More information

Intermittent distribution of heavy particles in a turbulent flow. Abstract

Intermittent distribution of heavy particles in a turbulent flow. Abstract Intermittent distribution of heavy particles in a turbulent flow Gregory Falkovich 1 and Alain Pumir 2 1 Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 Israel 2 I.N.L.N., 1361

More information

Modelling turbulent collision of bidisperse inertial particles

Modelling turbulent collision of bidisperse inertial particles J. Fluid Mech. (2001), vol. 433, pp. 77 104. Printed in the United Kingdom c 2001 Cambridge University Press 77 Modelling turbulent collision of bidisperse inertial particles By YONG ZHOU, ANTHONY S. WEXLER

More information

INERTIAL CLUSTERING OF DROPLETS IN HIGH-REYNOLDS-NUMBER LABORATORY TURBULENCE

INERTIAL CLUSTERING OF DROPLETS IN HIGH-REYNOLDS-NUMBER LABORATORY TURBULENCE INERTIAL CLUSTERING OF DROPLETS IN HIGH-REYNOLDS-NUMBER LABORATORY TURBULENCE Ewe Wei Saw 1, Raymond A. Shaw 1, Sathya Ayyalasomayajula 2, Patrick Y. Chuang, 3 Armann Gylfason 2, and Zellman Warhaft 2

More information

Kinematic and dynamic pair collision statistics of sedimenting inertial particles relevant to warm rain initiation

Kinematic and dynamic pair collision statistics of sedimenting inertial particles relevant to warm rain initiation Kinematic and dynamic pair collision statistics of sedimenting inertial particles relevant to warm rain initiation Bogdan Rosa 1, Hossein Parishani 2, Orlando Ayala 2, Lian-Ping Wang 2 & Wojciech W. Grabowski

More information

Effects of Turbulence on the Geometric Collision Rate of Sedimenting Droplets: Part 2. Theory and Parameterization

Effects of Turbulence on the Geometric Collision Rate of Sedimenting Droplets: Part 2. Theory and Parameterization Effects of Turbulence on the Geometric Collision Rate of Sedimenting Droplets: Part. Theory and Parameterization Orlando Ayala, Bogdan Rosa, and Lian-Ping Wang Department of Mechanical Engineering, 16

More information

Theoretical Formulation of Collision Rate and Collision Efficiency of Hydrodynamically-Interacting Cloud Droplets in Turbulent Atmosphere

Theoretical Formulation of Collision Rate and Collision Efficiency of Hydrodynamically-Interacting Cloud Droplets in Turbulent Atmosphere Theoretical Formulation of Collision Rate and Collision Efficiency of Hydrodynamically-Interacting Cloud Droplets in Turbulent Atmosphere Lian-Ping Wang, Orlando Ayala, Scott E. Kasprzak, and Wojciech

More information

Multi-Scale Modeling of Turbulence and Microphysics in Clouds. Steven K. Krueger University of Utah

Multi-Scale Modeling of Turbulence and Microphysics in Clouds. Steven K. Krueger University of Utah Multi-Scale Modeling of Turbulence and Microphysics in Clouds Steven K. Krueger University of Utah 10,000 km Scales of Atmospheric Motion 1000 km 100 km 10 km 1 km 100 m 10 m 1 m 100 mm 10 mm 1 mm Planetary

More information

Contribution of inter-particle collisions on kinetic energy modification in a turbulent channel flow

Contribution of inter-particle collisions on kinetic energy modification in a turbulent channel flow Contribution of inter-particle collisions on kinetic energy modification in a turbulent channel flow Valentina Lavezzo a, Alfredo Soldati a,b a Dipartimento di Energetica e Macchine and b Centro Interdipartimentale

More information

TURBULENT COLLISION-COALESCENCE OF CLOUD DROPLETS AND ITS IMPACT ON WARM RAIN INITIATION

TURBULENT COLLISION-COALESCENCE OF CLOUD DROPLETS AND ITS IMPACT ON WARM RAIN INITIATION TURBULENT COLLISION-COALESCENCE OF CLOUD DROPLETS AND ITS IMPACT ON WARM RAIN INITIATION Lian-Ping Wang, 1 Bogdan Rosa, 1 and Wojciech W. Grabowski 2 1 Department of Mechanical Engineering, University

More information

Caustics & collision velocities in turbulent aerosols

Caustics & collision velocities in turbulent aerosols Caustics & collision velocities in turbulent aerosols B. Mehlig, Göteborg University, Sweden Bernhard.Mehlig@physics.gu.se based on joint work with M. Wilkinson and K. Gustavsson. log Ku log St Formulation

More information

Atmospheric Science Letters. The role of air turbulence in warm rain initiation

Atmospheric Science Letters. The role of air turbulence in warm rain initiation The role of air turbulence in warm rain initiation Journal: Manuscript ID: draft Wiley - Manuscript type: Date Submitted by the Author: Original Manuscript n/a Complete List of Authors: Wang, Lian-Ping;

More information

High-resolution simulation results of kinematic and dynamic collision statistics of cloud droplets

High-resolution simulation results of kinematic and dynamic collision statistics of cloud droplets High-resolution simulation results of kinematic and dynamic collision statistics of cloud droplets Bogdan Rosa (bogdan.rosa@imgw.pl) Institute of Meteorology and Water Management National Research Institute

More information

Theoretical Formulation of Collision Rate and Collision Efficiency of Hydrodynamically Interacting Cloud Droplets in Turbulent Atmosphere

Theoretical Formulation of Collision Rate and Collision Efficiency of Hydrodynamically Interacting Cloud Droplets in Turbulent Atmosphere JULY 2005 W A N G E T A L. 2433 Theoretical Formulation of Collision Rate and Collision Efficiency of Hydrodynamically Interacting Cloud Droplets in Turbulent Atmosphere LIAN-PING WANG, ORLANDO AYALA,

More information

The role of air turbulence in warm rain initiation

The role of air turbulence in warm rain initiation ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. 10: 1 8 (2009) Published online 23 January 2009 in Wiley InterScience (www.interscience.wiley.com).210 The role of air turbulence in warm rain initiation Lian-Ping

More information

M. Voßkuhle Particle Collisions in Turbulent Flows 2

M. Voßkuhle Particle Collisions in Turbulent Flows 2 S Particle Collisions in Turbulent Flows Michel Voßkuhle Laboratoire de Physique 13 December 213 M. Voßkuhle Particle Collisions in Turbulent Flows 2 M. Voßkuhle Particle Collisions in Turbulent Flows

More information

Concentration and segregation of particles and bubbles by turbulence : a numerical investigation

Concentration and segregation of particles and bubbles by turbulence : a numerical investigation Concentration and segregation of particles and bubbles by turbulence : a numerical investigation Enrico Calzavarini Physics of Fluids Group University of Twente The Netherlands with Massimo Cencini CNR-ISC

More information

Effect of Turbulent Enhancemnt of Collision-coalescence on Warm Rain Formation in Maritime Shallow Convection

Effect of Turbulent Enhancemnt of Collision-coalescence on Warm Rain Formation in Maritime Shallow Convection Effect of Turbulent Enhancemnt of Collision-coalescence on Warm Rain Formation in Maritime Shallow Convection A. A. WYSZOGRODZKI 1 W. W. GRABOWSKI 1,, L.-P. WANG 2, AND O. AYALA 2 1 NATIONAL CENTER FOR

More information

Reynolds number scaling of inertial particle statistics in turbulent channel flows

Reynolds number scaling of inertial particle statistics in turbulent channel flows Reynolds number scaling of inertial particle statistics in turbulent channel flows Matteo Bernardini Dipartimento di Ingegneria Meccanica e Aerospaziale Università di Roma La Sapienza Paolo Orlandi s 70th

More information

Turbulent clustering of stagnation points and inertial particles

Turbulent clustering of stagnation points and inertial particles J. Fluid Mech. (2006), vol. 553, pp. 143 154. c 2006 Cambridge University Press doi:10.1017/s0022112006009177 Printed in the United Kingdom 143 Turbulent clustering of stagnation points and inertial particles

More information

A Novel Approach for Simulating Droplet Microphysics in Turbulent Clouds

A Novel Approach for Simulating Droplet Microphysics in Turbulent Clouds A Novel Approach for Simulating Droplet Microphysics in Turbulent Clouds Steven K. Krueger 1 and Alan R. Kerstein 2 1. University of Utah 2. Sandia National Laboratories Multiphase Turbulent Flows in the

More information

Developing improved Lagrangian point particle models of gas-solid flow from particle-resolved direct numerical simulation

Developing improved Lagrangian point particle models of gas-solid flow from particle-resolved direct numerical simulation Center for Turbulence Research Proceedings of the Summer Program 1 5 Developing improved Lagrangian point particle models of gas-solid flow from particle-resolved direct numerical simulation By S. Subramaniam,

More information

Collision of inertial particles in turbulent flows.

Collision of inertial particles in turbulent flows. Collision of inertial particles in turbulent flows. Alain Pumir, INLN (France) Grisha Falkovich, Weizmann Inst. (Israel) Introduction (1) Particles advected by a fluid flow, with a mass that does not match

More information

arxiv: v1 [physics.flu-dyn] 1 Dec 2016

arxiv: v1 [physics.flu-dyn] 1 Dec 2016 Clustering and preferential concentration of finite-size particles in forced homogeneous-isotropic turbulence Markus Uhlmann and Agathe Chouippe arxiv:1612.00318v1 [physics.flu-dyn] 1 Dec 2016 Institute

More information

arxiv: v1 [physics.flu-dyn] 2 Sep 2017

arxiv: v1 [physics.flu-dyn] 2 Sep 2017 Under consideration for publication in J. Fluid Mech. arxiv:709.005v [physics.flu-dyn] 2 Sep 207 Small-scale dynamics of settling, bidisperse particles in turbulence ROHIT DHARIWAL and ANDREW D. BRAGG

More information

Modeling Complex Flows! Direct Numerical Simulations! Computational Fluid Dynamics!

Modeling Complex Flows! Direct Numerical Simulations! Computational Fluid Dynamics! http://www.nd.edu/~gtryggva/cfd-course/! Modeling Complex Flows! Grétar Tryggvason! Spring 2011! Direct Numerical Simulations! In direct numerical simulations the full unsteady Navier-Stokes equations

More information

FOUR-WAY COUPLED SIMULATIONS OF TURBULENT

FOUR-WAY COUPLED SIMULATIONS OF TURBULENT FOUR-WAY COUPLED SIMULATIONS OF TURBULENT FLOWS WITH NON-SPHERICAL PARTICLES Berend van Wachem Thermofluids Division, Department of Mechanical Engineering Imperial College London Exhibition Road, London,

More information

The behaviour of small inertial particles in homogeneous and isotropic turbulence

The behaviour of small inertial particles in homogeneous and isotropic turbulence The behaviour of small inertial particles in homogeneous and isotropic turbulence Multiphase Turbulent Flows in the Atmosphere and Ocean, Boulder 2012 Alessandra S. Lanotte Institute for Atmospheric Science

More information

Nonequilibrium Dynamics in Astrophysics and Material Science YITP, Kyoto

Nonequilibrium Dynamics in Astrophysics and Material Science YITP, Kyoto Nonequilibrium Dynamics in Astrophysics and Material Science 2011-11-02 @ YITP, Kyoto Multi-scale coherent structures and their role in the Richardson cascade of turbulence Susumu Goto (Okayama Univ.)

More information

Critical comments to results of investigations of drop collisions in turbulent clouds

Critical comments to results of investigations of drop collisions in turbulent clouds Atmospheric Research 86 (2007) 1 20 www.elsevier.com/locate/atmos Review article Critical comments to results of investigations of drop collisions in turbulent clouds A. Khain a,, M. Pinsky a, T. Elperin

More information

arxiv: v1 [physics.flu-dyn] 16 Nov 2018

arxiv: v1 [physics.flu-dyn] 16 Nov 2018 Turbulence collapses at a threshold particle loading in a dilute particle-gas suspension. V. Kumaran, 1 P. Muramalla, 2 A. Tyagi, 1 and P. S. Goswami 2 arxiv:1811.06694v1 [physics.flu-dyn] 16 Nov 2018

More information

Rain Initiation Time in Turbulent Warm Clouds

Rain Initiation Time in Turbulent Warm Clouds APRIL 2006 F A LKOVICH ET AL. 591 Rain Initiation Time in Turbulent Warm Clouds GREGORY FALKOVICH AND MIKHAIL G. STEPANOV Institute for Advanced Study, Princeton, New Jersey, and Weizmann Institute of

More information

FORMULA SHEET. General formulas:

FORMULA SHEET. General formulas: FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Reconciling the cylindrical formulation with the spherical formulation in the kinematic descriptions of collision kernel

Reconciling the cylindrical formulation with the spherical formulation in the kinematic descriptions of collision kernel PHYSICS OF FLUIDS 7, 06703 2005 Reconciling the cylindrical formulation with the spherical formulation in the kinematic descriptions of collision kernel Lian-Ping Wang, a Orlando Ayala, and Yan Xue Department

More information

Droplet growth by gravitational coagulation enhanced by turbulence: Comparison of theory and measurements

Droplet growth by gravitational coagulation enhanced by turbulence: Comparison of theory and measurements Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006jd007702, 2007 Droplet growth by gravitational coagulation enhanced by turbulence: Comparison of theory and measurements

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

Vorticity and Dynamics

Vorticity and Dynamics Vorticity and Dynamics In Navier-Stokes equation Nonlinear term ω u the Lamb vector is related to the nonlinear term u 2 (u ) u = + ω u 2 Sort of Coriolis force in a rotation frame Viscous term ν u = ν

More information

Modeling of turbulence in stirred vessels using large eddy simulation

Modeling of turbulence in stirred vessels using large eddy simulation Modeling of turbulence in stirred vessels using large eddy simulation André Bakker (presenter), Kumar Dhanasekharan, Ahmad Haidari, and Sung-Eun Kim Fluent Inc. Presented at CHISA 2002 August 25-29, Prague,

More information

NUMERICAL SIMULATION OF THREE DIMENSIONAL GAS-PARTICLE FLOW IN A SPIRAL CYCLONE

NUMERICAL SIMULATION OF THREE DIMENSIONAL GAS-PARTICLE FLOW IN A SPIRAL CYCLONE Applied Mathematics and Mechanics (English Edition), 2006, 27(2):247 253 c Editorial Committee of Appl. Math. Mech., ISSN 0253-4827 NUMERICAL SIMULATION OF THREE DIMENSIONAL GAS-PARTICLE FLOW IN A SPIRAL

More information

Numerical analysis of a fully developed non-isothermal particle-laden turbulent channel flow

Numerical analysis of a fully developed non-isothermal particle-laden turbulent channel flow Arch. Mech., 3, 1, pp. 77 91, Warszawa 11 Numerical analysis of a fully developed non-isothermal particle-laden turbulent channel flow M. JASZCZUR Department of Fundamental Research in Energy Engineering

More information

PLEASE SCROLL DOWN FOR ARTICLE

PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by:[wang, L.-P.] [Wang, L.-P.] On: 28 May 2007 Access Details: [subscription number 7790086] Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered

More information

Deposition of micron liquid droplets on wall in impinging turbulent air jet

Deposition of micron liquid droplets on wall in impinging turbulent air jet Deposition of micron liquid droplets on wall in impinging turbulent air jet The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Preferential concentration of inertial particles in turbulent flows. Jérémie Bec CNRS, Observatoire de la Côte d Azur, Université de Nice

Preferential concentration of inertial particles in turbulent flows. Jérémie Bec CNRS, Observatoire de la Côte d Azur, Université de Nice Preferential concentration of inertial particles in turbulent flows Jérémie Bec CNRS, Observatoire de la Côte d Azur, Université de Nice EE250, Aussois, June 22, 2007 Particle laden flows Warm clouds Plankton

More information

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O Formulas/Constants, Physics/Oceanography 4510/5510 B Atmospheric Physics II N A = 6.02 10 23 molecules/mole (Avogadro s number) 1 mb = 100 Pa 1 Pa = 1 N/m 2 Γ d = 9.8 o C/km (dry adiabatic lapse rate)

More information

arxiv: v1 [physics.flu-dyn] 20 Dec 2018

arxiv: v1 [physics.flu-dyn] 20 Dec 2018 This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1 arxiv:1812.883v1 [physics.flu-dyn] 2 Dec 218 Multiscale preferential sweeping of particles settling in turbulence

More information

MODELLING PARTICLE DEPOSITION ON GAS TURBINE BLADE SURFACES

MODELLING PARTICLE DEPOSITION ON GAS TURBINE BLADE SURFACES MODELLING PARTICLE DEPOSITION ON GAS TURBINE BLADE SURFACES MS. Hesham El-Batsh Institute of Thermal Turbomachines and Power Plants Vienna University of Technology Getreidemarkt 9/313, A-1060 Wien Tel:

More information

INDIAN INSTITUTE OF TECHNOOGY, KHARAGPUR Date: -- AN No. of Students: 5 Sub. No.: ME64/ME64 Time: Hours Full Marks: 6 Mid Autumn Semester Examination Sub. Name: Convective Heat and Mass Transfer Instructions:

More information

Distribution of relative velocities of particles in turbulent flows

Distribution of relative velocities of particles in turbulent flows Distribution of relatie elocities of particles in turbulent flows B. Mehlig Department of Physics, Göteborg Uniersity, Sweden Bernhard.Mehlig@physics.gu.se Financial support by Vetenskapsrådet, the Platform

More information

arxiv: v5 [physics.ao-ph] 15 Aug 2018

arxiv: v5 [physics.ao-ph] 15 Aug 2018 Generated using the official AMS LATEX template two-column layout. FOR AUTHOR USE ONLY, NOT FOR SUBMISSION! J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S Effect of turbulence on collisional

More information

Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion

Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion second revision of the manuscript (v.2.0), Sept.2008 1 Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion By Jacek Pozorski AND Sourabh V. Apte A numerical

More information

Max Planck Institut für Plasmaphysik

Max Planck Institut für Plasmaphysik ASDEX Upgrade Max Planck Institut für Plasmaphysik 2D Fluid Turbulence Florian Merz Seminar on Turbulence, 08.09.05 2D turbulence? strictly speaking, there are no two-dimensional flows in nature approximately

More information

PRECIPITATION PROCESSES

PRECIPITATION PROCESSES PRECIPITATION PROCESSES Loknath Adhikari This summary deals with the mechanisms of warm rain processes and tries to summarize the factors affecting the rapid growth of hydrometeors in clouds from (sub)

More information

arxiv: v1 [physics.flu-dyn] 27 Jan 2015

arxiv: v1 [physics.flu-dyn] 27 Jan 2015 Concentrations of inertial particles in the turbulent wake of an immobile sphere Holger Homann and Jérémie Bec Laboratoire J.-L. Lagrange UMR 7293, Université de Nice-Sophia Antipolis, CNRS, Observatoire

More information

Pairwise Interaction Extended Point-Particle (PIEP) Model for droplet-laden flows: Towards application to the mid-field of a spray

Pairwise Interaction Extended Point-Particle (PIEP) Model for droplet-laden flows: Towards application to the mid-field of a spray Pairwise Interaction Extended Point-Particle (PIEP) Model for droplet-laden flows: Towards application to the mid-field of a spray Georges Akiki, Kai Liu and S. Balachandar * Department of Mechanical &

More information

Parameters characterizing cloud turbulence

Parameters characterizing cloud turbulence Turbulent effects on cloud microstructure and precipitation of deep convective clouds as seen from simulations with a 2-D spectral microphysics cloud model N. Benmoshe, A. Khain, M. Pinsky, and A. Pokrovsky

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

Behavior of heavy particles in isotropic turbulence

Behavior of heavy particles in isotropic turbulence PHYSICAL REVIEW E 77, 637 28 Behavior of heavy particles in isotropic turbulence Jaedal Jung, Kyongmin Yeo,* and Changhoon Lee Department of Mechanical Engineering, Yonsei University, 34 Shinchon-dong,

More information

Spectral analysis of energy transfer in variable density, radiatively heated particle-laden flows

Spectral analysis of energy transfer in variable density, radiatively heated particle-laden flows Center for Turbulence Research Proceedings of the Summer Program 24 27 Spectral analysis of energy transfer in variable density, radiatively heated particle-laden flows By H. Pouransari, H. Kolla, J. H.

More information

INTRODUCTION OBJECTIVES

INTRODUCTION OBJECTIVES INTRODUCTION The transport of particles in laminar and turbulent flows has numerous applications in engineering, biological and environmental systems. The deposition of aerosol particles in channels and

More information

Diffusional and accretional growth of water drops in a rising adiabatic parcel: effects of the turbulent collision kernel

Diffusional and accretional growth of water drops in a rising adiabatic parcel: effects of the turbulent collision kernel Atmos. Chem. Phys. Discuss., 8, 14717 14763, 08 www.atmos-chem-phys-discuss.net/8/14717/08/ Author(s) 08. This work is distributed under the Creative Commons Attribution 3.0 License. Atmospheric Chemistry

More information

High-resolution simulation of turbulent collision of cloud droplets

High-resolution simulation of turbulent collision of cloud droplets High-resolution simulation of turbulent collision of cloud droplets Bogdan Rosa 1, Hossein Parishani 2, Orlando Ayala 2, Lian-Ping Wang 2 and Wojciech W. Grabowski 3 1 Institute of Meteorology and Water

More information

Wojciech Grabowski. National Center for Atmospheric Research, USA

Wojciech Grabowski. National Center for Atmospheric Research, USA Numerical modeling of multiscale atmospheric flows: From cloud microscale to climate Wojciech Grabowski National Center for Atmospheric Research, USA This presentation includes results from collaborative

More information

Measuring microbubble clustering in turbulent flow

Measuring microbubble clustering in turbulent flow Slide 1 Measuring microbubble clustering in turbulent flow Enrico Calzavarini University of Twente The Netherlands In collaboration with T. H van den Berg, S. Luther, F. Toschi, D. Lohse Slide 2 Motivation

More information

Evidence for inertial droplet clustering in weakly turbulent clouds

Evidence for inertial droplet clustering in weakly turbulent clouds Tellus (27), 59B, 57 65 Printed in Singapore. All rights reserved C 27 The Authors Journal compilation C 27 Blackwell Munksgaard TELLUS Evidence for inertial droplet clustering in weakly turbulent clouds

More information

2 D. Terminal velocity can be solved for by equating Fd and Fg Fg = 1/6πd 3 g ρ LIQ = 1/8 Cd π d 2 ρ air u

2 D. Terminal velocity can be solved for by equating Fd and Fg Fg = 1/6πd 3 g ρ LIQ = 1/8 Cd π d 2 ρ air u ecture 8 Collection Growth of iquid Hydrometeors. I. Terminal velocity The terminal velocity of an object is the maximum speed an object will accelerate to by gravity. At terminal velocity, a balance of

More information

Turbulence modulation by fully resolved particles using Immersed Boundary Methods

Turbulence modulation by fully resolved particles using Immersed Boundary Methods Turbulence modulation by fully resolved particles using Immersed Boundary Methods Abouelmagd Abdelsamie and Dominique Thévenin Lab. of Fluid Dynamics & Technical Flows University of Magdeburg Otto von

More information

Topics in Other Lectures Droplet Groups and Array Instability of Injected Liquid Liquid Fuel-Films

Topics in Other Lectures Droplet Groups and Array Instability of Injected Liquid Liquid Fuel-Films Lecture Topics Transient Droplet Vaporization Convective Vaporization Liquid Circulation Transcritical Thermodynamics Droplet Drag and Motion Spray Computations Turbulence Effects Topics in Other Lectures

More information

Before we consider two canonical turbulent flows we need a general description of turbulence.

Before we consider two canonical turbulent flows we need a general description of turbulence. Chapter 2 Canonical Turbulent Flows Before we consider two canonical turbulent flows we need a general description of turbulence. 2.1 A Brief Introduction to Turbulence One way of looking at turbulent

More information

Settling of heated inertial particles through homogeneous turbulence

Settling of heated inertial particles through homogeneous turbulence Center for Turbulence Research Proceedings of the Summer Program 4 5 Settling of heated inertial particles through homogeneous turbulence By A. Frankel, H. Pouransari, F. Coletti AND A. Mani Particle-laden

More information

Effects of Stochastic Coalescence and Air Turbulence on the Size Distribution of Cloud Droplets

Effects of Stochastic Coalescence and Air Turbulence on the Size Distribution of Cloud Droplets Effects of Stochastic Coalescence and Air Turbulence on the Size Distribution of Cloud Droplets Lian-Ping Wang, Yan Xue, Orlando Ayala, and Wojciech W. Grabowski Department of Mechanical Engineering, 126

More information

Acceleration statistics of inertial particles in turbulent flow

Acceleration statistics of inertial particles in turbulent flow Eur. Phys. J. B 66, 531 536 (2008) DOI: 10.1140/epjb/e2008-00460-x Acceleration statistics of inertial particles in turbulent flow N.M. Qureshi, U. Arrieta, C. Baudet, A. Cartellier, Y. Gagne and M. Bourgoin

More information

INTERNAL GRAVITY WAVES

INTERNAL GRAVITY WAVES INTERNAL GRAVITY WAVES B. R. Sutherland Departments of Physics and of Earth&Atmospheric Sciences University of Alberta Contents Preface List of Tables vii xi 1 Stratified Fluids and Waves 1 1.1 Introduction

More information

Chapter 4: Fluid Kinematics

Chapter 4: Fluid Kinematics Overview Fluid kinematics deals with the motion of fluids without considering the forces and moments which create the motion. Items discussed in this Chapter. Material derivative and its relationship to

More information

Probability density function (PDF) methods 1,2 belong to the broader family of statistical approaches

Probability density function (PDF) methods 1,2 belong to the broader family of statistical approaches Joint probability density function modeling of velocity and scalar in turbulence with unstructured grids arxiv:6.59v [physics.flu-dyn] Jun J. Bakosi, P. Franzese and Z. Boybeyi George Mason University,

More information

Turbulence Modeling I!

Turbulence Modeling I! Outline! Turbulence Modeling I! Grétar Tryggvason! Spring 2010! Why turbulence modeling! Reynolds Averaged Numerical Simulations! Zero and One equation models! Two equations models! Model predictions!

More information

Explaining and modelling the rheology of polymeric fluids with the kinetic theory

Explaining and modelling the rheology of polymeric fluids with the kinetic theory Explaining and modelling the rheology of polymeric fluids with the kinetic theory Dmitry Shogin University of Stavanger The National IOR Centre of Norway IOR Norway 2016 Workshop April 25, 2016 Overview

More information

Turbulence Modulation by Micro-Particles in Boundary Layers

Turbulence Modulation by Micro-Particles in Boundary Layers 1 Turbulence Modulation by Micro-Particles in Boundary Layers Maurizio Picciotto, Andrea Giusti, Cristian Marchioli and Alfredo Soldati Centro Interdipartimentale di Fluidodinamica e Idraulica and Dipartimento

More information

C C C C 2 C 2 C 2 C + u + v + (w + w P ) = D t x y z X. (1a) y 2 + D Z. z 2

C C C C 2 C 2 C 2 C + u + v + (w + w P ) = D t x y z X. (1a) y 2 + D Z. z 2 This chapter provides an introduction to the transport of particles that are either more dense (e.g. mineral sediment) or less dense (e.g. bubbles) than the fluid. A method of estimating the settling velocity

More information

Rough solutions of the Stochastic Navier-Stokes Equation

Rough solutions of the Stochastic Navier-Stokes Equation variable Error in solutions of the Equation Björn Center for Complex and Nonlinear Science Department of Mathematics, UC Santa Barbara and University of Iceland, Reykjavík RICAM, Linz, December 2016 Co-authors,

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

More information

FINITE ELEMENT METHOD IN

FINITE ELEMENT METHOD IN FINITE ELEMENT METHOD IN FLUID DYNAMICS Part 6: Particles transport model Marcela B. Goldschmit 2 3 Lagrangean Model The particles movement equations are solved. The trajectory of each particles can be

More information

Lecture 12. Droplet Combustion Spray Modeling. Moshe Matalon

Lecture 12. Droplet Combustion Spray Modeling. Moshe Matalon Lecture 12 Droplet Combustion Spray Modeling Spray combustion: Many practical applications liquid fuel is injected into the combustion chamber resulting in fuel spray. Spray combustion involves many physical

More information

Engineering. Spring Department of Fluid Mechanics, Budapest University of Technology and Economics. Large-Eddy Simulation in Mechanical

Engineering. Spring Department of Fluid Mechanics, Budapest University of Technology and Economics. Large-Eddy Simulation in Mechanical Outline Geurts Book Department of Fluid Mechanics, Budapest University of Technology and Economics Spring 2013 Outline Outline Geurts Book 1 Geurts Book Origin This lecture is strongly based on the book:

More information

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Adapted from Publisher: John S. Wiley & Sons 2002 Center for Scientific Computation and

More information

Detailed Outline, M E 521: Foundations of Fluid Mechanics I

Detailed Outline, M E 521: Foundations of Fluid Mechanics I Detailed Outline, M E 521: Foundations of Fluid Mechanics I I. Introduction and Review A. Notation 1. Vectors 2. Second-order tensors 3. Volume vs. velocity 4. Del operator B. Chapter 1: Review of Basic

More information

Dimensionless Numbers

Dimensionless Numbers 1 06.10.2017, 09:49 Dimensionless Numbers A. Salih Dept. of Aerospace Engineering IIST, Thiruvananthapuram The nondimensionalization of the governing equations of fluid flow is important for both theoretical

More information

For one such collision, a new particle, "k", is formed of volume v k = v i + v j. The rate of formation of "k" particles is, N ij

For one such collision, a new particle, k, is formed of volume v k = v i + v j. The rate of formation of k particles is, N ij Coagulation Theory and The Smoluchowski Equation: Coagulation is defined as growth of particles by collisions among particles. It is usually associated with dense, 3-d growth, in contrast to aggregation

More information

O. A Survey of Critical Experiments

O. A Survey of Critical Experiments O. A Survey of Critical Experiments 1 (A) Visualizations of Turbulent Flow Figure 1: Van Dyke, Album of Fluid Motion #152. Generation of turbulence by a grid. Smoke wires show a uniform laminar stream

More information

Local flow structure and Reynolds number dependence of Lagrangian statistics in DNS of homogeneous turbulence. P. K. Yeung

Local flow structure and Reynolds number dependence of Lagrangian statistics in DNS of homogeneous turbulence. P. K. Yeung Local flow structure and Reynolds number dependence of Lagrangian statistics in DNS of homogeneous turbulence P. K. Yeung Georgia Tech, USA; E-mail: pk.yeung@ae.gatech.edu B.L. Sawford (Monash, Australia);

More information

NANOPARTICLE COAGULATION AND DISPERSION IN A TURBULENT PLANAR JET WITH CONSTRAINTS

NANOPARTICLE COAGULATION AND DISPERSION IN A TURBULENT PLANAR JET WITH CONSTRAINTS THERMAL SCIENCE, Year 2012, Vol. 16, No. 5, pp. 1497-1501 1497 NANOPARTICLE COAGULATION AND DISPERSION IN A TURBULENT PLANAR JET WITH CONSTRAINTS by Cheng-Xu TU a,b * and Song LIU a a Department of Mechanics,

More information

ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr. DeCaria

ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr. DeCaria ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr DeCaria References: An Introduction to Dynamic Meteorology, Holton MOMENTUM EQUATIONS The momentum equations governing the ocean or atmosphere

More information

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids Fluid dynamics Math background Physics Simulation Related phenomena Frontiers in graphics Rigid fluids Fields Domain Ω R2 Scalar field f :Ω R Vector field f : Ω R2 Types of derivatives Derivatives measure

More information

Lagrangian intermittency in drift-wave turbulence. Wouter Bos

Lagrangian intermittency in drift-wave turbulence. Wouter Bos Lagrangian intermittency in drift-wave turbulence Wouter Bos LMFA, Ecole Centrale de Lyon, Turbulence & Stability Team Acknowledgments Benjamin Kadoch, Kai Schneider, Laurent Chevillard, Julian Scott,

More information

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h,

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h, Masters in Mechanical Engineering Problems of incompressible viscous flow 1. Consider the laminar Couette flow between two infinite flat plates (lower plate (y = 0) with no velocity and top plate (y =

More information

BOUNDARY LAYER ANALYSIS WITH NAVIER-STOKES EQUATION IN 2D CHANNEL FLOW

BOUNDARY LAYER ANALYSIS WITH NAVIER-STOKES EQUATION IN 2D CHANNEL FLOW Proceedings of,, BOUNDARY LAYER ANALYSIS WITH NAVIER-STOKES EQUATION IN 2D CHANNEL FLOW Yunho Jang Department of Mechanical and Industrial Engineering University of Massachusetts Amherst, MA 01002 Email:

More information

B.1 NAVIER STOKES EQUATION AND REYNOLDS NUMBER. = UL ν. Re = U ρ f L μ

B.1 NAVIER STOKES EQUATION AND REYNOLDS NUMBER. = UL ν. Re = U ρ f L μ APPENDIX B FLUID DYNAMICS This section is a brief introduction to fluid dynamics. Historically, a simplified concept of the boundary layer, the unstirred water layer, has been operationally used in the

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information