Modeling Complex Flows! Direct Numerical Simulations! Computational Fluid Dynamics!


 Brent Phelps
 2 years ago
 Views:
Transcription
1 Modeling Complex Flows! Grétar Tryggvason! Spring 2011! Direct Numerical Simulations! In direct numerical simulations the full unsteady NavierStokes equations are solved on a sufficiently fine grid so that all length and time scales are fully resolved. The size of the problem is therefore very limited. The goal of such simulations is to provide both insight and quantitative data for turbulence modeling! Channel Flow! Wall! Flow direction! Streamwise velocity! Periodic streamwise and spanwise boundaries! Streamwise vorticity! Channel Flow! Turbulent shear stress! Turbulent eddies generate a nearly uniform velocity profile! Streamwise vorticity!
2 Turbulence are intrinsically linked to vorticity, yet laminar flows can also be vortical so looking at the vorticity is not sufficient to understand what is going on in a turbulent flows. Several attempts have been made to define properties of the turbulent flows that identifies vortices as opposed to simply vortical flows.! One of the most successful method is the lambda2 method of Hussain.! Visualizing turbulence! #"u "x "v!u = "x "w $ "x "u "u & "y "z "v "v "y "z "w "w "y "z ' ) = 1 2 S = 1 2!u +!T u ) = 1 2! = 1 2 "u  "T u # 2 "u "x "v "x + "u "y "w "x + "u $ "z ' 0 ' '#v #x $ #u ' #y '#w ' #x $ #u & #z "u "y + "v "x 2 "v "y "w "y + "v "z #u #y $ #v #x 0 #w #y $ #v #z "u "z + "w & "x "v "z + "w "y 2 "w "z ' #u #z $ #w * #x #v #z $ #w * * #y * * 0 * ) It can be shown that the second eigenvalue of! S 2 +! 2 define vortex structures! Referece: J. Jeong and F. Hussain, "On the identification of a vortex," Journal of Fluid Mechanics, Vol. 285, 6994, 1995.!! 2! 2 = "0.2 Other quantities have also been used, such as the second invariant of the velocity gradient:! Q =!u i!x j!u j!x i! 2 = "0.3 Large Eddy Simulations! Unsteady simulations where the large scale motion is resolved but the small scale motion is modeled. Frequently simple models are used for the small scale motion. Most recently some success has been achieved by intrinsic large eddy simulations where no modeling is used but monotonicity is enforced by the methods described in the lectures on hyperbolic methods!
3 In the simplest case, the Smagorinsky eddy viscosity is used in simulation of unsteady flow, thus resulting in a viscosity that depends of the flow.!! T = l 2 0 2S ij S ij ) 1/ 2 S ij = 1 "!U i +!U j 2 $ #!x j!x ' i & Multiphase Flow! Since the viscosity increases, the size of the smallest flow scales increases and lower resolution is needed! Examples:! Spray drying! Pollution control! Pneumatic transport! Slurry transport! Fluidized beds! Spray forming! Plasma spray coating! Abrasive water jet cutting! Pulverized coal fired furnaces! Solid propellant rockets! Fire suppression and control! Disperse flow! Solidliquid: Slurries, quicksand, sediment transport! Solidair: dust, fluidized bed, erosion! Liquidair: sprays, rain! Airliquid: bubbly flows! Single component Multicomponent! Single water flow air flow! phase Nitrogen flow emulsions! Multiphase Steamwater flow airwater flow! FreonFreon slurry flow! vapor flow! Flow in pipes! Stratified! Slugs! Mixed! Dispersed! This figure shows schematically one of several different configurations of a circulating fluidized bed loop used in engineering practice. The particles flow downward through the aerated standpipe, and enter the bottom of a fast fluidized bed riser. The particles are centrifugally separated from the gas in a train of cyclones. In this diagram, the particles separated in the primary cyclone are returned to the standpipe while the fate of the particles removed from the secondary cyclone is not shown.! From: Computational Methods for Multiphase Flow, Edited by A.Prosperetti and G.Tryggvason!
4 Need model equations to predict flow rates, pressure drop, slip velocities, and void fraction! Mixture models: one averaged phase! Twofluid models: two interpenetrating continuum! Although commercial codes will let you model relatively complex multiphase flows, it is really only in the limit of dispersed and dilute flows where we can expect reasonable accuracy! To treat systems like this, the twofluid model is usually used. The continuous phase is almost always used in an Eularian way where the continuity, momentum, and energy equations are solved on a fixed grid.! The void fraction ε p describes how much of the region is occupied by phase p. Obviously:! ε p =1 While the averaging is similar to turbulent flows, here we must account for the different phases! 1 inside phase p = 0 otherwise The void fraction is found by! ε p = 1 V dv V Averages are found by! ˆ φ p = 1 ε p V φ dv V Where the volume V goes to zero in some way! The velocity is found by! u ˆ p = 1 ε p V dv V The averages can also be interpreted as time or ensemble averages! The effective density of phase p is! ˆ ρ = ε p The total mass of phase p in a control volume is! dv V And the mass conservation equation can be averaged to yield! Here! t ε p + ε p ) = m p m p = 0 Since a mass that leaves one phase must add to another phase! The conservation of momentum equation becomes! t ε p ) + ε p ) = ε p p p + ε p µ p D p ) + ε p g + ε p < uu > ) + F int Reynolds stresses! interfacial forces! In addition to the Reynolds stresses, it is now necessary to model the interfacial forces. The kinetic energy is often neglected, even though the fluctuations are nonzero in laminar flow!
5 Euler/Euler approach! All phases are treated as interpenetrating continuum! The dispersed phase is averaged over each control volume! Each phase is governed by similar conservation equations! Modeling is needed for!!interaction between the phases!!turbulent dispersion of particles!!collision of particles with walls! A size distribution requires the solution of several sets of conservation equations! Numerical diffusion at phase boundaries may result in errors! This approach is best suited for high volume fraction of the dispersed phase! Euler/Lagrange approach! The fluid flow is found by solving the Reynoldsaveraged NavierStokes equations with a turbulence model.! The dispersed phase is simulated by tracking a large number of representative particles.! A statistically reliable average behavior of the dispersed phase requires a large number of particles! The point particles must be much smaller than the grid spacing! Modeling is needed for!!collision of particles with walls!!particle/particle collisions and agglomeration!!droplet/bubble coalescence and breakup! A high particle concentration may cause convergence problems! If there is no mass transfer m=0 and F is the force that one phase exerts on the other! F p = 0 In principle the conservation equations can be solved for both the continuous and the dispersed phase Euler/Euler approach).! However, the dispersed phase is not all that continuous and an other approach is to explicitly tract representative) particles by solving! du = F p If the particles have no influence on the fluid: One way coupling! If the particles exert a force on the fluid: Two way coupling! Usually the force is written:! ) + g ρ D ρ F p = k D u Drag force! ρ Gravity! buoyancy! + F other Other forces due to added mass, pressure, lift, etc! where! k D = 3 4 C ε ρ u r ) and! C D = C D Re D r q d r ) is obtained from experimental correlations, such as! C D = 24 Re 1 + ) 0.15Re0.687 Re <10 3 For solid particles! Re based on slip velocity! The force allows us to find the particle velocity by integrating:! d = F p and trajectories by! For turbulent flow, set particle velocity! + u' dx p = Random velocity fluctuations from! k p = u'u' Usually a large number of particles is used to get a well converged particle distribution! Notice that almost all the interactions particles/flow) particle/particle, particle/wall) are highly empirical! This allows particles to cross streamlines as they do in turbulent flow! Particles can accumulate here!
6 Similar approach can be taken for the temperature and the size of a particle heat and mass transfer)! m p c p dt p dm p = m p = ha p T f T p ) + ε p A p σt 4 T p 4 ) Mass transfer due to evaporation, for example! For dilute flows this does work reasonably well if the initial or inlet conditions are knows! Turbulent in the continuous phase! Either ignore the contributions of the dispersed phase when computing the flow, or use a kε model! Solve for k and ε in the liquid and k p. Called k ε k p models.! The k equation is! Dk Dt = + < U F p > < U F p >= τ ρ < u f u f ) >= τ ρ < u f u f > < u f >) This term can lead to both reduction and increase in the turbulence in the liquid! The full twofluid model suffers from several problems, in addition to uncertainties about the various closure assumptions:! The major one is that the full equations are illposed and one cannot expect a fully converged solution under grid refinement! One possible way around this is to use the drift flux approximation where the particle velocity is assumed to be a given function of the local conditions.! Modeling of Laminar Flow in a Vertical Channel! y Flow! Gravity! x S.P. Antal, R.T. Lahey and J.E. Flaherty. Intʼl. J. Multiphase Flow ), ! Bubbly flow in a vertical channel! Need to know! The bubble distribution! The velocity profile and the flow rate! Assume that the flow is independent of y, so! y = 0 p l y but! is given! ε ε x 2 Comparison with a twofluid model! Simple twofluid model for laminar multiphase flow ε dp dy + ερ g = 3 ε g y C D ρ l 8 R Bubble vertical momentum! b 1 ε) dp l dy + 1 ε)ρ 2 v lg y = 1 ε)µ l l x + 3 ε Liquid vertical C 2 D ρ l 8 R b momentum! u 1 ε) = εc L U l r 5 x ε C + C R b w1 w2 s L ε x) = 1 L εdx, u l 0) = u l H ) = 0 0 Lift! R b Wall repulsion! away from wall or zero)! C D = 24 Re Re0.75 ) Re = 2R bρ l µ m µ m = µ l 1 ε dp g dy = dp l dy = dp dy 2 Bubble horizontal momentum!
7 Comparison with a twofluid model! Comparison with experimental results. Graph from: S.P. Antal, R.T. Lahey and J.E. Flaherty. Intʼl. J. Multiphase Flow ), ! Modeling of multiphase flows is still a very immature area. Interpret the results with care!! For more information about computing multiphase flow, see:!
Turbulence Modeling I!
Outline! Turbulence Modeling I! Grétar Tryggvason! Spring 2010! Why turbulence modeling! Reynolds Averaged Numerical Simulations! Zero and One equation models! Two equations models! Model predictions!
More informationDispersed Multiphase Flow Modeling using Lagrange Particle Tracking Methods Dr. Markus Braun Ansys Germany GmbH
Dispersed Multiphase Flow Modeling using Lagrange Particle Tracking Methods Dr. Markus Braun Ansys Germany GmbH 2011 ANSYS, Inc., Markus Braun 1 Overview The Euler/Lagrange concept Breaking the barrier
More informationCFD modelling of multiphase flows
1 Lecture CFD3 CFD modelling of multiphase flows Simon Lo CDadapco Trident House, Basil Hill Road Didcot, OX11 7HJ, UK simon.lo@cdadapco.com 2 VOF Free surface flows LMP Droplet flows Liquid film DEM
More informationTurbulent Boundary Layers & Turbulence Models. Lecture 09
Turbulent Boundary Layers & Turbulence Models Lecture 09 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects
More informationINTRODUCTION OBJECTIVES
INTRODUCTION The transport of particles in laminar and turbulent flows has numerous applications in engineering, biological and environmental systems. The deposition of aerosol particles in channels and
More informationDirect Numerical Simulations of GasLiquid Flows
Direct Numerical Simulations of GasLiquid Flows 1 Gretar Tryggvason*; 1 Jiacai Lu; 2 Ming Ma 1 Johns Hopkins University, Baltimore, MD, USA; 2 University of Notre Dame, Notre Dame, IN, USA Introduction
More informationMULTIPHASE FLOW MODELLING
MULTIPHASE FLOW MODELLING 1 Introduction 2 Outline Multiphase Flow Modeling Discrete phase model Eulerian model Mixture model Volumeoffluid model Reacting Flow Modeling Eddy dissipation model Nonpremixed,
More informationINTRODUCTION TO MULTIPHASE FLOW. Mekanika Fluida II Haryo Tomo
1 INTRODUCTION TO MULTIPHASE FLOW Mekanika Fluida II Haryo Tomo 2 Definitions Multiphase flow is simultaneous flow of Matters with different phases( i.e. gas, liquid or solid). Matters with different
More information7. Basics of Turbulent Flow Figure 1.
1 7. Basics of Turbulent Flow Whether a flow is laminar or turbulent depends of the relative importance of fluid friction (viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds
More informationStrategy in modelling irregular shaped particle behaviour in confined turbulent flows
Title Strategy in modelling irregular shaped particle behaviour in confined turbulent flows M. Sommerfeld F L Mechanische Verfahrenstechnik Zentrum Ingenieurwissenschaften 699 Halle (Saale), Germany wwwmvt.iw.unihalle.de
More informationFOURWAY COUPLED SIMULATIONS OF TURBULENT
FOURWAY COUPLED SIMULATIONS OF TURBULENT FLOWS WITH NONSPHERICAL PARTICLES Berend van Wachem Thermofluids Division, Department of Mechanical Engineering Imperial College London Exhibition Road, London,
More informationTurbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing.
Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Thus, it is very important to form both a conceptual understanding and a quantitative
More informationBefore we consider two canonical turbulent flows we need a general description of turbulence.
Chapter 2 Canonical Turbulent Flows Before we consider two canonical turbulent flows we need a general description of turbulence. 2.1 A Brief Introduction to Turbulence One way of looking at turbulent
More informationModelling of dispersed, multicomponent, multiphase flows in resource industries. Section 3: Examples of analyses conducted for Newtonian fluids
Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 3: Examples of analyses conducted for Newtonian fluids Globex Julmester 017 Lecture # 04 July 017 Agenda Lecture
More informationModelling multiphase flows in the Chemical and Process Industry
Modelling multiphase flows in the Chemical and Process Industry Simon Lo 9/11/09 Contents Breakup and coalescence in bubbly flows Particle flows with the Discrete Element Modelling approach Multiphase
More informationCHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION
CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIERSTOKES EQUATIONS Under the assumption of a Newtonian stressrateofstrain constitutive equation and a linear, thermally conductive medium,
More informationModeling of dispersed phase by Lagrangian approach in Fluent
Lappeenranta University of Technology From the SelectedWorks of Kari Myöhänen 2008 Modeling of dispersed phase by Lagrangian approach in Fluent Kari Myöhänen Available at: https://works.bepress.com/kari_myohanen/5/
More informationNumerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling
Turbulence Modeling Niels N. Sørensen Professor MSO, Ph.D. Department of Civil Engineering, Alborg University & Wind Energy Department, Risø National Laboratory Technical University of Denmark 1 Outline
More informationEVALUATION OF FOUR TURBULENCE MODELS IN THE INTERACTION OF MULTI BURNERS SWIRLING FLOWS
EVALUATION OF FOUR TURBULENCE MODELS IN THE INTERACTION OF MULTI BURNERS SWIRLING FLOWS A Aroussi, S Kucukgokoglan, S.J.Pickering, M.Menacer School of Mechanical, Materials, Manufacturing Engineering and
More informationBOUNDARY LAYER ANALYSIS WITH NAVIERSTOKES EQUATION IN 2D CHANNEL FLOW
Proceedings of,, BOUNDARY LAYER ANALYSIS WITH NAVIERSTOKES EQUATION IN 2D CHANNEL FLOW Yunho Jang Department of Mechanical and Industrial Engineering University of Massachusetts Amherst, MA 01002 Email:
More informationExperience with DNS of particulate flow using a variant of the immersed boundary method
Experience with DNS of particulate flow using a variant of the immersed boundary method Markus Uhlmann Numerical Simulation and Modeling Unit CIEMAT Madrid, Spain ECCOMAS CFD 2006 Motivation wide range
More informationContribution of interparticle collisions on kinetic energy modification in a turbulent channel flow
Contribution of interparticle collisions on kinetic energy modification in a turbulent channel flow Valentina Lavezzo a, Alfredo Soldati a,b a Dipartimento di Energetica e Macchine and b Centro Interdipartimentale
More informationNumerical Simulation of GasLiquidReactors with Bubbly Flows using a Hybrid MultiphaseCFD Approach
Numerical Simulation of GasLiquidReactors with Bubbly Flows using a Hybrid MultiphaseCFD Approach TFM Hybrid Interface Resolving TwoFluid Model (HIRESTFM) by Coupling of the VolumeofFluid (VOF)
More informationIHMTC EULEREULER TWOFLUID MODEL BASED CODE DEVELOPMENT FOR TWOPHASE FLOW SYSTEMS
Proceedings of the 24th National and 2nd International ISHMTASTFE Heat and Mass Transfer Conference (IHMTC2017), December 2730, 2017, BITSPilani, Hyderabad, India IHMTC2017130160 EULEREULER TWOFLUID
More informationAGITATION AND AERATION
AGITATION AND AERATION Although in many aerobic cultures, gas sparging provides the method for both mixing and aeration  it is important that these two aspects of fermenter design be considered separately.
More informationPrinciples of Convective Heat Transfer
Massoud Kaviany Principles of Convective Heat Transfer Second Edition With 378 Figures Springer Contents Series Preface Preface to the Second Edition Preface to the First Edition Acknowledgments vii ix
More informationFluid Dynamics Exercises and questions for the course
Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r
More informationV (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)
IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common
More informationFiltered TwoFluid Model for GasParticle Suspensions. S. Sundaresan and Yesim Igci Princeton University
Filtered TwoFluid Model for GasParticle Suspensions S. Sundaresan and Yesim Igci Princeton University Festschrift for Professor Dimitri Gidaspow's 75th Birthday II Wednesday, November 11, 2009: 3:15
More informationDNS STUDY OF TURBULENT HEAT TRANSFER IN A SPANWISE ROTATING SQUARE DUCT
10 th International Symposium on Turbulence and Shear Flow Phenomena (TSFP10), Chicago, USA, July, 2017 DNS STUDY OF TURBULENT HEAT TRANSFER IN A SPANWISE ROTATING SQUARE DUCT BingChen Wang Department
More informationOE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004
OE465 Vaclav Matousek October 13, 004 1 Dredge Vermelding Pumps onderdeel and Slurry organisatie Transport OE465 Vaclav Matousek October 13, 004 Dredge Vermelding Pumps onderdeel and Slurry organisatie
More information1. Introduction, tensors, kinematics
1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and
More informationTutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace
Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Adapted from Publisher: John S. Wiley & Sons 2002 Center for Scientific Computation and
More informationLES of turbulent shear flow and pressure driven flow on shallow continental shelves.
LES of turbulent shear flow and pressure driven flow on shallow continental shelves. Guillaume Martinat,CCPO  Old Dominion University Chester Grosch, CCPO  Old Dominion University Ying Xu, Michigan State
More informationBest Practice Guidelines for Computational Turbulent Dispersed Multiphase Flows. René V.A. Oliemans
Best Practice Guidelines for Computational Turbulent Dispersed Multiphase Flows René V.A. Oliemans ERCOFTAC Seminar, Innventia, Stockholm, June 78, 2011 1 Vermelding onderdeel organisatie Department of
More informationModel Studies on SlagMetal Entrainment in Gas Stirred Ladles
Model Studies on SlagMetal Entrainment in Gas Stirred Ladles Anand Senguttuvan Supervisor Gordon A Irons 1 Approach to Simulate Slag Metal Entrainment using Computational Fluid Dynamics Introduction &
More informationCFD in COMSOL Multiphysics
CFD in COMSOL Multiphysics Mats Nigam Copyright 2016 COMSOL. Any of the images, text, and equations here may be copied and modified for your own internal use. All trademarks are the property of their respective
More informationActive Control of Separated Cascade Flow
Chapter 5 Active Control of Separated Cascade Flow In this chapter, the possibility of active control using a synthetic jet applied to an unconventional axial statorrotor arrangement is investigated.
More informationPairwise Interaction Extended PointParticle (PIEP) Model for dropletladen flows: Towards application to the midfield of a spray
Pairwise Interaction Extended PointParticle (PIEP) Model for dropletladen flows: Towards application to the midfield of a spray Georges Akiki, Kai Liu and S. Balachandar * Department of Mechanical &
More information15. Physics of Sediment Transport William Wilcock
15. Physics of Sediment Transport William Wilcock (based in part on lectures by Jeff Parsons) OCEAN/ESS 410 Lecture/Lab Learning Goals Know how sediments are characteried (sie and shape) Know the definitions
More informationDEVELOPMENT OF A NUMERICAL APPROACH FOR SIMULATION OF SAND BLOWING AND CORE FORMATION
TMS (The Minerals, Metals & Materials Society), DEVELOPMENT OF A NUMERICAL APPROACH FOR SIMULATION OF SAND BLOWING AND CORE FORMATION G.F. Yao, C. W. Hirt, and
More informationCOMPUTATIONAL STUDY OF PARTICLE/LIQUID FLOWS IN CURVED/COILED MEMBRANE SYSTEMS
COMPUTATIONAL STUDY OF PARTICLE/LIQUID FLOWS IN CURVED/COILED MEMBRANE SYSTEMS Prashant Tiwari 1, Steven P. Antal 1,2, Michael Z. Podowski 1,2 * 1 Department of Mechanical, Aerospace and Nuclear Engineering,
More informationMultiphase Flow and Heat Transfer
Multiphase Flow and Heat Transfer ME546 Sudheer Siddapureddy sudheer@iitp.ac.in Two Phase Flow Reference: S. Mostafa Ghiaasiaan, TwoPhase Flow, Boiling and Condensation, Cambridge University Press. http://dx.doi.org/10.1017/cbo9780511619410
More informationCHAPTER 4. Basics of Fluid Dynamics
CHAPTER 4 Basics of Fluid Dynamics What is a fluid? A fluid is a substance that can flow, has no fixed shape, and offers little resistance to an external stress In a fluid the constituent particles (atoms,
More informationPrinciples of Convection
Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid
More informationComputer Fluid Dynamics E181107
Computer Fluid Dynamics E181107 2181106 Combustion, multiphase flows Remark: foils with black background could be skipped, they are aimed to the more advanced courses Rudolf Žitný, Ústav procesní a zpracovatelské
More informationcentrifugal acceleration, whose magnitude is r cos, is zero at the poles and maximum at the equator. This distribution of the centrifugal acceleration
Lecture 10. Equations of Motion Centripetal Acceleration, Gravitation and Gravity The centripetal acceleration of a body located on the Earth's surface at a distance from the center is the force (per unit
More informationBasic Fluid Mechanics
Basic Fluid Mechanics Chapter 6A: Internal Incompressible Viscous Flow 4/16/2018 C6A: Internal Incompressible Viscous Flow 1 6.1 Introduction For the present chapter we will limit our study to incompressible
More informationMicrofluidics 1 Basics, Laminar flow, shear and flow profiles
MT0.6081 Microfluidics and BioMEMS Microfluidics 1 Basics, Laminar flow, shear and flow profiles 11.1.2017 Ville Jokinen Outline of the next 3 weeks: Today: Microfluidics 1: Laminar flow, flow profiles,
More informationChapter 1: Basic Concepts
What is a fluid? A fluid is a substance in the gaseous or liquid form Distinction between solid and fluid? Solid: can resist an applied shear by deforming. Stress is proportional to strain Fluid: deforms
More informationAn evaluation of a conservative fourth order DNS code in turbulent channel flow
Center for Turbulence Research Annual Research Briefs 2 2 An evaluation of a conservative fourth order DNS code in turbulent channel flow By Jessica Gullbrand. Motivation and objectives Direct numerical
More informationROLE OF THE VERTICAL PRESSURE GRADIENT IN WAVE BOUNDARY LAYERS
ROLE OF THE VERTICAL PRESSURE GRADIENT IN WAVE BOUNDARY LAYERS Karsten Lindegård Jensen 1, B. Mutlu Sumer 1, Giovanna Vittori 2 and Paolo Blondeaux 2 The pressure field in an oscillatory boundary layer
More informationTable of Contents. Preface... xiii
Preface... xiii PART I. ELEMENTS IN FLUID MECHANICS... 1 Chapter 1. Local Equations of Fluid Mechanics... 3 1.1. Forces, stress tensor, and pressure... 4 1.2. Navier Stokes equations in Cartesian coordinates...
More informationTurbulence and its modelling. Outline. Department of Fluid Mechanics, Budapest University of Technology and Economics.
Outline Department of Fluid Mechanics, Budapest University of Technology and Economics October 2009 Outline Outline Definition and Properties of Properties High Re number Disordered, chaotic 3D phenomena
More informationUNIVERSITY of LIMERICK
UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH Faculty of Science and Engineering END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MA4607 SEMESTER: Autumn 201213 MODULE TITLE: Introduction to Fluids DURATION OF
More informationInvestigation of Flow Profile in Open Channels using CFD
Investigation of Flow Profile in Open Channels using CFD B. K. Gandhi 1, H.K. Verma 2 and Boby Abraham 3 Abstract Accuracy of the efficiency measurement of a hydroelectric generating unit depends on the
More informationGetting started: CFD notation
PDE of pth order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =
More informationFluid Mechanics. Spring 2009
Instructor: Dr. YangCheng Shih Department of Energy and Refrigerating AirConditioning Engineering National Taipei University of Technology Spring 2009 Chapter 1 Introduction 11 General Remarks 12 Scope
More informationLARGE EDDY SIMULATION OF MASS TRANSFER ACROSS AN AIRWATER INTERFACE AT HIGH SCHMIDT NUMBERS
The 6th ASMEJSME Thermal Engineering Joint Conference March 6, 3 TEDAJ33 LARGE EDDY SIMULATION OF MASS TRANSFER ACROSS AN AIRWATER INTERFACE AT HIGH SCHMIDT NUMBERS Akihiko Mitsuishi, Yosuke Hasegawa,
More informationModeling of turbulence in stirred vessels using large eddy simulation
Modeling of turbulence in stirred vessels using large eddy simulation André Bakker (presenter), Kumar Dhanasekharan, Ahmad Haidari, and SungEun Kim Fluent Inc. Presented at CHISA 2002 August 2529, Prague,
More informationFundamentals of Fluid Dynamics: Elementary Viscous Flow
Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research
More informationEngineering. Spring Department of Fluid Mechanics, Budapest University of Technology and Economics. LargeEddy Simulation in Mechanical
Outline Geurts Book Department of Fluid Mechanics, Budapest University of Technology and Economics Spring 2013 Outline Outline Geurts Book 1 Geurts Book Origin This lecture is strongly based on the book:
More informationReview of Fluid Mechanics
Chapter 3 Review of Fluid Mechanics 3.1 Units and Basic Definitions Newton s Second law forms the basis of all units of measurement. For a particle of mass m subjected to a resultant force F the law may
More informationNumerical Heat and Mass Transfer
Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 15Convective Heat Transfer Fausto Arpino f.arpino@unicas.it Introduction In conduction problems the convection entered the analysis
More informationNUMERICAL SIMULATION OF SUDDENEXPANSION PARTICLELADEN FLOWS USING THE EULERIAN LAGRANGIAN APPROACH. Borj Cedria, 2050 HammamLif, Tunis.
NUMERICAL SIMULATION OF SUDDENEXPANSION PARTICLELADEN FLOWS USING THE EULERIAN LAGRANGIAN APPROACH Mohamed Ali. MERGHENI,2, JeanCharles SAUTET 2, Hmaied BEN TICHA 3, Sassi BEN NASRALLAH 3 Centre de
More informationUnit operations of chemical engineering
1 Unit operations of chemical engineering Fourth year Chemical Engineering Department College of Engineering ALQadesyia University Lecturer: 2 3 Syllabus 1) Boundary layer theory 2) Transfer of heat,
More informationC C C C 2 C 2 C 2 C + u + v + (w + w P ) = D t x y z X. (1a) y 2 + D Z. z 2
This chapter provides an introduction to the transport of particles that are either more dense (e.g. mineral sediment) or less dense (e.g. bubbles) than the fluid. A method of estimating the settling velocity
More informationLecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)
Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) The ABL, though turbulent, is not homogeneous, and a critical role of turbulence is transport and mixing of air properties, especially in the
More informationmeters, we can rearrange this expression to give
Turbulence When the Reynolds number becomes sufficiently large, the nonlinear term (u ) u in the momentum equation inevitably becomes comparable to other important terms and the flow becomes more complicated.
More informationLecture6 Motion of a Particle Through Fluid (One dimensional Flow)
Lecture6 Motion of a Particle Through Fluid (One dimensional Flow) 1 Equation of Motion of a spherical Particle (one dimensional Flow) On Board 2 Terminal Velocity Particle reaches a maximum velocity
More informationEddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr):
AdOc 4060/5060 Spring 2013 Chris Jenkins Eddy viscosity Turbulence (video 1hr): http://cosee.umaine.edu/programs/webinars/turbulence/?cfid=8452711&cftoken=36780601 Part B Surface wind stress Wind stress
More informationEngineering Fluid Mechanics
Engineering Fluid Mechanics Eighth Edition Clayton T. Crowe WASHINGTON STATE UNIVERSITY, PULLMAN Donald F. Elger UNIVERSITY OF IDAHO, MOSCOW John A. Roberson WASHINGTON STATE UNIVERSITY, PULLMAN WILEY
More informationShell Balances in Fluid Mechanics
Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell
More informationPiping Systems and Flow Analysis (Chapter 3)
Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution
More informationDetailed Outline, M E 320 Fluid Flow, Spring Semester 2015
Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous
More informationMinimum fluidization velocity, bubble behaviour and pressure drop in fluidized beds with a range of particle sizes
Computational Methods in Multiphase Flow V 227 Minimum fluidization velocity, bubble behaviour and pressure drop in fluidized beds with a range of particle sizes B. M. Halvorsen 1,2 & B. Arvoh 1 1 Institute
More informationNUMERICAL SIMULATION OF THREE DIMENSIONAL GASPARTICLE FLOW IN A SPIRAL CYCLONE
Applied Mathematics and Mechanics (English Edition), 2006, 27(2):247 253 c Editorial Committee of Appl. Math. Mech., ISSN 02534827 NUMERICAL SIMULATION OF THREE DIMENSIONAL GASPARTICLE FLOW IN A SPIRAL
More informationEffect of Shape and Flow Control Devices on the Fluid Flow Characteristics in Three Different Industrial Six Strand Billet Caster Tundish
, pp. 1647 1656 Effect of Shape and Flow Control Devices on the Fluid Flow Characteristics in Three Different Industrial Six Strand Billet Caster Tundish Anurag TRIPATHI and Satish Kumar AJMANI Research
More informationWQMAP (Water Quality Mapping and Analysis Program) is a proprietary. modeling system developed by Applied Science Associates, Inc.
Appendix A. ASA s WQMAP WQMAP (Water Quality Mapping and Analysis Program) is a proprietary modeling system developed by Applied Science Associates, Inc. and the University of Rhode Island for water quality
More informationThe Simulation of Wraparound Fins Aerodynamic Characteristics
The Simulation of Wraparound Fins Aerodynamic Characteristics Institute of Launch Dynamics Nanjing University of Science and Technology Nanjing Xiaolingwei 00 P. R. China laithabbass@yahoo.com Abstract:
More informationChapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI.
Chapter 10: Boiling and Condensation 1 1 Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Objectives When you finish studying this chapter, you should be able to: Differentiate between evaporation
More informationReynolds Averaging. We separate the dynamical fields into slowly varying mean fields and rapidly varying turbulent components.
Reynolds Averaging Reynolds Averaging We separate the dynamical fields into sloly varying mean fields and rapidly varying turbulent components. Reynolds Averaging We separate the dynamical fields into
More informationConservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion
http://www.nd.edu/~gtryggva/cfdcourse/ http://www.nd.edu/~gtryggva/cfdcourse/ Computational Fluid Dynamics Lecture 4 January 30, 2017 The Equations Governing Fluid Motion Grétar Tryggvason Outline Derivation
More informationCollision of inertial particles in turbulent flows.
Collision of inertial particles in turbulent flows. Alain Pumir, INLN (France) Grisha Falkovich, Weizmann Inst. (Israel) Introduction (1) Particles advected by a fluid flow, with a mass that does not match
More informationIntroduction to Turbulence AEEM Why study turbulent flows?
Introduction to Turbulence AEEM 7063003 Dr. Peter J. Disimile UCFEST Department of Aerospace Engineering Peter.disimile@uc.edu Intro to Turbulence: C1A Why 1 Most flows encountered in engineering and
More informationSeveral forms of the equations of motion
Chapter 6 Several forms of the equations of motion 6.1 The NavierStokes equations Under the assumption of a Newtonian stressrateofstrain constitutive equation and a linear, thermally conductive medium,
More informationDIRECT NUMERICAL SIMULATION OF SPATIALLY DEVELOPING TURBULENT BOUNDARY LAYER FOR SKIN FRICTION DRAG REDUCTION BY WALL SURFACEHEATING OR COOLING
DIRECT NUMERICAL SIMULATION OF SPATIALLY DEVELOPING TURBULENT BOUNDARY LAYER FOR SKIN FRICTION DRAG REDUCTION BY WALL SURFACEHEATING OR COOLING Yukinori Kametani Department of mechanical engineering Keio
More informationarxiv: v1 [physics.fludyn] 16 Nov 2018
Turbulence collapses at a threshold particle loading in a dilute particlegas suspension. V. Kumaran, 1 P. Muramalla, 2 A. Tyagi, 1 and P. S. Goswami 2 arxiv:1811.06694v1 [physics.fludyn] 16 Nov 2018
More informationFLUID MECHANICS. Chapter 9 Flow over Immersed Bodies
FLUID MECHANICS Chapter 9 Flow over Immersed Bodies CHAP 9. FLOW OVER IMMERSED BODIES CONTENTS 9.1 General External Flow Characteristics 9.3 Drag 9.4 Lift 9.1 General External Flow Characteristics 9.1.1
More informationPARTICLE DISPERSION IN ENCLOSED SPACES USING A LAGRANGIAN MODEL
IV Journeys in Multiphase Flows (JEM 217) March 2731, 217, São Paulo, SP, Brazil Copyright 217 by ABCM Paper ID: JEM2174 PARTICLE DISPERSION IN ENCLOSED SPACES USING A LAGRANGIAN MODEL Ana María Mosquera
More informationConvective Mass Transfer
Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface
More informationBoundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity
Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity Tobias Knopp D 23. November 28 Reynolds averaged NavierStokes equations Consider the RANS equations with
More informationChapter 9: Differential Analysis
91 Introduction 92 Conservation of Mass 93 The Stream Function 94 Conservation of Linear Momentum 95 Navier Stokes Equation 96 Differential Analysis Problems Recall 91 Introduction (1) Chap 5: Control
More informationMixing and Evaporation of Liquid Droplets Injected into an Air Stream Flowing at all Speeds
Mixing and Evaporation of Liquid Droplets Injected into an Air Stream Flowing at all Speeds F. Moukalled* and M. Darwish American University of Beirut Faculty of Engineering & Architecture Mechanical Engineering
More informationNeeds work : define boundary conditions and fluxes before, change slides Useful definitions and conservation equations
Needs work : define boundary conditions and fluxes before, change slides 123 Useful definitions and conservation equations Turbulent Kinetic energy The fluxes are crucial to define our boundary conditions,
More informationThe Use of Lattice Boltzmann Numerical Scheme for Contaminant Removal from a Heated Cavity in Horizontal Channel
www.cfdl.issres.net Vol. 6 (3) September 2014 The Use of Lattice Boltzmann Numerical Scheme for Contaminant Removal from a Heated Cavity in Horizontal Channel Nor Azwadi Che Sidik C and Leila Jahanshaloo
More informationTurbulence  Theory and Modelling GROUPSTUDIES:
Lund Institute of Technology Department of Energy Sciences Division of Fluid Mechanics Robert Szasz, tel 0460480 Johan Revstedt, tel 04643 0 Turbulence  Theory and Modelling GROUPSTUDIES: Turbulence
More informationLarge eddy simulation of turbulent flow over a backwardfacing step: effect of inflow conditions
June 30  July 3, 2015 Melbourne, Australia 9 P26 Large eddy simulation of turbulent flow over a backwardfacing step: effect of inflow conditions Jungwoo Kim Department of Mechanical System Design Engineering
More informationStability of Shear Flow
Stability of Shear Flow notes by Zhan Wang and Sam Potter Revised by FW WHOI GFD Lecture 3 June, 011 A look at energy stability, valid for all amplitudes, and linear stability for shear flows. 1 Nonlinear
More informationChapter 2 Mass Transfer Coefficient
Chapter 2 Mass Transfer Coefficient 2.1 Introduction The analysis reported in the previous chapter allows to describe the concentration profile and the mass fluxes of components in a mixture by solving
More information