SIMULATION OF POLYMER CRYSTAL GROWTH WITH VARIOUS MORPHOLOGIES USING A PHASE-FIELD MODEL

Size: px
Start display at page:

Download "SIMULATION OF POLYMER CRYSTAL GROWTH WITH VARIOUS MORPHOLOGIES USING A PHASE-FIELD MODEL"

Transcription

1 SIMULATION OF POLYMER CRYSTAL GROWTH WITH VARIOUS MORPHOLOGIES USING A PHASE-FIELD MODEL M. Asle Zaeem,*, S. Nouranian, Mark F. Horstemeyer Department of Materials Science and Engineering Missouri University of Science and Technology, Rolla, MO 65409, USA Center for Advanced Vehicular Systems Mississippi State University, Starkville, MS ABSTRACT A finite element-based phase-field model was developed to simulate crystal growth in semi-crystalline polymers with various crystal morphologies. The original Kobayashi s phase-field model for solidification of pure materials was adopted to account for polymer crystallization. Evolution of a nonconserved phase-field variable was considered to track the interface between the melt and the crystalline phases. A local free energy density was used to account for the meta-stable states in polymer solidification. The developed model was successfully applied for simulation of two and three dimensional, single- and polycrystalline morphologies (hexagonal and spherulitic) in isotactic polypropylene (ipp). These morphologies were compared based on different super-cooling conditions and interface anisotropy. The unique aspect of this work is that the employed model is capable of simulating multiple arbitrarily oriented crystals and has no limitations with respect to the crystal morphology. The results show significant thermal effects on the shape and growth rate of ipp crystals.. INTRODUCTION Microstructure evolution during solidification and crystallization has significant effect on macroscale properties of materials [, ]. The type of microstructure formed during crystal growth depends on thermo-physico-chemical factors such as temperature distribution, presence of impurities, chemical composition or concentrations of phases in multi-component materials, etc. Recently, the phase-field approach has been applied to polymer crystallization, where the morphology of multifaceted single polymer crystals [3-6] and complex hierarchical polymer crystal structures, such as spherulites [7-], have been simulated after modifying the original phase-field equations of metallic alloy solidification []. In this study, a phase-field finite-element numerical simulation of crystal growth is performed for a representative semi-crystalline polymer system, i.e., isotactic polypropylene (ipp). This work builds on previous work by Kyu et al. [3], Mehta et al. [4, 7], and Xu et al. [8] and is part of a larger initiative to predict the morphology of nanocomposites with semi-crystalline polymer matrices. Furthermore, the three dimensional (3D) representation of the polymer crystal growth has been attempted for the first time. The employed model is capable of simulating multiple arbitrarily oriented crystals with no * Correspondence to: zaeem@mst.edu.

2 limitations on the crystal morphology. This is crucial for the accurate prediction of crystal structure evolution and the build-up of spherulite boundaries in polymers.. THEORETICAL DESCRIPTION The original Kobayashi s model for solidification of pure materials [] was modified to include the meta-stable states associated with imperfect polymer crystallization [3]. A non-conserved phase-field variable φ ( r, t) was considered, which is a continuous function in time ( t ) and space ( r ) dimensions, and takes a value of zero in the melt and one in the crystalline region. The total free energy of the system of melt and solidifying crystals F( φ, m( T )) includes a local free energy density f local ( φ, m( T )) representing the energies from the melt and crystalline phases, and a nonlocal free energy density representing the energies from interfacial regions. The latter is called interface gradient energy density f (φ) : grad F( φ, m) = f cryst ( φ, m) dv = { f local ( φ, m) + f grad ( φ)} dv, () V V where m is a function of temperature T. Similar to Xu et al. [5], the local free energy density of Harrowell-Oxtoby [3] was adopted to account for the meta-stable states in polymer solidification and spatio-temporal development of imperfect semi-crystalline morphologies. In this work, the local free energy density is f local φ = 4 η η ηm m η η 3 φ ( φ, m) W φ( φ η)( φ + m) dφ = W φ + φ () 0 W is a coefficient representing the energy barrier for nucleation (formation energy of the crystalline phase), which is a function of crystallization temperature T c. The phase-field variable at a stable 0 solidification phase is η = T m / T, where 0 m T m is the equilibrium melting temperature and T m is the melting temperature at a specific crystallization temperature. η is equal to one in Kobayashi s model, which results in a stable phase at φ = [6, ]. Similar to [], the relationship m( T ) = α tan ( γ ( Tm T )) was used in our model, where α and γ are constants satisfying π η 0 m ( T ) <. The term ( m ) in Equation can be related to an unstable energy barrier for crystallization [5]. The nonlocal gradient energy density in Equation is f grad ( φ) = κ ( φ). (3) where κ is the gradient energy coefficient. κ can be related to the surface energy σ through where κ = εσ,

3 σ ( θ, θ 0 ) = δ cos[ j ( θ θ 0 )] ; φ y θ = tan φ x. σ ( θ,θ 0 ) is a function accounting for the anisotropy of the surface tension, in which θ is the growth angle and θ0 is the preferential orientation with respect to the horizontal coordinate. ε is the reference surface energy and δ represents the strength of surface anisotropy. When j is equal to four, the system represents a four-fold symmetric crystal structure, similar to microstructures resulted from the solidification of cubic metallic alloys. When j is equal to six, a six-fold symmetric crystal structure is obtained similar to the microstructure resulted from the solidification of hexagonal metallic alloys, e.g., snowflakes structures. The evolution equation of non-conserved order parameter is (4) φ( r, t) δ F = M, (5) δφ( r, t) where M is the mobility coefficient. Using Equations -5 and after some manipulation, the evolution equation of φ becomes φ = M ε φ σσ + ε x y φ η σσ + ε ( σ φ) Wφ( φ η)( φ + m), (6) y x where σ = σ θ. The two-dimensional transient differential equation governing the heat transfer within the calculation domain is given by T φ = α T + K, (7) where α = k ( ρc p ) is the thermal diffusivity, k is the thermal conductivity, ρ is the density, C p is the specific heat, K = L C p, and L is the latent heat of solidification. For computational convenience, we use non-dimensional groups identified by overbars. Nondimensional groups enhance versatility in accounting for different polymer systems. Non-dimensional time and space dimensions are: t = t τ, x = x X, and y = y X. In this research, τ = 0 6 s and 6 X =.5 0 m are the scaling factors for time and space, respectively. For a specific polymer, τ and X can be related to the diffusion coefficient and radius of gyration of a polymer chain [5]. Scaled temperature is T = T T ) ( T T ). Considering dimensionless thermal diffusivity and latent heat as ( c m c α = ατ X and K K ( T m Tc ) =, respectively, Equation 7 becomes T φ = α T + K, (8) 3

4 3. RESULTS AND DISCUSSION For crystallization from a single nucleus, a square domain with a side length of 50 µ m (0 nondimensional length scale) was considered and a circular nucleus with a diameter of µ m (0.4 nondimensional length scale) was built in the center of the square domain. Initial conditions for the nucleus were T = Tc and φ =, and initial conditions for the rest of the domain were T = Tm and φ = 0. Polymer crystallization can progress at different temperatures and the crystallization patterns depend on the crystallization temperature and the super-cooling. Based on the non-dimensional scheme presented before K, so increasing the value of K decreases the super-cooling and brings the system ( T m T c ) closer to isothermal crystallization. In all simulation results, γ = 0 and ε = Figure shows the two-dimensional (D) representation of the evolution of a single spherulite from the ipp melt as a function of time at a fixed non-dimensional latent heat ( K =.5) and nondimensional thermal diffusivity ( α = 0. 8). The surface anisotropy (δ ) is taken to be zero. As can be seen, a spherulitic structure (circular pattern in D) with a well-defined circular perimeter (boundary) is formed. t =0.0 s t =0. s t =0.4 s t =0.8 s Figure - D representations of a single spherulite growth of isotactic polypropylene crystal. K =.5, α = 0. 8, and δ = 0. Decreasing the super-cooling by increasing the value of K (isothermal crystallization) reduces the crystal growth rate and results in a loosely defined spherulite boundary (Figure ). 4

5 K =.5 K =.5 K =.75 K = Figure - D representations of the growth of a single ipp spherulite versus super-cooling K. α = 0. 8, t =0.8 s, and δ = 0. ( T m T c ) If the strength of the surface anisotropy (δ ) is increased, a hexagonal crystal structure with a sixfold symmetry results. This morphology is shown in Figures 3 and 4 for different super-cooling conditions and times. As can be seen in Figure 3, the well-defined hexagonal boundary disappears with increasing K (approaching the isothermal crystallization). K =.75 K = K =.5 Figure 3 - D representations of the growth of a single ipp crystal with a six-folds symmetry versus super-cooling K. α = 0. 8, t =0.8 s, and δ = ( T m T c ) 5

6 K =.5; t =0.55 s K =.5; t =0.7 s K =.75; t =0.8 s Figure 4 - D representations of a single crystal growth crystal with six-folds symmetry versus supercooling K. α = 0. 8, t =0.8 s, and δ = ( T m T c ) A multi-nucleus crystallization simulation with appropriate parameters results in a complex spherulitic morphology (Figure 5) that resembles the true morphology of the isotactic polypropylene (Figure 6). The spherulites grow until they form well-defined boundaries. In this case, the nucleation density determines the size, distribution, and other attributes of the spherulites. t =0.0s t =0.06s t =0.s t =0.s Figure 5 - D representations of multiple spherulitic growth of isotactic polypropylene. K =.5, α = 0.85, and δ = 0. 6

7 Figure 6 Surface of isotactic polypropylene viewed under light microscope, where the spherulitic morphology can be seen. A 3D representation of the growth of a single spherulite is given in Figure 7. In this figure, the evolution of both phase-field variable and iso-surface representing the outer boundary of the spherulite is shown. t =0.0 s t =0.05 s t =0.0 s t =0.5 s Figure 7 - Evolution of a 3D spherulite; top row represents the phase-field variable and the bottom row shows the iso-surface. K =.5, α = 0. 85, and δ = 0. 7

8 4. SUMMARY A finite element-based phase-field model was developed based on Kobayashi s model for pure materials to simulate crystal growth in a representative semi-crystalline polymer, i.e., isotactic polypropylene (ipp). The developed model is capable of predicting various crystal morphologies in D and 3D representations. Furthermore, the model accounts for multiple arbitrarily oriented crystals. Predictions of the model agree well with the experimentally validated crystal morphologies for ipp. The results show significant thermal effects on the shape and growth rate of ipp crystals. This work is a preliminary phase in the development of a phase-field model for advanced nanocomposite material systems with semi-crystalline polymer matrices. REFERENCES [] Askeland, D. (003) The Science of Materials and Engineering. Belmont, CA: Thompson, Brooks/Cole. [] Herlach, D.M. (Editor) (004) Solidification and Crystallization. Weinheim, Germany: Wiley- VCH. [3] Kyu, T., Mehta, R., and Chiu, H.-W. (000) Spatiotemporal Growth of Faceted and Curved Single Crystals. Physical Review E 6(4): [4] Mehta, R., Keawwattana, W., and Kyu, T. (004) Growth Dynamics of Isotactic Polypropylene Single Crystals During Isothermal Crystallization from a Miscible Polymeric Solvent. Journal of Chemical Physics 0(8): [5] Xu, H., Matkar, R., and Kyu, T. (005) Phase-Field Modeling on Morphological Landscape of Isotactic Polystyrene Single Crystals. Physical Review E 7:0804. [6] Wang, D., Shi, T., Chen, J., An, L., and Jia, Y. (008) Simulated Morphological Landscape of Polymer Single Crystals by Phase Field Model. Journal of Chemical Physics 9: [7] Mehta, R. and Kyu, T. (004) Dynamics of Spherulitic Growth in Blends of Polypropylene Isomers. Journal of Polymer Science: Polymer Physics 4(5): [8] Xu, H., Keawwattana, W., and Kyu, T. (005) Effect of Thermal Transport on Spatiotemporal Emergence of Lamellar Branching Morphology During Polymer Spherulitic Growth. Journal of Chemical Physics 3:4908. [9] Gránásy, L., Pusztai, T., Tegze, G., Warren, J.A., and Douglas, J.F. (005) Growth and Form of Spherulites. Physical Review E 7:0605. [0] Gránásy, L., Pusztai, T., Börzsönyi, T., Tóth, G.I., Tegze, G., Warren, J.A., and Douglas, J.F. (006) Polycrystalline Patterns in Far-From-Equilibrium Freezing: A Phase Field Study. Philosophical Magazine 86(4): [] Asanishi, M., Takaki, T., and Tomita, Y. (007) Polymer Spherulite Growth Simulation During Crystallization by Phase-Field Method. Proceedings of AES ATEMA 007 International Conference, Montreal, Canada, August 06-0: [] Kobayashi, R. (993) Modeling and Numerical Simulations of Dendritic Crystal Growth. Physica D 63: [3] Harrowell, P.R. and Oxtoby, D.W. (987) On the Interaction between Order and a Moving Interface: Dynamical Disordering and Anisotropic Growth Rates. Journal of Chemical Physics 86(5):

This lecture: Crystallization and Melting. Next Lecture: The Glass Transition Temperature

This lecture: Crystallization and Melting. Next Lecture: The Glass Transition Temperature Thermal Transitions: Crystallization, Melting and the Glass Transition This lecture: Crystallization and Melting Next Lecture: The Glass Transition Temperature Today: Why do polymers crystallize in a chain

More information

CHAPTER 8. MOLAR MASS DEPENDENT GROWTH OF POLY(ε- CAPROLACTONE) CRYSTALS IN LANGMUIR FILMS

CHAPTER 8. MOLAR MASS DEPENDENT GROWTH OF POLY(ε- CAPROLACTONE) CRYSTALS IN LANGMUIR FILMS CHAPTER 8 MOLAR MASS DEPENDENT GROWTH OF POLY(ε- CAPROLACTONE) CRYSTALS IN LANGMUIR FILMS Reproduced with permission from: Li, B.; Esker, A. R. Molar Mass Dependent Growth of Poly(ε-caprolactone) Crystals

More information

SIMULATION OF DENDRITIC CRYSTAL GROWTH OF PURE Ni USING THE PHASE-FIELD MODEL

SIMULATION OF DENDRITIC CRYSTAL GROWTH OF PURE Ni USING THE PHASE-FIELD MODEL 46 Rev. Adv. Mater. Sci. 33 (13) 46-5 Yu. Zhao and H. Hou SIMULATION OF DENDRITIC CRYSTAL GROWTH OF PURE Ni USING THE PHASE-FIELD MODEL Yuhong Zhao and Hua Hou College of Materials Science & Engineering,

More information

Dendritic solidification of binary alloys

Dendritic solidification of binary alloys University of Ljubljana Faculty of Mathematics and Physics Department of Physics Seminar I b - 3rd year, 2nd cycle Dendritic solidification of binary alloys Author: Tadej Dobravec Mentor: prof. dr. Božidar

More information

Field Method of Simulation of Phase Transformations in Materials. Alex Umantsev Fayetteville State University, Fayetteville, NC

Field Method of Simulation of Phase Transformations in Materials. Alex Umantsev Fayetteville State University, Fayetteville, NC Field Method of Simulation of Phase Transformations in Materials Alex Umantsev Fayetteville State University, Fayetteville, NC What do we need to account for? Multi-phase states: thermodynamic systems

More information

Phase-Field Modeling of Nucleation in Solid-State Phase Transformations

Phase-Field Modeling of Nucleation in Solid-State Phase Transformations JOM, Vol. 66, No. 8, 2014 DOI: 10.1007/s11837-014-1033-9 Ó 2014 The Minerals, Metals & Materials Society Phase-Field Modeling of Nucleation in Solid-State Phase Transformations TAE WOOK HEO 1,3 and LONG-QING

More information

Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion

Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion PHYSICAL REVIEW E 69, 051607 (004) Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion J. C. Ramirez, 1 C. Beckermann, 1, * A. Karma, and H.-J. Diepers,3 1 Department

More information

Phase Field Approach to Heterogeneous Crystal Nucleation in Alloys

Phase Field Approach to Heterogeneous Crystal Nucleation in Alloys Phase Field Approach to Heterogeneous Crystal Nucleation in Alloys James A. Warren 1, Tamás Pusztai, László Környei, and László Gránásy 3 1 Metallurgy Division, National Institute of Standards and Technology,

More information

The first three categories are considered a bottom-up approach while lithography is a topdown

The first three categories are considered a bottom-up approach while lithography is a topdown Nanowires and Nanorods One-dimensional structures have been called in different ways: nanowires, nanorod, fibers of fibrils, whiskers, etc. The common characteristic of these structures is that all they

More information

STUDY OF HEAT TRANSFER MECHANISMS DURING THE LENS TM PROCESS

STUDY OF HEAT TRANSFER MECHANISMS DURING THE LENS TM PROCESS STUDY OF HEAT TRANSFER MECHANISMS DURING THE LENS TM PROCESS Liang Wang 1 and Sergio Felicelli 1. Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS 3976, USA; email:

More information

GFD 2006 Lecture 2: Diffusion-controlled solidification

GFD 2006 Lecture 2: Diffusion-controlled solidification GFD 2006 Lecture 2: Diffusion-controlled solidification Grae Worster; notes by Victor Tsai and Dan Goldberg March 15, 2007 1 Finishing off Lecture 1 As shown in Lecture 1, an approximation for the diffusion

More information

Errata for SOLIDIFICATION (First Edition, 2009)

Errata for SOLIDIFICATION (First Edition, 2009) Errata for SOLIDIFICATION (First Edition, 29) J. A. Dantzig and M. Rappaz March 2, 217 Chapter 1: Overview Page 2, first line: the definition of r should have a square root. i.e., r = (ξ 2 + y 2 + z 2

More information

Modelling crystal growth with the phase-field method Mathis Plapp

Modelling crystal growth with the phase-field method Mathis Plapp Modelling crystal growth with the phase-field method Mathis Plapp Laboratoire de Physique de la Matière Condensée CNRS/Ecole Polytechnique, 91128 Palaiseau, France Solidification microstructures Hexagonal

More information

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS OUTLINE: Topic D. PHASE TRANSITIONS IN SOFT MATTER SYSTEMS Definition of a phase Classification of phase transitions Thermodynamics of mixing (gases, polymers, etc.) Mean-field approaches in the spirit

More information

Equilibria in Materials

Equilibria in Materials 009 fall Advanced Physical Metallurgy Phase Equilibria in Materials 10. 13. 009 Eun Soo Park Office: 33-316 Telephone: 880-71 Email: espark@snu.ac.kr Office hours: by an appointment 1 Contents for previous

More information

Nucleation rate (m -3 s -1 ) Radius of water nano droplet (Å) 1e+00 1e-64 1e-128 1e-192 1e-256

Nucleation rate (m -3 s -1 ) Radius of water nano droplet (Å) 1e+00 1e-64 1e-128 1e-192 1e-256 Supplementary Figures Nucleation rate (m -3 s -1 ) 1e+00 1e-64 1e-128 1e-192 1e-256 Calculated R in bulk water Calculated R in droplet Modified CNT 20 30 40 50 60 70 Radius of water nano droplet (Å) Supplementary

More information

arxiv: v3 [cond-mat.soft] 25 Mar 2018

arxiv: v3 [cond-mat.soft] 25 Mar 2018 Dendritic Growth of a Polymer on a 2D Mesoscale Square Lattice Joel Martis 1, Kaushik Satapathy 2, P R Shaina 3, C V Krishnamurthy 3, and Manu Jaiswal 3 1 Department of Mechanical Engineering, Indian Institute

More information

Multiscale modelling of microstructure formation in polymer casting

Multiscale modelling of microstructure formation in polymer casting TECHNISCHE MECHANIK, 30, 1-3, (2010), 259 268 submitted: October 31, 2009 Multiscale modelling of microstructure formation in polymer casting T. Pitkänen, S. Majaniemi, T. Ala-Nissila A data bank approach

More information

Diffuse Interface Field Approach (DIFA) to Modeling and Simulation of Particle-based Materials Processes

Diffuse Interface Field Approach (DIFA) to Modeling and Simulation of Particle-based Materials Processes Diffuse Interface Field Approach (DIFA) to Modeling and Simulation of Particle-based Materials Processes Yu U. Wang Department Michigan Technological University Motivation Extend phase field method to

More information

Power Law of Molecular Weight of the Nucleation Rate of Folded Chain Crystals of Polyethylene

Power Law of Molecular Weight of the Nucleation Rate of Folded Chain Crystals of Polyethylene Macromolecules 2002, 35, 6985-6991 6985 Power Law of Molecular Weight of the Nucleation Rate of Folded Chain Crystals of Polyethylene Swapan K. Ghosh, Masamichi Hikosaka,*, Akihiko Toda, Shinichi Yamazaki,

More information

Trans-States-Repulsion Scenario of polymer crystallization

Trans-States-Repulsion Scenario of polymer crystallization Trans-States-Repulsion Scenario of polymer crystallization S. Stepanow University of Halle, Dept. Phys., D-06099 Halle, Germany 1. What is polymer crystallization? 1.1 Nucleation theories 2. The trans-states-repulsion

More information

VIII. Phase Transformations. Lecture 38: Nucleation and Spinodal Decomposition

VIII. Phase Transformations. Lecture 38: Nucleation and Spinodal Decomposition VIII. Phase Transformations Lecture 38: Nucleation and Spinodal Decomposition MIT Student In this lecture we will study the onset of phase transformation for phases that differ only in their equilibrium

More information

Crystals in and out of equilibrium

Crystals in and out of equilibrium Crystals in and out of equilibrium Yukio Saito Dept. Physics, Keio Univ., Japan 2015.9 Porquerolle, France 1.Introduction Technical innovation often requires new materials. Purified Si Semiconductor Industry,

More information

Transactions on Modelling and Simulation vol 17, 1997 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 17, 1997 WIT Press,   ISSN X Thermodynamieally consistent phase-field models of solidification processes C. Charach*, P.C. Fife* "CEEP, J. Blaustein Institute, Ben Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer, 84990,

More information

Experimental investigation of free dendritic growth of succinonitrile-acetone alloys

Experimental investigation of free dendritic growth of succinonitrile-acetone alloys University of Iowa Iowa Research Online Theses and Dissertations Fall 29 Experimental investigation of free dendritic growth of succinonitrile-acetone alloys Antonio Jose Melendez Ramirez University of

More information

Growing Microstructures using Phase-Field Crystal

Growing Microstructures using Phase-Field Crystal Growing Microstructures using Phase-Field Crystal Stefan Bringuier 1 1 University of Arizona, Department of Materials Science and Engineering December 16, 2013 1 Overview The phase-field (PF) and phase-field-crystal

More information

Contact melting and the structure of binary eutectic near the eutectic point

Contact melting and the structure of binary eutectic near the eutectic point Contact melting and the structure of binary eutectic near the eutectic point 1, ystrenko O.V. and Kartuzov V.V. 1 1 Frantsevich Institute for material sсience problems, Kiev, Ukraine, ogolyubov Institute

More information

Nanowires and nanorods

Nanowires and nanorods Nanowires and nanorods One-dimensional structures have been called in different ways: nanowires, nanorod, fibers of fibrils, whiskers, etc. These structures have a nanometer size in one of the dimensions,

More information

Phase field approach to heterogeneous crystal nucleation in alloys

Phase field approach to heterogeneous crystal nucleation in alloys Phase field approach to heterogeneous crystal nucleation in alloys James A. Warren, 1 Tamás Pusztai, 2 László Környei, 2 and László Gránásy 3 1 Metallurgy Division, National Institute of Standards and

More information

Final Morphology of Complex Materials

Final Morphology of Complex Materials 120314 Final Morphology of Complex Materials 1) Proteins are the prototypical model for hierarchy. a) Give the generic chemical structure for an amino acid and a protein molecule (a tripeptide). b) Label

More information

Chapter 2. Block copolymers. a b c

Chapter 2. Block copolymers. a b c Chapter 2 Block copolymers In this thesis, the lamellar orientation in thin films of a symmetric diblock copolymer polystyrene-polymethylmethacylate P(S-b-MMA) under competing effects of surface interactions

More information

FINITE ELEMENT METHOD FOR CONSERVED PHASE FIELD MODELS: SOLID STATE PHASE TRANSFORMATIONS MOHSEN ASLE ZAEEM

FINITE ELEMENT METHOD FOR CONSERVED PHASE FIELD MODELS: SOLID STATE PHASE TRANSFORMATIONS MOHSEN ASLE ZAEEM FINITE ELEMENT METHOD FOR CONSERVED PHASE FIELD MODELS: SOLID STATE PHASE TRANSFORMATIONS By MOHSEN ASLE ZAEEM A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR

More information

Phase-field modeling of nanoscale island dynamics

Phase-field modeling of nanoscale island dynamics Title of Publication Edited by TMS (The Minerals, Metals & Materials Society), Year Phase-field modeling of nanoscale island dynamics Zhengzheng Hu, Shuwang Li, John Lowengrub, Steven Wise 2, Axel Voigt

More information

Equilibrium Shapes for Crystalline Solids (Wulff Shapes for Dummies)

Equilibrium Shapes for Crystalline Solids (Wulff Shapes for Dummies) Equilibrium Shapes for Crystalline Solids (Wulff Shapes for Dummies) J.. Dantzig bstract The determination of the shape of a solid crystal in equilibrium with its melt was first described by Wulff using

More information

TOPIC 7. Polymeric materials

TOPIC 7. Polymeric materials Universidad Carlos III de Madrid www.uc3m.es MATERIALS SCIENCE AND ENGINEERING TOPIC 7. Polymeric materials 1. Introduction Definition General characteristics Historic introduction Polymers: Examples 2.

More information

ELONGATIONAL VISCOSITY AND POLYMER FOAMING PROCESS. Αλέξανδρος Δ. Γκότσης Πολυτεχνείο Κρήτης Χανιά

ELONGATIONAL VISCOSITY AND POLYMER FOAMING PROCESS. Αλέξανδρος Δ. Γκότσης Πολυτεχνείο Κρήτης Χανιά 10 ΠΑΝΕΛΛΗΝΙΟ ΕΠΙΣΤΗΜΟΝΙΚΟ ΣΥΝΕΔΡΙΟ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ, ΠΑΤΡΑ, 4-6 ΙΟΥΝΙΟΥ, 2015. ELONGATIONAL VISCOSITY AND POLYMER FOAMING PROCESS Αλέξανδρος Δ. Γκότσης Πολυτεχνείο Κρήτης 73100 Χανιά ABSTRACT The manufacturing

More information

Phase-field crystal modeling and classical density functional theory of freezing

Phase-field crystal modeling and classical density functional theory of freezing Phase-field crystal modeling and classical density functional theory of freezing K. R. Elder, 1 Nikolas Provatas, 2 Joel Berry, 1,3 Peter Stefanovic, 2 and Martin Grant 3 1 Department of Physics, Oakland

More information

Anisotropic multi-phase-field model: Interfaces and junctions

Anisotropic multi-phase-field model: Interfaces and junctions First published in: PHYSICAL REVIEW E VOLUME 57, UMBER 3 MARCH 1998 Anisotropic multi-phase-field model: Interfaces and junctions B. estler 1 and A. A. Wheeler 2 1 Foundry Institute, University of Aachen,

More information

CH 2 = CH - CH =CH 2

CH 2 = CH - CH =CH 2 MULTIPLE CHOICE QUESTIONS 1. Styrene is almost a unique monomer, in that it can be polymerized by practically all methods of chain polymerization. A. Free radical B. Anionic C. Cationic D. Co-ordination

More information

A sharp diffuse interface tracking method for approximating evolving interfaces

A sharp diffuse interface tracking method for approximating evolving interfaces A sharp diffuse interface tracking method for approximating evolving interfaces Vanessa Styles and Charlie Elliott University of Sussex Overview Introduction Phase field models Double well and double obstacle

More information

PHASE-FIELD MODELS FOR MICROSTRUCTURE EVOLUTION

PHASE-FIELD MODELS FOR MICROSTRUCTURE EVOLUTION Annu. Rev. Mater. Res. 2002. 32:113 40 doi: 10.1146/annurev.matsci.32.112001.132041 Copyright c 2002 by Annual Reviews. All rights reserved PHASE-FIELD MODELS FOR MICROSTRUCTURE EVOLUTION Long-Qing Chen

More information

Dendritic Growth with Fluid Flow in Pure Materials

Dendritic Growth with Fluid Flow in Pure Materials Dendritic Growth with Fluid Flow in Pure Materials Jun-Ho Jeong 1, Jonathan A. Dantzig 1 and Nigel Goldenfeld 2 1 Department of Mechanical and Industrial Engineering 2 Department of Physics University

More information

Effect of crystallinity on properties. Melting temperature. Melting temperature. Melting temperature. Why?

Effect of crystallinity on properties. Melting temperature. Melting temperature. Melting temperature. Why? Effect of crystallinity on properties The morphology of most polymers is semi-crystalline. That is, they form mixtures of small crystals and amorphous material and melt over a range of temperature instead

More information

Effect of Temperature on Materials. June 20, Kamran M. Nemati. Phase Diagram

Effect of Temperature on Materials. June 20, Kamran M. Nemati. Phase Diagram Effect of Temperature on Materials June 20, 2008 Kamran M. Nemati Phase Diagram Objective Phase diagrams are graphical representations of what phases are present in a material-system at various temperatures,

More information

Solidification of Fluids Lecture Notes

Solidification of Fluids Lecture Notes Solidification of Fluids Lecture Notes Colin Meyer Contents 1 Lecture on 17 January 213 2 11 Heat Transfer 2 111 Derivation of the Advection-Diffusion Equation 2 2 Lecture on 29 January 213 3 21 Conservation

More information

Polymer Injection Molding: Flow-induced Crystallization

Polymer Injection Molding: Flow-induced Crystallization Polymer Injection Molding: Flow-induced Crystallization A model for the description of the combined process of quiescent and flow-induced crystallization of polymers is presented. With such a model it

More information

Surface Energy, Surface Tension & Shape of Crystals

Surface Energy, Surface Tension & Shape of Crystals Surface Energy, Surface Tension & Shape of Crystals Shape of Crystals Let us start with a few observations: Crystals (which are well grown ) have facets Under certain conditions of growth we may observe

More information

Fig Schematic (simplified) representation of twisting lamella radiating out from the centre of a banded spherulite.

Fig Schematic (simplified) representation of twisting lamella radiating out from the centre of a banded spherulite. Fig. 6.16. Polarized photomicrographs of different linear polyethylenes showing (a) non-banded spherulites; (b) banded spherulites (from ref. 114 with permission from Elsevier, UK); (c) axialites. Scale

More information

NMR Spectroscopy of Polymers

NMR Spectroscopy of Polymers r NMR Spectroscopy of Polymers Edited by ROGER N. IBBETT Courtaulds Research and Technology Coventry BLACKIE ACADEMIC & PROFESSIONAL An Imprint of Chapman & Hall London Glasgow New York Tokyo Melbourne

More information

1.1.6 Island Shapes (see Michely / Krug book, Chapter 3)

1.1.6 Island Shapes (see Michely / Krug book, Chapter 3) 1 1.1.6 Island Shapes (see Michely / Krug book, Chapter 3) The last section was concerned with nucleation, which determines the number density of islands. This section is concerned with their shape. The

More information

Institute of Solid State Physics of RAS, Chernogolovka, Moscow district, , Russia

Institute of Solid State Physics of RAS, Chernogolovka, Moscow district, , Russia Cryst. Res. Technol. 4, No. 4, 35 33 (7) / DOI./crat.683 Mathematical modeling of the multi-run process of crystal pulling from the melt by EFG (Stepanov) technique in dependence on the angle of inclination

More information

Phase-field modeling of the dendrite orientation transition in Al-Zn alloys

Phase-field modeling of the dendrite orientation transition in Al-Zn alloys Phase-field modeling of the dendrite orientation transition in Al-Zn alloys Jonathan Friedli, Paolo Di Napoli, Michel Rappaz and Jonathan A. Dantzig Laboratoire de simulation des matériaux, Institut des

More information

Lecture 5: Diffusion Controlled Growth

Lecture 5: Diffusion Controlled Growth Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP6, Kinetics and Microstructure Modelling, H. K.. H. Bhadeshia Lecture 5: iffusion Controlled Growth Rate Controlling Processes

More information

Abstract. The phase field model is used to compute numerically the temporal evolution

Abstract. The phase field model is used to compute numerically the temporal evolution Computations of dendrites in 3-D and comparison with microgravity experiments Y. B. Altundas and G. Caginalp University of Pittsburgh Pittsburgh, PA 15260 ybast@pitt.edu caginalp@pitt.edu Abstract. The

More information

hydrate systems Gránásy Research Institute for Solid State Physics & Optics H-1525 Budapest, POB 49, Hungary László

hydrate systems Gránásy Research Institute for Solid State Physics & Optics H-1525 Budapest, POB 49, Hungary László Phase field theory of crystal nucleation: Application to the hard-sphere and CO 2 Bjørn Kvamme Department of Physics, University of Bergen Allégaten 55, N-5007 N Bergen, Norway László Gránásy Research

More information

Faculty of Engineering

Faculty of Engineering Faculty of Enineerin Can the introduction of cross terms, from a eneralised variational procedure in the phase-field modellin of alloy solidification, act as a natural anti-solute trappin current? Dr Peter

More information

The morphology of PVDF/1Gra and PVDF/1IL/1Gra was investigated by field emission scanning

The morphology of PVDF/1Gra and PVDF/1IL/1Gra was investigated by field emission scanning Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 1. Morphology The morphology of PVDF/1Gra and PVDF/1IL/1Gra was investigated by field emission

More information

Phase-Field Simulation of the Effect of Elastic Inhomogeneity on Microstructure Evolution in Ni-Based Superalloys

Phase-Field Simulation of the Effect of Elastic Inhomogeneity on Microstructure Evolution in Ni-Based Superalloys Materials Transactions, Vol. 50, No. 4 (2009) pp. 744 to 748 #2009 The Japan Institute of Metals Phase-Field Simulation of the Effect of Elastic Inhomogeneity on Microstructure Evolution in Ni-Based Superalloys

More information

Computing phase diagrams of model liquids & self-assembly of (bio)membranes

Computing phase diagrams of model liquids & self-assembly of (bio)membranes Computing phase diagrams of model liquids & self-assembly of (bio)membranes Ulf Rørbæk Pedersen (ulf@urp.dk) Crystal structure of a simplistic model of a molecule. What is the melting temperature? A typical

More information

Supplementary table I. Table of contact angles of the different solutions on the surfaces used here. Supplementary Notes

Supplementary table I. Table of contact angles of the different solutions on the surfaces used here. Supplementary Notes 1 Supplementary Figure 1. Sketch of the experimental setup (not to scale) : it consists of a thin mylar sheet (0, 02 4 3cm 3 ) held fixed vertically. The spacing y 0 between the glass plate and the upper

More information

Modeling of Multicomponent Reactive Systems

Modeling of Multicomponent Reactive Systems TECHNISCHE MECHANIK, 32, 2-5, (2012), 105 112 submitted: October 11, 2011 Modeling of Multicomponent Reactive Systems D. Anders, K. Weinberg In recent engineering applications reaction-diffusion systems

More information

Solid-State Dewetting: From Flat to Curved Substrates

Solid-State Dewetting: From Flat to Curved Substrates Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz, Prof. Wei Jiang and Dr. Quan Zhao IMS, 2 May, 2018 Wang Yan (CSRC) Solid-State Dewetting

More information

A Mixed Finite Element Formulation for Solving Phase Change Problems with Convection

A Mixed Finite Element Formulation for Solving Phase Change Problems with Convection A Mixed Finite Element Formulation for Solving Phase Change Problems with Convection Youssef Belhamadia 1, Abdoulaye S. Kane 2, and André Fortin 3 1 University of Alberta, Campus Saint-Jean and Department

More information

Kinetics. Rate of change in response to thermodynamic forces

Kinetics. Rate of change in response to thermodynamic forces Kinetics Rate of change in response to thermodynamic forces Deviation from local equilibrium continuous change T heat flow temperature changes µ atom flow composition changes Deviation from global equilibrium

More information

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore Mechanical properties of polymers: an overview Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore UGC-NRCM Summer School on Mechanical Property Characterization- June 2012 Overview of polymer

More information

arxiv:cond-mat/ v2 8 Jan 2004

arxiv:cond-mat/ v2 8 Jan 2004 On the Coalescence of Nanoscale Metal Clusters S. Hendy Applied Mathematics, Industrial Research Ltd, Lower Hutt, New Zealand S. A. Brown and M. Hyslop Nanostructure Engineering Science and Technology

More information

Effect of the anisotropic surface tension, crystallization kinetics, and heat diffusion on nonequilibrium growth of liquid crystals

Effect of the anisotropic surface tension, crystallization kinetics, and heat diffusion on nonequilibrium growth of liquid crystals PHYSICAL REVIEW E VOLUME 58, NUMBER 5 NOVEMBER 1998 Effect of the anisotropic surface tension, crystallization kinetics, and heat diffusion on nonequilibrium growth of liquid crystals T. Börzsönyi and

More information

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Mechanical Properties of Polymers Scope MSE 383, Unit 3-1 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Structure - mechanical properties relations Time-dependent mechanical

More information

Mass-Volume Relation. ( 3 π 2 ) ⅔ ħ 2 Z ρ. π G ρ 2 R 2 = ( 18 π ) ⅔ ħ 2 Z

Mass-Volume Relation. ( 3 π 2 ) ⅔ ħ 2 Z ρ. π G ρ 2 R 2 = ( 18 π ) ⅔ ħ 2 Z Mass-Volume Relation Chandrasekhar realized, that there has to be a maximum mass for a white dwarf Equating the central pressure estimate with the electron degeneracy pressure yields 2 3 π G ρ 2 R 2 =

More information

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials Chap. 2. Polymers 2.1. Introduction - Polymers: synthetic materials natural materials no gas phase, not simple liquid (much more viscous), not perfectly crystalline, etc 2.3. Polymer Chain Conformation

More information

Feedback control of unstable cellular solidification fronts

Feedback control of unstable cellular solidification fronts Feedback control of unstable cellular solidification fronts A. J. Pons, 1, * A. Karma, 1 S. Akamatsu, 2, M. Newey, 2 A. Pomerance, 2 H. Singer, 2, and W. Losert 2 1 Physics Department and Center for Interdisciplinary

More information

PROPERTIES OF POLYMERS

PROPERTIES OF POLYMERS PROPERTIES OF POLYMERS THEIR CORRELATION WITH CHEMICAL STRUCTURE; THEIR NUMERICAL ESTIMATION AND PREDICTION FROM ADDITIVE GROUP CONTRIBUTIONS Third, completely revised edition By D.W. VÄN KREVELEN Professor-Emeritus,

More information

Nucleation versus spinodal

Nucleation versus spinodal Nucleation versus spinodal In this animation, we show two different mechanisms of phase separation Course Name: Phase transformations and heat treatment Authors M P Gururajan Learning Objectives After

More information

A MOLECULAR DYNAMICS STUDY OF POLYMER/GRAPHENE NANOCOMPOSITES

A MOLECULAR DYNAMICS STUDY OF POLYMER/GRAPHENE NANOCOMPOSITES A MOLECULAR DYNAMICS STUDY OF POLYMER/GRAPHENE NANOCOMPOSITES Anastassia N. Rissanou b,c*, Vagelis Harmandaris a,b,c* a Department of Applied Mathematics, University of Crete, GR-79, Heraklion, Crete,

More information

Supplementary Figures:

Supplementary Figures: Supplementary Figures: dcdtbt vibration spectrum: Ground state blue vs Cation state red Intensity a.u. 1000 1100 1200 1300 1400 1500 1600 1700 Frequency cm^1 dcdtbt vibration spectrum: Ground state blue

More information

The Influence of Magnetic Order to Crystal Nucleation

The Influence of Magnetic Order to Crystal Nucleation Sino-German Workshop on EPM, Shanghai University October 11 th -1 th, 004 The Influence of Magnetic Order to Crystal Nucleation Sven Reutzel 1,, Dirk Holland-Moritz, Matthias Kolbe, Dieter M. Herlach 1

More information

Diameter- and Loading Mode Effects of Modulus in ZnO Nanowires

Diameter- and Loading Mode Effects of Modulus in ZnO Nanowires Diameter- and Loading Mode Effects of Modulus in ZnO Nanowires In Situ Measurements & Theoretical Understanding Mo-rigen H, CQ Chen, Y Shi, YS Zhang, W Zhou, JW Chen, YJ Yan, J Zhu* Beijing National Center

More information

Thermal Diffusivity of Plastic

Thermal Diffusivity of Plastic Thermal Diffusivity of Plastic School of Physics and Astronomy University of Manchester Amir El-hamdy Sohail Mahmood November 19, 2015 Date Performed: October 6-13, 2015 Demonstrator: Henry Cox Abstract

More information

Breakdown of classical nucleation theory in nucleation kinetics

Breakdown of classical nucleation theory in nucleation kinetics Chapter 6 Breakdown of classical nucleation theory in nucleation kinetics In this chapter we present results of a study of nucleation of nematic droplets from the metastable isotropic phase. To the best

More information

Introduction to X-ray and neutron scattering

Introduction to X-ray and neutron scattering UNESCO/IUPAC Postgraduate Course in Polymer Science Lecture: Introduction to X-ray and neutron scattering Zhigunov Alexander Institute of Macromolecular Chemistry ASCR, Heyrovsky sq., Prague -16 06 http://www.imc.cas.cz/unesco/index.html

More information

MULTISCALE MODELING OF SOLIDIFICATION: PHASE-FIELD METHODS TO ADAPTIVE MESH REFINEMENT

MULTISCALE MODELING OF SOLIDIFICATION: PHASE-FIELD METHODS TO ADAPTIVE MESH REFINEMENT International Journal of Modern Physics B Vol. 19, No. 31 (2005) 4525 4565 c World Scientific Publishing Company20 December 2005 MULTISCALE MODELING OF SOLIDIFICATION: PHASE-FIELD METHODS TO ADAPTIVE MESH

More information

Mush liquid interfaces with cross flow

Mush liquid interfaces with cross flow Mush liquid interfaces with cross flow Devin Conroy March 15, 27 1 Introduction The solidification of a binary melt growing into a supercooled region may lead to the formation of a mushy layer as a result

More information

PHASE-FIELD MODELLING OF NONEQUILIBRIUM PARTITIONING DURING RAPID SOLIDIFICATION IN A NON-DILUTE BINARY ALLOY. Denis Danilov, Britta Nestler

PHASE-FIELD MODELLING OF NONEQUILIBRIUM PARTITIONING DURING RAPID SOLIDIFICATION IN A NON-DILUTE BINARY ALLOY. Denis Danilov, Britta Nestler First published in: DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Volume 15, Number 4, August 2006 pp. 1035 1047 PHASE-FIELD MODELLING OF NONEQUILIBRIUM PARTITIONING DURING

More information

Numerical Solution of Integral Equations in Solidification and Melting with Spherical Symmetry

Numerical Solution of Integral Equations in Solidification and Melting with Spherical Symmetry Numerical Solution of Integral Equations in Solidification and Melting with Spherical Symmetry V. S. Ajaev and J. Tausch 2 Southern Methodist University ajaev@smu.edu 2 Southern Methodist University tausch@smu.edu

More information

arxiv: v1 [cond-mat.mtrl-sci] 6 Feb 2012

arxiv: v1 [cond-mat.mtrl-sci] 6 Feb 2012 Numerical computations of facetted pattern formation in snow crystal growth John W. Barrett a, Harald Garcke b,, Robert Nürnberg a a Department of Mathematics, Imperial College London, London SW7 2AZ,

More information

AVAZ and VVAZ practical analysis to estimate anisotropic properties

AVAZ and VVAZ practical analysis to estimate anisotropic properties AVAZ and VVAZ practical analysis to estimate anisotropic properties Yexin Liu*, SoftMirrors Ltd., Calgary, Alberta, Canada yexinliu@softmirrors.com Summary Seismic anisotropic properties, such as orientation

More information

3.012 PS Issued: Fall 2004 Due: pm

3.012 PS Issued: Fall 2004 Due: pm 3.012 PS 2 3.012 Issued: 09.15.04 Fall 2004 Due: 09.22.04 5pm Graded problems: 1. In discussing coordination numbers and deriving the permitted range of radius ratio, R A / R B, allowed for each ( where

More information

PHASE FIELD MODELS, ADAPTIVE MESH REFINEMENT AND LEVEL SETS FOR SOLIDIFICATION PROBLEMS

PHASE FIELD MODELS, ADAPTIVE MESH REFINEMENT AND LEVEL SETS FOR SOLIDIFICATION PROBLEMS PHASE FIELD MODELS, ADAPTIVE MESH REFINEMENT AND LEVEL SETS FOR SOLIDIFICATION PROBLEMS Department of Physics University of Illinois at Urbana-Champaign COWORKERS AND COLLABORATORS Phase-field calculations

More information

INTERFACE THERMODYNAMICS WITH APPLICATIONS TO ATOMISTIC SIMULATIONS

INTERFACE THERMODYNAMICS WITH APPLICATIONS TO ATOMISTIC SIMULATIONS INTERFACE THERMODYNAMICS WITH APPLICATIONS TO ATOMISTIC SIMULATIONS by Timofey Frolov A Dissertation Submitted to the Graduate Faculty of George Mason University in Partial Fulfillment of The Requirements

More information

Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS)

Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS) Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS) A flight project in the Microgravity Materials Science Program 2002 Microgravity Materials Science Meeting June 25, 2002 John A. Pojman

More information

A new model of spongy icing from first principles

A new model of spongy icing from first principles JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. D21, 4563, doi:10.1029/2001jd001223, 2002 A new model of spongy icing from first principles R. Z. Blackmore Department of Natural Sciences, King s University

More information

Structuring of hydrophobic and hydrophilic polymers at interfaces Stephen Donaldson ChE 210D Final Project Abstract

Structuring of hydrophobic and hydrophilic polymers at interfaces Stephen Donaldson ChE 210D Final Project Abstract Structuring of hydrophobic and hydrophilic polymers at interfaces Stephen Donaldson ChE 210D Final Project Abstract In this work, a simplified Lennard-Jones (LJ) sphere model is used to simulate the aggregation,

More information

MECH 375, Heat Transfer Handout #5: Unsteady Conduction

MECH 375, Heat Transfer Handout #5: Unsteady Conduction 1 MECH 375, Heat Transfer Handout #5: Unsteady Conduction Amir Maleki, Fall 2018 2 T H I S PA P E R P R O P O S E D A C A N C E R T R E AT M E N T T H AT U S E S N A N O PA R T I - C L E S W I T H T U

More information

Influence of Calcium Carbonate Nanoparticles on the Crystallization of Olypropylene

Influence of Calcium Carbonate Nanoparticles on the Crystallization of Olypropylene Materials Research, Vol. 12, No. 4, 523-527, 2009 2009 Influence of Calcium Carbonate Nanoparticles on the Crystallization of Olypropylene Daniel Eiras a *, Luiz Antonio Pessan b * a Programa de Pós-Graduação

More information

Nonlinear morphological control of growing crystals

Nonlinear morphological control of growing crystals Physica D 208 (2005) 209 219 Nonlinear morphological control of growing crystals Shuwang Li a,b, John S. Lowengrub b,, Perry H. Leo a a Department of Aerospace Engineering and Mechanics, University of

More information

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion.

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion. Chap. 3. Colloids 3.1. Introduction - Simple definition of a colloid: a macroscopically heterogeneous system where one component has dimensions in between molecules and macroscopic particles like sand

More information

Shear suppression of crystal nucleation in a low molar mass compound/polymer solution

Shear suppression of crystal nucleation in a low molar mass compound/polymer solution Shear suppression of crystal nucleation in a low molar mass compound/polymer solution Article Published Version Creative Commons: Attribution 4.0 (CC BY) Open Access Mitchell, G., Wangsoub, S., Davis,

More information

Case study: molecular dynamics of solvent diffusion in polymers

Case study: molecular dynamics of solvent diffusion in polymers Course MP3 Lecture 11 29/11/2006 Case study: molecular dynamics of solvent diffusion in polymers A real-life research example to illustrate the use of molecular dynamics Dr James Elliott 11.1 Research

More information

Chapter 5. Effects of Photonic Crystal Band Gap on Rotation and Deformation of Hollow Te Rods in Triangular Lattice

Chapter 5. Effects of Photonic Crystal Band Gap on Rotation and Deformation of Hollow Te Rods in Triangular Lattice Chapter 5 Effects of Photonic Crystal Band Gap on Rotation and Deformation of Hollow Te Rods in Triangular Lattice In chapter 3 and 4, we have demonstrated that the deformed rods, rotational rods and perturbation

More information

Air stability. About. Precipitation. air in unstable equilibrium will move--up/down Fig. 5-1, p.112. Adiabatic = w/ no exchange of heat from outside!

Air stability. About. Precipitation. air in unstable equilibrium will move--up/down Fig. 5-1, p.112. Adiabatic = w/ no exchange of heat from outside! Air stability About clouds Precipitation A mass of moist, stable air gliding up and over these mountains condenses into lenticular clouds. Fig. 5-CO, p.110 air in unstable equilibrium will move--up/down

More information