OSCILLATION CRITERIA FOR THIRD ORDER NEUTRAL NONLINEAR DYNAMIC EQUATIONS WITH DISTRIBUTED DEVIATING ARGUMENTS ON TIME SCALES. 1.

Size: px
Start display at page:

Download "OSCILLATION CRITERIA FOR THIRD ORDER NEUTRAL NONLINEAR DYNAMIC EQUATIONS WITH DISTRIBUTED DEVIATING ARGUMENTS ON TIME SCALES. 1."

Transcription

1 t m Mthemticl Pblictions DOI: /tmmp Ttr Mt. Mth. Pbl ), OSCILLATION CRITERIA FOR THIRD ORDER NEUTRAL NONLINEAR DYNAMIC EQUATIONS WITH DISTRIBUTED DEVIATING ARGUMENTS ON TIME SCALES Ther S. Hssn Sid R. Grce ABSTRACT. Some new oscilltion criteri for third order netrl nonliner dynmic eqtions with distribted deviting rgments on time scles re estblished. The obtined reslts extend, improve nd correlte mny known oscilltion reslts for third order dynmic eqtions. 1. Introdction This pper is concerned with the oscilltory behvior of third order netrl nonliner dynmic eqtions with distribted deviting rgments on time scles d ΔΔ αδ t) xt)+ pt, θ)x ht, θ) ) b Δθ + qt, τ)x λ gt, τ) ) Δτ =0 1.1) c nd t) x β h 1 t) ) rt)x γ h 2 t) )) ΔΔ ) α) Δ + b qt, τ)x λ gt, τ) ) Δτ =0, 1.2) on n rbitrry time scle T R with sp T =, 0 <<bnd 0 <c<d. We ssme tht: i) α, β, γ nd λ re the rtios of positive odd integers; c 2014 Mthemticl Institte, Slovk Acdemy of Sciences M t h e m t i c s Sbject Clssifiction: 34C10, 34C15, 34N05, 34K11, 39A10. K e y w o r d s: oscilltion, third order, netrl, dynmic eqtions, time scles. 141

2 TAHER S. HASSAN SAID R. GRACE ii), r : T [0, ), t) > 0 re rel vled, rd-continos fnctions nd t 0 s)δs =, t 0 T; 1.3) iii) q : T [, b] [0, ) ndp : T [c, d] [0, ) re rel vled, rd-continos fnctions; iv) g : T [, b] T nd h : T [c, d] T re nonincresing with respect to second vrible, gt, τ) t nd lim gt, τ) =, τ [, b], t nd ht, θ) t nd lim ht, θ) =, θ [c, d]; t v) h i : T T for i = 1, 2, re rel vled, rd-continos nondecresing fnctions sch tht h i t) t for t t 0 T nd lim t h i t) = for i =1, 2. We recll tht soltion x of the eqtion 1.1) respectively the eqtion 1.2)) is sid to be nonoscilltory if there exists t 0 T sch tht xt)x σt) ) > 0 for ll t [t 0, ) T ; otherwise, it is sid to be oscilltory. The eqtion 1.1) respectively the eqtion 1.2)) is sid to be oscilltory if ll its extendible soltions re oscilltory. Netrl differentil eqtions pper in modelling of the networks contining lossless trnsmission lines, in the stdy of vibrting msses ttched to n elstic br, s the Eler eqtion in some vritionl problems. In the theory of tomtic control nd in nero-mechmil systems in which inerti plys n importnt role; see [11]. In recent yers, there hs been mch reserch ctivity concerning the oscilltion theory nd pplictions of dynmic eqtions, see [1] [10], [13] [18] nd the references contined therein. Prticlrly, the stdy content of oscilltory criteri of first nd second dynmic eqtions on time scles is rich. In contrst, the stdy of oscilltion criteri of third order dynmic eqtions is reltively less. Some interesting reslts hve been obtined concerning the oscilltory nd symptotic behvior of some specil cses of the eqtions 1.1) nd 1.2); see [9], [12]. To the best of or knowledge, the oscilltory behvior of 1.1) nd 1.2) hve not been stdied p to now. The prpose of this pper is to estblish some new criteri for the eqtions 1.1) nd 1.2) by sing the pproch to redce the problem is sch wy tht specific oscilltion reslts for first nd second order dynmic eqtions cn be 142

3 THIRD ORDER NONLINEAR OSCILLATION dpted for the third order cse. In Section 2, we investigte the oscilltory behvior of the eqtion 1.1) while Section 3 is devoted to stdy of oscilltory properties of the eqtion 1.2). The obtined reslts extend, improve nd correlte mny of the known oscilltion reslts ppered in the litertre tht del with specil cses of the eqtions 1.1) nd 1.2). 2. Oscilltion of the eqtion 1.1) In this section we begin with the following lemms tht re essentil in the proofs of or reslts. For simplicity in wht follows, whenever we write t we men t [, ) T. It will be convenient to set yt) :=xt)+ d c pt, θ)x ht, θ) ) Δθ. 2.1) Eqtion 1.1) cn be written s t) y ΔΔ t) ) ) b α Δ + qt, τ)x λ gt, τ) ) Δτ =0. 2.2) Lemm 2.1. Let the condition 1.3) hold nd ssme tht x is n eventlly positive soltion of the eqtion 1.1). Then there re only two possible cses for the behvior of y for lrge t t 0 : I) yt) > 0, y Δ t) > 0, y ΔΔ t) > 0nd t) y ΔΔ t) ) α) Δ 0; II) yt) > 0, y Δ t) < 0, y ΔΔ t) > 0nd t) y ΔΔ t) ) α) Δ 0. Lemm 2.2. Let condition 1.3) hold nd ssme tht x is n eventlly positive soltion of eqtion 1.1) nd the corresponding y stisfies Cse I) of Lemm 2.1. If d 0 P t) := pt, θ)δθ p < 1, 2.3) then c xt) 1 p )yt), eventlly. 2.4) Proof. Since x is n eventlly positive soltion of the eqtion 1.1) nd the corresponding y is stisfying Cse I) of Lemm 2.1. Then there exists t 0 T sch tht xt) > 0, x ht, θ) ) > 0 nd y Δ t) > 0 for t nd θ [c, d]. 143

4 TAHER S. HASSAN SAID R. GRACE Now, d xt) = yt) pt, θ)x ht, θ) ) Δθ c d yt) pt, θ)y ht, θ) ) Δθ c yt) = 1 d c d c pt, θ)δθ y t) pt, θ)δθ y t) for t. This completes the proof. Lemm 2.3. Let the condition 1.3) hold nd ssme tht x is n eventlly positive soltion of the eqtion 1.1) nd the corresponding y stisfies Cse I) of Lemm 2.1. Then for t T yt) t) y ΔΔ t) ) ) α t s)δsδ. 2.5) Proof. Since x is n eventlly positive soltion of the eqtion 1.1) nd the corresponding y is stisfying Cse I) of Lemm 2.1. Then there exists t 0 T sch tht xt) > 0 nd x ht, θ) ) > 0 for t nd θ [c, d]. By sing the fct tht t) y ΔΔ t) ) α is decresing for t t1,wehve y Δ t) y Δ t) y Δ ) = s) y ΔΔ s) ) ) α s)δs t) y ΔΔ t) ) ) α s)δs. Integrting this ineqlity from to t, we obtin the desired reslt. 144

5 Let Qt) := b THIRD ORDER NONLINEAR OSCILLATION qt, τ)δτ, g 1 t) :=gt, ) nd g 2 t) :=gt, b). 2.6) In the following reslt, we employ the following xiliry eqtion g 2 t) λ z Δ t)+1 p ) λ Qt) z λ/α g 2 t) ) =0 2.7) for t, [t 0, ) T. s)δsδ Lemm 2.4. Let the conditions 1.3) nd 2.3) hold nd the eqtion 2.7) be oscilltory, then the eqtion 1.1) hs no eventlly positive soltion x sch tht y defined by 2.1) stisfies Cse I) of Lemm 2.1. Proof. Let t 0 T be sfficiently lrge sch tht xt) > 0, x ht, θ) ) > 0nd x gt, τ) ) > 0 for t t 0, θ [c, d] ndτ [, b] nd ssme tht y stisfies Cse I) of Lemm 2.1. Using 2.4) nd 2.5) in the eqtion 2.2), we get g 2 t) λ z Δ t)+1 p ) λ Qt) z λ/α g 2 t) ) 0, 2.8) s)δsδ for [t 0, ) T,wherezt) :=t) y ΔΔ t) ) α > 0. Integrting 2.8) from t to t nd letting,wehve zt) G t, zt) ), where G t, zt) ) g 2 v) λ := 1 p ) λ Qv) z λ/α g 2 v) ) Δv. t s)δsδ Now, we define seqence of sccessive pproximtions { w j t) } s follows: w 0 t) :=zt), w j+1 t) :=G t, w j t) ), j =0, 1, 2,... It is esy to show tht 0 <w j t) zt) nd w j+1 t) w j t), j =0, 1, 2,... Then, the seqence { w j t) } is nonincresing nd bonded for ech t. This mens tht we my define wt) := lim j w j t) 0. Since 0 wt) w j t) zt) for ll j

6 TAHER S. HASSAN SAID R. GRACE By the Lebesge s dominted convergence theorem on time scle, one cn esily find wt) =G t, wt) ). Therefore, g 2 t) λ w Δ t) = 1 p ) λ Qt) w λ/α g 2 t) ). s)δsδ Hence the eqtion 2.7) hs positive soltion wt). This completes the proof. In the cse when λ = α in the ineqlity 2.8), we stte the following lemm. Lemm 2.5 [1]). If λ = α, lim sp t { sp ξe ξη t, g2 t) )} < 1, ξ E where E := { ξ : ξ>0, 1 ξηt)μt) > 0 }, nd g 2 t) α ηt) :=1 p ) α Qt) s)δsδ, then the ineqlity 2.8) hs no eventlly positive soltion. Lemm 2.6. Let the condition 1.3) hold nd ssme tht xt) is n eventlly positive soltion the eqtion 1.1) nd the corresponding y stisfies Cse I) of Lemm 2.1. Then there exists [t 0, ) T sch tht yt) y Δ t)at, ) for t, ) T, 2.9) where t At, ):= 1 s)δs Δ. s)δs Proof. Let t 0 T be sfficiently lrge sch tht xt) > 0, x ht, θ) ) > 0nd x gt, τ) ) > 0 for t t 0, θ [c, d] ndτ [, b] nd ssme tht y stisfies Cse I) of Lemm 2.1 for t t 0. From Lemm 2.3, we hve y Δ t) Note tht [ y Δ t) s)δs 146 t) y ΔΔ t) ) ) α t s)δs for t t 0. ] Δ = t) [ t) y ΔΔ t) ) α) s)δs y Δ t) ] s)δs σt) s)δs,

7 THIRD ORDER NONLINEAR OSCILLATION we hve [ ] Δ y Δ t) < 0 s)δs for t, ) T. Then yt) yt) y ) y Δ ) = s)δs Δ s)δs y Δ t) s)δs = y Δ t)at, ). This completes the proof. s)δsδ For g 2 t) >t 0,weset Qt) :=1 p ) λ A λ ) g 2 t),t 0 Qt). The hypotheses of next two lemms inclde knowledge of the behvior of the soltion of the second order dynmic eqtion t) z Δ t) ) ) α Δ + λ Qt)z g 2 t) ) =0, 2.10) Lemm 2.7. If the conditions 1.3) nd 2.3) hold nd the eqtion 2.10) is oscilltory, then the eqtion 1.1) hs no eventlly positive soltion x sch tht y is defined by 2.1) which stisfies Cse I) of Lemm 2.1. Proof. Let xt) be n eventlly positive soltion of the eqtion 1.1), sy xt) > 0ndx ht, θ) ) > 0ndx gt, τ) ) > 0 for t for some [t 0, ) T, θ [c, d] ndτ [, b] nd ssme tht y stisfies Cse I) of Lemm 2.1. From 2.9), there exist constnt k 1,0<k 1 < 1ndt 2 > sch tht yt) At, )y Δ t) for t t ) From 2.4), we see tht xt) 1 p ) yt) for t t 3, 2.12) for some t 3 t 2. Hence, there exists t 4 t 3 sch tht y g 2 t) ) A ) g 2 t), y Δ g 2 t) ) for t t ) Using 2.12) nd 2.13) in the eqtion 2.2) we hve t) z Δ t) ) ) α Δ + λ Qt)z g 2 t) ) 0, 2.14) 147

8 TAHER S. HASSAN SAID R. GRACE for t t 4,wherezt) :=y Δ t) > 0. Integrting 2.14) from t to t t 4 nd letting,weobtin z Δ t) 1 Qs)z λ g 2 s) ) Δs. 2.15) t) Integrting 2.15) from t 4 to t t 4,weobtin zt) zt 4 )+ 1 Qs)z λ g 2 s) ) Δs ) t 4 Next, we define seqence {w m t)} m N0 by w 0 t) =zt), w m+1 t) =zt 4 )+ 1 Qs)z λ g 2 s) ) Δs ) t 4 t Δ. Δ, m N 0. It is esy to check by indction tht {w m t)} is well-defined decresing seqence stisfying zt 4 ) w m t) zt) for t t 4 nd m N 0. Ths, there exists fnction w on [t 4, ) T sch tht lim w mt) =wt) nd zt 4 ) wt) zt). m By the Lebesge s dominted convergence theorem on time scle, it follows tht wt) =zt 4 )+ 1 Qs)w λ g 2 s) ) Δs Δ. 2.16) ) t 4 Differentiting 2.16) twice, we conclde tht w is nonoscilltory soltion of the eqtion 2.10) with the desired property. This completes the proof of the lemm. The following lemm mkes se of the xiliry eqtion 1 v Δ t) ) ) Δ α +1 p ) λ Qt)v λ g Ā α 2 t) ) = 0 for t t 2, 2.17) t) where Āt) := s)δs for sfficiently lrge t 2, ) T for some [t 0, ) T. Lemm 2.8. If the conditions 1.3) nd 2.3) hold nd the eqtion 2.17) is oscilltory, then the conclsion of Lemm 2.7 holds. 148

9 THIRD ORDER NONLINEAR OSCILLATION Proof. Let xt) be n eventlly positive soltion of the eqtion 1.1), sy xt) > 0ndx ht, θ) ) > 0ndx gt, τ) ) > 0 for t for some [t 0, ) T, θ [c, d] ndτ [, b] ndlety stisfy Cse I) of Lemm 2.1. Hence y Δ t) =y Δ )+ s)y ΔΔ s) s) Δs t)y ΔΔ t) Δs s) )Δ. 2.18) = t)y ΔΔ t)āt) for t. An integrtion yields yt) y )+ Ā) )y ΔΔ Using 2.4) in the eqtion 2.2), integrting from to v nd letting v,wehve y ΔΔ 1 ) 1 p ) λ Qs)y λ g 2 s) ) Δs. 2.19) ) Sbstitting 2.19) into 2.18) gives yt) yt 2 )+ Ā) 1 p ) λ Qs)y λ g 2 s) ) Δs Δ Next we define the seqences {v m t)} m N0 by v 0 t) =yt), v m+1 t) =y )+ Ā) 1 p ) λ Qs)y λ g 2 s) ) Δs Δ, m N 0. The reminder of the proof is similr to the proof of Lemm 2.7 nd is omitted. Next, we present the following reslt. Lemm 2.9. Let the conditions 1.3) nd 2.3) hold nd ssme tht x is n eventlly positive soltion of the eqtion 1.1) nd the corresponding y stisfies Cse II) of Lemm 2.1. Then either 1 p ) xt) yt), 2.20) eventlly, where >1 is ny constnt with p <1 nd p is s in 2.3), or lim t xt) =0. 149

10 TAHER S. HASSAN SAID R. GRACE Proof. Pick t 0 T sch tht xt) > 0 nd x ht, θ) ) > 0 for t t 0 nd θ [c, d]. Also, since yt) stisfies Cse II) of Lemm 2.1, then there exists constnt k sch tht lim yt) =k<. t i) Assme tht k>0, then we hve k<yt) <k, for ll >1 nd t t ) Now, d xt) =yt) pt, θ)x ht, θ) ) Δθ, nd so c 1 p xt) k kp ) 1 p ) = k yt) for t t 0. ii) Assme tht k = 0, then lim t yt) = 0. Since 0 <xt) yt) on[t 0, ) T, then lim t xt) = 0. This completes the proof of the lemm. Lemm Let the conditions 1.3) nd 2.3) hold nd ssme tht xt) is n eventlly positive soltion of the eqtion 1.1) nd the corresponding y stisfies Cse II) of Lemm 2.1. If 1 Qs)Δs ΔΔv =, 2.22) ) then lim t xt) =0. t 0 v P r o o f. Proceeding s in the proof of Lemm 2.9, we obtin either 2.20) holds or lim t xt) = 0. We sppose tht 1 p ) xt) yt), for t t ) Using 2.23) in the eqtion 2.2), we hve t) y ΔΔ t) ) ) b α Δ = qt, τ) x λ gt, τ) ) Δτ p ) λ b qt, τ) y λ gt, τ) ) Δτ 1 p ) λ Qt)y λ g 1 t) ) for t t )

11 THIRD ORDER NONLINEAR OSCILLATION Integrting this ineqlity from t to t nd letting,wehve 1 p y ΔΔ ) λ/α t) 1 Qs)y λ g 1 s) ) Δs. 2.25) t) Using 2.21) in 2.25), we get y ΔΔ t) c 1 t) t t Qs)Δs, 2.26) where c := k [ ]) 1 p λ/α. Integrting 2.26) twice, we obtin >y ) c 1 Qs)Δs ΔΔv s t, ) v which is contrdiction. This completes the proof of the lemm. Lemm Let g 1 be nondecresing on [t 0, ) T, conditions 1.3) nd 2.3) hold nd ssme tht xt) is n eventlly positive soltion of the eqtion 1.1) nd the corresponding y stisfies Cse II) of Lemm 2.1. If lim sp t g 1 t) 1 ) Qs) [ g 1 t) g 1 s) ] λ Δs where Q nd g 1 re s in 2.6), c := lim t xt) =0. Δ > { c if λ = α, 0 if λ < α, 2.27) 1 p, p nd re s in Lemm 2.9, then P r o o f. Proceeding s in the proof of Lemm 2.10, we obtin 2.24). We lso hve y g 1 s) ) y g 1 t) ) y g 1 s) ) g 1 t) = y Δ τ)δτ g 1 s) y Δ g 1 t) ) g1t) Δτ = y Δ g 1 t) )[ g 1 t) g 1 s) ], 2.28) g 1 s) for t s t 0. Integrting 2.24) from to t t 0,weobtin 1 p y ΔΔ ) λ/α ) 1 Qs)y λ g 1 s) ) Δs. 2.29) ) 151

12 TAHER S. HASSAN SAID R. GRACE Sbstitting 2.28) into 2.29), we obtin 1 p y ΔΔ ) λ/α ) 1 Qs) [ g 1 t) g 1 s) ] λ Δs y Δ g 1 t) )) λ/α. ) Integrting from g 1 t) t 0 to t gives y Δ g 1 t) ) y Δ t) y Δ g 1 t) ) 1 p ) λ/α y Δ g 1 t) )) λ/α t 1 ) g 1 t) Qs) [ g 1 t) g 1 s) ] λ Δs Δ. So y Δ g 1 t) )) 1 λ/α 1 p ) t λ/α g 1 t) 1 ) Qs) [ g 1 t) g 1 s) ] λ Δs Δ. 2.30) Tking lim sp s t of both sides of the bove ineqlity. If λ = α, the contrdiction is obvios. If λ<α, then the left hnd side of 2.30) is positive nd mst decrese to zero to prevent contrdiction to the positivity of yt)). This contrdicts 2.27) nd completes the proof of the lemm. Lemm Let the hypotheses of Lemm 2.11 hold with the condition 2.27) be replced by lim sp 1 /α { Qs)Δs c if λ = α, ΔΔv > 2.31) t ) 0 if λ < α. g 1 t) v Then the conclsion of Lemm 2.11 holds. P r o o f. As in the proof of Lemm 2.11, we obtin 2.29) nd integrting we hve y Δ v) y Δ t) y Δ v) 1 p ) λ/α y λ/α g 1 t) ) 1 ) Integrting from g 1 t) t 0 to t yields 152 y 1 λ/α g 1 t) ) 1 p ) λ/α t g 1 t) v v 1 ) Qs)Δs Δ. Qs)Δs ΔΔv.

13 THIRD ORDER NONLINEAR OSCILLATION Tking lim sp s t gives contrdiction to the condition 2.31). This completes the proof of the lemm. We re now redy to present the min reslts in this section. Theorem 2.1. Let 1.3), 2.3), 2.22) nd either one of the eqtions 2.7), 2.10) or 2.17) be oscilltory, then every soltion xt) of the eqtion 1.1) oscilltes or stisfies lim t xt) =0. Proof. Let xt) be n eventlly positive soltion of the eqtion 1.1), sy xt) > 0 nd x ht, θ) ) > 0 nd x gt, τ) ) > 0 for t for some [t 0, ) T, θ [c, d] ndτ [, b]. Then yt) stisfies one of the two cses of Lemm 2.1. By either Lemms 2.4, 2.7 or 2.8, Cse I) cnnot hold. If Cse II) holds, Lemm 2.10 implies lim t xt) =0.Thisprovesthe theorem. Next, we estblish nother new oscilltion criteri for the eqtion 1.1). Theorem 2.2. Let λ α, g 1 be nondecresing on [t 0, ) T, 1.3) nd 2.3) hold. If either one of the eqtions 2.7), 2.10) or 2.17) is oscilltory, nd condition 2.27) or 2.31) holds, then every soltion xt) of the eqtion 1.1) oscilltes or stisfies lim t xt) =0. Proof. Let xt) be n eventlly positive soltion of the eqtion 1.1), sy xt)>0 nd x ht, θ) ) >0 nd x gt, τ) ) >0 for t for some [t 0, ) T, θ [c, d] ndτ [, b]. Then yt) stisfies one of the two cses of Lemm 2.1. By either Lemms 2.4, 2.7 or 2.8, Cse I) cnnot hold. By Lemm 2.11 or Lemm 2.12), Cse II) does not hold. This completes the proof of the theorem. Remrk 1. Or reslts of this section remin vlid of gt, τ) is nondecresing in the second vrible. In this cse, we replce nd g 1 t) by ḡ 1 t) =gt, b) g 2 t) by ḡ 2 t) =gt, ). Remrk 2. Wemypply Lemm2.5toeqtion 2.7) with λ = α. This detils re left to the reders. 153

14 TAHER S. HASSAN SAID R. GRACE 3. Oscilltion of the eqtion 1.2) We begin with the following lemms tht re essentil in the proof of or theorems. It will be convenient to set yt) =x β h 1 t) ) rt)x γ h 2 t) ). 3.1) The eqtion 1.2) cn then be written s t) y ΔΔ t) ) ) b α Δ + q t, τ) x λ gt, τ) ) Δτ =0. 3.2) Lemm 3.1. Let the condition 1.3) hold nd ssme tht x is n eventlly positive soltion of the eqtion 1.2). Then there re only three possible cses for the behvior of y for lrge t t 0 : I) yt) > 0, y Δ t) > 0, y ΔΔ t) > 0, nd t) y ΔΔ t) ) α) Δ 0; II) yt) > 0, y Δ t) < 0, y ΔΔ t) > 0, nd t) y ΔΔ t) ) α) Δ 0; III) yt) < 0, y Δ t) < 0, y ΔΔ t) > 0, nd t) y ΔΔ t) ) α) Δ 0. If cse I) or II) holds, then we find xt) y 1/β h 1 1 t)). 3.3) Using 3.3) in the eqtion 3.2), we hve t) y ΔΔ t) ) ) b α Δ + q t, τ) y λ/β h 1 1 gt, τ) ) Δτ 0, 3.4) nd when Cse III) holds, we see tht 0 <zt) = yt) =rt)x γ h 2 t) ) x β h 1 t) ) rt)x γ h 2 t) ), nd so z h 1 2 xt) t)) ) 1/γ r h 1 2 t)), 3.5) nd the eqtion 3.2) becomes t) z ΔΔ t) ) ) b α Δ q t, τ) r λ/γ h 1 2 gt, τ) ) z λ/γ h 1 2 gt, τ) ) Δτ. 3.6) Next, we ssme tht vi) ζ 1 t, τ) =h 1 1 gt, τ) t for τ [, b], ζ 1 is nonincresing with respect to the second vrible nd lim t ζ 1 t, τ) = ; 154

15 THIRD ORDER NONLINEAR OSCILLATION vii) ζ 2 t, τ) =h 1 2 gt, τ) t for τ [, b], ζ 2 is nonincresing with respect to the second vrible nd lim t ζ 2 t, τ) =. Also, we set Qt) := b qt, τ)δτ, ˆζ1 t) :=ζ 1 t, ), ζ1 t) :=ζ 1 t, b), 3.7) nd ˆζ2 t) :=ζ 2 t, ), ζ 2 t) :=ζ 2 t, b). 3.8) Now, if y stisfies Cse I) of Lemm 3.1, then 3.4) becomes t) y ΔΔ t) ) ) α Δ + Q t) y λ/β ζ1 t) ) 0, 3.9) where Q is s in 2.6). When y stisfies Cse II) of Lemm 3.1, then 3.4) becomes t) y ΔΔ t) ) α ) Δ + Q t) y λ/β ˆζ1 t) ) ) If y stisfies Cse III) of Lemm 3.1, then 3.6) tkes the form t) z ΔΔ t) ) α ) Δ ˆQ t) z λ/γ ζ2 t) ), 3.11) where ˆQ t) := b q t, τ) r λ/γ ζ 2 t, τ) ) Δτ. 3.12) As direct conseqence of Lemms 2.4, 2.6, 2.7, 2.8, 2.10, 2.11 nd 2.12, we get the following reslts. Lemm 3.2. Let the condition 1.3) hold nd eqtion ζ 1 t) λ/β z Δ t)+qt) z λ/αβ) g 2 t) ) =0 for t, 3.13) s)δsδ for [t 0, ) T, is oscilltory, then the eqtion 1.2) hs no eventlly positive soltion x sch tht y defined by 3.1) stisfies Cse I) of Lemm 3.1. Lemm 3.3. Let the condition 1.3) hold nd ssme tht xt) is n eventlly positive soltion of the eqtion 1.2) nd the corresponding y stisfies Cse I) of Lemm 3.1. Then there exists [t 0, ) T sch tht 2.9) holds. Lemm 3.4. If the condition 1.3) holds nd the eqtion t) z Δ t) ) α ) Δ + Qt)z λ g 2 t) ) =0, 3.14) where for ζ 1 t) >t 0,weset Qt) :=A λ ζ1 t),t 0 ) Qt), 155

16 TAHER S. HASSAN SAID R. GRACE is oscilltory, then the eqtion 1.2) hs no eventlly positive soltion x sch tht y is defined by 3.1) stisfies Cse I) of Lemm 3.1. Lemm 3.5. If the condition 1.3) hold nd the eqtion 1 v Δ t) ) ) Δ α + Qt)v λ g Ā α 2 t) ) =0 for t t 2, 3.15) t) where Āt) := s)δs for sfficiently lrge t 2, ) T for some [t 0, ) T, is oscilltory, then the conclsion of Lemm 3.4 holds. Lemm 3.6. Let the condition 1.3) hold nd ssme tht xt) is n eventlly positive soltion of the eqtion 1.2) nd the corresponding y stisfies Cse II) of Lemm 3.1. If 2.22) holds, then lim t xt) =0. Lemm 3.7. Let ˆζ 1 be nondecresing on [t 0, ) T, the condition 1.3) hold nd ssme tht xt) is n eventlly positive soltion of the eqtion 1.2) nd the corresponding y stisfies Cse II) of Lemm 3.1. If lim sp 1 Qs) [ˆζ1 t) t ) ˆζ 1 s) ] { λ/β Δs 1 if λ = αβ, Δ > 3.16) 0 if λ < αβ, ˆζ 1 t) then lim t xt) =0. Lemm 3.8. Let the hypotheses of Lemm 3.7 hold with the condition 3.16) be replced by lim sp 1 /α { Qs)Δs 1 if λ = αβ, ΔΔv > 3.17) t ) 0 if λ < αβ. ˆζ 1 t) v Then the conclsion of Lemm 3.7 holds. In the following two lemms, we consider the second order dely dynmic eqtion t) w Δ t) ) α ) Δ = d ζ2 t) ) λ/γ ˆQ t) w λ/γ ζ2 t) ), 3.18) where ζ 2 nd ˆQ re s in 3.8) nd 3.12) respectively,, α, γ, λ re s in the eqtion 1.1) nd d >0isconstnt. Lemm 3.9. Let ζ 2 be nondecresing on [t 0, ) T nd the condition 1.3) hold. If λγ ζ lim sp ζ2 s) ) 2 t) λ/γ ˆQ s) τ)δτ Δs >{ 1 d if λ = αγ, 3.19) t 0 if λ < αγ, ζ 2 t) ζ 2 s) then ll bonded soltions of the eqtion 3.18) re oscilltory. 156

17 THIRD ORDER NONLINEAR OSCILLATION Proof. Letwt) be bonded nonoscilltory soltion of the eqtion 3.18), sy wt) > 0 for t for some t 0 T. Then there exists t 2 [, ) T sch tht wt) > 0, w Δ t) < 0 nd t) w Δ t) ) ) α Δ > 0 for t t ) Now for v t 2,wehve w) w) wv) = v v) w Δ v) ) ) α w Δ τ)δτ = v v τ) τ) w Δ τ) ) α ) Δτ τ)δτ. 3.21) For t s t 2, setting = ζ 2 s) ndv = ζ 2 t) in the ineqlity 3.21) gives w ζ2 s) ) ζ 2 t)) w Δ ζ 2 t)) ) ) ζ 2 t) α τ)δτ. 3.22) ζ 2 s) Integrting the eqtion 3.18) from ζ 2 t) t 2 to t, weobtin ζ2 t) ) w Δ ζ2 t) )) α t) w Δ t) ) α ζ2 t) ) w Δ ζ2 t) )) α = ζ 2 t) d ζ2 s) ) λ/γ ˆQs)w λ/γ ζ2 s) ) Δs. 3.23) Using 3.22) in 3.23), one cn esily see tht ζ2 t) ) w Δ ζ2 t) )) α ζ2 t) ) w Δ ζ2 t) )) α ) λ αγ d ζ2 s) ) λ/γ ˆQs) λ/γ ζ 2 t) τ)δτ Δs, or [ ζ2 t) ) w Δ ζ2 t) )) ] α 1 λ ζ 2 t) αγ t ζ 2 t) ζ 2 s) λ/γ ζ d ζ2 s) ) 2 t) λ/γ ˆQs) τ)δτ Δs. 3.24) Now tke the lim sp s t of both sides of the bove ineqlity. If λ = αγ the contrdiction is obvios. If λ<αγthe left hnd side of 3.24) is positive nd mst decrese to zero to present contrdiction to the positivity of wt)). This contrdicts 3.19) nd completes the proof of the lemm. ζ 2 s) 157

18 TAHER S. HASSAN SAID R. GRACE Lemm Let ζ 2 be nondecresing on [t 0, ) T nd the condition 3.19) in Lemm 3.9 be replced by lim sp 1 ζ2 τ) ) { λ/γ ˆQ τ)δτ Δs d if λ = αγ, > 3.25) t s) 0 if λ < αγ. ζ 2 t) s Then the conclsion of Lemm 3.9 holds. Proof. Letwt) be bonded nonoscilltory soltion of the eqtion 3.18), sy wt) > 0 for t t 0 T. As in the proof of Lemm 3.9, we obtin 3.20) for t t 2 for some t 2 [, ) T. Integrting 3.18) from t 2 to t, we hve t) w Δ t) ) α ) w Δ ) ) t α = d ζ2 s) ) λ/γ λ/γ ˆQs)w ζ2 s) ) Δs, or w Δ ) w λ αγ ζ2 t) ) 1 ) d ζ2 s) ) λ/γ ˆQs)Δs. Integrting this ineqlity from ζ 2 t) tot, weobtin w ζ2 t) ) w λ αγ ζ2 t) ) 1 d ζ2 s) ) λ/γ ˆQs)Δs Δ, ) or w 1 λ αγ ) ζ2 t) ) ζ 2 t) ζ 2 t) 1 ) d ζ2 s) ) λ/γ ˆQs)Δs Δ. Tking the lim sp s t of both sides of the bove ineqlity, we gin obtin contrdiction s in the previos lemm. We re now redy to estblish the min reslts of this section. Theorem 3.1. Let λ αγ, λ αβ, ˆζ 1 nd ζ 2, i = 1, 2 be nondecresing on [t 0, ) T nd the condition 1.3) hold. If either one of the dynmic eqtions 3.13), 3.14) or 3.15) is oscilltory, the condition 3.16) or the condition 3.17)) holds nd the condition 3.19) or the condition 3.25)) is stisfied with 0 < d <1, then every soltion xt) of the eqtion 1.2) oscilltes or stisfies lim t xt) =0. Proof. Let xt) be n eventlly positive soltion of the eqtion 1.2), sy xt) > 0 nd x h i t) ) > 0, i = 1, 2 nd x gt, τ) ) > 0 for t 158

19 THIRD ORDER NONLINEAR OSCILLATION for some [t 0, ) T nd τ [, b]. Then yt) defined by 3.1) stisfies one of the three cses of Lemm 3.1 nd stisfies the eqtion 3.2). If Cse I) holds, then 3.3) holds. Now sing 3.3) in the eqtion 3.2), we obtin the ineqlity 3.9). By either Lemm 3.2, Lemm 3.4 or Lemm 3.5, Cse I) cnnot hold. Similrly, when Cse II) one cn esily obtin the ineqlity 3.10), nd by Lemm 3.7 or Lemm 3.8, Cse II) cnnot hold. Finlly, if Cse III) holds, we let 0 <zt) = yt) nd proceed s bove to obtin the ineqlity 3.11). It is esy to check tht z stisfies zt) > 0, z Δ t) > 0, z ΔΔ t) < 0 nd t) z ΔΔ t) ) ) α Δ 0, for t t 2. Now, there exists constnt d 0, 1) sch tht Using 3.26) in 3.11), we get z ζ2 t) ) d ζ 2 t)z Δ ζ2 t) ) for t t 3 t ) or t) z ΔΔ t) ) α ) Δ ˆQt) d ζ2 t)z Δ ζ2 t) )) λ/γ for t t 3, t) w Δ t) ) α ) Δ d) λ/γ ζ2 t) ) λ/γ ˆQt)w λ/γ ζ2 t) ) for t t 3, where wt) :=z Δ t). Proceeding s in the proofs of Lemm 3.9 nd Lemm 3.10, we rrive t the desired conclsion completing the proof of the theorem. Remrk 3. We my note tht Theorem 2.1 is lso pplicble to the eqtion 1.2). The detils re omitted. When p t, θ) 0 in the eqtion 1.1) or β =1,rt) =0ndh 1 t) =t in the eqtion 1.2), both eqtions re redced to t) x ΔΔ t) ) ) b α Δ + qt, τ)x λ gt, τ) ) Δτ = ) In this cse we hve the following new reslt. Theorem 3.2. Let λ α nd 1.3) hold. If either one of the eqtions 2.7) with p 0, 2.10) or 2.17) with p 0 is oscilltory nd the condition 2.27) or the condition 2.31)) holds, then every soltion xt) of the eqtion 3.27) oscilltes or stisfies lim t xt) =0. P r o o f. The conclsion follows from Theorem 2.2 or 3.1 nd is omitted. 159

20 TAHER S. HASSAN SAID R. GRACE 4. Generl remrks 1) The reslts of this pper re presented in form tht is essentilly new nd of high degree of generlity. 2) We note tht there re mny criteri in the litertre of first nd second order dynmic eqtions nd so by pplying these reslts to the eqtions 2.7), 2.10) nd 2.17), we cn obtin mny oscilltion reslts, more tht those known in the litertre. Here we omit the detils. 3) The reslts here re vlid for vrios type of time scles, e.g., T = R, T = Z, T = hz with h>0, T = q N 0 with q>1, T = N 2 0, etc. see [2]). 4) We note tht or reslts on the symptotic behvior of soltions re pplicble to the eqtions 1.1) nd 1.2) if gt, τ) t, τ [, b] while or oscilltion reslts re pplicble to the eqtions 1.1) nd 1.2) if gt, τ) <t, τ [, b]. Ths s it hs been known, there is the dely in the eqtions 1.1) nd 1.2) which cn generte oscilltions. 5) Or reslts of Section 2 re new nd or reslts of Section 3 inclde, extend nd improve the reslts in [9] nd [12]. 6) Finlly, it wold be of interest to consider the eqtions 1.1) nd 1.2) try to obtin some oscilltion criteri if other pproprite conditions on the fnctions pt, θ), θ [c, d], rt), etc. REFERENCES [1] BOHNER, M.: Some oscilltion criteri for first order dely dynmic eqtions, FrEst J. Appl. Mth ), [2] BOHNER, M. PETERSON, A.: Dynmic Eqtions on Time Scles: An Introdction with Applictions. Birkhäser, Boston, [3] DURINA, J. BACULIKOVA, B.: Property A) of third-order dvnced differentil eqtions, Mth. Slovc ), [4] GRACE, S. R. AGARWAL, R. P. AKTAS, M. F.: On the oscilltion of third order fnctionl differentil eqtions, Indin J. Pre Appl. Mth ), [5] GRACE, S. R. AGARWAL, R. P. PAVANI, R. THANDAPANI, E.: On the oscilltion of certin third order nonliner fnctionl differentil eqtions, Appl. Mth. Compt ), [6] GRACE, S. R. AGARWAL, R. P. BOHNER, M. O REGAN, D.: Oscilltion of second-order strongly sperliner nd strongly sbliner dynmic eqtions, Commn. Nonliner Sci. Nmer. Siml ), [7]GRACE,S.R. BOHNER,M. AGARWAL,R.P.:On the oscilltion of second-order hlf-liner dynmic eqtions, J. Difference Eq. Appl ), [8] GRACE, S. R. R. P. AGARWAL, R. P. KAYMAKALAN, B. SAE-JIE, W.: On the oscilltion of certin second order nonliner dynmic eqtions, Mth. Compt. Modelling ),

21 THIRD ORDER NONLINEAR OSCILLATION [9] GRACE, S. R. GRAEF, J. R. EL-BELTAGY, M. A.: On the oscilltion of third order netrl dely dynmic eqtions on time scles, Compt. Mth. Appl ), [10] GRAEF, J. R. PANIGRAHI, S. REDDY, P. R.: On oscilltory nd symptotic behvior of forth order nonliner netrl dely dynmic eqtions with positive nd negtive coefficients, Mth. Slovc ), [11] HALE, J. K.: Theory of Fnctionl Differentil Eqtions. Springer-Verlg, New York, [12] HAN, Z. LI, T. SUN, T. ZHANG, C.: Oscilltion behvior of third-order netrl Emden-Fowler dely dynmic eqtions on time scles, Adv. Difference Eq. 2010, Art. ID , 23 pp. [13] ELABBASY, E. M. HASSAN, T. S.: Oscilltion of soltions for third order fnctionl dynmic eqtions, Electron. J. Differentil Eqtions 2010, No. 131, 14 pp. [14] ERBE, L. PETERSON, A. SAKER, S. H.: Hille nd Nehri type criteri for third order dynmic eqtions, J. Mth. Anl. Appl ), [15] ERBE, L. HASSAN, T. S. PETERSON, A.: Oscilltion of third order fnctionl dynmic eqtions with mixed rgments on time scles, J. Appl. Mth. Compt ), [16] HASSAN, T. S.: Oscilltion criteri for hlf-liner dynmic eqtions on time scles, J. Mth. Anl. Appl ), [17] HASSAN, T. S.: Oscilltion of third order nonliner dely dynmic eqtions on time scles, Mth. Compt. Modelling ), [18] SAKER, S. H. GRACE, S. R.: Oscilltion criteri for qsi-liner fnctionl dynmic eqtions on time scles, Mth. Slovc ), Received September 6, 2014 Ther S. Hssn Deprtment of Mthemtics Fclty of Science University of Hil Hil, 2440 SAUDI ARABIA Deprtment of Mthemtics Fclty of Science Mnsor University Mnsor, EGYPT E-mil: Sid R. Grce Deprtment of Engineering Mthemtics Fclty of Engineering Ciro University Ormn, Giz EGYPT E-mil: 161

LYAPUNOV-TYPE INEQUALITIES FOR THIRD-ORDER LINEAR DIFFERENTIAL EQUATIONS

LYAPUNOV-TYPE INEQUALITIES FOR THIRD-ORDER LINEAR DIFFERENTIAL EQUATIONS Electronic Journl of Differentil Equtions, Vol. 2017 (2017), No. 139, pp. 1 14. ISSN: 1072-6691. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu LYAPUNOV-TYPE INEQUALITIES FOR THIRD-ORDER LINEAR

More information

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION Fixed Point Theory, 13(2012), No. 1, 285-291 http://www.mth.ubbcluj.ro/ nodecj/sfptcj.html KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION FULI WANG AND FENG WANG School of Mthemtics nd

More information

Applied Mathematics Letters. Forced oscillation of second-order nonlinear differential equations with positive and negative coefficients

Applied Mathematics Letters. Forced oscillation of second-order nonlinear differential equations with positive and negative coefficients Applied Mthemtics Letters 24 (20) 225 230 Contents lists vilble t ScienceDirect Applied Mthemtics Letters journl homepge: www.elsevier.com/locte/ml Forced oscilltion of second-order nonliner differentil

More information

Linear measure functional differential equations with infinite delay

Linear measure functional differential equations with infinite delay Mthemtische Nchrichten, 27 Jnry 2014 Liner mesre fnctionl differentil eqtions with infinite dely Giselle Antnes Monteiro 1, nd Antonín Slvík 2, 1 Mthemticl Institte, Acdemy of Sciences of the Czech Repblic,

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

Multiple Positive Solutions for the System of Higher Order Two-Point Boundary Value Problems on Time Scales

Multiple Positive Solutions for the System of Higher Order Two-Point Boundary Value Problems on Time Scales Electronic Journl of Qulittive Theory of Differentil Equtions 2009, No. 32, -3; http://www.mth.u-szeged.hu/ejqtde/ Multiple Positive Solutions for the System of Higher Order Two-Point Boundry Vlue Problems

More information

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions Annls of University of Criov, Mth. Comp. Sci. Ser. Volume 3, 7, Pges 8 87 ISSN: 13-693 Some estimtes on the Hermite-Hdmrd inequlity through qusi-convex functions Dniel Alexndru Ion Abstrct. In this pper

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

A General Dynamic Inequality of Opial Type

A General Dynamic Inequality of Opial Type Appl Mth Inf Sci No 3-5 (26) Applied Mthemtics & Informtion Sciences An Interntionl Journl http://dxdoiorg/2785/mis/bos7-mis A Generl Dynmic Inequlity of Opil Type Rvi Agrwl Mrtin Bohner 2 Donl O Regn

More information

CHAPTER 2 FUZZY NUMBER AND FUZZY ARITHMETIC

CHAPTER 2 FUZZY NUMBER AND FUZZY ARITHMETIC CHPTER FUZZY NUMBER ND FUZZY RITHMETIC 1 Introdction Fzzy rithmetic or rithmetic of fzzy nmbers is generlistion of intervl rithmetic, where rther thn considering intervls t one constnt level only, severl

More information

Positive Solutions of Operator Equations on Half-Line

Positive Solutions of Operator Equations on Half-Line Int. Journl of Mth. Anlysis, Vol. 3, 29, no. 5, 211-22 Positive Solutions of Opertor Equtions on Hlf-Line Bohe Wng 1 School of Mthemtics Shndong Administrtion Institute Jinn, 2514, P.R. Chin sdusuh@163.com

More information

A New Generalization of Lemma Gronwall-Bellman

A New Generalization of Lemma Gronwall-Bellman Applied Mthemticl Sciences, Vol. 6, 212, no. 13, 621-628 A New Generliztion of Lemm Gronwll-Bellmn Younes Lourtssi LA2I, Deprtment of Electricl Engineering, Mohmmdi School Engineering Agdl, Rbt, Morocco

More information

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1 Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH-115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixed-point itertion to converge when solving the eqution

More information

(4.1) D r v(t) ω(t, v(t))

(4.1) D r v(t) ω(t, v(t)) 1.4. Differentil inequlities. Let D r denote the right hnd derivtive of function. If ω(t, u) is sclr function of the sclrs t, u in some open connected set Ω, we sy tht function v(t), t < b, is solution

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004 Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

Integral points on the rational curve

Integral points on the rational curve Integrl points on the rtionl curve y x bx c x ;, b, c integers. Konstntine Zeltor Mthemtics University of Wisconsin - Mrinette 750 W. Byshore Street Mrinette, WI 5443-453 Also: Konstntine Zeltor P.O. Box

More information

A HELLY THEOREM FOR FUNCTIONS WITH VALUES IN METRIC SPACES. 1. Introduction

A HELLY THEOREM FOR FUNCTIONS WITH VALUES IN METRIC SPACES. 1. Introduction Ttr Mt. Mth. Publ. 44 (29), 159 168 DOI: 1.2478/v1127-9-56-z t m Mthemticl Publictions A HELLY THEOREM FOR FUNCTIONS WITH VALUES IN METRIC SPACES Miloslv Duchoň Peter Mličký ABSTRACT. We present Helly

More information

ON THE OSCILLATION OF FRACTIONAL DIFFERENTIAL EQUATIONS

ON THE OSCILLATION OF FRACTIONAL DIFFERENTIAL EQUATIONS ON HE OSCILLAION OF FRACIONAL DIFFERENIAL EQUAIONS S.R. Grce 1, R.P. Agrwl 2, P.J.Y. Wong 3, A. Zfer 4 Abstrct In this pper we initite the oscilltion theory for frctionl differentil equtions. Oscilltion

More information

LYAPUNOV-TYPE INEQUALITIES FOR NONLINEAR SYSTEMS INVOLVING THE (p 1, p 2,..., p n )-LAPLACIAN

LYAPUNOV-TYPE INEQUALITIES FOR NONLINEAR SYSTEMS INVOLVING THE (p 1, p 2,..., p n )-LAPLACIAN Electronic Journl of Differentil Equtions, Vol. 203 (203), No. 28, pp. 0. ISSN: 072-669. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu ftp ejde.mth.txstte.edu LYAPUNOV-TYPE INEQUALITIES FOR

More information

20 MATHEMATICS POLYNOMIALS

20 MATHEMATICS POLYNOMIALS 0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

More information

Research Article Moment Inequalities and Complete Moment Convergence

Research Article Moment Inequalities and Complete Moment Convergence Hindwi Publishing Corportion Journl of Inequlities nd Applictions Volume 2009, Article ID 271265, 14 pges doi:10.1155/2009/271265 Reserch Article Moment Inequlities nd Complete Moment Convergence Soo Hk

More information

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 UNIFORM CONVERGENCE Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 Suppose f n : Ω R or f n : Ω C is sequence of rel or complex functions, nd f n f s n in some sense. Furthermore,

More information

Chapter 0. What is the Lebesgue integral about?

Chapter 0. What is the Lebesgue integral about? Chpter 0. Wht is the Lebesgue integrl bout? The pln is to hve tutoril sheet ech week, most often on Fridy, (to be done during the clss) where you will try to get used to the ides introduced in the previous

More information

ODE: Existence and Uniqueness of a Solution

ODE: Existence and Uniqueness of a Solution Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

More information

Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform

Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform IOSR Journl of Mthemtics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 13, Issue 6 Ver. IV (Nov. - Dec. 2017), PP 19-24 www.iosrjournls.org Solutions of Klein - Gordn equtions, using Finite Fourier

More information

5.7 Improper Integrals

5.7 Improper Integrals 458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

More information

Frobenius numbers of generalized Fibonacci semigroups

Frobenius numbers of generalized Fibonacci semigroups Frobenius numbers of generlized Fiboncci semigroups Gretchen L. Mtthews 1 Deprtment of Mthemticl Sciences, Clemson University, Clemson, SC 29634-0975, USA gmtthe@clemson.edu Received:, Accepted:, Published:

More information

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCK-KURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When rel-vlued

More information

1.9 C 2 inner variations

1.9 C 2 inner variations 46 CHAPTER 1. INDIRECT METHODS 1.9 C 2 inner vritions So fr, we hve restricted ttention to liner vritions. These re vritions of the form vx; ǫ = ux + ǫφx where φ is in some liner perturbtion clss P, for

More information

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir RGMIA Reserch Report Collection, Vol., No., 999 http://sci.vu.edu.u/ rgmi AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS I. Fedotov nd S. S. Drgomir Astrct. An

More information

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), ) Euler, Iochimescu nd the trpezium rule G.J.O. Jmeson (Mth. Gzette 96 (0), 36 4) The following results were estblished in recent Gzette rticle [, Theorems, 3, 4]. Given > 0 nd 0 < s

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

A MEAN VALUE THEOREM FOR GENERALIZED RIEMANN DERIVATIVES. 1. Introduction Throughout this article, will denote the following functional difference:

A MEAN VALUE THEOREM FOR GENERALIZED RIEMANN DERIVATIVES. 1. Introduction Throughout this article, will denote the following functional difference: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volme 136, Nmber 2, Febrry 200, Pges 569 576 S 0002-9939(07)0976-9 Article electroniclly pblished on November 6, 2007 A MEAN VALUE THEOREM FOR GENERALIZED

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties

More information

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS MOHAMMAD ALOMARI A MASLINA DARUS A AND SEVER S DRAGOMIR B Abstrct In terms of the first derivtive some ineulities of Simpson

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct

More information

A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE. In the study of Fourier series, several questions arise naturally, such as: c n e int

A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE. In the study of Fourier series, several questions arise naturally, such as: c n e int A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE HANS RINGSTRÖM. Questions nd exmples In the study of Fourier series, severl questions rise nturlly, such s: () (2) re there conditions on c n, n Z, which ensure

More information

Henstock Kurzweil delta and nabla integrals

Henstock Kurzweil delta and nabla integrals Henstock Kurzweil delt nd nbl integrls Alln Peterson nd Bevn Thompson Deprtment of Mthemtics nd Sttistics, University of Nebrsk-Lincoln Lincoln, NE 68588-0323 peterso@mth.unl.edu Mthemtics, SPS, The University

More information

Calculus of variations with fractional derivatives and fractional integrals

Calculus of variations with fractional derivatives and fractional integrals Anis do CNMAC v.2 ISSN 1984-820X Clculus of vritions with frctionl derivtives nd frctionl integrls Ricrdo Almeid, Delfim F. M. Torres Deprtment of Mthemtics, University of Aveiro 3810-193 Aveiro, Portugl

More information

QUALITATIVE PROPERTIES OF A THIRD-ORDER DIFFERENTIAL EQUATION WITH A PIECEWISE CONSTANT ARGUMENT

QUALITATIVE PROPERTIES OF A THIRD-ORDER DIFFERENTIAL EQUATION WITH A PIECEWISE CONSTANT ARGUMENT Electronic Journl of Differentil Equtions, Vol. 2017 (2017), No. 193, pp. 1 12. ISSN: 1072-6691. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu QUALITATIVE PROPERTIES OF A THIRD-ORDER DIFFERENTIAL

More information

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula. Generliztions of the Ostrowski s inequlity K. S. Anstsiou Aristides I. Kechriniotis B. A. Kotsos Technologicl Eductionl Institute T.E.I.) of Lmi 3rd Km. O.N.R. Lmi-Athens Lmi 3500 Greece Abstrct Using

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

Direction of bifurcation for some non-autonomous problems

Direction of bifurcation for some non-autonomous problems Direction of bifrction for some non-tonomos problems Philip Kormn Deprtment of Mthemticl Sciences University of Cincinnti Cincinnti Ohio 45221-25 Abstrct We stdy the exct mltiplicity of positive soltions,

More information

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a). The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples

More information

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b)

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b) GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS KUEI-LIN TSENG, GOU-SHENG YANG, AND SEVER S. DRAGOMIR Abstrct. In this pper, we estblish some generliztions

More information

Self-similarity and symmetries of Pascal s triangles and simplices mod p

Self-similarity and symmetries of Pascal s triangles and simplices mod p Sn Jose Stte University SJSU ScholrWorks Fculty Publictions Mthemtics nd Sttistics Februry 2004 Self-similrity nd symmetries of Pscl s tringles nd simplices mod p Richrd P. Kubelk Sn Jose Stte University,

More information

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes Jim Lmbers MAT 169 Fll Semester 2009-10 Lecture 4 Notes These notes correspond to Section 8.2 in the text. Series Wht is Series? An infinte series, usully referred to simply s series, is n sum of ll of

More information

WENJUN LIU AND QUÔ C ANH NGÔ

WENJUN LIU AND QUÔ C ANH NGÔ AN OSTROWSKI-GRÜSS TYPE INEQUALITY ON TIME SCALES WENJUN LIU AND QUÔ C ANH NGÔ Astrct. In this pper we derive new inequlity of Ostrowski-Grüss type on time scles nd thus unify corresponding continuous

More information

S. S. Dragomir. 2, we have the inequality. b a

S. S. Dragomir. 2, we have the inequality. b a Bull Koren Mth Soc 005 No pp 3 30 SOME COMPANIONS OF OSTROWSKI S INEQUALITY FOR ABSOLUTELY CONTINUOUS FUNCTIONS AND APPLICATIONS S S Drgomir Abstrct Compnions of Ostrowski s integrl ineulity for bsolutely

More information

GENERALIZED ABSTRACTED MEAN VALUES

GENERALIZED ABSTRACTED MEAN VALUES GENERALIZED ABSTRACTED MEAN VALUES FENG QI Abstrct. In this rticle, the uthor introduces the generlized bstrcted men vlues which etend the concepts of most mens with two vribles, nd reserches their bsic

More information

AMATH 731: Applied Functional Analysis Fall Some basics of integral equations

AMATH 731: Applied Functional Analysis Fall Some basics of integral equations AMATH 731: Applied Functionl Anlysis Fll 2009 1 Introduction Some bsics of integrl equtions An integrl eqution is n eqution in which the unknown function u(t) ppers under n integrl sign, e.g., K(t, s)u(s)

More information

Communications inmathematicalanalysis Volume 6, Number 2, pp (2009) ISSN

Communications inmathematicalanalysis Volume 6, Number 2, pp (2009) ISSN Communictions inmthemticlanlysis Volume 6, Number, pp. 33 41 009) ISSN 1938-9787 www.commun-mth-nl.org A SHARP GRÜSS TYPE INEQUALITY ON TIME SCALES AND APPLICATION TO THE SHARP OSTROWSKI-GRÜSS INEQUALITY

More information

Extended tan-cot method for the solitons solutions to the (3+1)-dimensional Kadomtsev-Petviashvili equation

Extended tan-cot method for the solitons solutions to the (3+1)-dimensional Kadomtsev-Petviashvili equation Interntionl Jornl of Mthemticl Anlysis nd Applictions ; (): 9-9 Plished online Mrch, (http://www.scit.org/jornl/ijm) Extended tn-cot method for the solitons soltions to the (+)-dimensionl Kdomtsev-Petvishvili

More information

Homework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer.

Homework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer. Homework 4 (1) If f R[, b], show tht f 3 R[, b]. If f + (x) = mx{f(x), 0}, is f + R[, b]? Justify your nswer. (2) Let f be continuous function on [, b] tht is strictly positive except finitely mny points

More information

The Riemann-Lebesgue Lemma

The Riemann-Lebesgue Lemma Physics 215 Winter 218 The Riemnn-Lebesgue Lemm The Riemnn Lebesgue Lemm is one of the most importnt results of Fourier nlysis nd symptotic nlysis. It hs mny physics pplictions, especilly in studies of

More information

A product convergence theorem for Henstock Kurzweil integrals

A product convergence theorem for Henstock Kurzweil integrals A product convergence theorem for Henstock Kurzweil integrls Prsr Mohnty Erik Tlvil 1 Deprtment of Mthemticl nd Sttisticl Sciences University of Albert Edmonton AB Cnd T6G 2G1 pmohnty@mth.ulbert.c etlvil@mth.ulbert.c

More information

Summary: Method of Separation of Variables

Summary: Method of Separation of Variables Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section

More information

Module 6: LINEAR TRANSFORMATIONS

Module 6: LINEAR TRANSFORMATIONS Module 6: LINEAR TRANSFORMATIONS. Trnsformtions nd mtrices Trnsformtions re generliztions of functions. A vector x in some set S n is mpped into m nother vector y T( x). A trnsformtion is liner if, for

More information

f(t, ε) = o(g(t, ε)) as ε 0

f(t, ε) = o(g(t, ε)) as ε 0 SET 9 MATH 543: PERTURBATION Reference: Dvid Logn. About the uniform convergence of perturbtion series we hve minly the following three definitions Definition 1: Let f(t, ε) nd g(t, ε) be defined for ll

More information

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all 3 Definite Integrl 3.1 Introduction In school one comes cross the definition of the integrl of rel vlued function defined on closed nd bounded intervl [, b] between the limits nd b, i.e., f(x)dx s the

More information

(2) x't(t) = X> (í)mm0)píj'sgnfoíffyít))], l<i<n, 3 = 1

(2) x't(t) = X> (í)mm0)píj'sgnfoíffyít))], l<i<n, 3 = 1 proceedings of the mericn mthemticl society Volume 104, Number 4, December 1988 SYSTEMS OF FUNCTIONAL DIFFERENTIAL EQUATIONS WITH ASYMPTOTICALLY CONSTANT SOLUTIONS WILLIAM F. TRENCH AND TAKASI KUSANO (Communicted

More information

The presentation of a new type of quantum calculus

The presentation of a new type of quantum calculus DOI.55/tmj-27-22 The presenttion of new type of quntum clculus Abdolli Nemty nd Mehdi Tourni b Deprtment of Mthemtics, University of Mzndrn, Bbolsr, Irn E-mil: nmty@umz.c.ir, mehdi.tourni@gmil.com b Abstrct

More information

WHEN IS A FUNCTION NOT FLAT? 1. Introduction. {e 1 0, x = 0. f(x) =

WHEN IS A FUNCTION NOT FLAT? 1. Introduction. {e 1 0, x = 0. f(x) = WHEN IS A FUNCTION NOT FLAT? YIFEI PAN AND MEI WANG Abstrct. In this pper we prove unique continution property for vector vlued functions of one vrible stisfying certin differentil inequlity. Key words:

More information

Review of Riemann Integral

Review of Riemann Integral 1 Review of Riemnn Integrl In this chpter we review the definition of Riemnn integrl of bounded function f : [, b] R, nd point out its limittions so s to be convinced of the necessity of more generl integrl.

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journl of Inequlities in Pure nd Applied Mthemtics GENERALIZATIONS OF THE TRAPEZOID INEQUALITIES BASED ON A NEW MEAN VALUE THEOREM FOR THE REMAINDER IN TAYLOR S FORMULA volume 7, issue 3, rticle 90, 006.

More information

A SHORT NOTE ON THE MONOTONICITY OF THE ERLANG C FORMULA IN THE HALFIN-WHITT REGIME. Bernardo D Auria 1

A SHORT NOTE ON THE MONOTONICITY OF THE ERLANG C FORMULA IN THE HALFIN-WHITT REGIME. Bernardo D Auria 1 Working Pper 11-42 (31) Sttistics nd Econometrics Series December, 2011 Deprtmento de Estdístic Universidd Crlos III de Mdrid Clle Mdrid, 126 28903 Getfe (Spin) Fx (34) 91 624-98-49 A SHORT NOTE ON THE

More information

FUNCTIONS OF α-slow INCREASE

FUNCTIONS OF α-slow INCREASE Bulletin of Mthemticl Anlysis nd Applictions ISSN: 1821-1291, URL: http://www.bmth.org Volume 4 Issue 1 (2012), Pges 226-230. FUNCTIONS OF α-slow INCREASE (COMMUNICATED BY HÜSEYIN BOR) YILUN SHANG Abstrct.

More information

Oscillatory Behavior of Solutions for Forced Second Order Nonlinear Functional Integro-Dynamic Equations on Time Scales

Oscillatory Behavior of Solutions for Forced Second Order Nonlinear Functional Integro-Dynamic Equations on Time Scales J. An. Num. Theor. 4, No. 2, 5- (26) 5 Journl of Anlysis & Number Theory An Interntionl Journl http://dx.doi.org/.8576/jnt/424 Oscilltory Behvior of Solutions for Forced Second Order Nonliner Functionl

More information

Review of basic calculus

Review of basic calculus Review of bsic clculus This brief review reclls some of the most importnt concepts, definitions, nd theorems from bsic clculus. It is not intended to tech bsic clculus from scrtch. If ny of the items below

More information

1 1D heat and wave equations on a finite interval

1 1D heat and wave equations on a finite interval 1 1D het nd wve equtions on finite intervl In this section we consider generl method of seprtion of vribles nd its pplictions to solving het eqution nd wve eqution on finite intervl ( 1, 2. Since by trnsltion

More information

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE POINTS IN CERTAIN MEAN VALUE THEOREMS. II

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE POINTS IN CERTAIN MEAN VALUE THEOREMS. II STUDIA UNIV. BABEŞ BOLYAI, MATHEMATICA, Volume LV, Number 3, September 2010 ASYMPTOTIC BEHAVIOR OF INTERMEDIATE POINTS IN CERTAIN MEAN VALUE THEOREMS. II TIBERIU TRIF Dedicted to Professor Grigore Ştefn

More information

We are looking for ways to compute the integral of a function f(x), f(x)dx.

We are looking for ways to compute the integral of a function f(x), f(x)dx. INTEGRATION TECHNIQUES Introdction We re looking for wys to compte the integrl of fnction f(x), f(x)dx. To pt it simply, wht we need to do is find fnction F (x) sch tht F (x) = f(x). Then if the integrl

More information

MAA 4212 Improper Integrals

MAA 4212 Improper Integrals Notes by Dvid Groisser, Copyright c 1995; revised 2002, 2009, 2014 MAA 4212 Improper Integrls The Riemnn integrl, while perfectly well-defined, is too restrictive for mny purposes; there re functions which

More information

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality:

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality: FACTA UNIVERSITATIS NIŠ) Ser Mth Inform 9 00) 6 SOME COMPANIONS OF OSTROWSKI S INEQUALITY FOR ABSOLUTELY CONTINUOUS FUNCTIONS AND APPLICATIONS S S Drgomir Dedicted to Prof G Mstroinni for his 65th birthdy

More information

UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH HÖLDER CONTINUITY

UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH HÖLDER CONTINUITY UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH HÖLDER CONTINUITY YIFEI PAN, MEI WANG, AND YU YAN ABSTRACT We estblish soe uniqueness results ner 0 for ordinry differentil equtions of the

More information

Linearly Similar Polynomials

Linearly Similar Polynomials Linerly Similr Polynomils rthur Holshouser 3600 Bullrd St. Chrlotte, NC, US Hrold Reiter Deprtment of Mthemticl Sciences University of North Crolin Chrlotte, Chrlotte, NC 28223, US hbreiter@uncc.edu stndrd

More information

Properties of the Riemann Integral

Properties of the Riemann Integral Properties of the Riemnn Integrl Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University Februry 15, 2018 Outline 1 Some Infimum nd Supremum Properties 2

More information

Houston Journal of Mathematics. c 1999 University of Houston Volume 25, No. 4, 1999

Houston Journal of Mathematics. c 1999 University of Houston Volume 25, No. 4, 1999 Houston Journl of Mthemtics c 999 University of Houston Volume 5, No. 4, 999 ON THE STRUCTURE OF SOLUTIONS OF CLSS OF BOUNDRY VLUE PROBLEMS XIYU LIU, BOQING YN Communicted by Him Brezis bstrct. Behviour

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk bout solving systems of liner equtions. These re problems tht give couple of equtions with couple of unknowns, like: 6 2 3 7 4

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs Applied Mthemticl Sciences, Vol. 2, 2008, no. 8, 353-362 New Integrl Inequlities for n-time Differentible Functions with Applictions for pdfs Aristides I. Kechriniotis Technologicl Eductionl Institute

More information

A Convergence Theorem for the Improper Riemann Integral of Banach Space-valued Functions

A Convergence Theorem for the Improper Riemann Integral of Banach Space-valued Functions Interntionl Journl of Mthemticl Anlysis Vol. 8, 2014, no. 50, 2451-2460 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/10.12988/ijm.2014.49294 A Convergence Theorem for the Improper Riemnn Integrl of Bnch

More information

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex Stud. Univ. Beş-Bolyi Mth. 6005, No. 4, 57 534 Some Hermite-Hdmrd type inequlities for functions whose exponentils re convex Silvestru Sever Drgomir nd In Gomm Astrct. Some inequlities of Hermite-Hdmrd

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

Definite integral. Mathematics FRDIS MENDELU

Definite integral. Mathematics FRDIS MENDELU Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journl o Inequlities in Pure nd Applied Mthemtics http://jipm.vu.edu.u/ Volume 6, Issue 4, Article 6, 2005 MROMORPHIC UNCTION THAT SHARS ON SMALL UNCTION WITH ITS DRIVATIV QINCAI ZHAN SCHOOL O INORMATION

More information

CHAPTER 4 MULTIPLE INTEGRALS

CHAPTER 4 MULTIPLE INTEGRALS CHAPTE 4 MULTIPLE INTEGAL The objects of this chpter re five-fold. They re: (1 Discuss when sclr-vlued functions f cn be integrted over closed rectngulr boxes in n ; simply put, f is integrble over iff

More information

Math Advanced Calculus II

Math Advanced Calculus II Mth 452 - Advnced Clculus II Line Integrls nd Green s Theorem The min gol of this chpter is to prove Stoke s theorem, which is the multivrible version of the fundmentl theorem of clculus. We will be focused

More information

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b. Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn

More information

Some Improvements of Hölder s Inequality on Time Scales

Some Improvements of Hölder s Inequality on Time Scales DOI: 0.55/uom-207-0037 An. Şt. Univ. Ovidius Constnţ Vol. 253,207, 83 96 Some Improvements of Hölder s Inequlity on Time Scles Cristin Dinu, Mihi Stncu nd Dniel Dănciulescu Astrct The theory nd pplictions

More information

R. I. Badran Solid State Physics

R. I. Badran Solid State Physics I Bdrn Solid Stte Physics Crystl vibrtions nd the clssicl theory: The ssmption will be mde to consider tht the men eqilibrim position of ech ion is t Brvis lttice site The ions oscillte bot this men position

More information

An optimal 3-point quadrature formula of closed type and error bounds

An optimal 3-point quadrature formula of closed type and error bounds Revist Colombin de Mtemátics Volumen 8), págins 9- An optiml 3-point qudrture formul of closed type nd error bounds Un fórmul de cudrtur óptim de 3 puntos de tipo cerrdo y error de fronter Nend Ujević,

More information

Math Calculus with Analytic Geometry II

Math Calculus with Analytic Geometry II orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove x-xis) ( bove f under x-xis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem

More information

Oscillation and asymptotic behavior for a class of delay parabolic differential

Oscillation and asymptotic behavior for a class of delay parabolic differential Applied Mthemtics Letters 19 (2006) 758 766 www.elsevier.com/locte/ml Oscilltion nd symptotic behvior for clss of dely prbolic differentil Qisheng Wng,b,,ZigenOuyng,Jiding Lio School of Mthemtics nd Physicl

More information

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph

More information