Astronomy Physics of the Planets. Outer Planet Interiors

Size: px
Start display at page:

Download "Astronomy Physics of the Planets. Outer Planet Interiors"

Transcription

1 Astronomy 6570 Physics of the Planets Outer Planet Interiors

2 Giant Planets, Common Features Mass: Radius: Density: M R gcm - 3 RotaJon period: hours Obliq.: 3 98 Vis. Surf.: clouds; zonally banded (N?) decreasing contrast: J è S è U Atmos. Comp.: H 2 + He (roughly solar) + CH 4, NH 3, H 2 O, (enhanced by 3 5 in J) Atmos. Struct.: adiabajc below ~ 1 bar warm stratospheres Energy output: ~ 2 * solar input (exc. U) Atmos. Circ n.: Zonal winds of ms Mag. Field: Gauss Jlt = 0 59 Satellites: inner, regular sats ( e ~ i ~ 0) outer, irreg. sats Ring system: increasing mass: J è N è U è S assoc. with small satellites ephemeral structures?

3 Radio Occultation Temperature Profiles

4 Condensation levels correspond to predicted cloud layers CondensaJon Levels Only uppermost clouds observed directly Radio Spectrum P (bar) Jupiter T( K) Microwave emission originates from bar levels T B ( K) NH 3 absorption v. strong near 1 cm è minimum in T B. λ

5 Planetary insolation patterns small obliquity (J) large obliquity (U)

6 Emitted infrared flux and equivalent brightness temperatures versus latitude for the four outer planets. The radiation is emitted, on average, from the 0.3 to 0.5 bar pressure levels. The equator-to-pole temperature differences are small. The largest temperature gradients occur at the extrema of the zonal velocity profile. (Ingersoll, 1990)

7 Zonal wind profiles (Voyager data)

8 Internal circulajon models: Saturn

9 Magnetic field comparison:

10 Comparison of planetary magnejc fields Earth Jupiter a Saturn a Uranus a Neptune a Radius, R planet (km) 6,373 71,398 60,330 25,559 24,764 Spin Period (Hours) MagneJc Moment/M Earth 1 b 20, Surface MagneJc Field (Gauss) Dipole Equator, B Minimum Maximum Dipole Tilt and Sense c Distance (A.U.) 1 d Solar Wind Density (cm - 3 ) R CF 8 R E 30 R J 14 R S 18 R U 18 R N Size of Magnetosphere 11 R E R J R S 18 R U R N a Magnetic field characteristics from Acuna & Ness (1976), Connerney et al. (1982, 1987, 1991). b M Eartth = Gauss cm 3 = Tesla m 3. c Note: Earth has a magnetic field of opposite polarity to those of the giant planets. d 1 A.U. = km.

11 Planetary Interior Models (general considerajons) Assume spherical symmetry (for simplicity only!) 1. Hydrostatic equilib.: dp dr 2. Mass conservation: dm dr =!"g =!Gm r = 4# r 2 " r 2 ( )" ( ) 3. Equation of state: P = f ",T; composition 4. Heat transfer: % ' & ' ( k dt dr = F! conduction dt = $T dr $P ( ) s dp dr! convection - in approximate treatments (4) may be dropped and (3) replaced by P = f " 3 first-order D.E.'s ) 3 boundary conditions 1. m 0 2. P R ( ) = 0 ( ) = 0 %' 3.T ( R) = T (solid surface) surf & (' T eff (jovian planets) Adjust model parameters (e.g., composition, M core, etc.) to fit observables: M, R, J 2 ( ~ C ),J MR 2 4, etc. Model ) " ( r ), P ( r ), g ( r ),T ( r ) ( )

12 Central pressures : dp dr # roughly P c!p 0 R! 4$ 3 =! Gm" r 2 GM 2 R 5 % P c! GM 2 R 4 Case I : a uniform-density planet: m r % P r ( ) = 4$ 3 "r 3 # g = 4$ 3 G"r #! (gcm -3 ) dp =! ( 4$ dr 3 )G" 2 r ( ) = P c! 2$ 3 G"2 r 2 Boundary condition # P c = 2$ 3 G"2 R 2 = 3 8$ GM 2 R 4

13 Case II : P =!! 2 (n = 1 polytrope ~ Jupiter) " P c = 2# 3 9 G! 2 R 2 (see Polytrope notes) Examples Body ρ(g cm - 3 ) R (km) Case I Case II (Mb = Nm - 2 ) Moon Earth Uranus , Jupiter , Detailed models: Earth = 3.5 Mb Jupiter = 70 Mb Uranus = 8 Mb

14 Adiabats Adiabatic equations of state (EOS) for hydrogen, ice, and rock. HYDROGEN H-He

15 Zero-temperature planet models for pure components.

16 Hydrogen phase diagram.

17 Giant Planet Models (Stephenson)

18 Polytropes Interior structure equations: dm dr = 4! r 2 " (1) dp dr (2) $ m r % Gm" = #g" = # r 2 (2) ( ) = # r 2 G" dm dr = # 1 G dp dr d dr ( r 2 " dp ) dr = 4! r 2 "! from (1) We assume P = " " 1+ 1 n " = constant (3) Substitute in the DE: and write " = " 0 & n ' P = P 0 & n+1 with P 0 = " " n d dr ( ( ) + 4! G " 0 2 * r 2 d& dr ) ( n+1)p 0 ( ' set. = r, with r r 0 0 / n+1 ) * +, - r 2 & n = 0 (4) ( )P 0 4! G" 2 0 ( ) +. 2 & n = 0! the LANE-EMDEN equation. (5) d. 2 d& d. d. +, - 1 2

19 Boundary condijons: where $ 1 = R r 0.! =! 0 at r = 0 " # 0 P = 0 at r = R " # $ 1 ( ) = 1 (a) ( ) = 0 (b) Also! % 0 at all 0 & r < R " $ 1 = 1 st zero of # ( $ ). Also we require * dp dr '#n d# = (g! ) 0 as r ) 0 d$ d# d$ 0 ( ) = 0 (c) So starting with (a) & (c), the L-E equation is integrated outwards until # = 0 for the first time.

20 Polytropes (cont d.) Free parameters : { n,! 0, r 0 } " P 0,! - fit to observed M, R, J 2 R = r 0 # 1 M = m( R) = $ R2 G = $ % 1 dp & '! dr r 2 #1 2 0 ( n + 1)P G i 0 d+! r d# # ( ) * from (2) R i.e., M = $ 4,! 0 r 0 3 #1 2 d+ d# # 1 and!! 0 = 3 # 1 d+ d# # 1 so for a given value of n, ( M,R) - r 0,! 0.

21 Polytropes (cont d.) J 2 is determined by the moment of inertia, A = B = C and A + B + C = 3C = 2 r 2 dm " C = 2 R r 2 dm 3! = 8# R r 4 $ r 3! ( )dr 0 = 8# $ r ! % 1 0 % 4 & n d% 0!#" # $ Now II = ' ( 2 d * d% %2 -! &) +,. / d% = ' % 4 &1) + 2! % 3 &) d% 1 II = ' % 4 &1) + 2 % 3 &1 ' 6! % 2 & d% 1 1 % = ' % 4 d& '6! 1 % 2 & d% 1 d% % 0 1 C MR 2. For a spherical planet! and C = MR 2 '2II 3% 4 &) 1

22 Summary of ProperJes of Polytropes: R =! 1 r 0 " = 3 $ d# '! d! 1 % & ( ) " 0 1 P 0 = 4*G" 0 2 r 0 2 n+1 P.E. =,- GM2 R = + GM2 R 4 ( )1 M =, 4* " 0 r 0 3! 1 2 d# d!

23 Polytropic Models of Jovian Planets: J 2 q = 1 3 k 2 q =! 2 R 3 GM Conclusions: n 0.95 Jupiter 1.3 Saturn 1.5 Uranus 1.2 Neptune!J 4 q 2 1 "! % 2 Note: For n = 1,r = # $ 2!G & ', independent of (0 and M.

24

25

26

27

28

29 Podolak et al. (1989) Uranus

30 Podolak et al. (1989) Uranus Models fit Current J 2 & J 4

31 Hubbard and MacFarlane rock ice gas Density distribution in Uranus, calculated for a model with solar abundances of ice and rock. The temperature distribution corresponds to the present epoch.

32 Hubbard and MacFarlane rock ice gas Density distribution in Neptune, calculated for a model with solar abundances of ice and rock. The temperature distribution corresponds to the present epoch.

33 Notes on Giant Planet Interiors: Internal heat sources in J, S & N probably due to conjnued gravitajonal energy release thru contracjon: ~ 30 km/my for Jupiter. Models predict that Jupiter is also cooling at ~ K/My. Lack of internal heat source in Uranus may be a consequence of subtle composijonal gradients inhibijng interior convecjon. ObservaJons can be matched if there is no convecjon interior to ~ 0.6 R u è magnejc field must be generated in the outer icy mantle. D/H rajons in U and N are ~ 10-4, similar to Earth and comets but ~ 10 larger than in J and S è composijon dominated by ices rather than H 2 + He.

Giant planets. Giant planets of the Solar System. Giant planets. Gaseous and icy giant planets

Giant planets. Giant planets of the Solar System. Giant planets. Gaseous and icy giant planets Giant planets of the Solar System Planets and Astrobiology (2016-2017) G. Vladilo Giant planets Effective temperature Low values with respect to the rocky planets of the Solar System Below the condensation

More information

12a. Jupiter. Jupiter Data (Table 12-1) Jupiter Data: Numbers

12a. Jupiter. Jupiter Data (Table 12-1) Jupiter Data: Numbers 12a. Jupiter Jupiter & Saturn data Jupiter & Saturn seen from the Earth Jupiter & Saturn rotation & structure Jupiter & Saturn clouds Jupiter & Saturn atmospheric motions Jupiter & Saturn rocky cores Jupiter

More information

EART164: PLANETARY ATMOSPHERES

EART164: PLANETARY ATMOSPHERES EART16: PLANETARY ATMOSPHERES Francis Nimmo Last Week How do planets form? They accrete from the solar nebula (dust+gas) They may subsequently migrate Where do atmospheres come from? Primary, secondary,

More information

ASTR 380 Possibilities for Life in the Outer Solar System

ASTR 380 Possibilities for Life in the Outer Solar System ASTR 380 Possibilities for Life in the Outer Solar System Possibility of Life in the Inner Solar System The Moon, Mercury, and the Moons of Mars Deimos NO LIFE NOW or EVER This is a 98% conclusion! Phobos

More information

GIANT PLANETS & PLANETARY ATMOSPHERES

GIANT PLANETS & PLANETARY ATMOSPHERES GIANT PLANETS & PLANETARY ATMOSPHERES Problem Set 6 due Tuesday 25 October 2018 ASTRONOMY 111 FALL 2018 1 From last lecture INTERIOR TEMPERATURE OF A ROCKY PLANET! "# 'Λ "$ =! $ "$ + -! 1 "$ 3* + $ / "$

More information

Uranus & Neptune: The Ice Giants. Discovery of Uranus. Bode s Law. Discovery of Neptune

Uranus & Neptune: The Ice Giants. Discovery of Uranus. Bode s Law. Discovery of Neptune Uranus & Neptune: The Ice Giants Discovery of Uranus Discovery of Uranus & Neptune Properties Density & Composition Internal Heat Source Magnetic fields Rings Uranus Rotational Axis by William Herschel

More information

Chapter 10 Worlds of Gas and Liquid- The Giant Planets. 21st CENTURY ASTRONOMY Fifth EDITION Kay Palen Blumenthal

Chapter 10 Worlds of Gas and Liquid- The Giant Planets. 21st CENTURY ASTRONOMY Fifth EDITION Kay Palen Blumenthal Chapter 10 Worlds of Gas and Liquid- The Giant Planets 21st CENTURY ASTRONOMY Fifth EDITION Kay Palen Blumenthal What is a storm on Saturn like? The Giant Planets, Part 1 Jupiter, Saturn, Uranus, and Neptune

More information

Lecture #27: Saturn. The Main Point. The Jovian Planets. Basic Properties of Saturn. Saturn:

Lecture #27: Saturn. The Main Point. The Jovian Planets. Basic Properties of Saturn. Saturn: Lecture #27: Saturn Saturn: General properties. Atmosphere. Interior. Origin and evolution. Reading: Chapters 7.1 (Saturn) and 11.1. The Main Point Saturn is a large Jovian-class planet with a composition

More information

Planetary Interiors. Earth s Interior Structure Hydrostatic Equilibrium Heating Constituent Relations Gravitational Fields Isostasy Magnetism

Planetary Interiors. Earth s Interior Structure Hydrostatic Equilibrium Heating Constituent Relations Gravitational Fields Isostasy Magnetism Planetary Interiors Earth s Interior Structure Hydrostatic Equilibrium Heating Constituent Relations Gravitational Fields Isostasy Magnetism Isostasy Courtesy of U of Leeds Now apply this idea to topography

More information

Jupiter. Jupiter, its atmosphere, and its magnetic field 10/19/17 PROBLEM SET #5 DUE TUESDAY AT THE BEGINNING OF LECTURE

Jupiter. Jupiter, its atmosphere, and its magnetic field 10/19/17 PROBLEM SET #5 DUE TUESDAY AT THE BEGINNING OF LECTURE Jupiter PROBLEM SET #5 DUE TUESDAY AT THE BEGINNING OF LECTURE 19 October 2017 ASTRONOMY 111 FALL 2017 1 Jupiter and Io as seen from Cassini as it flew by (JPL/NASA) Jupiter, its atmosphere, and its magnetic

More information

Interior and evolution of Uranus and Neptune

Interior and evolution of Uranus and Neptune Interior and evolution of Uranus and Neptune N Nettelmann (UC Santa Cruz) collaborators: JJ Fortney (UCSC), R Redmer (U Rostock), M French (UR), S Hamel (LLNL), M Bethkenhagen, (LLNL), K Wang (CA-Castilleja

More information

Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2

Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2 Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2 Instructor: L. M. Khandro 1. Relatively speaking, objects with high temperatures emit their peak radiation in short wavelengths

More information

12. Jovian Planet Systems Pearson Education Inc., publishing as Addison Wesley

12. Jovian Planet Systems Pearson Education Inc., publishing as Addison Wesley 12. Jovian Planet Systems Jovian Planet Properties Compared to the terrestrial planets, the Jovians: are much larger & more massive 2. are composed mostly of Hydrogen, Helium, & Hydrogen compounds 3. have

More information

Planetary Atmospheres

Planetary Atmospheres Planetary Atmospheres Structure Composition Clouds Meteorology Photochemistry Atmospheric Escape EAS 4803/8803 - CP 11:1 Structure Generalized Hydrostatic Equilibrium P( z) = P( 0)e z # ( ) " dr / H r

More information

Earth, Uranus, Neptune & Pluto. 14a. Uranus & Neptune. The Discovery of Uranus. Uranus Data: Numbers. Uranus Data (Table 14-1)

Earth, Uranus, Neptune & Pluto. 14a. Uranus & Neptune. The Discovery of Uranus. Uranus Data: Numbers. Uranus Data (Table 14-1) 14a. Uranus & Neptune The discovery of Uranus & Neptune Uranus is oddly tilted & nearly featureless Neptune is cold & blue Uranus & Neptune are like yet dislike Jupiter The magnetic fields of Uranus &

More information

Astronomy 241: Foundations of Astrophysics I. The Solar System

Astronomy 241: Foundations of Astrophysics I. The Solar System Astronomy 241: Foundations of Astrophysics I. The Solar System Astronomy 241 is the first part of a year-long introduction to astrophysics. It uses basic classical mechanics and thermodynamics to analyze

More information

The Gas Giants. Temperatures. From the thermal balance equations we looked at before we expect temperatures: Actually, we find:

The Gas Giants. Temperatures. From the thermal balance equations we looked at before we expect temperatures: Actually, we find: The Gas Giants The outer part of the solar system, beyond Mars and the asteroid belt, is dominated by the giant gas planets. There are four - Jupiter, Saturn, Uranus and Neptune, in that order - but although

More information

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits 7. Our Solar System Terrestrial & Jovian planets Seven large satellites [moons] Chemical composition of the planets Asteroids & comets The Terrestrial & Jovian Planets Four small terrestrial planets Like

More information

Inner and Outer Planets

Inner and Outer Planets Inner and Outer Planets SPI 0607.6.2 Explain how the relative distance of objects from the earth affects how they appear. Inner Planets Terrestrial planets are those that are closest to the Sun. Terrestrial

More information

Lecture Outlines. Chapter 13. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 13. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 13 Astronomy Today 7th Edition Chaisson/McMillan Chapter 13 Uranus and Neptune Units of Chapter 13 13.1 The Discoveries of Uranus and Neptune 13.2 Orbital and Physical Properties

More information

Planetary Temperatures

Planetary Temperatures Planetary Temperatures How does Sunlight heat a planet with no atmosphere? This is similar to our dust grain heating problem First pass: Consider a planet of radius a at a distance R from a star of luminosity

More information

Solar System Physics I

Solar System Physics I Department of Physics and Astronomy Astronomy 1X Session 2006-07 Solar System Physics I Dr Martin Hendry 6 lectures, beginning Autumn 2006 Lectures 4-6: Key Features of the Jovian and Terrestrial Planets

More information

Today. Jovian planets

Today. Jovian planets Today Jovian planets Global Wind Patterns Heat transport Global winds blow in distinctive patterns: Equatorial: E to W Mid-latitudes: W to E High latitudes: E to W 2014 Pearson Education, Inc. Circulation

More information

Planetary Atmospheres

Planetary Atmospheres Planetary Atmospheres Structure Composition Clouds Meteorology Photochemistry Atmospheric Escape EAS 4803/8803 - CP 17:1 Structure Generalized Hydrostatic Equilibrium P( z) = P( 0)e z # ( ) " dr / H r

More information

The Solar System consists of

The Solar System consists of The Universe The Milky Way Galaxy, one of billions of other galaxies in the universe, contains about 400 billion stars and countless other objects. Why is it called the Milky Way? Welcome to your Solar

More information

Saturn and Planetary Rings 4/5/07

Saturn and Planetary Rings 4/5/07 Saturn and Planetary Rings Announcements Reading Assignment Chapter 15 5 th homework due next Thursday, April 12 (currently posted on the website). Reminder about term paper due April 17. There will be

More information

Lecture 11 The Structure and Atmospheres of the Outer Planets October 9, 2017

Lecture 11 The Structure and Atmospheres of the Outer Planets October 9, 2017 Lecture 11 The Structure and Atmospheres of the Outer Planets October 9, 2017 1 2 Jovian Planets 3 Jovian Planets -- Basic Information Jupiter Saturn Uranus Neptune Distance 5.2 AU 9.5 AU 19 AU 30 AU Spin

More information

Similarities & Differences to Inner Planets

Similarities & Differences to Inner Planets Similarities & Differences to Inner Planets Jupiter Jupiter: Basic Characteristics Mass = 1.898 10 27 kg (318 x Earth) Radius = 71,492 km (11x Earth) Albedo (reflectivity) = 0.34 (Earth = 0.39) Average

More information

Survey of the Solar System. The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems

Survey of the Solar System. The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems Survey of the Solar System The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems The Sun Mass, M ~ 2 x 10 30 kg Radius, R ~ 7 x 10 8 m Surface Temperature ~ 5800 K Density ~ 1.4

More information

The scientific theory I like best is that the rings of. Saturn are composed entirely of lost airline luggage. Mark Russell

The scientific theory I like best is that the rings of. Saturn are composed entirely of lost airline luggage. Mark Russell The scientific theory I like best is that the rings of Saturn are composed entirely of lost airline luggage. Mark Russell What We Will Learn Today Why does Saturn have such a low density and how does that

More information

Part-8c Circulation (Cont)

Part-8c Circulation (Cont) Part-8c Circulation (Cont) Global Circulation Means of Transfering Heat Easterlies /Westerlies Polar Front Planetary Waves Gravity Waves Mars Circulation Giant Planet Atmospheres Zones and Belts Global

More information

Internal structure and atmospheres of planets

Internal structure and atmospheres of planets Internal structure and atmospheres of planets SERGEI POPOV 1312.3323 Sizes and masses Radius vs. mass Results of modeling. Old (relaxed) planets. Colors correspond to different fractions of light elements.

More information

Astronomy 1140 Quiz 4 Review

Astronomy 1140 Quiz 4 Review Astronomy 1140 Quiz 4 Review Anil Pradhan November 16, 2017 I Jupiter 1. How do Jupiter s mass, size, day and year compare to Earth s? Mass: 318 Earth masses (or about 1/1000th the mass of the Sun). Radius:

More information

Inner and Outer Planets

Inner and Outer Planets Inner and Outer Planets Inner Planets Terrestrial planets are those that are closest to the Sun. Terrestrial planets are made mostly of rock and have similar characteristics to Earth. There are four terrestrial

More information

Transneptunian objects. Minor bodies in the outer Solar System. Transneptunian objects

Transneptunian objects. Minor bodies in the outer Solar System. Transneptunian objects Transneptunian objects Minor bodies in the outer Solar System Planets and Astrobiology (2016-2017) G. Vladilo Around 1980 it was proposed that the hypothetical disk of small bodies beyond Neptune (called

More information

Chapter Outline. Earth and Other Planets. The Formation of the Solar System. Clue #1: Planetary Orbits. Clues to the Origin of the Solar System

Chapter Outline. Earth and Other Planets. The Formation of the Solar System. Clue #1: Planetary Orbits. Clues to the Origin of the Solar System Chapter Outline Earth and Other Planets The Formation of the Solar System Exploring the Solar System Chapter 16 Great Idea: Earth, one of the planets that orbit the Sun, formed 4.5 billion years ago from

More information

Planetary Interiors. Earth s Interior Structure Hydrostatic Equilibrium Heating Constituent Relations Gravitational Fields Isostasy Magnetism

Planetary Interiors. Earth s Interior Structure Hydrostatic Equilibrium Heating Constituent Relations Gravitational Fields Isostasy Magnetism Planetary Interiors Earth s Interior Structure Hydrostatic Equilibrium Heating Constituent Relations Gravitational Fields Isostasy Magnetism Hydrostatic Equilibrium First order for a spherical body: Internal

More information

Astronomy 1 Winter Lecture 15; February

Astronomy 1 Winter Lecture 15; February Astronomy 1 Winter 2011 Lecture 15; February 9 2011 Previously on Astro-1 Mercury, Venus, Mars (and Earth) Size and composition Crusts and cores Volcanism and internal activity Stargazing Events Santa

More information

Chapter 11 Lecture. The Cosmic Perspective Seventh Edition. Jovian Planet Systems Pearson Education, Inc.

Chapter 11 Lecture. The Cosmic Perspective Seventh Edition. Jovian Planet Systems Pearson Education, Inc. Chapter 11 Lecture The Cosmic Perspective Seventh Edition Jovian Planet Systems Jovian Planet Systems 11.1 A Different Kind of Planet Our goals for learning: Are jovian planets all alike? What are jovian

More information

Lecture 24: Saturn. The Solar System. Saturn s Rings. First we focus on solar distance, average density, and mass: (where we have used Earth units)

Lecture 24: Saturn. The Solar System. Saturn s Rings. First we focus on solar distance, average density, and mass: (where we have used Earth units) Lecture 24: Saturn The Solar System First we focus on solar distance, average density, and mass: Planet Distance Density Mass Mercury 0.4 1.0 0.06 Venus 0.7 0.9 0.8 Earth 1.0 1.0 1.0 Mars 1.5 0.7 0.1 (asteroid)

More information

Jupiter. Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by Spacecrafts

Jupiter. Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by Spacecrafts Jupiter Orbit, Rotation Physical Properties Atmosphere, surface Interior Magnetosphere Moons (Voyager 1) Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by

More information

Uranus and Neptune. Uranus and Neptune Properties. Discovery of Uranus

Uranus and Neptune. Uranus and Neptune Properties. Discovery of Uranus Uranus and Neptune Uranus and Neptune are much smaller than Jupiter and Saturn, but still giants compared to Earth Both are worlds we know relatively little about Voyager 2 is the only spacecraft to visit

More information

1. Solar System Overview

1. Solar System Overview Astronomy 241: Foundations of Astrophysics I 1. Solar System Overview 0. Units and Precision 1. Constituents of the Solar System 2. Motions: Rotation and Revolution 3. Formation Scenario Units Text uses

More information

Earth, Uranus, Neptune & Pluto

Earth, Uranus, Neptune & Pluto 14a. Uranus, Neptune & Pluto The discovery of Uranus & Neptune Uranus is oddly tilted & nearly featureless Neptune is cold & blue Uranus & Neptune are like yet dislike Jupiter The magnetic fields of Uranus

More information

HNRS 227 Fall 2006 Chapter 13. What is Pluto? What is a Planet? There are two broad categories of planets: Terrestrial and Jovian

HNRS 227 Fall 2006 Chapter 13. What is Pluto? What is a Planet? There are two broad categories of planets: Terrestrial and Jovian Key Points of Chapter 13 HNRS 227 Fall 2006 Chapter 13 The Solar System presented by Prof. Geller 24 October 2006 Planets Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune Dwarf Planets Pluto,

More information

Chapter 11 Jovian Planet Systems

Chapter 11 Jovian Planet Systems Chapter 11 Jovian Planet Systems 11.1 A Different Kind of Planet Our goals for learning: Are jovian planets all alike? What are jovian planets like on the inside? What is the weather like on jovian planets?

More information

The Jovian Planets. Huge worlds, heavily mantled in gas at the time of the formation of the Solar System.

The Jovian Planets. Huge worlds, heavily mantled in gas at the time of the formation of the Solar System. 1 The Jovian Planets Huge worlds, heavily mantled in gas at the time of the formation of the Solar System. 2 The Galilean Satellites Jupiter has four planetary-sized moons first seen by Galileo and easily

More information

( ) a3 (Newton s version of Kepler s 3rd Law) Units: sec, m, kg

( ) a3 (Newton s version of Kepler s 3rd Law) Units: sec, m, kg Astronomy 18, UCSC Planets and Planetary Systems Generic Mid-Term Exam (A combination of exams from the past several times this class was taught) This exam consists of two parts: Part 1: Multiple Choice

More information

Chapter 19 The Origin of the Solar System

Chapter 19 The Origin of the Solar System Chapter 19 The Origin of the Solar System Early Hypotheses catastrophic hypotheses, e.g., passing star hypothesis: Star passing closely to the the sun tore material out of the sun, from which planets could

More information

Astronomy 6570 Physics of the Planets

Astronomy 6570 Physics of the Planets Astronomy 6570 Physics of the Planets Planetary Rotation, Figures, and Gravity Fields Topics to be covered: 1. Rotational distortion & oblateness 2. Gravity field of an oblate planet 3. Free & forced planetary

More information

Lesson 3 THE SOLAR SYSTEM

Lesson 3 THE SOLAR SYSTEM Lesson 3 THE SOLAR SYSTEM THE NATURE OF THE SUN At the center of our solar system is the Sun which is a typical medium sized star. Composed mainly of Hydrogen (73% by mass), 23% helium and the rest is

More information

Chapter 11 Jovian Planet Systems. Jovian Planet Composition. Are jovian planets all alike? Density Differences. Density Differences

Chapter 11 Jovian Planet Systems. Jovian Planet Composition. Are jovian planets all alike? Density Differences. Density Differences Chapter 11 Jovian Planet Systems 11.1 A Different Kind of Planet Our goals for learning:! Are jovian planets all alike?! What are jovian planets like on the inside?! What is the weather like on jovian

More information

Uranus & Neptune, The Ice Giants

Uranus & Neptune, The Ice Giants Uranus & Neptune, The Ice Giants What We Will Learn Today How & When were Uranus & Neptune discovered? How are the interiors and weather on these planets? Why is Neptune as warm as Uranus? What are their

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Homework Ch 7, 8, 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Our most detailed knowledge of Uranus and Neptune comes from 1) A) the

More information

Which of the following statements best describes the general pattern of composition among the four jovian

Which of the following statements best describes the general pattern of composition among the four jovian Part A Which of the following statements best describes the general pattern of composition among the four jovian planets? Hint A.1 Major categories of ingredients in planetary composition The following

More information

LEARNING ABOUT THE OUTER PLANETS. NASA's Cassini spacecraft. Io Above Jupiter s Clouds on New Year's Day, Credit: NASA/JPL/University of Arizona

LEARNING ABOUT THE OUTER PLANETS. NASA's Cassini spacecraft. Io Above Jupiter s Clouds on New Year's Day, Credit: NASA/JPL/University of Arizona LEARNING ABOUT THE OUTER PLANETS Can see basic features through Earth-based telescopes. Hubble Space Telescope especially useful because of sharp imaging. Distances from Kepler s 3 rd law, diameters from

More information

Inner Planets (Part II)

Inner Planets (Part II) Inner Planets (Part II) Sept. 18, 2002 1) Atmospheres 2) Greenhouse Effect 3) Mercury 4) Venus 5) Mars 6) Moon Announcements Due to technical difficulties, Monday s quiz doesn t count An extra credit problem

More information

Chapter 11 Jovian Planet Systems

Chapter 11 Jovian Planet Systems Chapter 11 Jovian Planet Systems 11.1 A Different Kind of Planet Our goals for learning: Are jovian planets all alike? What are jovian planets like on the inside? What is the weather like on jovian planets?

More information

Chapter 11 Jovian Planet Systems. Comparing the Jovian Planets. Jovian Planet Composition 4/10/16. Spacecraft Missions

Chapter 11 Jovian Planet Systems. Comparing the Jovian Planets. Jovian Planet Composition 4/10/16. Spacecraft Missions Chapter 11 Jovian Planet Systems Jovian Planet Interiors and Atmospheres How are jovian planets alike? What are jovian planets like on the inside? What is the weather like on jovian planets? Do jovian

More information

4. THE SOLAR SYSTEM 1.1. THE SUN. Exercises

4. THE SOLAR SYSTEM 1.1. THE SUN. Exercises 4. THE SOLAR SYSTEM 1.1. THE SUN The sun is the star located in the center of the solar system. The sun is a yellow star, since its superficial temperature is about 5.500 C (although, the temperature can

More information

The Jovian Planets (Gas Giants)

The Jovian Planets (Gas Giants) The Jovian Planets (Gas Giants) Discoveries and known to ancient astronomers. discovered in 1781 by Sir William Herschel (England). discovered in 1845 by Johann Galle (Germany). Predicted to exist by John

More information

Our Sun. & the Planets. Sun and Planets.notebook. October 18, Our Sun (a quick review) Hydrogen is the main fuel source

Our Sun. & the Planets. Sun and Planets.notebook. October 18, Our Sun (a quick review) Hydrogen is the main fuel source Sun and Planets.notebook October 18, 2016 Our Sun Our Sun (a quick review) Average size main sequence star Hydrogen is the main fuel source In about 5 billion years it will become a & the Planets red giant

More information

Jupiter and Saturn: Lords of the Planets

Jupiter and Saturn: Lords of the Planets 11/5/14 Jupiter and Saturn: Lords of the Planets Guiding Questions 1. Why is the best month to see Jupiter different from one year to the next? 2. Why are there important differences between the atmospheres

More information

Observational Astronomy - Lecture 6 Solar System I - The Planets

Observational Astronomy - Lecture 6 Solar System I - The Planets Observational Astronomy - Lecture 6 Solar System I - The Planets Craig Lage New York University - Department of Physics craig.lage@nyu.edu March 23, 2014 1 / 39 The Sun and the Earth The Sun is 23,000

More information

Chapter 11 Jovian Planet Systems. Jovian Planet Composition. Are jovian planets all alike? Density Differences. Density Differences

Chapter 11 Jovian Planet Systems. Jovian Planet Composition. Are jovian planets all alike? Density Differences. Density Differences Chapter 11 Jovian Planet Systems 11.1 A Different Kind of Planet Our goals for learning Are jovian planets all alike? What are jovian planets like on the inside? What is the weather like on jovian planets?

More information

Planetary Interiors. Read chapter 6!! EAS 4803/ CP 38:1

Planetary Interiors. Read chapter 6!! EAS 4803/ CP 38:1 Planetary Interiors Read chapter 6!! EAS 4803/8803 - CP 38:1 Bulk density continued: KBOs Haumea Eris Pluto Quaoar Triton http://www.mikebrownsplanets.com EAS 4803/8803 - CP 38:2 Bulk density continued:

More information

Lecture 25: The Outer Planets

Lecture 25: The Outer Planets Lecture 25: The Outer Planets Neptune Uranus Pluto/Charon Uranus and three moons Neptune and two moons 1 The Outer Planets Uranus Discovered by William Herschel in 1781, who realized that this extended

More information

The Jovian Planets. The Jovian planets: Jupiter, Saturn, Uranus and Neptune

The Jovian Planets. The Jovian planets: Jupiter, Saturn, Uranus and Neptune The Jovian planets: Jupiter, Saturn, Uranus and Neptune Their masses are large compared with terrestrial planets, from 15 to 320 times the Earth s mass They are gaseous Low density All of them have rings

More information

Greeks watched the stars move across the sky and noticed five stars that wandered around and did not follow the paths of the normal stars.

Greeks watched the stars move across the sky and noticed five stars that wandered around and did not follow the paths of the normal stars. Chapter 23 Our Solar System Our Solar System Historical Astronomy Wandering Stars Greeks watched the stars move across the sky and noticed five stars that wandered around and did not follow the paths of

More information

Differentiation of planetary interiors. Rocky Planets Interiors and surface geophysics

Differentiation of planetary interiors. Rocky Planets Interiors and surface geophysics Differentiation of planetary interiors Rocky Planets Interiors and surface geophysics Process of separation of internal planetary layers that takes place as a result of the physical and chemical properties

More information

Lecture 23: Jupiter. Solar System. Jupiter s Orbit. The semi-major axis of Jupiter s orbit is a = 5.2 AU

Lecture 23: Jupiter. Solar System. Jupiter s Orbit. The semi-major axis of Jupiter s orbit is a = 5.2 AU Lecture 23: Jupiter Solar System Jupiter s Orbit The semi-major axis of Jupiter s orbit is a = 5.2 AU Jupiter Sun a Kepler s third law relates the semi-major axis to the orbital period 1 Jupiter s Orbit

More information

Astronomy. Uranus Neptune & Remote Worlds

Astronomy. Uranus Neptune & Remote Worlds Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Uranus Neptune & Remote Worlds Uranus and Neptune Orbits and Atmospheres Internal Structure Magnetic Fields Rings Uranus's

More information

Formation of the Solar System Chapter 8

Formation of the Solar System Chapter 8 Formation of the Solar System Chapter 8 To understand the formation of the solar system one has to apply concepts such as: Conservation of angular momentum Conservation of energy The theory of the formation

More information

Chapter 11. ASTRONOMY 202 Spring 2007: Solar System Exploration. Class 31: Jovian Planets [4/4/07] Announcements. Ice Ages and Global Warming

Chapter 11. ASTRONOMY 202 Spring 2007: Solar System Exploration. Class 31: Jovian Planets [4/4/07] Announcements. Ice Ages and Global Warming ASTRONOMY 202 Spring 2007: Solar System Exploration Instructor: Dr. David Alexander Web-site: www.ruf.rice.edu/~dalex/astr202_s07 Class 31: Jovian Planets [4/4/07] Announcements Ice Ages and Global Warming

More information

The Fathers of the Gods: Jupiter and Saturn

The Fathers of the Gods: Jupiter and Saturn The Fathers of the Gods: Jupiter and Saturn Learning Objectives! Order all the planets by size and distance from the Sun! How are clouds on Jupiter (and Saturn) different to the Earth? What 2 factors drive

More information

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1 What is it like? When did it form? How did it form The Solar System Fall, 2005 Astronomy 110 1 Fall, 2005 Astronomy 110 2 The planets all orbit the sun in the same direction. The Sun spins in the same

More information

Label next 2 pages in ISN Gas Giants. Make sure the following assignments are turned in:

Label next 2 pages in ISN Gas Giants. Make sure the following assignments are turned in: Do Now: Label next 2 pages in ISN Gas Giants Make sure the following assignments are turned in: A3K Article Analysis Small Group Test Corrections Form (if applicable) Astronomical Bodies in The Solar System

More information

Announcement Test 2. is coming up on Mar 19. Start preparing! This test will cover the classes from Feb 27 - Mar points, scantron, 1 hr.

Announcement Test 2. is coming up on Mar 19. Start preparing! This test will cover the classes from Feb 27 - Mar points, scantron, 1 hr. Announcement Test 2 is coming up on Mar 19. Start preparing! This test will cover the classes from Feb 27 - Mar 14. 50 points, scantron, 1 hr. 1 AST103 Ch. 7 Our Planetary System Earth, as viewed by the

More information

Today. Solar System Formation. a few more bits and pieces. Homework due

Today. Solar System Formation. a few more bits and pieces. Homework due Today Solar System Formation a few more bits and pieces Homework due Pluto Charon 3000 km Asteroids small irregular rocky bodies Comets icy bodies Formation of the Solar System How did these things come

More information

Substellar Atmospheres. PHY 688, Lecture 18 Mar 9, 2009

Substellar Atmospheres. PHY 688, Lecture 18 Mar 9, 2009 Substellar Atmospheres PHY 688, Lecture 18 Mar 9, 2009 Outline Review of previous lecture the Kepler mission launched successfully results P < 1 month planets by September 09 giant planet interiors comparison

More information

Lecture #11: Plan. Terrestrial Planets (cont d) Jovian Planets

Lecture #11: Plan. Terrestrial Planets (cont d) Jovian Planets Lecture #11: Plan Terrestrial Planets (cont d) Jovian Planets Mercury (review) Density = 5.4 kg / liter.. ~ Earth s Rocky mantle + iron/nickel core Slow spin: 59 days (orbital period = 88 days) No satellites

More information

Astro 101 Lecture 12 The Jovian Planets

Astro 101 Lecture 12 The Jovian Planets Astro 101 Lecture 12 The Jovian Planets 2-28-2018 Jupiter, Saturn, Uranus and Neptune ASTR-101 Section 004 Bulk Properties of Terrestrial and Jovian Planets All Jovian planets have strong magnetic fields

More information

Earth s Formation Unit [Astronomy] Student Success Sheets (SSS)

Earth s Formation Unit [Astronomy] Student Success Sheets (SSS) Page1 Earth s Formation Unit [Astronomy] Student Success Sheets (SSS) HS-ESSI-1; HS-ESS1-2; HS-ESS1-3; HS-ESSI-4 NGSS Civic Memorial High School - Earth Science A Concept # What we will be learning Mandatory

More information

Lecture Outlines. Chapter 11. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 11. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 11 Astronomy Today 8th Edition Chaisson/McMillan Chapter 11 Jupiter Units of Chapter 11 11.1 Orbital and Physical Properties 11.2 Jupiter s Atmosphere Discovery 11.1 A Cometary

More information

Tilts and Obliquities!

Tilts and Obliquities! Fran Bagenal! University of Colorado! Tilts and Obliquities! Offset Tilted Dipole Approximation Earth Stanley & Bloxham 2006 Jupiter Saturn B radial @ surface Uranus Neptune Magnetic Potential 3-D harmonics

More information

The Outer Planets (pages )

The Outer Planets (pages ) The Outer Planets (pages 720 727) Gas Giants and Pluto (page 721) Key Concept: The first four outer planets Jupiter, Saturn, Uranus, and Neptune are much larger and more massive than Earth, and they do

More information

Universe Celestial Object Galaxy Solar System

Universe Celestial Object Galaxy Solar System ASTRONOMY Universe- Includes all known matter (everything). Celestial Object Any object outside or above Earth s atmosphere. Galaxy- A large group (billions) of stars (held together by gravity). Our galaxy

More information

Jovian (Jupiter like) Planets

Jovian (Jupiter like) Planets Jovian (Jupiter like) Planets Jupiter Internal structure Heat source Moons & rings Terrestrial vs. Jovian - Size & Density Density (g/cm 3 ) Density (g/cm^3) 6 5 4 3 2 1 0 Mercury Venus Earth Mars Jupiter

More information

The Earth s Hydrosphere. The volatile component of rocky planets (hydrospheres and atmospheres) Earth water reservoirs Rollins (2007)

The Earth s Hydrosphere. The volatile component of rocky planets (hydrospheres and atmospheres) Earth water reservoirs Rollins (2007) The Earth s Hydrosphere Oceans The volatile component of rocky planets (hydrospheres and atmospheres) Planets and Astrobiology (2017-2018) G. Vladilo The Earth is the only planet of the Solar System with

More information

Starting from closest to the Sun, name the orbiting planets in order.

Starting from closest to the Sun, name the orbiting planets in order. Chapter 9 Section 1: Our Solar System Solar System: The solar system includes the sun, planets and many smaller structures. A planet and its moon(s) make up smaller systems in the solar system. Scientist

More information

The Solar System. Sun. Rotates and revolves around the Milky Way galaxy at such a slow pace that we do not notice any effects.

The Solar System. Sun. Rotates and revolves around the Milky Way galaxy at such a slow pace that we do not notice any effects. The Solar System Sun Center of the solar system About 150,000,000 km from the Earth An averaged sized, yellow star Spherical in shape due to gravity Made of about ¾ hydrogen and ¼ helium, both of which

More information

Test #2 Results : A 80 89: B 70 79: C 60 69: D <60: F

Test #2 Results : A 80 89: B 70 79: C 60 69: D <60: F Test #2 Results 90 100: A 80 89: B 70 79: C 60 69: D

More information

9.2 - Our Solar System

9.2 - Our Solar System 9.2 - Our Solar System Scientists describe our solar system as the Sun and all the planets and other celestial objects, such as moons, comets, and asteroids, that are held by the Sun s gravity and orbit

More information

Our Planetary System. Chapter 7

Our Planetary System. Chapter 7 Our Planetary System Chapter 7 Key Concepts for Chapter 7 and 8 Inventory of the Solar System Origin of the Solar System What does the Solar System consist of? The Sun: It has 99.85% of the mass of the

More information

LESSON topic: formation of the solar system Solar system formation Star formation Models of the solar system Planets in our solar system

LESSON topic: formation of the solar system Solar system formation Star formation Models of the solar system Planets in our solar system Unit 2 Lesson 1 LESSON topic: formation of the solar system - Solar system formation - Star formation - Models of the solar system - Planets in our solar system Big bang theory Origin of the universe According

More information

Clicker Question: Clicker Question: Clicker Question:

Clicker Question: Clicker Question: Clicker Question: Test results Last day to drop without a grade is Feb 29 Grades posted in cabinet and online F D C B A In which direction would the Earth move if the Sun s gravitational force were suddenly removed from

More information

Lecture 38. The Jovian Planets; Kuiper Belt. Tides; Roche Limit; Rings Jupiter System Saturn, Uranus, Neptune rings Plutinos and KBO's

Lecture 38. The Jovian Planets; Kuiper Belt. Tides; Roche Limit; Rings Jupiter System Saturn, Uranus, Neptune rings Plutinos and KBO's Lecture 38 The Jovian Planets; Kuiper Belt Tides; Roche Limit; Rings Jupiter System Saturn, Uranus, Neptune rings Plutinos and KBO's Apr 26, 2006 Astro 100 Lecture 38 1 Jovian System Jovian System Solar

More information

Earth Science 11 Learning Guide Unit Complete the following table with information about the sun:

Earth Science 11 Learning Guide Unit Complete the following table with information about the sun: Earth Science 11 Learning Guide Unit 2 Name: 2-1 The sun 1. Complete the following table with information about the sun: a. Mass compare to the Earth: b. Temperature of the gases: c. The light and heat

More information

Astronomy 111 Practice Midterm #2

Astronomy 111 Practice Midterm #2 Astronomy 111 Practice Midterm #2 Prof. Douglass Fall 2018 Name: If this were a real exam, you would be reminded of the Exam rules here: You may consult only one page of formulas and constants and a calculator

More information

The Earth s Hydrosphere. The volatile component of rocky planets (hydrospheres and atmospheres) Earth water reservoirs Rollins (2007)

The Earth s Hydrosphere. The volatile component of rocky planets (hydrospheres and atmospheres) Earth water reservoirs Rollins (2007) The Earth s Hydrosphere Oceans The volatile component of rocky planets (hydrospheres and atmospheres) Planets and Astrobiology (2016-2017) G. Vladilo The Earth is the only planet of the Solar System with

More information