ECON 366: ECONOMETRICS II. SPRING TERM 2005: LAB EXERCISE #10 Nonspherical Errors Continued. Brief Suggested Solutions

Size: px
Start display at page:

Download "ECON 366: ECONOMETRICS II. SPRING TERM 2005: LAB EXERCISE #10 Nonspherical Errors Continued. Brief Suggested Solutions"

Transcription

1 DEPARTMENT OF ECONOMICS UNIVERSITY OF VICTORIA ECON 366: ECONOMETRICS II SPRING TERM 2005: LAB EXERCISE #10 Nonspherical Errors Continued Brief Suggested Solutions 1. In Lab 8 we considered the following model: mpg i = β 1 + β 2 sp i + β 3 hp i + β 4 wt i + e i (1) where for the i th car: mpg = average miles per gallon sp = top speed, miles per hour hp = engine horsepower wt = vehicle weight Data on 81 cars are provided in the page lab8a of the EViews workfile lab8.wf1, available from the course web page. a. Undertake White s test for homoskedasticity. The null is H 0 : σ 2 t = σ 2 vs H a : not H 0. White s test effectively compares σ 2 (X X) -1 X WX(X X) -1 (the Cov(b) under H a ) with σ 2 (X X) -1 (the Cov(b) under H 0 ). If substantially different, then suggests heteroskedasticity, if similar, then suggests homoskedasticity. Simple operational version of the test consists of: a) Estimate y=xβ+e by OLS and obtain residuals, ê t b) Form ê 2 t 2 c) Regress by OLS, ê t on a constant, and all unique (or non-redundant) variables in the set containing the regressors in X, their squares and their cross products. Let q=# of regressors in this auxiliary regression. d) Test statistic is WT=TR 2 where R 2 is from step c. The test statistic s limiting null distribution is χ 2 (q-1). EViews has this test canned : White Heteroskedasticity Test: F-statistic Probability Obs*R-squared Probability Test Equation: Dependent Variable: RESID^2 Page 1 of 8

2 Date: 03/15/05 Time: 23:15 C SP SP^ SP*HP SP*WT HP HP^ HP*WT WT WT^ R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) So, our sample value of the statistic is , with an asymptotic p-value of p=pr(χ 2 (9)>37.656)=0.000, suggesting we reject the null; i.e., in line with our prior expectation, we find evidence to suggest heteroskedasticity. b. Estimate the model using the OLS estimator of the coefficient vector, with the usual estimator of its variance-covariance matrix that assumes homoskedasticity. Repeat using White s heteroskedastic consistent estimator of the OLS estimator s variance-covariance matrix. Compare the results. The ordinary LS output is: Dependent Variable: MPG Date: 02/28/05 Time: 15:10 C SP Page 2 of 8

3 HP WT R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) The output using White s estimator of the variance-covariance matrix is: Dependent Variable: MPG Date: 03/15/05 Time: 23:26 White Heteroskedasticity-Consistent Standard Errors & Covariance C SP HP WT R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) The standard errors increase when we allow for possible heteroskedasticity, and some of them quite substantially. c. Suppose we model the variance function as: 2 i ( α + α sp + α hp + α wt ) 2 σ = (2) Estimate the auxiliary regression: 1 2 i 3 i 4 ê i = α 1 + α 2 sp i + α 3 hp i + α 4 wt i + v i (3) to obtain estimates of the α parameters; v is an error term. Use the fitted values from this auxiliary regression to estimate equation (1) by weighted i Page 3 of 8

4 least squares, which is a feasible GLS estimator here. Compare the OLS and WLS estimates of the coefficients. The output from this auxiliary regression follows: Dependent Variable: ABS(EHAT) Date: 03/16/05 Time: 08:53 C HP SP WT R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) Using the option Forecast from this auxiliary regression, I have stored the fitted values, which are an estimate of σ i, in the series ehatf ; these fitted values are used as weights. Applying WLS, with these weights, we have: Page 4 of 8

5 with resultant output: Dependent Variable: MPG Date: 03/16/05 Time: 09:01 Weighting series: (1/EHATF) C SP HP WT Weighted Statistics R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) Unweighted Statistics Page 5 of 8

6 R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Sum squared resid Durbin-Watson stat The table below compares the OLS and WLS coefficient estimates, from which we see substantially changes in the coefficients, and the signs of the estimates. This example illustrates a potential issue with feasible GLS it assumes that we have modeled the heteroskedasticity correctly. Such major changes as seen here would suggest this is not the case and highlights the care that must be taken when we start to model the variance function, in addition to the mean function. Coefficient OLS WLS β β β β In Lab 8 we also considered the following model: log(cu t ) = β 1 + β 2 log(i t ) + β 3 log(lme t ) + β 4 log(hs t ) + β 5 log(al t ) + e t (4) where for the t th year: cu = 12-month average US price of copper (cents per pound) i = 12-month average index of industrial production lme = 12-month average London Metal Exchange price of copper hs = number of housing starts per year (thousands of units) al = 12-month average price of aluminium (cents per pound) Annual data from 1951 through 1980 are provided in the page lab8b of the EViews workfile lab8.wf1, available from the course web page. a. Estimate model (2) by LS using the usual estimator of the LS variancecovariance matrix and the HAC estimator proposed by Newey and West (1987). Compare the standard errors. The two outputs follow: Dependent Variable: CU Date: 02/28/05 Time: 16:10 Sample: Included observations: 30 Page 6 of 8

7 C I LME HS AL R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) Dependent Variable: CU Date: 03/16/05 Time: 09:21 Sample: Included observations: 30 Newey-West HAC Standard Errors & Covariance (lag truncation=3) C I LME HS AL R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) We see that some of the se s are smaller while others are larger using the Newey-West HAC estimator of the variance-covariance matrix. b. In part (a), why did we use the Newey-West estimator of the OLS coefficient estimator s variance-covariance matrix rather than White s estimator? When the errors are nonspherical with Cov(e)=W, the OLS estimator has variance-covariance matrix given by: Cov(b) = (X X) -1 X WX(X X) -1. White s estimator of this matrix explicitly allows for only heteroskedasticity, not Page 7 of 8

8 autocorrelation, evident from the formula T 1 2 = êt x tx t (T K) t= Côv(b) = T(X' X) S (X' X) with S 0 ; we only see variance type terms in this expression. The Newey-West formula, on the other hand, allows for unknown heteroskedasticity and unknown autocorrelation, as seen from the formula: 1 1 Côv(b) = T(X X) X S X(X X), with X T SX = ê j x jx j + w(j)êtêt j[xtx t j + xt jx t ] (T K (T K) j= 1 L T j= 1 t= j+ 1 which contains variance type terms and covariance type term. Note that the Newey-West formula is White s formula adjusted for covariance. Page 8 of 8

Exercise Sheet 6: Solutions

Exercise Sheet 6: Solutions Exercise Sheet 6: Solutions R.G. Pierse 1. (a) Regression yields: Dependent Variable: LC Date: 10/29/02 Time: 18:37 Sample(adjusted): 1950 1985 Included observations: 36 after adjusting endpoints C 0.244716

More information

Brief Suggested Solutions

Brief Suggested Solutions DEPARTMENT OF ECONOMICS UNIVERSITY OF VICTORIA ECONOMICS 366: ECONOMETRICS II SPRING TERM 5: ASSIGNMENT TWO Brief Suggested Solutions Question One: Consider the classical T-observation, K-regressor linear

More information

Heteroskedasticity. Part VII. Heteroskedasticity

Heteroskedasticity. Part VII. Heteroskedasticity Part VII Heteroskedasticity As of Oct 15, 2015 1 Heteroskedasticity Consequences Heteroskedasticity-robust inference Testing for Heteroskedasticity Weighted Least Squares (WLS) Feasible generalized Least

More information

CHAPTER 6: SPECIFICATION VARIABLES

CHAPTER 6: SPECIFICATION VARIABLES Recall, we had the following six assumptions required for the Gauss-Markov Theorem: 1. The regression model is linear, correctly specified, and has an additive error term. 2. The error term has a zero

More information

Exercise Sheet 5: Solutions

Exercise Sheet 5: Solutions Exercise Sheet 5: Solutions R.G. Pierse 2. Estimation of Model M1 yields the following results: Date: 10/24/02 Time: 18:06 C -1.448432 0.696587-2.079327 0.0395 LPC -0.306051 0.272836-1.121740 0.2640 LPF

More information

Agricultural and Applied Economics 637 Applied Econometrics II

Agricultural and Applied Economics 637 Applied Econometrics II Agricultural and Applied Economics 637 Applied Econometrics II Assignment 1 Review of GLS Heteroskedasity and Autocorrelation (Due: Feb. 4, 2011) In this assignment you are asked to develop relatively

More information

13. Time Series Analysis: Asymptotics Weakly Dependent and Random Walk Process. Strict Exogeneity

13. Time Series Analysis: Asymptotics Weakly Dependent and Random Walk Process. Strict Exogeneity Outline: Further Issues in Using OLS with Time Series Data 13. Time Series Analysis: Asymptotics Weakly Dependent and Random Walk Process I. Stationary and Weakly Dependent Time Series III. Highly Persistent

More information

Lecture 8. Using the CLR Model

Lecture 8. Using the CLR Model Lecture 8. Using the CLR Model Example of regression analysis. Relation between patent applications and R&D spending Variables PATENTS = No. of patents (in 1000) filed RDEXP = Expenditure on research&development

More information

Heteroscedasticity 1

Heteroscedasticity 1 Heteroscedasticity 1 Pierre Nguimkeu BUEC 333 Summer 2011 1 Based on P. Lavergne, Lectures notes Outline Pure Versus Impure Heteroscedasticity Consequences and Detection Remedies Pure Heteroscedasticity

More information

Tjalling C. Koopmans Research Institute

Tjalling C. Koopmans Research Institute Tjalling C. Koopmans Research Institute Tjalling C. Koopmans Research Institute Utrecht School of Economics Utrecht University Janskerkhof 12 3512 BL Utrecht The Netherlands telephone +31 30 253 9800 fax

More information

Economics 471: Econometrics Department of Economics, Finance and Legal Studies University of Alabama

Economics 471: Econometrics Department of Economics, Finance and Legal Studies University of Alabama Economics 471: Econometrics Department of Economics, Finance and Legal Studies University of Alabama Course Packet The purpose of this packet is to show you one particular dataset and how it is used in

More information

Problem Set 2: Box-Jenkins methodology

Problem Set 2: Box-Jenkins methodology Problem Set : Box-Jenkins methodology 1) For an AR1) process we have: γ0) = σ ε 1 φ σ ε γ0) = 1 φ Hence, For a MA1) process, p lim R = φ γ0) = 1 + θ )σ ε σ ε 1 = γ0) 1 + θ Therefore, p lim R = 1 1 1 +

More information

9. AUTOCORRELATION. [1] Definition of Autocorrelation (AUTO) 1) Model: y t = x t β + ε t. We say that AUTO exists if cov(ε t,ε s ) 0, t s.

9. AUTOCORRELATION. [1] Definition of Autocorrelation (AUTO) 1) Model: y t = x t β + ε t. We say that AUTO exists if cov(ε t,ε s ) 0, t s. 9. AUTOCORRELATION [1] Definition of Autocorrelation (AUTO) 1) Model: y t = x t β + ε t. We say that AUTO exists if cov(ε t,ε s ) 0, t s. ) Assumptions: All of SIC except SIC.3 (the random sample assumption).

More information

ECON 366: ECONOMETRICS II SPRING TERM 2005: LAB EXERCISE #12 VAR Brief suggested solution

ECON 366: ECONOMETRICS II SPRING TERM 2005: LAB EXERCISE #12 VAR Brief suggested solution DEPARTMENT OF ECONOMICS UNIVERSITY OF VICTORIA ECON 366: ECONOMETRICS II SPRING TERM 2005: LAB EXERCISE #12 VAR Brief suggested solution Location: BEC Computing LAB 1) See the relevant parts in lab 11

More information

Econ 427, Spring Problem Set 3 suggested answers (with minor corrections) Ch 6. Problems and Complements:

Econ 427, Spring Problem Set 3 suggested answers (with minor corrections) Ch 6. Problems and Complements: Econ 427, Spring 2010 Problem Set 3 suggested answers (with minor corrections) Ch 6. Problems and Complements: 1. (page 132) In each case, the idea is to write these out in general form (without the lag

More information

2. Linear regression with multiple regressors

2. Linear regression with multiple regressors 2. Linear regression with multiple regressors Aim of this section: Introduction of the multiple regression model OLS estimation in multiple regression Measures-of-fit in multiple regression Assumptions

More information

The Simple Regression Model. Part II. The Simple Regression Model

The Simple Regression Model. Part II. The Simple Regression Model Part II The Simple Regression Model As of Sep 22, 2015 Definition 1 The Simple Regression Model Definition Estimation of the model, OLS OLS Statistics Algebraic properties Goodness-of-Fit, the R-square

More information

10. Time series regression and forecasting

10. Time series regression and forecasting 10. Time series regression and forecasting Key feature of this section: Analysis of data on a single entity observed at multiple points in time (time series data) Typical research questions: What is the

More information

Applied Econometrics. Applied Econometrics Second edition. Dimitrios Asteriou and Stephen G. Hall

Applied Econometrics. Applied Econometrics Second edition. Dimitrios Asteriou and Stephen G. Hall Applied Econometrics Second edition Dimitrios Asteriou and Stephen G. Hall MULTICOLLINEARITY 1. Perfect Multicollinearity 2. Consequences of Perfect Multicollinearity 3. Imperfect Multicollinearity 4.

More information

TIME SERIES DATA ANALYSIS USING EVIEWS

TIME SERIES DATA ANALYSIS USING EVIEWS TIME SERIES DATA ANALYSIS USING EVIEWS I Gusti Ngurah Agung Graduate School Of Management Faculty Of Economics University Of Indonesia Ph.D. in Biostatistics and MSc. in Mathematical Statistics from University

More information

3. Linear Regression With a Single Regressor

3. Linear Regression With a Single Regressor 3. Linear Regression With a Single Regressor Econometrics: (I) Application of statistical methods in empirical research Testing economic theory with real-world data (data analysis) 56 Econometrics: (II)

More information

Lecture 4: Heteroskedasticity

Lecture 4: Heteroskedasticity Lecture 4: Heteroskedasticity Econometric Methods Warsaw School of Economics (4) Heteroskedasticity 1 / 24 Outline 1 What is heteroskedasticity? 2 Testing for heteroskedasticity White Goldfeld-Quandt Breusch-Pagan

More information

Exercises (in progress) Applied Econometrics Part 1

Exercises (in progress) Applied Econometrics Part 1 Exercises (in progress) Applied Econometrics 2016-2017 Part 1 1. De ne the concept of unbiased estimator. 2. Explain what it is a classic linear regression model and which are its distinctive features.

More information

Practice Questions for the Final Exam. Theoretical Part

Practice Questions for the Final Exam. Theoretical Part Brooklyn College Econometrics 7020X Spring 2016 Instructor: G. Koimisis Name: Date: Practice Questions for the Final Exam Theoretical Part 1. Define dummy variable and give two examples. 2. Analyze the

More information

Answers to Problem Set #4

Answers to Problem Set #4 Answers to Problem Set #4 Problems. Suppose that, from a sample of 63 observations, the least squares estimates and the corresponding estimated variance covariance matrix are given by: bβ bβ 2 bβ 3 = 2

More information

7. Integrated Processes

7. Integrated Processes 7. Integrated Processes Up to now: Analysis of stationary processes (stationary ARMA(p, q) processes) Problem: Many economic time series exhibit non-stationary patterns over time 226 Example: We consider

More information

7. Prediction. Outline: Read Section 6.4. Mean Prediction

7. Prediction. Outline: Read Section 6.4. Mean Prediction Outline: Read Section 6.4 II. Individual Prediction IV. Choose between y Model and log(y) Model 7. Prediction Read Wooldridge (2013), Chapter 6.4 2 Mean Prediction Predictions are useful But they are subject

More information

Univariate linear models

Univariate linear models Univariate linear models The specification process of an univariate ARIMA model is based on the theoretical properties of the different processes and it is also important the observation and interpretation

More information

Heteroskedasticity and Autocorrelation

Heteroskedasticity and Autocorrelation Lesson 7 Heteroskedasticity and Autocorrelation Pilar González and Susan Orbe Dpt. Applied Economics III (Econometrics and Statistics) Pilar González and Susan Orbe OCW 2014 Lesson 7. Heteroskedasticity

More information

Brief Sketch of Solutions: Tutorial 3. 3) unit root tests

Brief Sketch of Solutions: Tutorial 3. 3) unit root tests Brief Sketch of Solutions: Tutorial 3 3) unit root tests.5.4.4.3.3.2.2.1.1.. -.1 -.1 -.2 -.2 -.3 -.3 -.4 -.4 21 22 23 24 25 26 -.5 21 22 23 24 25 26.8.2.4. -.4 - -.8 - - -.12 21 22 23 24 25 26 -.2 21 22

More information

The GARCH Analysis of YU EBAO Annual Yields Weiwei Guo1,a

The GARCH Analysis of YU EBAO Annual Yields Weiwei Guo1,a 2nd Workshop on Advanced Research and Technology in Industry Applications (WARTIA 2016) The GARCH Analysis of YU EBAO Annual Yields Weiwei Guo1,a 1 Longdong University,Qingyang,Gansu province,745000 a

More information

7. Integrated Processes

7. Integrated Processes 7. Integrated Processes Up to now: Analysis of stationary processes (stationary ARMA(p, q) processes) Problem: Many economic time series exhibit non-stationary patterns over time 226 Example: We consider

More information

5. Erroneous Selection of Exogenous Variables (Violation of Assumption #A1)

5. Erroneous Selection of Exogenous Variables (Violation of Assumption #A1) 5. Erroneous Selection of Exogenous Variables (Violation of Assumption #A1) Assumption #A1: Our regression model does not lack of any further relevant exogenous variables beyond x 1i, x 2i,..., x Ki and

More information

1 Quantitative Techniques in Practice

1 Quantitative Techniques in Practice 1 Quantitative Techniques in Practice 1.1 Lecture 2: Stationarity, spurious regression, etc. 1.1.1 Overview In the rst part we shall look at some issues in time series economics. In the second part we

More information

Romanian Economic and Business Review Vol. 3, No. 3 THE EVOLUTION OF SNP PETROM STOCK LIST - STUDY THROUGH AUTOREGRESSIVE MODELS

Romanian Economic and Business Review Vol. 3, No. 3 THE EVOLUTION OF SNP PETROM STOCK LIST - STUDY THROUGH AUTOREGRESSIVE MODELS THE EVOLUTION OF SNP PETROM STOCK LIST - STUDY THROUGH AUTOREGRESSIVE MODELS Marian Zaharia, Ioana Zaheu, and Elena Roxana Stan Abstract Stock exchange market is one of the most dynamic and unpredictable

More information

6. Assessing studies based on multiple regression

6. Assessing studies based on multiple regression 6. Assessing studies based on multiple regression Questions of this section: What makes a study using multiple regression (un)reliable? When does multiple regression provide a useful estimate of the causal

More information

Econometrics Lab Hour Session 6

Econometrics Lab Hour Session 6 Econometrics Lab Hour Session 6 Agustín Bénétrix benetria@tcd.ie Office hour: Wednesday 4-5 Room 3021 Martin Schmitz schmitzm@tcd.ie Office hour: Monday 5-6 Room 3021 Outline Importing the dataset Time

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/~eariasca/teaching.html 1 / 42 Passenger car mileage Consider the carmpg dataset taken from

More information

Heteroskedasticity. y i = β 0 + β 1 x 1i + β 2 x 2i β k x ki + e i. where E(e i. ) σ 2, non-constant variance.

Heteroskedasticity. y i = β 0 + β 1 x 1i + β 2 x 2i β k x ki + e i. where E(e i. ) σ 2, non-constant variance. Heteroskedasticity y i = β + β x i + β x i +... + β k x ki + e i where E(e i ) σ, non-constant variance. Common problem with samples over individuals. ê i e ˆi x k x k AREC-ECON 535 Lec F Suppose y i =

More information

4. Nonlinear regression functions

4. Nonlinear regression functions 4. Nonlinear regression functions Up to now: Population regression function was assumed to be linear The slope(s) of the population regression function is (are) constant The effect on Y of a unit-change

More information

ECONOMETRIA II. CURSO 2009/2010 LAB # 3

ECONOMETRIA II. CURSO 2009/2010 LAB # 3 ECONOMETRIA II. CURSO 2009/2010 LAB # 3 BOX-JENKINS METHODOLOGY The Box Jenkins approach combines the moving average and the autorregresive models. Although both models were already known, the contribution

More information

Eastern Mediterranean University Department of Economics ECON 503: ECONOMETRICS I. M. Balcilar. Midterm Exam Fall 2007, 11 December 2007.

Eastern Mediterranean University Department of Economics ECON 503: ECONOMETRICS I. M. Balcilar. Midterm Exam Fall 2007, 11 December 2007. Eastern Mediterranean University Department of Economics ECON 503: ECONOMETRICS I M. Balcilar Midterm Exam Fall 2007, 11 December 2007 Duration: 120 minutes Questions Q1. In order to estimate the demand

More information

Outline. 2. Logarithmic Functional Form and Units of Measurement. Functional Form. I. Functional Form: log II. Units of Measurement

Outline. 2. Logarithmic Functional Form and Units of Measurement. Functional Form. I. Functional Form: log II. Units of Measurement Outline 2. Logarithmic Functional Form and Units of Measurement I. Functional Form: log II. Units of Measurement Read Wooldridge (2013), Chapter 2.4, 6.1 and 6.2 2 Functional Form I. Functional Form: log

More information

APPLIED MACROECONOMETRICS Licenciatura Universidade Nova de Lisboa Faculdade de Economia. FINAL EXAM JUNE 3, 2004 Starts at 14:00 Ends at 16:30

APPLIED MACROECONOMETRICS Licenciatura Universidade Nova de Lisboa Faculdade de Economia. FINAL EXAM JUNE 3, 2004 Starts at 14:00 Ends at 16:30 APPLIED MACROECONOMETRICS Licenciatura Universidade Nova de Lisboa Faculdade de Economia FINAL EXAM JUNE 3, 2004 Starts at 14:00 Ends at 16:30 I In Figure I.1 you can find a quarterly inflation rate series

More information

About the seasonal effects on the potential liquid consumption

About the seasonal effects on the potential liquid consumption About the seasonal effects on the potential liquid consumption Lucie Ravelojaona Guillaume Perrez Clément Cousin ENAC 14/01/2013 Consumption raw data Figure : Evolution during one year of different family

More information

Time Series Econometrics For the 21st Century

Time Series Econometrics For the 21st Century Time Series Econometrics For the 21st Century by Bruce E. Hansen Department of Economics University of Wisconsin January 2017 Bruce Hansen (University of Wisconsin) Time Series Econometrics January 2017

More information

x = 1 n (x = 1 (x n 1 ι(ι ι) 1 ι x) (x ι(ι ι) 1 ι x) = 1

x = 1 n (x = 1 (x n 1 ι(ι ι) 1 ι x) (x ι(ι ι) 1 ι x) = 1 Estimation and Inference in Econometrics Exercises, January 24, 2003 Solutions 1. a) cov(wy ) = E [(WY E[WY ])(WY E[WY ]) ] = E [W(Y E[Y ])(Y E[Y ]) W ] = W [(Y E[Y ])(Y E[Y ]) ] W = WΣW b) Let Σ be a

More information

in the time series. The relation between y and x is contemporaneous.

in the time series. The relation between y and x is contemporaneous. 9 Regression with Time Series 9.1 Some Basic Concepts Static Models (1) y t = β 0 + β 1 x t + u t t = 1, 2,..., T, where T is the number of observation in the time series. The relation between y and x

More information

ARDL Cointegration Tests for Beginner

ARDL Cointegration Tests for Beginner ARDL Cointegration Tests for Beginner Tuck Cheong TANG Department of Economics, Faculty of Economics & Administration University of Malaya Email: tangtuckcheong@um.edu.my DURATION: 3 HOURS On completing

More information

Econometric Forecasting Overview

Econometric Forecasting Overview Econometric Forecasting Overview April 30, 2014 Econometric Forecasting Econometric models attempt to quantify the relationship between the parameter of interest (dependent variable) and a number of factors

More information

AUTOCORRELATION. Phung Thanh Binh

AUTOCORRELATION. Phung Thanh Binh AUTOCORRELATION Phung Thanh Binh OUTLINE Time series Gauss-Markov conditions The nature of autocorrelation Causes of autocorrelation Consequences of autocorrelation Detecting autocorrelation Remedial measures

More information

Lecture 8. Using the CLR Model. Relation between patent applications and R&D spending. Variables

Lecture 8. Using the CLR Model. Relation between patent applications and R&D spending. Variables Lecture 8. Using the CLR Model Relation between patent applications and R&D spending Variables PATENTS = No. of patents (in 000) filed RDEP = Expenditure on research&development (in billions of 99 $) The

More information

Wednesday, October 17 Handout: Hypothesis Testing and the Wald Test

Wednesday, October 17 Handout: Hypothesis Testing and the Wald Test Amherst College Department of Economics Economics 360 Fall 2012 Wednesday, October 17 Handout: Hypothesis Testing and the Wald Test Preview No Money Illusion Theory: Calculating True] o Clever Algebraic

More information

Topic 7: Heteroskedasticity

Topic 7: Heteroskedasticity Topic 7: Heteroskedasticity Advanced Econometrics (I Dong Chen School of Economics, Peking University Introduction If the disturbance variance is not constant across observations, the regression is heteroskedastic

More information

Statistical Inference. Part IV. Statistical Inference

Statistical Inference. Part IV. Statistical Inference Part IV Statistical Inference As of Oct 5, 2017 Sampling Distributions of the OLS Estimator 1 Statistical Inference Sampling Distributions of the OLS Estimator Testing Against One-Sided Alternatives Two-Sided

More information

Outline. 11. Time Series Analysis. Basic Regression. Differences between Time Series and Cross Section

Outline. 11. Time Series Analysis. Basic Regression. Differences between Time Series and Cross Section Outline I. The Nature of Time Series Data 11. Time Series Analysis II. Examples of Time Series Models IV. Functional Form, Dummy Variables, and Index Basic Regression Numbers Read Wooldridge (2013), Chapter

More information

11. Simultaneous-Equation Models

11. Simultaneous-Equation Models 11. Simultaneous-Equation Models Up to now: Estimation and inference in single-equation models Now: Modeling and estimation of a system of equations 328 Example: [I] Analysis of the impact of advertisement

More information

Econometrics II Heij et al. Chapter 7.1

Econometrics II Heij et al. Chapter 7.1 Chapter 7.1 p. 1/2 Econometrics II Heij et al. Chapter 7.1 Linear Time Series Models for Stationary data Marius Ooms Tinbergen Institute Amsterdam Chapter 7.1 p. 2/2 Program Introduction Modelling philosophy

More information

2) For a normal distribution, the skewness and kurtosis measures are as follows: A) 1.96 and 4 B) 1 and 2 C) 0 and 3 D) 0 and 0

2) For a normal distribution, the skewness and kurtosis measures are as follows: A) 1.96 and 4 B) 1 and 2 C) 0 and 3 D) 0 and 0 Introduction to Econometrics Midterm April 26, 2011 Name Student ID MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. (5,000 credit for each correct

More information

Iris Wang.

Iris Wang. Chapter 10: Multicollinearity Iris Wang iris.wang@kau.se Econometric problems Multicollinearity What does it mean? A high degree of correlation amongst the explanatory variables What are its consequences?

More information

F9 F10: Autocorrelation

F9 F10: Autocorrelation F9 F10: Autocorrelation Feng Li Department of Statistics, Stockholm University Introduction In the classic regression model we assume cov(u i, u j x i, x k ) = E(u i, u j ) = 0 What if we break the assumption?

More information

Reading Assignment. Serial Correlation and Heteroskedasticity. Chapters 12 and 11. Kennedy: Chapter 8. AREC-ECON 535 Lec F1 1

Reading Assignment. Serial Correlation and Heteroskedasticity. Chapters 12 and 11. Kennedy: Chapter 8. AREC-ECON 535 Lec F1 1 Reading Assignment Serial Correlation and Heteroskedasticity Chapters 1 and 11. Kennedy: Chapter 8. AREC-ECON 535 Lec F1 1 Serial Correlation or Autocorrelation y t = β 0 + β 1 x 1t + β x t +... + β k

More information

ECON 4230 Intermediate Econometric Theory Exam

ECON 4230 Intermediate Econometric Theory Exam ECON 4230 Intermediate Econometric Theory Exam Multiple Choice (20 pts). Circle the best answer. 1. The Classical assumption of mean zero errors is satisfied if the regression model a) is linear in the

More information

Economic modelling and forecasting

Economic modelling and forecasting Economic modelling and forecasting 2-6 February 2015 Bank of England he generalised method of moments Ole Rummel Adviser, CCBS at the Bank of England ole.rummel@bankofengland.co.uk Outline Classical estimation

More information

Y i = β 0 + β 1 X i + β 2 Z i + ε i

Y i = β 0 + β 1 X i + β 2 Z i + ε i Homework Exercise #7 Economics 4340 Fll 009 Dr. W. Ken Frr Nme Instructions: Answer the questions given below on lined sheets of pper (or they my be typed) nd provide ll the necessry printouts of informtion

More information

Homoskedasticity. Var (u X) = σ 2. (23)

Homoskedasticity. Var (u X) = σ 2. (23) Homoskedasticity How big is the difference between the OLS estimator and the true parameter? To answer this question, we make an additional assumption called homoskedasticity: Var (u X) = σ 2. (23) This

More information

Final Exam Financial Data Analysis at the University of Freiburg (Winter Semester 2008/2009) Friday, November 14, 2008,

Final Exam Financial Data Analysis at the University of Freiburg (Winter Semester 2008/2009) Friday, November 14, 2008, Professor Dr. Roman Liesenfeld Final Exam Financial Data Analysis at the University of Freiburg (Winter Semester 2008/2009) Friday, November 14, 2008, 10.00 11.30am 1 Part 1 (38 Points) Consider the following

More information

The Multiple Regression Model Estimation

The Multiple Regression Model Estimation Lesson 5 The Multiple Regression Model Estimation Pilar González and Susan Orbe Dpt Applied Econometrics III (Econometrics and Statistics) Pilar González and Susan Orbe OCW 2014 Lesson 5 Regression model:

More information

[Mean[e j ] Mean[e i ]]

[Mean[e j ] Mean[e i ]] Amherst College Department of Economics Economics 360 Fall 202 Solutions: Wednesday, September 26. Assume that the standard ordinary least square (OLS) premises are met. Let (x i, y i ) and (, y j ) be

More information

Econometrics. Week 4. Fall Institute of Economic Studies Faculty of Social Sciences Charles University in Prague

Econometrics. Week 4. Fall Institute of Economic Studies Faculty of Social Sciences Charles University in Prague Econometrics Week 4 Institute of Economic Studies Faculty of Social Sciences Charles University in Prague Fall 2012 1 / 23 Recommended Reading For the today Serial correlation and heteroskedasticity in

More information

Model Specification and Data Problems. Part VIII

Model Specification and Data Problems. Part VIII Part VIII Model Specification and Data Problems As of Oct 24, 2017 1 Model Specification and Data Problems RESET test Non-nested alternatives Outliers A functional form misspecification generally means

More information

Analysis. Components of a Time Series

Analysis. Components of a Time Series Module 8: Time Series Analysis 8.2 Components of a Time Series, Detection of Change Points and Trends, Time Series Models Components of a Time Series There can be several things happening simultaneously

More information

Week 11 Heteroskedasticity and Autocorrelation

Week 11 Heteroskedasticity and Autocorrelation Week 11 Heteroskedasticity and Autocorrelation İnsan TUNALI Econ 511 Econometrics I Koç University 27 November 2018 Lecture outline 1. OLS and assumptions on V(ε) 2. Violations of V(ε) σ 2 I: 1. Heteroskedasticity

More information

Outline. Nature of the Problem. Nature of the Problem. Basic Econometrics in Transportation. Autocorrelation

Outline. Nature of the Problem. Nature of the Problem. Basic Econometrics in Transportation. Autocorrelation 1/30 Outline Basic Econometrics in Transportation Autocorrelation Amir Samimi What is the nature of autocorrelation? What are the theoretical and practical consequences of autocorrelation? Since the assumption

More information

Solution to Exercise E6.

Solution to Exercise E6. Solution to Exercise E6. The Multiple Regression Model. Inference Exercise E6.1 Beach umbrella rental Part I. Simple Linear Regression Model. a. Regression model: U t = α + β T t + u t t = 1,..., 22 Model

More information

Using EViews Vox Principles of Econometrics, Third Edition

Using EViews Vox Principles of Econometrics, Third Edition Using EViews Vox Principles of Econometrics, Third Edition WILLIAM E. GRIFFITHS University of Melbourne R. CARTER HILL Louisiana State University GUAY С LIM University of Melbourne JOHN WILEY & SONS, INC

More information

LATVIAN GDP: TIME SERIES FORECASTING USING VECTOR AUTO REGRESSION

LATVIAN GDP: TIME SERIES FORECASTING USING VECTOR AUTO REGRESSION LATVIAN GDP: TIME SERIES FORECASTING USING VECTOR AUTO REGRESSION BEZRUCKO Aleksandrs, (LV) Abstract: The target goal of this work is to develop a methodology of forecasting Latvian GDP using ARMA (AutoRegressive-Moving-Average)

More information

Introduction to Econometrics. Heteroskedasticity

Introduction to Econometrics. Heteroskedasticity Introduction to Econometrics Introduction Heteroskedasticity When the variance of the errors changes across segments of the population, where the segments are determined by different values for the explanatory

More information

Economics 308: Econometrics Professor Moody

Economics 308: Econometrics Professor Moody Economics 308: Econometrics Professor Moody References on reserve: Text Moody, Basic Econometrics with Stata (BES) Pindyck and Rubinfeld, Econometric Models and Economic Forecasts (PR) Wooldridge, Jeffrey

More information

ECON2228 Notes 10. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 48

ECON2228 Notes 10. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 48 ECON2228 Notes 10 Christopher F Baum Boston College Economics 2014 2015 cfb (BC Econ) ECON2228 Notes 10 2014 2015 1 / 48 Serial correlation and heteroskedasticity in time series regressions Chapter 12:

More information

Econometrics Multiple Regression Analysis: Heteroskedasticity

Econometrics Multiple Regression Analysis: Heteroskedasticity Econometrics Multiple Regression Analysis: João Valle e Azevedo Faculdade de Economia Universidade Nova de Lisboa Spring Semester João Valle e Azevedo (FEUNL) Econometrics Lisbon, April 2011 1 / 19 Properties

More information

5. Let W follow a normal distribution with mean of μ and the variance of 1. Then, the pdf of W is

5. Let W follow a normal distribution with mean of μ and the variance of 1. Then, the pdf of W is Practice Final Exam Last Name:, First Name:. Please write LEGIBLY. Answer all questions on this exam in the space provided (you may use the back of any page if you need more space). Show all work but do

More information

Financial Time Series Analysis: Part II

Financial Time Series Analysis: Part II Department of Mathematics and Statistics, University of Vaasa, Finland Spring 2017 1 Unit root Deterministic trend Stochastic trend Testing for unit root ADF-test (Augmented Dickey-Fuller test) Testing

More information

Introduction to Econometrics

Introduction to Econometrics Introduction to Econometrics T H I R D E D I T I O N Global Edition James H. Stock Harvard University Mark W. Watson Princeton University Boston Columbus Indianapolis New York San Francisco Upper Saddle

More information

An estimate of the long-run covariance matrix, Ω, is necessary to calculate asymptotic

An estimate of the long-run covariance matrix, Ω, is necessary to calculate asymptotic Chapter 6 ESTIMATION OF THE LONG-RUN COVARIANCE MATRIX An estimate of the long-run covariance matrix, Ω, is necessary to calculate asymptotic standard errors for the OLS and linear IV estimators presented

More information

ECON2228 Notes 10. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 54

ECON2228 Notes 10. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 54 ECON2228 Notes 10 Christopher F Baum Boston College Economics 2014 2015 cfb (BC Econ) ECON2228 Notes 10 2014 2015 1 / 54 erial correlation and heteroskedasticity in time series regressions Chapter 12:

More information

Hint: The following equation converts Celsius to Fahrenheit: F = C where C = degrees Celsius F = degrees Fahrenheit

Hint: The following equation converts Celsius to Fahrenheit: F = C where C = degrees Celsius F = degrees Fahrenheit Amherst College Department of Economics Economics 360 Fall 2014 Exam 1: Solutions 1. (10 points) The following table in reports the summary statistics for high and low temperatures in Key West, FL from

More information

BUSINESS FORECASTING

BUSINESS FORECASTING BUSINESS FORECASTING FORECASTING WITH REGRESSION MODELS TREND ANALYSIS Prof. Dr. Burç Ülengin ITU MANAGEMENT ENGINEERING FACULTY FALL 2015 OVERVIEW The bivarite regression model Data inspection Regression

More information

Econ 423 Lecture Notes

Econ 423 Lecture Notes Econ 423 Lecture Notes (hese notes are modified versions of lecture notes provided by Stock and Watson, 2007. hey are for instructional purposes only and are not to be distributed outside of the classroom.)

More information

Multiple Regression Analysis. Part III. Multiple Regression Analysis

Multiple Regression Analysis. Part III. Multiple Regression Analysis Part III Multiple Regression Analysis As of Sep 26, 2017 1 Multiple Regression Analysis Estimation Matrix form Goodness-of-Fit R-square Adjusted R-square Expected values of the OLS estimators Irrelevant

More information

OLS Assumptions Violation and Its Treatment: An Empirical Test of Gross Domestic Product Relationship with Exchange Rate, Inflation and Interest Rate

OLS Assumptions Violation and Its Treatment: An Empirical Test of Gross Domestic Product Relationship with Exchange Rate, Inflation and Interest Rate J. Appl. Environ. Biol. Sci., 6(5S)43-54, 2016 2016, TextRoad Publication ISSN: 2090-4274 Journal of Applied Environmental and Biological Sciences www.textroad.com OLS Assumptions Violation and Its Treatment:

More information

LECTURE 13: TIME SERIES I

LECTURE 13: TIME SERIES I 1 LECTURE 13: TIME SERIES I AUTOCORRELATION: Consider y = X + u where y is T 1, X is T K, is K 1 and u is T 1. We are using T and not N for sample size to emphasize that this is a time series. The natural

More information

Reliability of inference (1 of 2 lectures)

Reliability of inference (1 of 2 lectures) Reliability of inference (1 of 2 lectures) Ragnar Nymoen University of Oslo 5 March 2013 1 / 19 This lecture (#13 and 14): I The optimality of the OLS estimators and tests depend on the assumptions of

More information

Fall 1998 Second exam (30%) Your Id No. (NOT Soc. Sec. no.) DO NOT TURN THE PAGE UNTIL YOU ARE TOLD THAT YOU CAN DO SO.

Fall 1998 Second exam (30%) Your Id No. (NOT Soc. Sec. no.) DO NOT TURN THE PAGE UNTIL YOU ARE TOLD THAT YOU CAN DO SO. Econ 120C Ramu Ramanathan Fall 1998 Second exam (30%) Your name Your Id No. (NOT Soc. Sec. no.) DO NOT TURN THE PAGE UNTIL YOU ARE TOLD THAT YOU CAN DO SO. Read the questions carefully and answer all points.

More information

Intermediate Econometrics

Intermediate Econometrics Intermediate Econometrics Heteroskedasticity Text: Wooldridge, 8 July 17, 2011 Heteroskedasticity Assumption of homoskedasticity, Var(u i x i1,..., x ik ) = E(u 2 i x i1,..., x ik ) = σ 2. That is, the

More information

A Non-Parametric Approach of Heteroskedasticity Robust Estimation of Vector-Autoregressive (VAR) Models

A Non-Parametric Approach of Heteroskedasticity Robust Estimation of Vector-Autoregressive (VAR) Models Journal of Finance and Investment Analysis, vol.1, no.1, 2012, 55-67 ISSN: 2241-0988 (print version), 2241-0996 (online) International Scientific Press, 2012 A Non-Parametric Approach of Heteroskedasticity

More information

Econometrics. 9) Heteroscedasticity and autocorrelation

Econometrics. 9) Heteroscedasticity and autocorrelation 30C00200 Econometrics 9) Heteroscedasticity and autocorrelation Timo Kuosmanen Professor, Ph.D. http://nomepre.net/index.php/timokuosmanen Today s topics Heteroscedasticity Possible causes Testing for

More information

Practical Econometrics. for. Finance and Economics. (Econometrics 2)

Practical Econometrics. for. Finance and Economics. (Econometrics 2) Practical Econometrics for Finance and Economics (Econometrics 2) Seppo Pynnönen and Bernd Pape Department of Mathematics and Statistics, University of Vaasa 1. Introduction 1.1 Econometrics Econometrics

More information

Regression with Qualitative Information. Part VI. Regression with Qualitative Information

Regression with Qualitative Information. Part VI. Regression with Qualitative Information Part VI Regression with Qualitative Information As of Oct 17, 2017 1 Regression with Qualitative Information Single Dummy Independent Variable Multiple Categories Ordinal Information Interaction Involving

More information

Econometric Analysis of Panel Data. Assignment 3

Econometric Analysis of Panel Data. Assignment 3 Department of Economics Econometric Analysis of Panel Data Professor William Greene Phone: 22.998.0876 Office: KMC 7-78 Home page:www.stern.nyu.edu/~wgreene Email: wgreene@stern.nyu.edu URL for course

More information