Incomplete Block Designs

Size: px
Start display at page:

Download "Incomplete Block Designs"

Transcription

1 Incomplete Block Designs Recall: in randomized complete block design, each of a treatments was used once within each of b blocks. In some situations, it will not be possible to use each of a treatments in each block. Any blocked experiment which has fewer than a units per block is called an incomplete block design. STA305 week11 1

2 Balanced Incomplete Block Design (BIBD) If all treatment comparisons are of equal importance and if we wish to estimate each treatment effect with the same precision, then the design needs to be balanced: (1) Each block contains the same number of units. (2) Each treatment occur the same number of times in total (3) Each pair of treatments occurs together the same number of times in total. A design that satisfies these conditions is called Balanced Incomplete Block Design. STA305 week11 2

3 Example Consider a study which we wish to compares 4 treatments: A, B, C, and D. Only 2 treatments can be used in each block and suppose there are 6 blocks available. The following is a balanced incomplete block design (BIBD): This design is balanced with respect to each of the 3 points above. STA305 week11 3

4 Consider the following design, which also uses 6 blocks, each with 2 units Although this design is balanced with regard to the first 2 items, the same 2 treatments always appear together. So this would not be considered a balanced incomplete block design. Could this study be designed using 5 blocks? 7 blocks? STA305 week11 4

5 Number of Experimental Units Required We will use the following notation: a-number of treatments, b - number of blocks, k - number of units per block, r - total number of times each treatment occurs The total number of units required in the study is therefore N = bk. However, the total number of units required can also be expressed as N = ar. So in a balanced design, we must have bk = ar. Using combinatorics, we can show that the total number of times that each pair of treatments appears together is λ = r( k 1) ( a 1) where λ must be an integer. NOTE: designs that satisfy the last two conditions may not exist for a particular choice of a, b, k, r. STA305 week11 5

6 Example A study was designed to compare 5 treatments. Although the study will use blocks to control for a nuisance factor, there are only 3 experimental units within each block. Are there values of b (# of blocks) and r (# of times each treatment is used) that would lead to a BIBD? STA305 week11 6

7 Solution STA305 week11 7

8 Statistical Model for BIBD The model equation for the BIBD is the same as for the randomized complete block design, that is Y ij = μ+τ i +β j + ε ij. μ is the overall mean, τ i is the effect of the i-th treatment, β j is the effect of the j-th block and ε ij are i.i.d N(0, σ 2 ) - the residual or random error term. STA305 week11 8

9 Sums of Squares The total sum of squares is calculated in the usual manner: SS T = a b ( Y ) ij Y i= 1 j= 1 In decomposing total sum of squares, we use an adjusted treatment sum of squares to account for the fact that each treatment did not occur within each block. So treatment sum of squares sums over different blocks for each treatment. 2 STA305 week11 9

10 Additional Notation Let T i denote the sum over all experimental units which received treatment i. Since each treatment does not appear in each block, the treatment total must be adjusted to take this into account. Let B i be the sum over all observations in the blocks in which treatment i occurred. Then the adjusted treatment total is Q i = T i -B i / k If we were interested in testing for the equality of block effects, we would also need to compute an adjusted block total. STA305 week11 10

11 The treatment sum of squares adjusted for blocks is SS Tr 2 ( adj ) = k Qi λa The sum of squares for the blocking factor (not adjusted for treatments) is SS Bl = k b The error sum of squares is obtained by subtraction: SS E = SS T -SS Tr (adj) -SS Bl a i= 1 ( Y ) j Y j= 1 2 STA305 week11 11

12 Degrees of Freedom Since the same number of parameters must still be estimated in this design (compared to the randomized complete block design), the degrees of freedom will be the same. Since there are a treatments, the degrees of freedom for treatment is a-1. Similarly, the degrees of freedom for blocks is b-1. The total degrees of freedom is N-1, where N = bk = ar STA305 week11 12

13 Testing for Treatment Effects In order to test for treatment effects, we start by calculating the necessary sums of squares and constructing the ANOVA Table. It is given below Note that the mean square for blocks is not computed; if we wanted to test for block effects we would have to compute an adjusted sum of squares for blocks. STA305 week11 13

14 To test the hypotheses H 0 : τ 1 = τ 2 =... = τ a = 0 H a : not all τ i = 0 We use the test statistic: F obs = MS Tr (adj) / MS E The corresponding P-value = P(F (a-1, N-a-b+1 > F obs ) Small values of the p-value would cause us to reject the hypothesis that there is no treatment effect. STA305 week11 14

15 Example A researcher planned and carried out a study to examine the inter-rater reliability of a scale for measuring depression. Six examiners at a particular institution were the primary focus of the study. However, since the outcome of the assessment was likely to be influenced by the patient, it was decided to block on patients. It was not feasible to have all 6 examiners question every subject; each subject was to be examined by 3 examiners. In order to achieve balance it is necessary to have ar = bk, which in this case is 6r = 3b It is also necessary for λ = r(k-1)/(a-1) to be an integer; in this case λ = r(2/5). The smallest value of r for which λ will be an integer is 5, and this requires that the number of blocks, b, be 10. STA305 week11 15

16 A balanced incomplete block design was used, and the following data were collected: Do these data provide any evidence that the examiners differ with respect to the mean depression scores that they assign to patients? STA305 week11 16

17 Solution STA305 week11 17

18 Contrasts As in other experiments, the researchers may be interested in comparisons between subgroups of treatment means. Contrasts can be used to test hypotheses. Tests should be based on the adjusted treatment effects: To test the hypothesis H 0 : c 1 μ 1 + c 2 μ c a μ a = 0 H a : c 1 μ 1 + c 2 μ c a μ a 0 Q r ' i Y i = = Q i We use F obs = SS C / MS E, where SS C = a i= 1 a i= 1 c i c Q 2 i i 2 λa / kr 2 STA305 week11 18

19 Least Squares Estimates of the Model Parameter In deriving the least squares estimators, we will use n ij, an indicator for treatment I occurring in block j as follow: n ij = 1 if treatment i block j 0 if not Start by forming the sum of the squared deviations of the observed values from the fitted values STA305 week11 19

20 Analysis of BIBD Using SAS In the designs we have examined up to now, the order in which factors were specified in the model statement was not important. However, for the BIBD case the order is important. Refer to the Example on slide The manner in which data are input for the BIBD is similar to that for the RBC design: data example ; input patient examiner score ; cards ; etc; run ; STA305 week11 20

21 The glm procedure is still the appropriate choice for this design, but is important that the block factor be entered into the model before the treatment factor proc glm data = example ; class patient examiner ; model score = patient examiner ; title1 'block before factor' ; run ; Care is needed in reading the SAS output, since Type I SS is used for the block factor (unadjusted) while Type III SS is used for the treatment factor (adjusted). The outputs is given below: STA305 week11 21

22 STA305 week11 22

23 The total SS is read from the SAS output, and in this case it is The error SS is read from the output and it is The unadjusted block SS is taken from the column containing the Type I SS, and in this case is The adjusted treatment SS is taken from the column containing the Type III SS, and is The correct value to use for the F-test is the one associated with the Type III SS for treatment. For the purposes of comparison, the output generated by SAS when the treatment factor is entered into the model before blocks is given below STA305 week11 23

24 STA305 week11 24

25 From this output we can get the adjusted SS for the factor (examiner), but we cannot get the unadjusted SS for the blocks (patients). Because of the unbalanced nature of this design, least squares treatment means should be used rather than simple averages. To obtain least squares means for the treatment factor, just add one line to the SAS code as follows: proc glm data = example ; class patient examiner ; model score = patient examiner ; lsmeans examiner ; title1 'block before factor' ; run ; the output generated by the lsmeans statement is given below: STA305 week11 25

26 Compare the LS means to the treatment averages that do not take into account block effects: STA305 week11 26

27 Contrasts in SAS Contrasts can also be tested using SAS. Suppose that examiner 1 was more recently hired than the other examiners and it is of interest to test the hypothesis that the mean for examiner 1 is equal to the mean for the others. In other words, test H 0 : μ 1 = (μ 2 + μ 3 + μ 4 + μ 5 + μ 6 )/5 H a : μ 1 (μ 2 + μ 3 + μ 4 + μ 5 + μ 6 )/5 To do this test is SAS, it is still important that the block factor is entered into the model before the treatment factor. Add the following statement to the glm code given above contrast 1st vs others examiner ; STA305 week11 27

28 An addition line of output will be produced giving the following information STA305 week11 28

29 Additive Models and Alternatives Models used for randomized complete block design, BIBD, Latin square & Graeco-Latin square design are known as additive models. Consider the model used for the randomized complete block design: Y ij = μ+τ i +β j + ε ij. In this model, treatment i always causes the expected response to increase/decrease τ i units from the overall mean μ. The effect of block j is to cause a change of β j units, regardless of which treatment is applied. The effect of treatment i and block j together cause an increase or decrease from the overall mean by τ i +β j. In other words, the effects of the 2 factors are additive. This model is not always appropriate for a randomized complete block design. Generally, an additive model may not be appropriate for a particular design. STA305 week11 29

30 Multiplicative Effects In some cases, the effect of one factor might be amplified by the presence of another factor. A multiplicative model might be appropriate in this situation: Y ij = μ τ i β j ε ij. Taking logarithms results in an additive model: ln{y ij } = ln{μ}+ln{τ i }+ln{β j }+ln{ε ij }. This can be written as Wij = μ ' + τ + β + ε ' i ' j ' ij STA305 week11 30

31 Interaction In some cases, there may be an element of additivity, although the additive model may not be adequate. For instance, consider a randomized complete block design where treatment i causes an extreme reaction in a particular block, but the other treatments do not. Furthermore, suppose that in the other blocks treatment i does not cause an extreme reaction. In this case, there is an interaction between treatments and blocks. The additive model would need to be modified to include an interaction term. STA305 week11 31

RCB - Example. STA305 week 10 1

RCB - Example. STA305 week 10 1 RCB - Example An accounting firm wants to select training program for its auditors who conduct statistical sampling as part of their job. Three training methods are under consideration: home study, presentations

More information

The Random Effects Model Introduction

The Random Effects Model Introduction The Random Effects Model Introduction Sometimes, treatments included in experiment are randomly chosen from set of all possible treatments. Conclusions from such experiment can then be generalized to other

More information

Assessing Model Adequacy

Assessing Model Adequacy Assessing Model Adequacy A number of assumptions were made about the model, and these need to be verified in order to use the model for inferences. In cases where some assumptions are violated, there are

More information

Chapter 4: Randomized Blocks and Latin Squares

Chapter 4: Randomized Blocks and Latin Squares Chapter 4: Randomized Blocks and Latin Squares 1 Design of Engineering Experiments The Blocking Principle Blocking and nuisance factors The randomized complete block design or the RCBD Extension of the

More information

The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization.

The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization. 1 Chapter 1: Research Design Principles The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization. 2 Chapter 2: Completely Randomized Design

More information

STAT 430 (Fall 2017): Tutorial 8

STAT 430 (Fall 2017): Tutorial 8 STAT 430 (Fall 2017): Tutorial 8 Balanced Incomplete Block Design Luyao Lin November 7th/9th, 2017 Department Statistics and Actuarial Science, Simon Fraser University Block Design Complete Random Complete

More information

Outline. Topic 19 - Inference. The Cell Means Model. Estimates. Inference for Means Differences in cell means Contrasts. STAT Fall 2013

Outline. Topic 19 - Inference. The Cell Means Model. Estimates. Inference for Means Differences in cell means Contrasts. STAT Fall 2013 Topic 19 - Inference - Fall 2013 Outline Inference for Means Differences in cell means Contrasts Multiplicity Topic 19 2 The Cell Means Model Expressed numerically Y ij = µ i + ε ij where µ i is the theoretical

More information

Ch 3: Multiple Linear Regression

Ch 3: Multiple Linear Regression Ch 3: Multiple Linear Regression 1. Multiple Linear Regression Model Multiple regression model has more than one regressor. For example, we have one response variable and two regressor variables: 1. delivery

More information

SAS Commands. General Plan. Output. Construct scatterplot / interaction plot. Run full model

SAS Commands. General Plan. Output. Construct scatterplot / interaction plot. Run full model Topic 23 - Unequal Replication Data Model Outline - Fall 2013 Parameter Estimates Inference Topic 23 2 Example Page 954 Data for Two Factor ANOVA Y is the response variable Factor A has levels i = 1, 2,...,

More information

DESAIN EKSPERIMEN BLOCKING FACTORS. Semester Genap 2017/2018 Jurusan Teknik Industri Universitas Brawijaya

DESAIN EKSPERIMEN BLOCKING FACTORS. Semester Genap 2017/2018 Jurusan Teknik Industri Universitas Brawijaya DESAIN EKSPERIMEN BLOCKING FACTORS Semester Genap Jurusan Teknik Industri Universitas Brawijaya Outline The Randomized Complete Block Design The Latin Square Design The Graeco-Latin Square Design Balanced

More information

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model Topic 17 - Single Factor Analysis of Variance - Fall 2013 One way ANOVA Cell means model Factor effects model Outline Topic 17 2 One-way ANOVA Response variable Y is continuous Explanatory variable is

More information

STA 303H1F: Two-way Analysis of Variance Practice Problems

STA 303H1F: Two-way Analysis of Variance Practice Problems STA 303H1F: Two-way Analysis of Variance Practice Problems 1. In the Pygmalion example from lecture, why are the average scores of the platoon used as the response variable, rather than the scores of the

More information

Topic 28: Unequal Replication in Two-Way ANOVA

Topic 28: Unequal Replication in Two-Way ANOVA Topic 28: Unequal Replication in Two-Way ANOVA Outline Two-way ANOVA with unequal numbers of observations in the cells Data and model Regression approach Parameter estimates Previous analyses with constant

More information

Topic 20: Single Factor Analysis of Variance

Topic 20: Single Factor Analysis of Variance Topic 20: Single Factor Analysis of Variance Outline Single factor Analysis of Variance One set of treatments Cell means model Factor effects model Link to linear regression using indicator explanatory

More information

Analysis of Variance

Analysis of Variance Statistical Techniques II EXST7015 Analysis of Variance 15a_ANOVA_Introduction 1 Design The simplest model for Analysis of Variance (ANOVA) is the CRD, the Completely Randomized Design This model is also

More information

PLS205 Lab 2 January 15, Laboratory Topic 3

PLS205 Lab 2 January 15, Laboratory Topic 3 PLS205 Lab 2 January 15, 2015 Laboratory Topic 3 General format of ANOVA in SAS Testing the assumption of homogeneity of variances by "/hovtest" by ANOVA of squared residuals Proc Power for ANOVA One-way

More information

VIII. ANCOVA. A. Introduction

VIII. ANCOVA. A. Introduction VIII. ANCOVA A. Introduction In most experiments and observational studies, additional information on each experimental unit is available, information besides the factors under direct control or of interest.

More information

Unbalanced Designs (Section 19.2 plus Much More)

Unbalanced Designs (Section 19.2 plus Much More) Unbalanced Designs (Section 19.2 plus Much More) Unbalanced design: Not all factor combinations have proportionatel equal numbers of observations. For example Block 1 2 1 11 12 Treatment 2 22 3 31 32 Treatment

More information

Topic 13. Analysis of Covariance (ANCOVA) [ST&D chapter 17] 13.1 Introduction Review of regression concepts

Topic 13. Analysis of Covariance (ANCOVA) [ST&D chapter 17] 13.1 Introduction Review of regression concepts Topic 13. Analysis of Covariance (ANCOVA) [ST&D chapter 17] 13.1 Introduction The analysis of covariance (ANCOVA) is a technique that is occasionally useful for improving the precision of an experiment.

More information

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses.

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses. 1 Review: Let X 1, X,..., X n denote n independent random variables sampled from some distribution might not be normal!) with mean µ) and standard deviation σ). Then X µ σ n In other words, X is approximately

More information

One-Way Analysis of Variance. With regression, we related two quantitative, typically continuous variables.

One-Way Analysis of Variance. With regression, we related two quantitative, typically continuous variables. One-Way Analysis of Variance With regression, we related two quantitative, typically continuous variables. Often we wish to relate a quantitative response variable with a qualitative (or simply discrete)

More information

STAT22200 Chapter 14

STAT22200 Chapter 14 STAT00 Chapter 4 Yibi Huang Chapter 4 Incomplete Block Designs 4. Balanced Incomplete Block Designs (BIBD) Chapter 4 - Incomplete Block Designs A Brief Introduction to a Class of Most Useful Designs in

More information

STAT22200 Spring 2014 Chapter 14

STAT22200 Spring 2014 Chapter 14 STAT22200 Spring 2014 Chapter 14 Yibi Huang May 27, 2014 Chapter 14 Incomplete Block Designs 14.1 Balanced Incomplete Block Designs (BIBD) Chapter 14-1 Incomplete Block Designs A Brief Introduction to

More information

Analysis of Longitudinal Data: Comparison Between PROC GLM and PROC MIXED. Maribeth Johnson Medical College of Georgia Augusta, GA

Analysis of Longitudinal Data: Comparison Between PROC GLM and PROC MIXED. Maribeth Johnson Medical College of Georgia Augusta, GA Analysis of Longitudinal Data: Comparison Between PROC GLM and PROC MIXED Maribeth Johnson Medical College of Georgia Augusta, GA Overview Introduction to longitudinal data Describe the data for examples

More information

Chapter Seven: Multi-Sample Methods 1/52

Chapter Seven: Multi-Sample Methods 1/52 Chapter Seven: Multi-Sample Methods 1/52 7.1 Introduction 2/52 Introduction The independent samples t test and the independent samples Z test for a difference between proportions are designed to analyze

More information

EXST 7015 Fall 2014 Lab 11: Randomized Block Design and Nested Design

EXST 7015 Fall 2014 Lab 11: Randomized Block Design and Nested Design EXST 7015 Fall 2014 Lab 11: Randomized Block Design and Nested Design OBJECTIVES: The objective of an experimental design is to provide the maximum amount of reliable information at the minimum cost. In

More information

STAT 401A - Statistical Methods for Research Workers

STAT 401A - Statistical Methods for Research Workers STAT 401A - Statistical Methods for Research Workers One-way ANOVA Jarad Niemi (Dr. J) Iowa State University last updated: October 10, 2014 Jarad Niemi (Iowa State) One-way ANOVA October 10, 2014 1 / 39

More information

This is a Randomized Block Design (RBD) with a single factor treatment arrangement (2 levels) which are fixed.

This is a Randomized Block Design (RBD) with a single factor treatment arrangement (2 levels) which are fixed. EXST3201 Chapter 13c Geaghan Fall 2005: Page 1 Linear Models Y ij = µ + βi + τ j + βτij + εijk This is a Randomized Block Design (RBD) with a single factor treatment arrangement (2 levels) which are fixed.

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Blocks are formed by grouping EUs in what way? How are experimental units randomized to treatments?

Blocks are formed by grouping EUs in what way? How are experimental units randomized to treatments? VI. Incomplete Block Designs A. Introduction What is the purpose of block designs? Blocks are formed by grouping EUs in what way? How are experimental units randomized to treatments? 550 What if we have

More information

Unit 8: 2 k Factorial Designs, Single or Unequal Replications in Factorial Designs, and Incomplete Block Designs

Unit 8: 2 k Factorial Designs, Single or Unequal Replications in Factorial Designs, and Incomplete Block Designs Unit 8: 2 k Factorial Designs, Single or Unequal Replications in Factorial Designs, and Incomplete Block Designs STA 643: Advanced Experimental Design Derek S. Young 1 Learning Objectives Revisit your

More information

EXST Regression Techniques Page 1. We can also test the hypothesis H :" œ 0 versus H :"

EXST Regression Techniques Page 1. We can also test the hypothesis H : œ 0 versus H : EXST704 - Regression Techniques Page 1 Using F tests instead of t-tests We can also test the hypothesis H :" œ 0 versus H :" Á 0 with an F test.! " " " F œ MSRegression MSError This test is mathematically

More information

The One-Way Repeated-Measures ANOVA. (For Within-Subjects Designs)

The One-Way Repeated-Measures ANOVA. (For Within-Subjects Designs) The One-Way Repeated-Measures ANOVA (For Within-Subjects Designs) Logic of the Repeated-Measures ANOVA The repeated-measures ANOVA extends the analysis of variance to research situations using repeated-measures

More information

ANALYSIS OF VARIANCE OF BALANCED DAIRY SCIENCE DATA USING SAS

ANALYSIS OF VARIANCE OF BALANCED DAIRY SCIENCE DATA USING SAS ANALYSIS OF VARIANCE OF BALANCED DAIRY SCIENCE DATA USING SAS Ravinder Malhotra and Vipul Sharma National Dairy Research Institute, Karnal-132001 The most common use of statistics in dairy science is testing

More information

Simple Linear Regression: One Quantitative IV

Simple Linear Regression: One Quantitative IV Simple Linear Regression: One Quantitative IV Linear regression is frequently used to explain variation observed in a dependent variable (DV) with theoretically linked independent variables (IV). For example,

More information

Lecture 10 Multiple Linear Regression

Lecture 10 Multiple Linear Regression Lecture 10 Multiple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: 6.1-6.5 10-1 Topic Overview Multiple Linear Regression Model 10-2 Data for Multiple Regression Y i is the response variable

More information

IX. Complete Block Designs (CBD s)

IX. Complete Block Designs (CBD s) IX. Complete Block Designs (CBD s) A.Background Noise Factors nuisance factors whose values can be controlled within the context of the experiment but not outside the context of the experiment Covariates

More information

Contrasts and Multiple Comparisons Supplement for Pages

Contrasts and Multiple Comparisons Supplement for Pages Contrasts and Multiple Comparisons Supplement for Pages 302-323 Brian Habing University of South Carolina Last Updated: July 20, 2001 The F-test from the ANOVA table allows us to test the null hypothesis

More information

Testing Independence

Testing Independence Testing Independence Dipankar Bandyopadhyay Department of Biostatistics, Virginia Commonwealth University BIOS 625: Categorical Data & GLM 1/50 Testing Independence Previously, we looked at RR = OR = 1

More information

1 Tomato yield example.

1 Tomato yield example. ST706 - Linear Models II. Spring 2013 Two-way Analysis of Variance examples. Here we illustrate what happens analyzing two way data in proc glm in SAS. Similar issues come up with other software where

More information

Chapter 4 Experiments with Blocking Factors

Chapter 4 Experiments with Blocking Factors Chapter 4 Experiments with Blocking Factors 許湘伶 Design and Analysis of Experiments (Douglas C. Montgomery) hsuhl (NUK) DAE Chap. 4 1 / 54 The Randomized Complete Block Design (RCBD; 隨機化完全集區設計 ) 1 Variability

More information

COMPARING SEVERAL MEANS: ANOVA

COMPARING SEVERAL MEANS: ANOVA LAST UPDATED: November 15, 2012 COMPARING SEVERAL MEANS: ANOVA Objectives 2 Basic principles of ANOVA Equations underlying one-way ANOVA Doing a one-way ANOVA in R Following up an ANOVA: Planned contrasts/comparisons

More information

STAT 705 Chapter 16: One-way ANOVA

STAT 705 Chapter 16: One-way ANOVA STAT 705 Chapter 16: One-way ANOVA Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Data Analysis II 1 / 21 What is ANOVA? Analysis of variance (ANOVA) models are regression

More information

Multivariate analysis of variance and covariance

Multivariate analysis of variance and covariance Introduction Multivariate analysis of variance and covariance Univariate ANOVA: have observations from several groups, numerical dependent variable. Ask whether dependent variable has same mean for each

More information

2 >1. That is, a parallel study design will require

2 >1. That is, a parallel study design will require Cross Over Design Cross over design is commonly used in various type of research for its unique feature of accounting for within subject variability. For studies with short length of treatment time, illness

More information

STAT 705 Chapters 23 and 24: Two factors, unequal sample sizes; multi-factor ANOVA

STAT 705 Chapters 23 and 24: Two factors, unequal sample sizes; multi-factor ANOVA STAT 705 Chapters 23 and 24: Two factors, unequal sample sizes; multi-factor ANOVA Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Data Analysis II 1 / 22 Balanced vs. unbalanced

More information

Analysis of Variance and Co-variance. By Manza Ramesh

Analysis of Variance and Co-variance. By Manza Ramesh Analysis of Variance and Co-variance By Manza Ramesh Contents Analysis of Variance (ANOVA) What is ANOVA? The Basic Principle of ANOVA ANOVA Technique Setting up Analysis of Variance Table Short-cut Method

More information

STAT 501 EXAM I NAME Spring 1999

STAT 501 EXAM I NAME Spring 1999 STAT 501 EXAM I NAME Spring 1999 Instructions: You may use only your calculator and the attached tables and formula sheet. You can detach the tables and formula sheet from the rest of this exam. Show your

More information

Lecture 19 Multiple (Linear) Regression

Lecture 19 Multiple (Linear) Regression Lecture 19 Multiple (Linear) Regression Thais Paiva STA 111 - Summer 2013 Term II August 1, 2013 1 / 30 Thais Paiva STA 111 - Summer 2013 Term II Lecture 19, 08/01/2013 Lecture Plan 1 Multiple regression

More information

Introduction to Design and Analysis of Experiments with the SAS System (Stat 7010 Lecture Notes)

Introduction to Design and Analysis of Experiments with the SAS System (Stat 7010 Lecture Notes) Introduction to Design and Analysis of Experiments with the SAS System (Stat 7010 Lecture Notes) Asheber Abebe Discrete and Statistical Sciences Auburn University Contents 1 Completely Randomized Design

More information

Lecture 3. Experiments with a Single Factor: ANOVA Montgomery 3-1 through 3-3

Lecture 3. Experiments with a Single Factor: ANOVA Montgomery 3-1 through 3-3 Lecture 3. Experiments with a Single Factor: ANOVA Montgomery 3-1 through 3-3 Page 1 Tensile Strength Experiment Investigate the tensile strength of a new synthetic fiber. The factor is the weight percent

More information

Lecture 5: Comparing Treatment Means Montgomery: Section 3-5

Lecture 5: Comparing Treatment Means Montgomery: Section 3-5 Lecture 5: Comparing Treatment Means Montgomery: Section 3-5 Page 1 Linear Combination of Means ANOVA: y ij = µ + τ i + ɛ ij = µ i + ɛ ij Linear combination: L = c 1 µ 1 + c 1 µ 2 +...+ c a µ a = a i=1

More information

Topic 32: Two-Way Mixed Effects Model

Topic 32: Two-Way Mixed Effects Model Topic 3: Two-Way Mixed Effects Model Outline Two-way mixed models Three-way mixed models Data for two-way design Y is the response variable Factor A with levels i = 1 to a Factor B with levels j = 1 to

More information

BALANCED INCOMPLETE BLOCK DESIGNS

BALANCED INCOMPLETE BLOCK DESIGNS BALANCED INCOMPLETE BLOCK DESIGNS V.K. Sharma I.A.S.R.I., Library Avenue, New Delhi -110012. 1. Introduction In Incomplete block designs, as their name implies, the block size is less than the number of

More information

Week 7.1--IES 612-STA STA doc

Week 7.1--IES 612-STA STA doc Week 7.1--IES 612-STA 4-573-STA 4-576.doc IES 612/STA 4-576 Winter 2009 ANOVA MODELS model adequacy aka RESIDUAL ANALYSIS Numeric data samples from t populations obtained Assume Y ij ~ independent N(μ

More information

Randomized Complete Block Designs Incomplete Block Designs. Block Designs. 1 Randomized Complete Block Designs. 2 Incomplete Block Designs

Randomized Complete Block Designs Incomplete Block Designs. Block Designs. 1 Randomized Complete Block Designs. 2 Incomplete Block Designs Block Designs Randomized Complete Block Designs 1 Randomized Complete Block Designs 2 0 / 18 1 Randomized Complete Block Designs 2 1 / 18 Randomized Complete Block Design RCBD is the most widely used experimental

More information

Unit 12: Analysis of Single Factor Experiments

Unit 12: Analysis of Single Factor Experiments Unit 12: Analysis of Single Factor Experiments Statistics 571: Statistical Methods Ramón V. León 7/16/2004 Unit 12 - Stat 571 - Ramón V. León 1 Introduction Chapter 8: How to compare two treatments. Chapter

More information

ANOVA Situation The F Statistic Multiple Comparisons. 1-Way ANOVA MATH 143. Department of Mathematics and Statistics Calvin College

ANOVA Situation The F Statistic Multiple Comparisons. 1-Way ANOVA MATH 143. Department of Mathematics and Statistics Calvin College 1-Way ANOVA MATH 143 Department of Mathematics and Statistics Calvin College An example ANOVA situation Example (Treating Blisters) Subjects: 25 patients with blisters Treatments: Treatment A, Treatment

More information

Two-factor studies. STAT 525 Chapter 19 and 20. Professor Olga Vitek

Two-factor studies. STAT 525 Chapter 19 and 20. Professor Olga Vitek Two-factor studies STAT 525 Chapter 19 and 20 Professor Olga Vitek December 2, 2010 19 Overview Now have two factors (A and B) Suppose each factor has two levels Could analyze as one factor with 4 levels

More information

Analysis of Covariance

Analysis of Covariance Analysis of Covariance (ANCOVA) Bruce A Craig Department of Statistics Purdue University STAT 514 Topic 10 1 When to Use ANCOVA In experiment, there is a nuisance factor x that is 1 Correlated with y 2

More information

Example: Four levels of herbicide strength in an experiment on dry weight of treated plants.

Example: Four levels of herbicide strength in an experiment on dry weight of treated plants. The idea of ANOVA Reminders: A factor is a variable that can take one of several levels used to differentiate one group from another. An experiment has a one-way, or completely randomized, design if several

More information

Lec 1: An Introduction to ANOVA

Lec 1: An Introduction to ANOVA Ying Li Stockholm University October 31, 2011 Three end-aisle displays Which is the best? Design of the Experiment Identify the stores of the similar size and type. The displays are randomly assigned to

More information

Unit 27 One-Way Analysis of Variance

Unit 27 One-Way Analysis of Variance Unit 27 One-Way Analysis of Variance Objectives: To perform the hypothesis test in a one-way analysis of variance for comparing more than two population means Recall that a two sample t test is applied

More information

16.3 One-Way ANOVA: The Procedure

16.3 One-Way ANOVA: The Procedure 16.3 One-Way ANOVA: The Procedure Tom Lewis Fall Term 2009 Tom Lewis () 16.3 One-Way ANOVA: The Procedure Fall Term 2009 1 / 10 Outline 1 The background 2 Computing formulas 3 The ANOVA Identity 4 Tom

More information

Nonparametric Statistics

Nonparametric Statistics Nonparametric Statistics Nonparametric or Distribution-free statistics: used when data are ordinal (i.e., rankings) used when ratio/interval data are not normally distributed (data are converted to ranks)

More information

Lecture 4. Random Effects in Completely Randomized Design

Lecture 4. Random Effects in Completely Randomized Design Lecture 4. Random Effects in Completely Randomized Design Montgomery: 3.9, 13.1 and 13.7 1 Lecture 4 Page 1 Random Effects vs Fixed Effects Consider factor with numerous possible levels Want to draw inference

More information

Statistical Modelling in Stata 5: Linear Models

Statistical Modelling in Stata 5: Linear Models Statistical Modelling in Stata 5: Linear Models Mark Lunt Arthritis Research UK Epidemiology Unit University of Manchester 07/11/2017 Structure This Week What is a linear model? How good is my model? Does

More information

Vladimir Spokoiny Design of Experiments in Science and Industry

Vladimir Spokoiny Design of Experiments in Science and Industry W eierstraß-institut für Angew andte Analysis und Stochastik Vladimir Spokoiny Design of Experiments in Science and Industry www.ndt.net/index.php?id=8310 Mohrenstr. 39, 10117 Berlin spokoiny@wias-berlin.de

More information

2. TRUE or FALSE: Converting the units of one measured variable alters the correlation of between it and a second variable.

2. TRUE or FALSE: Converting the units of one measured variable alters the correlation of between it and a second variable. 1. The diagnostic plots shown below are from a linear regression that models a patient s score from the SUG-HIGH diabetes risk model as function of their normalized LDL level. a. Based on these plots,

More information

COMPLETELY RANDOM DESIGN (CRD) -Design can be used when experimental units are essentially homogeneous.

COMPLETELY RANDOM DESIGN (CRD) -Design can be used when experimental units are essentially homogeneous. COMPLETELY RANDOM DESIGN (CRD) Description of the Design -Simplest design to use. -Design can be used when experimental units are essentially homogeneous. -Because of the homogeneity requirement, it may

More information

Example - Alfalfa (11.6.1) Lecture 16 - ANOVA cont. Alfalfa Hypotheses. Treatment Effect

Example - Alfalfa (11.6.1) Lecture 16 - ANOVA cont. Alfalfa Hypotheses. Treatment Effect (11.6.1) Lecture 16 - ANOVA cont. Sta102 / BME102 Colin Rundel October 28, 2015 Researchers were interested in the effect that acid has on the growth rate of alfalfa plants. They created three treatment

More information

V. Experiments With Two Crossed Treatment Factors

V. Experiments With Two Crossed Treatment Factors V. Experiments With Two Crossed Treatment Factors A.The Experimental Design Completely Randomized Design (CRD) Let A be a factor with levels i = 1,,a B be a factor with levels j = 1,,b Y ijt = the response

More information

Two-Way Factorial Designs

Two-Way Factorial Designs 81-86 Two-Way Factorial Designs Yibi Huang 81-86 Two-Way Factorial Designs Chapter 8A - 1 Problem 81 Sprouting Barley (p166 in Oehlert) Brewer s malt is produced from germinating barley, so brewers like

More information

44.2. Two-Way Analysis of Variance. Introduction. Prerequisites. Learning Outcomes

44.2. Two-Way Analysis of Variance. Introduction. Prerequisites. Learning Outcomes Two-Way Analysis of Variance 44 Introduction In the one-way analysis of variance (Section 441) we consider the effect of one factor on the values taken by a variable Very often, in engineering investigations,

More information

The Pennsylvania State University The Graduate School Eberly College of Science INTRABLOCK, INTERBLOCK AND COMBINED ESTIMATES

The Pennsylvania State University The Graduate School Eberly College of Science INTRABLOCK, INTERBLOCK AND COMBINED ESTIMATES The Pennsylvania State University The Graduate School Eberly College of Science INTRABLOCK, INTERBLOCK AND COMBINED ESTIMATES IN INCOMPLETE BLOCK DESIGNS: A NUMERICAL STUDY A Thesis in Statistics by Yasin

More information

Lecture 15 Topic 11: Unbalanced Designs (missing data)

Lecture 15 Topic 11: Unbalanced Designs (missing data) Lecture 15 Topic 11: Unbalanced Designs (missing data) In the real world, things fall apart: plants are destroyed/trampled/eaten animals get sick volunteers quit assistants are sloppy accidents happen

More information

LECTURE 6. Introduction to Econometrics. Hypothesis testing & Goodness of fit

LECTURE 6. Introduction to Econometrics. Hypothesis testing & Goodness of fit LECTURE 6 Introduction to Econometrics Hypothesis testing & Goodness of fit October 25, 2016 1 / 23 ON TODAY S LECTURE We will explain how multiple hypotheses are tested in a regression model We will define

More information

Assignment 6 Answer Keys

Assignment 6 Answer Keys ssignment 6 nswer Keys Problem 1 (a) The treatment sum of squares can be calculated by SS Treatment = b a ȳi 2 Nȳ 2 i=1 = 5 (5.40 2 + 5.80 2 + 10 2 + 9.80 2 ) 20 7.75 2 = 92.95 Then the F statistic for

More information

Lecture 3. Experiments with a Single Factor: ANOVA Montgomery 3.1 through 3.3

Lecture 3. Experiments with a Single Factor: ANOVA Montgomery 3.1 through 3.3 Lecture 3. Experiments with a Single Factor: ANOVA Montgomery 3.1 through 3.3 Fall, 2013 Page 1 Tensile Strength Experiment Investigate the tensile strength of a new synthetic fiber. The factor is the

More information

Table 1: Fish Biomass data set on 26 streams

Table 1: Fish Biomass data set on 26 streams Math 221: Multiple Regression S. K. Hyde Chapter 27 (Moore, 5th Ed.) The following data set contains observations on the fish biomass of 26 streams. The potential regressors from which we wish to explain

More information

Summary of Chapter 7 (Sections ) and Chapter 8 (Section 8.1)

Summary of Chapter 7 (Sections ) and Chapter 8 (Section 8.1) Summary of Chapter 7 (Sections 7.2-7.5) and Chapter 8 (Section 8.1) Chapter 7. Tests of Statistical Hypotheses 7.2. Tests about One Mean (1) Test about One Mean Case 1: σ is known. Assume that X N(µ, σ

More information

IES 612/STA 4-573/STA Winter 2008 Week 1--IES 612-STA STA doc

IES 612/STA 4-573/STA Winter 2008 Week 1--IES 612-STA STA doc IES 612/STA 4-573/STA 4-576 Winter 2008 Week 1--IES 612-STA 4-573-STA 4-576.doc Review Notes: [OL] = Ott & Longnecker Statistical Methods and Data Analysis, 5 th edition. [Handouts based on notes prepared

More information

Tentative solutions TMA4255 Applied Statistics 16 May, 2015

Tentative solutions TMA4255 Applied Statistics 16 May, 2015 Norwegian University of Science and Technology Department of Mathematical Sciences Page of 9 Tentative solutions TMA455 Applied Statistics 6 May, 05 Problem Manufacturer of fertilizers a) Are these independent

More information

In a one-way ANOVA, the total sums of squares among observations is partitioned into two components: Sums of squares represent:

In a one-way ANOVA, the total sums of squares among observations is partitioned into two components: Sums of squares represent: Activity #10: AxS ANOVA (Repeated subjects design) Resources: optimism.sav So far in MATH 300 and 301, we have studied the following hypothesis testing procedures: 1) Binomial test, sign-test, Fisher s

More information

Topic 6. Two-way designs: Randomized Complete Block Design [ST&D Chapter 9 sections 9.1 to 9.7 (except 9.6) and section 15.8]

Topic 6. Two-way designs: Randomized Complete Block Design [ST&D Chapter 9 sections 9.1 to 9.7 (except 9.6) and section 15.8] Topic 6. Two-way designs: Randomized Complete Block Design [ST&D Chapter 9 sections 9.1 to 9.7 (except 9.6) and section 15.8] The completely randomized design Treatments are randomly assigned to e.u. such

More information

Tests for Two Coefficient Alphas

Tests for Two Coefficient Alphas Chapter 80 Tests for Two Coefficient Alphas Introduction Coefficient alpha, or Cronbach s alpha, is a popular measure of the reliability of a scale consisting of k parts. The k parts often represent k

More information

Lecture 7: Latin Square and Related Design

Lecture 7: Latin Square and Related Design Lecture 7: Latin Square and Related Design Montgomery: Section 4.2-4.3 Page 1 Automobile Emission Experiment Four cars and four drivers are employed in a study for possible differences between four gasoline

More information

Single Factor Experiments

Single Factor Experiments Single Factor Experiments Bruce A Craig Department of Statistics Purdue University STAT 514 Topic 4 1 Analysis of Variance Suppose you are interested in comparing either a different treatments a levels

More information

Unbalanced Data in Factorials Types I, II, III SS Part 2

Unbalanced Data in Factorials Types I, II, III SS Part 2 Unbalanced Data in Factorials Types I, II, III SS Part 2 Chapter 10 in Oehlert STAT:5201 Week 9 - Lecture 2b 1 / 29 Types of sums of squares Type II SS The Type II SS relates to the extra variability explained

More information

Inference for the Regression Coefficient

Inference for the Regression Coefficient Inference for the Regression Coefficient Recall, b 0 and b 1 are the estimates of the slope β 1 and intercept β 0 of population regression line. We can shows that b 0 and b 1 are the unbiased estimates

More information

One-Way Analysis of Variance (ANOVA) Paul K. Strode, Ph.D.

One-Way Analysis of Variance (ANOVA) Paul K. Strode, Ph.D. One-Way Analysis of Variance (ANOVA) Paul K. Strode, Ph.D. Purpose While the T-test is useful to compare the means of two samples, many biology experiments involve the parallel measurement of three or

More information

Outline. Topic 22 - Interaction in Two Factor ANOVA. Interaction Not Significant. General Plan

Outline. Topic 22 - Interaction in Two Factor ANOVA. Interaction Not Significant. General Plan Topic 22 - Interaction in Two Factor ANOVA - Fall 2013 Outline Strategies for Analysis when interaction not present when interaction present when n ij = 1 when factor(s) quantitative Topic 22 2 General

More information

WITHIN-PARTICIPANT EXPERIMENTAL DESIGNS

WITHIN-PARTICIPANT EXPERIMENTAL DESIGNS 1 WITHIN-PARTICIPANT EXPERIMENTAL DESIGNS I. Single-factor designs: the model is: yij i j ij ij where: yij score for person j under treatment level i (i = 1,..., I; j = 1,..., n) overall mean βi treatment

More information

Dr. Maddah ENMG 617 EM Statistics 11/28/12. Multiple Regression (3) (Chapter 15, Hines)

Dr. Maddah ENMG 617 EM Statistics 11/28/12. Multiple Regression (3) (Chapter 15, Hines) Dr. Maddah ENMG 617 EM Statistics 11/28/12 Multiple Regression (3) (Chapter 15, Hines) Problems in multiple regression: Multicollinearity This arises when the independent variables x 1, x 2,, x k, are

More information

Repeated Measures ANOVA Multivariate ANOVA and Their Relationship to Linear Mixed Models

Repeated Measures ANOVA Multivariate ANOVA and Their Relationship to Linear Mixed Models Repeated Measures ANOVA Multivariate ANOVA and Their Relationship to Linear Mixed Models EPSY 905: Multivariate Analysis Spring 2016 Lecture #12 April 20, 2016 EPSY 905: RM ANOVA, MANOVA, and Mixed Models

More information

STA441: Spring Multiple Regression. This slide show is a free open source document. See the last slide for copyright information.

STA441: Spring Multiple Regression. This slide show is a free open source document. See the last slide for copyright information. STA441: Spring 2018 Multiple Regression This slide show is a free open source document. See the last slide for copyright information. 1 Least Squares Plane 2 Statistical MODEL There are p-1 explanatory

More information

One-Way ANOVA Model. group 1 y 11, y 12 y 13 y 1n1. group 2 y 21, y 22 y 2n2. group g y g1, y g2, y gng. g is # of groups,

One-Way ANOVA Model. group 1 y 11, y 12 y 13 y 1n1. group 2 y 21, y 22 y 2n2. group g y g1, y g2, y gng. g is # of groups, One-Way ANOVA Model group 1 y 11, y 12 y 13 y 1n1 group 2 y 21, y 22 y 2n2 group g y g1, y g2, y gng g is # of groups, n i denotes # of obs in the i-th group, and the total sample size n = g i=1 n i. 1

More information

1. (Rao example 11.15) A study measures oxygen demand (y) (on a log scale) and five explanatory variables (see below). Data are available as

1. (Rao example 11.15) A study measures oxygen demand (y) (on a log scale) and five explanatory variables (see below). Data are available as ST 51, Summer, Dr. Jason A. Osborne Homework assignment # - Solutions 1. (Rao example 11.15) A study measures oxygen demand (y) (on a log scale) and five explanatory variables (see below). Data are available

More information

Topic 29: Three-Way ANOVA

Topic 29: Three-Way ANOVA Topic 29: Three-Way ANOVA Outline Three-way ANOVA Data Model Inference Data for three-way ANOVA Y, the response variable Factor A with levels i = 1 to a Factor B with levels j = 1 to b Factor C with levels

More information

6 Single Sample Methods for a Location Parameter

6 Single Sample Methods for a Location Parameter 6 Single Sample Methods for a Location Parameter If there are serious departures from parametric test assumptions (e.g., normality or symmetry), nonparametric tests on a measure of central tendency (usually

More information