Blocks are formed by grouping EUs in what way? How are experimental units randomized to treatments?

Size: px
Start display at page:

Download "Blocks are formed by grouping EUs in what way? How are experimental units randomized to treatments?"

Transcription

1 VI. Incomplete Block Designs A. Introduction What is the purpose of block designs? Blocks are formed by grouping EUs in what way? How are experimental units randomized to treatments? 550

2 What if we have more treatment levels than there are EUs in a block? Incomplete block designs retain the desired number of blocking factors, but do not allocate all treatments to every block. 551

3 If we allocate treatments to blocks cleverly, then we can still estimate all effects of interest. If we do not do this cleverly, then we can have confounded effects: the effects of one factor cannot be estimated separately from the effects of another factor. EX. In a two-way ANOVA with no replication, what two effects are confounded? 552

4 EXAMPLE: Four assays for determining HIV-RNA in blood samples are to be compared. Four blood samples are available and can be split into at most three parts. Each part is then analyzed with one assay. Blocks = Treatments = 553

5 Such a design might look like: 1 A C D Block 2 A B C 3 B C D 4 A B D t = b = # treatments per block = 554

6 EXAMPLE: Food science researchers are interested in the hardiness of the E. coli bacterium during various storage conditions. 2 refrigeration units are available, but the researchers would like to study 4 refrigeration termperatures: 5, 10, 15, and 20 C. Each day for 6 days the RA will prepare two samples of E. coli in growth medium. After 24 hours, the increase in E. coli will be measured. Blocks = Treatments = 555

7 Such a design might look like: 1 A D 2 B D Block 3 A B 4 C D 5 A C 6 B C t = b = # treatments per block = 556

8 B. Balanced Incomplete Block Designs: One Blocking Factor A BIBD allocates EUs such that all treatments are allocated to equally many EUs each treatment pair occurs in the same block an equal number of times across blocks. 557

9 Notation t = #treatments b = #blocks k = #EUs per block r = #replications of each trt N = total #EUs = = k < t r < b 558

10 In terms of t, b, k, and r, all treatments allocated to equally many EUs means what about r? 559

11 In terms of t, b, k, and r, each treatment pair occurs in the same block an equal number of times across blocks means what? Consider for example treatment A. Treatment A occurs in the same block as treatment B for λ of the b blocks, λ < b. Thus, λ(t 1) = 560

12 In terms of t, b, k, and r, We also know that treatment A occurs a total of r times, and that when it occurs there are k 1 other treatments in that same block. Thus, r(k 1) = 561

13 In terms of t, b, k, and r, λ(t 1) = r(k 1) λ = 562

14 What are t, b, r, k, and λ? Is λ an integer? EX. 1 B C D E 2 A B D E Block 3 A C D E 4 A B C D 5 A B C E 563

15 EX. 1 A B C Block 2 C D E 3 B E F 4 A B D 5 C D F 6 A E F 564

16 Randomization determine t, b, r, and k determine how the t treatment codes should be divided among the b blocks 565

17 e.g., for t = 4, b = 4, r = 3, and k = 3, use (A,B,C) (A,B,D) (A,C,D) (B,C,D) randomly assign each grouping to one block 566

18 within block, randomly assign treatment codes (e.g., A) to EUs randomly assign treatment codes to the actual treatment levels, e.g., A = Assay 4 B = Assay 1 C = Assay 3 D = Assay 2 567

19 Model Y ij = µ + τ i + ρ j + e ij e ij iid N(0, σ 2 e ) i = 1,..., t, j = 1,..., b but not every treatment appears in every block!! Thus treatments and blocks are no longer orthogonal. 568

20 Consequences: The two-way ANOVA table sums of squares are not correct: the model SS can no longer be partitioned into treatment SS and block SS. Observed treatment means Ȳ i are no longer unbiased estimates of µ i = µ + τ i. 569

21 Why the lack of orthogonality? Suppose we had: 1 A C D Block 2 A B C 3 B C D 4 A B D Comparing Block 1 to Block 4 is both a block-to-block comparison and a comparison of

22 ANOVA table: No easy SS formulas. We use the regression approach. Tests: Use Type III sums of squares or General Linear F-tests. Estimation: Use least squares means for pairwise comparisons and other contrasts. Diagnostics: As before. 571

23 C. BIBD: Two Blocking Factors With more than one blocking factor, we could have incomplete blocks for either or both of the factors. If both blocking factors are incomplete, then we have a design similar to a Latin square but without the restrictions of a Latin square that t = b = r = k. 572

24 Row orthogonal designs These have complete row blocks and incomplete column blocks. They can be formed by taking a Latin square and omitting one or more rows. These are called Youden squares. This does not work for all Latin squares! It only works if you end up with an integer λ after the omission. 573

25 EXAMPLE: Certain fungi can disrupt proper growth of fingernails and toenails. Researchers wish to study a new topical cream with 7 levels of the active ingredient. They will recruit 7 participants and randomly allocate one treatment to each hand and to each foot of each participant in a Youden square design. Blocks = Treatments = 574

26 Block (participant) A B C D E F G Block 2 B C D E F G A (hand or foot) 3 C D E F G A B 4 D E F G A B C 5 E F G A B C D 6 F G A B C D E 7 G A B C D E F How do we get from this Latin square to a Youden square? 575

27 EXAMPLE: Researchers are interested in collecting information on sexual practices. Since this is sensitive information, the survey questions must be designed carefully. They design five different surveys and will do a pilot study to determine which version has the highest response rate. They will block on age and on region of the country. One participant per block will answer the survey, and percent of questions answered will be recorded. 576

28 Block (age group) A B C D E Block 2 B C D E A (region) 3 C D E A B 4 D E A B C 5 E A B C D 577

29 Model Y ijk = µ + τ i + ρ j + γ k + e ijk e ijk iid N(0, σ 2 e ) i = 1,..., t, j = 1,..., k, k = 1,..., b where ρ j are the row block effects and γ k are the column block effects. Treatments are orthogonal to but treatments are not orthogonal to 578

30 ANOVA table: No easy SS formulas. We use the regression approach. Tests: Use Type III sums of squares or General Linear F-tests. Estimation: Use least squares means for pairwise comparisons and other contrasts. Diagnostics: As before. 579

31 D. Other Incomplete Block Designs Other designs are possible: partially balanced incomplete block designs: when balance (λ = integer) is not possible for the desired t and/or b. Some treatment pairs will occur together more frequently than others. 580

32 resolvable block designs: blocking levels are grouped such that each group contains one replication of each treatment. These are useful for example when the grouping is done by time because a complete experiment cannot be conducted e.g. on one day. 581

33 factorial treatment structures within blocks: blocks are often not big enough to accommodate a full factorial structure so an incomplete block design is used. These designs often require some confounding, e.g., the block effect cannot be estimated separately from the highest order interaction among treatment factors. 582

TWO-LEVEL FACTORIAL EXPERIMENTS: BLOCKING. Upper-case letters are associated with factors, or regressors of factorial effects, e.g.

TWO-LEVEL FACTORIAL EXPERIMENTS: BLOCKING. Upper-case letters are associated with factors, or regressors of factorial effects, e.g. STAT 512 2-Level Factorial Experiments: Blocking 1 TWO-LEVEL FACTORIAL EXPERIMENTS: BLOCKING Some Traditional Notation: Upper-case letters are associated with factors, or regressors of factorial effects,

More information

CS 5014: Research Methods in Computer Science

CS 5014: Research Methods in Computer Science Computer Science Clifford A. Shaffer Department of Computer Science Virginia Tech Blacksburg, Virginia Fall 2010 Copyright c 2010 by Clifford A. Shaffer Computer Science Fall 2010 1 / 254 Experimental

More information

Written Exam (2 hours)

Written Exam (2 hours) M. Müller Applied Analysis of Variance and Experimental Design Summer 2015 Written Exam (2 hours) General remarks: Open book exam. Switch off your mobile phone! Do not stay too long on a part where you

More information

Solution to Final Exam

Solution to Final Exam Stat 660 Solution to Final Exam. (5 points) A large pharmaceutical company is interested in testing the uniformity (a continuous measurement that can be taken by a measurement instrument) of their film-coated

More information

Unit 9: Confounding and Fractional Factorial Designs

Unit 9: Confounding and Fractional Factorial Designs Unit 9: Confounding and Fractional Factorial Designs STA 643: Advanced Experimental Design Derek S. Young 1 Learning Objectives Understand what it means for a treatment to be confounded with blocks Know

More information

CS 5014: Research Methods in Computer Science. Experimental Design. Potential Pitfalls. One-Factor (Again) Clifford A. Shaffer.

CS 5014: Research Methods in Computer Science. Experimental Design. Potential Pitfalls. One-Factor (Again) Clifford A. Shaffer. Department of Computer Science Virginia Tech Blacksburg, Virginia Copyright c 2015 by Clifford A. Shaffer Computer Science Title page Computer Science Clifford A. Shaffer Fall 2015 Clifford A. Shaffer

More information

2 k, 2 k r and 2 k-p Factorial Designs

2 k, 2 k r and 2 k-p Factorial Designs 2 k, 2 k r and 2 k-p Factorial Designs 1 Types of Experimental Designs! Full Factorial Design: " Uses all possible combinations of all levels of all factors. n=3*2*2=12 Too costly! 2 Types of Experimental

More information

Chapter 4: Randomized Blocks and Latin Squares

Chapter 4: Randomized Blocks and Latin Squares Chapter 4: Randomized Blocks and Latin Squares 1 Design of Engineering Experiments The Blocking Principle Blocking and nuisance factors The randomized complete block design or the RCBD Extension of the

More information

Fractional Factorial Designs

Fractional Factorial Designs k-p Fractional Factorial Designs Fractional Factorial Designs If we have 7 factors, a 7 factorial design will require 8 experiments How much information can we obtain from fewer experiments, e.g. 7-4 =

More information

Unit 8: 2 k Factorial Designs, Single or Unequal Replications in Factorial Designs, and Incomplete Block Designs

Unit 8: 2 k Factorial Designs, Single or Unequal Replications in Factorial Designs, and Incomplete Block Designs Unit 8: 2 k Factorial Designs, Single or Unequal Replications in Factorial Designs, and Incomplete Block Designs STA 643: Advanced Experimental Design Derek S. Young 1 Learning Objectives Revisit your

More information

STAT 430 (Fall 2017): Tutorial 8

STAT 430 (Fall 2017): Tutorial 8 STAT 430 (Fall 2017): Tutorial 8 Balanced Incomplete Block Design Luyao Lin November 7th/9th, 2017 Department Statistics and Actuarial Science, Simon Fraser University Block Design Complete Random Complete

More information

Contents. TAMS38 - Lecture 8 2 k p fractional factorial design. Lecturer: Zhenxia Liu. Example 0 - continued 4. Example 0 - Glazing ceramic 3

Contents. TAMS38 - Lecture 8 2 k p fractional factorial design. Lecturer: Zhenxia Liu. Example 0 - continued 4. Example 0 - Glazing ceramic 3 Contents TAMS38 - Lecture 8 2 k p fractional factorial design Lecturer: Zhenxia Liu Department of Mathematics - Mathematical Statistics Example 0 2 k factorial design with blocking Example 1 2 k p fractional

More information

BALANCED INCOMPLETE BLOCK DESIGNS

BALANCED INCOMPLETE BLOCK DESIGNS BALANCED INCOMPLETE BLOCK DESIGNS V.K. Sharma I.A.S.R.I., Library Avenue, New Delhi -110012. 1. Introduction In Incomplete block designs, as their name implies, the block size is less than the number of

More information

Stat 217 Final Exam. Name: May 1, 2002

Stat 217 Final Exam. Name: May 1, 2002 Stat 217 Final Exam Name: May 1, 2002 Problem 1. Three brands of batteries are under study. It is suspected that the lives (in weeks) of the three brands are different. Five batteries of each brand are

More information

Suppose we needed four batches of formaldehyde, and coulddoonly4runsperbatch. Thisisthena2 4 factorial in 2 2 blocks.

Suppose we needed four batches of formaldehyde, and coulddoonly4runsperbatch. Thisisthena2 4 factorial in 2 2 blocks. 58 2. 2 factorials in 2 blocks Suppose we needed four batches of formaldehyde, and coulddoonly4runsperbatch. Thisisthena2 4 factorial in 2 2 blocks. Some more algebra: If two effects are confounded with

More information

Two-Way Factorial Designs

Two-Way Factorial Designs 81-86 Two-Way Factorial Designs Yibi Huang 81-86 Two-Way Factorial Designs Chapter 8A - 1 Problem 81 Sprouting Barley (p166 in Oehlert) Brewer s malt is produced from germinating barley, so brewers like

More information

STAT22200 Spring 2014 Chapter 8A

STAT22200 Spring 2014 Chapter 8A STAT22200 Spring 2014 Chapter 8A Yibi Huang May 13, 2014 81-86 Two-Way Factorial Designs Chapter 8A - 1 Problem 81 Sprouting Barley (p166 in Oehlert) Brewer s malt is produced from germinating barley,

More information

Orthogonal contrasts for a 2x2 factorial design Example p130

Orthogonal contrasts for a 2x2 factorial design Example p130 Week 9: Orthogonal comparisons for a 2x2 factorial design. The general two-factor factorial arrangement. Interaction and additivity. ANOVA summary table, tests, CIs. Planned/post-hoc comparisons for the

More information

Stat 579: Generalized Linear Models and Extensions

Stat 579: Generalized Linear Models and Extensions Stat 579: Generalized Linear Models and Extensions Mixed models Yan Lu Feb, 2018, week 7 1 / 17 Some commonly used experimental designs related to mixed models Two way or three way random/mixed effects

More information

Answer Keys to Homework#10

Answer Keys to Homework#10 Answer Keys to Homework#10 Problem 1 Use either restricted or unrestricted mixed models. Problem 2 (a) First, the respective means for the 8 level combinations are listed in the following table A B C Mean

More information

Assignment 9 Answer Keys

Assignment 9 Answer Keys Assignment 9 Answer Keys Problem 1 (a) First, the respective means for the 8 level combinations are listed in the following table A B C Mean 26.00 + 34.67 + 39.67 + + 49.33 + 42.33 + + 37.67 + + 54.67

More information

Unit 6: Fractional Factorial Experiments at Three Levels

Unit 6: Fractional Factorial Experiments at Three Levels Unit 6: Fractional Factorial Experiments at Three Levels Larger-the-better and smaller-the-better problems. Basic concepts for 3 k full factorial designs. Analysis of 3 k designs using orthogonal components

More information

Unit 6: Orthogonal Designs Theory, Randomized Complete Block Designs, and Latin Squares

Unit 6: Orthogonal Designs Theory, Randomized Complete Block Designs, and Latin Squares Unit 6: Orthogonal Designs Theory, Randomized Complete Block Designs, and Latin Squares STA 643: Advanced Experimental Design Derek S. Young 1 Learning Objectives Understand the basics of orthogonal designs

More information

19. Blocking & confounding

19. Blocking & confounding 146 19. Blocking & confounding Importance of blocking to control nuisance factors - day of week, batch of raw material, etc. Complete Blocks. This is the easy case. Suppose we run a 2 2 factorial experiment,

More information

Reference: Chapter 6 of Montgomery(8e) Maghsoodloo

Reference: Chapter 6 of Montgomery(8e) Maghsoodloo Reference: Chapter 6 of Montgomery(8e) Maghsoodloo 51 DOE (or DOX) FOR BASE BALANCED FACTORIALS The notation k is used to denote a factorial experiment involving k factors (A, B, C, D,..., K) each at levels.

More information

Construction of row column factorial designs

Construction of row column factorial designs J. R. Statist. Soc. B (2019) Construction of row column factorial designs J. D. Godolphin University of Surrey, Guildford, UK [Received February 2018. Final revision October 2018] Summary. The arrangement

More information

Confounding and Fractional Replication in Factorial Design

Confounding and Fractional Replication in Factorial Design ISSN -580 (Paper) ISSN 5-05 (Online) Vol.6, No.3, 016 onfounding and Fractional Replication in Factorial esign Layla. hmed epartment of Mathematics, ollege of Education, University of Garmian, Kurdistan

More information

DESAIN EKSPERIMEN BLOCKING FACTORS. Semester Genap 2017/2018 Jurusan Teknik Industri Universitas Brawijaya

DESAIN EKSPERIMEN BLOCKING FACTORS. Semester Genap 2017/2018 Jurusan Teknik Industri Universitas Brawijaya DESAIN EKSPERIMEN BLOCKING FACTORS Semester Genap Jurusan Teknik Industri Universitas Brawijaya Outline The Randomized Complete Block Design The Latin Square Design The Graeco-Latin Square Design Balanced

More information

Topic 7: Incomplete, double-blocked designs: Latin Squares [ST&D sections ]

Topic 7: Incomplete, double-blocked designs: Latin Squares [ST&D sections ] Topic 7: Incomplete, double-blocked designs: Latin Squares [ST&D sections 9.10 9.15] 7.1. Introduction The Randomized Complete Block Design is commonly used to improve the ability of an experiment to detect

More information

Stat 705: Completely randomized and complete block designs

Stat 705: Completely randomized and complete block designs Stat 705: Completely randomized and complete block designs Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Data Analysis II 1 / 16 Experimental design Our department offers

More information

Incomplete Block Designs

Incomplete Block Designs Incomplete Block Designs Recall: in randomized complete block design, each of a treatments was used once within each of b blocks. In some situations, it will not be possible to use each of a treatments

More information

Chapter 10 Combinatorial Designs

Chapter 10 Combinatorial Designs Chapter 10 Combinatorial Designs BIBD Example (a,b,c) (a,b,d) (a,c,e) (a,d,f) (a,e,f) (b,c,f) (b,d,e) (b,e,f) (c,d,e) (c,d,f) Here are 10 subsets of the 6 element set {a, b, c, d, e, f }. BIBD Definition

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Lec 5: Factorial Experiment

Lec 5: Factorial Experiment November 21, 2011 Example Study of the battery life vs the factors temperatures and types of material. A: Types of material, 3 levels. B: Temperatures, 3 levels. Example Study of the battery life vs the

More information

20g g g Analyze the residuals from this experiment and comment on the model adequacy.

20g g g Analyze the residuals from this experiment and comment on the model adequacy. 3.4. A computer ANOVA output is shown below. Fill in the blanks. You may give bounds on the P-value. One-way ANOVA Source DF SS MS F P Factor 3 36.15??? Error??? Total 19 196.04 3.11. A pharmaceutical

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analysis of Variance and Design of Experiment-I MODULE IX LECTURE - 38 EXERCISES Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Example (Completely randomized

More information

Chapter 11: Factorial Designs

Chapter 11: Factorial Designs Chapter : Factorial Designs. Two factor factorial designs ( levels factors ) This situation is similar to the randomized block design from the previous chapter. However, in addition to the effects within

More information

Topic 9: Factorial treatment structures. Introduction. Terminology. Example of a 2x2 factorial

Topic 9: Factorial treatment structures. Introduction. Terminology. Example of a 2x2 factorial Topic 9: Factorial treatment structures Introduction A common objective in research is to investigate the effect of each of a number of variables, or factors, on some response variable. In earlier times,

More information

Lec 1: An Introduction to ANOVA

Lec 1: An Introduction to ANOVA Ying Li Stockholm University October 31, 2011 Three end-aisle displays Which is the best? Design of the Experiment Identify the stores of the similar size and type. The displays are randomly assigned to

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Figure 12: Figure 13:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Figure 12: Figure 13: 1.0 ial Experiment Design by Block... 3 1.1 ial Experiment in Incomplete Block... 3 1. ial Experiment with Two Blocks... 3 1.3 ial Experiment with Four Blocks... 5 Example 1... 6.0 Fractional ial Experiment....1

More information

Analysis of Covariance

Analysis of Covariance Analysis of Covariance Timothy Hanson Department of Statistics, University of South Carolina Stat 506: Introduction to Experimental Design 1 / 11 ANalysis of COVAriance Add a continuous predictor to an

More information

ST3232: Design and Analysis of Experiments

ST3232: Design and Analysis of Experiments Department of Statistics & Applied Probability 2:00-4:00 pm, Monday, April 8, 2013 Lecture 21: Fractional 2 p factorial designs The general principles A full 2 p factorial experiment might not be efficient

More information

Incomplete Block Designs. Lukas Meier, Seminar für Statistik

Incomplete Block Designs. Lukas Meier, Seminar für Statistik Incomplete Block Designs Lukas Meier, Seminar für Statistik Incomplete Block Designs Up to now we only considered complete block designs. This means we would see all treatments in each block. In some situations

More information

VIII. ANCOVA. A. Introduction

VIII. ANCOVA. A. Introduction VIII. ANCOVA A. Introduction In most experiments and observational studies, additional information on each experimental unit is available, information besides the factors under direct control or of interest.

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Two-Level Fractional Factorial Design

Two-Level Fractional Factorial Design Two-Level Fractional Factorial Design Reference DeVor, Statistical Quality Design and Control, Ch. 19, 0 1 Andy Guo Types of Experimental Design Parallel-type approach Sequential-type approach One-factor

More information

The 2 k Factorial Design. Dr. Mohammad Abuhaiba 1

The 2 k Factorial Design. Dr. Mohammad Abuhaiba 1 The 2 k Factorial Design Dr. Mohammad Abuhaiba 1 HoweWork Assignment Due Tuesday 1/6/2010 6.1, 6.2, 6.17, 6.18, 6.19 Dr. Mohammad Abuhaiba 2 Design of Engineering Experiments The 2 k Factorial Design Special

More information

STAT22200 Spring 2014 Chapter 13B

STAT22200 Spring 2014 Chapter 13B STAT22200 Spring 2014 Chapter 13B Yibi Huang May 27, 2014 13.3.1 Crossover Designs 13.3.4 Replicated Latin Square Designs 13.4 Graeco-Latin Squares Chapter 13B - 1 13.3.1 Crossover Design (A Special Latin-Square

More information

23. Fractional factorials - introduction

23. Fractional factorials - introduction 173 3. Fractional factorials - introduction Consider a 5 factorial. Even without replicates, there are 5 = 3 obs ns required to estimate the effects - 5 main effects, 10 two factor interactions, 10 three

More information

Stat 6640 Solution to Midterm #2

Stat 6640 Solution to Midterm #2 Stat 6640 Solution to Midterm #2 1. A study was conducted to examine how three statistical software packages used in a statistical course affect the statistical competence a student achieves. At the end

More information

Factorial designs. Experiments

Factorial designs. Experiments Chapter 5: Factorial designs Petter Mostad mostad@chalmers.se Experiments Actively making changes and observing the result, to find causal relationships. Many types of experimental plans Measuring response

More information

Increasing precision by partitioning the error sum of squares: Blocking: SSE (CRD) à SSB + SSE (RCBD) Contrasts: SST à (t 1) orthogonal contrasts

Increasing precision by partitioning the error sum of squares: Blocking: SSE (CRD) à SSB + SSE (RCBD) Contrasts: SST à (t 1) orthogonal contrasts Lecture 13 Topic 9: Factorial treatment structures (Part II) Increasing precision by partitioning the error sum of squares: s MST F = = MSE 2 among = s 2 within SST df trt SSE df e Blocking: SSE (CRD)

More information

Contents. TAMS38 - Lecture 6 Factorial design, Latin Square Design. Lecturer: Zhenxia Liu. Factorial design 3. Complete three factor design 4

Contents. TAMS38 - Lecture 6 Factorial design, Latin Square Design. Lecturer: Zhenxia Liu. Factorial design 3. Complete three factor design 4 Contents Factorial design TAMS38 - Lecture 6 Factorial design, Latin Square Design Lecturer: Zhenxia Liu Department of Mathematics - Mathematical Statistics 28 November, 2017 Complete three factor design

More information

More about Single Factor Experiments

More about Single Factor Experiments More about Single Factor Experiments 1 2 3 0 / 23 1 2 3 1 / 23 Parameter estimation Effect Model (1): Y ij = µ + A i + ɛ ij, Ji A i = 0 Estimation: µ + A i = y i. ˆµ = y..  i = y i. y.. Effect Modell

More information

Lecture 10. Factorial experiments (2-way ANOVA etc)

Lecture 10. Factorial experiments (2-way ANOVA etc) Lecture 10. Factorial experiments (2-way ANOVA etc) Jesper Rydén Matematiska institutionen, Uppsala universitet jesper@math.uu.se Regression and Analysis of Variance autumn 2014 A factorial experiment

More information

DESIGN AND ANALYSIS OF EXPERIMENTS Third Edition

DESIGN AND ANALYSIS OF EXPERIMENTS Third Edition DESIGN AND ANALYSIS OF EXPERIMENTS Third Edition Douglas C. Montgomery ARIZONA STATE UNIVERSITY JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore Contents Chapter 1. Introduction 1-1 What

More information

Stat/F&W Ecol/Hort 572 Review Points Ané, Spring 2010

Stat/F&W Ecol/Hort 572 Review Points Ané, Spring 2010 1 Linear models Y = Xβ + ɛ with ɛ N (0, σ 2 e) or Y N (Xβ, σ 2 e) where the model matrix X contains the information on predictors and β includes all coefficients (intercept, slope(s) etc.). 1. Number of

More information

THE ROYAL STATISTICAL SOCIETY 2015 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 4

THE ROYAL STATISTICAL SOCIETY 2015 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 4 THE ROYAL STATISTICAL SOCIETY 2015 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 4 The Society is providing these solutions to assist candidates preparing for the examinations in 2017. The solutions are

More information

CSCI 688 Homework 6. Megan Rose Bryant Department of Mathematics William and Mary

CSCI 688 Homework 6. Megan Rose Bryant Department of Mathematics William and Mary CSCI 688 Homework 6 Megan Rose Bryant Department of Mathematics William and Mary November 12, 2014 7.1 Consider the experiment described in Problem 6.1. Analyze this experiment assuming that each replicate

More information

Design and Analysis of Experiments. David Yanez Department of Biostatistics University of Washington

Design and Analysis of Experiments. David Yanez Department of Biostatistics University of Washington Design and Analysis of Experiments David Yanez Department of Biostatistics University of Washington Outline Basic Ideas Definitions Structures of an Experimental Design Design Structure Treatment Structure

More information

Chapter 13 Experiments with Random Factors Solutions

Chapter 13 Experiments with Random Factors Solutions Solutions from Montgomery, D. C. (01) Design and Analysis of Experiments, Wiley, NY Chapter 13 Experiments with Random Factors Solutions 13.. An article by Hoof and Berman ( Statistical Analysis of Power

More information

Statistics GIDP Ph.D. Qualifying Exam Methodology

Statistics GIDP Ph.D. Qualifying Exam Methodology Statistics GIDP Ph.D. Qualifying Exam Methodology January 9, 2018, 9:00am 1:00pm Instructions: Put your ID (not your name) on each sheet. Complete exactly 5 of 6 problems; turn in only those sheets you

More information

MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS FINAL EXAM - STATISTICS FALL 1999

MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS FINAL EXAM - STATISTICS FALL 1999 MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS FINAL EXAM - STATISTICS 350 - FALL 1999 Instructor: A. Oyet Date: December 16, 1999 Name(Surname First): Student Number INSTRUCTIONS

More information

Strategy of Experimentation II

Strategy of Experimentation II LECTURE 2 Strategy of Experimentation II Comments Computer Code. Last week s homework Interaction plots Helicopter project +1 1 1 +1 [4I 2A 2B 2AB] = [µ 1) µ A µ B µ AB ] +1 +1 1 1 +1 1 +1 1 +1 +1 +1 +1

More information

Assignment 6 Answer Keys

Assignment 6 Answer Keys ssignment 6 nswer Keys Problem 1 (a) The treatment sum of squares can be calculated by SS Treatment = b a ȳi 2 Nȳ 2 i=1 = 5 (5.40 2 + 5.80 2 + 10 2 + 9.80 2 ) 20 7.75 2 = 92.95 Then the F statistic for

More information

STAT 525 Fall Final exam. Tuesday December 14, 2010

STAT 525 Fall Final exam. Tuesday December 14, 2010 STAT 525 Fall 2010 Final exam Tuesday December 14, 2010 Time: 2 hours Name (please print): Show all your work and calculations. Partial credit will be given for work that is partially correct. Points will

More information

Design & Analysis of Experiments 7E 2009 Montgomery

Design & Analysis of Experiments 7E 2009 Montgomery Chapter 5 1 Introduction to Factorial Design Study the effects of 2 or more factors All possible combinations of factor levels are investigated For example, if there are a levels of factor A and b levels

More information

Chapter 5 Introduction to Factorial Designs

Chapter 5 Introduction to Factorial Designs Chapter 5 Introduction to Factorial Designs 5. Basic Definitions and Principles Stud the effects of two or more factors. Factorial designs Crossed: factors are arranged in a factorial design Main effect:

More information

Session 3 Fractional Factorial Designs 4

Session 3 Fractional Factorial Designs 4 Session 3 Fractional Factorial Designs 3 a Modification of a Bearing Example 3. Fractional Factorial Designs Two-level fractional factorial designs Confounding Blocking Two-Level Eight Run Orthogonal Array

More information

Chapter 9 Other Topics on Factorial and Fractional Factorial Designs

Chapter 9 Other Topics on Factorial and Fractional Factorial Designs Chapter 9 Other Topics on Factorial and Fractional Factorial Designs 許湘伶 Design and Analysis of Experiments (Douglas C. Montgomery) hsuhl (NUK) DAE Chap. 9 1 / 26 The 3 k Factorial Design 3 k factorial

More information

Construction of Partially Balanced Incomplete Block Designs

Construction of Partially Balanced Incomplete Block Designs International Journal of Statistics and Systems ISS 0973-675 Volume, umber (06), pp. 67-76 Research India Publications http://www.ripublication.com Construction of Partially Balanced Incomplete Block Designs

More information

STAT Final Practice Problems

STAT Final Practice Problems STAT 48 -- Final Practice Problems.Out of 5 women who had uterine cancer, 0 claimed to have used estrogens. Out of 30 women without uterine cancer 5 claimed to have used estrogens. Exposure Outcome (Cancer)

More information

Analysis of Variance and Co-variance. By Manza Ramesh

Analysis of Variance and Co-variance. By Manza Ramesh Analysis of Variance and Co-variance By Manza Ramesh Contents Analysis of Variance (ANOVA) What is ANOVA? The Basic Principle of ANOVA ANOVA Technique Setting up Analysis of Variance Table Short-cut Method

More information

Reference: CHAPTER 7 of Montgomery(8e)

Reference: CHAPTER 7 of Montgomery(8e) Reference: CHAPTER 7 of Montgomery(8e) 60 Maghsoodloo BLOCK CONFOUNDING IN 2 k FACTORIALS (k factors each at 2 levels) It is often impossible to run all the 2 k observations in a 2 k factorial design (or

More information

Field Work and Latin Square Design

Field Work and Latin Square Design Field Work and Latin Square Design Chapter 12 - Factorial Designs (covered by Jason) Interactive effects between multiple independent variables Chapter 13 - Field Research Quasi-Experimental Designs Program

More information

The Random Effects Model Introduction

The Random Effects Model Introduction The Random Effects Model Introduction Sometimes, treatments included in experiment are randomly chosen from set of all possible treatments. Conclusions from such experiment can then be generalized to other

More information

Experimental design (DOE) - Design

Experimental design (DOE) - Design Experimental design (DOE) - Design Menu: QCExpert Experimental Design Design Full Factorial Fract Factorial This module designs a two-level multifactorial orthogonal plan 2 n k and perform its analysis.

More information

Analysis of Variance and Design of Experiments-II

Analysis of Variance and Design of Experiments-II Analysis of Variance and Design of Experiments-II MODULE - II LECTURE - BALANCED INCOMPLETE BLOCK DESIGN (BIBD) Dr. Shalabh Department of Mathematics & Statistics Indian Institute of Technology Kanpur

More information

Lecture 9: Factorial Design Montgomery: chapter 5

Lecture 9: Factorial Design Montgomery: chapter 5 Lecture 9: Factorial Design Montgomery: chapter 5 Page 1 Examples Example I. Two factors (A, B) each with two levels (, +) Page 2 Three Data for Example I Ex.I-Data 1 A B + + 27,33 51,51 18,22 39,41 EX.I-Data

More information

2. Two distinct error terms (Error for main plot effects > Error for subplot effects)

2. Two distinct error terms (Error for main plot effects > Error for subplot effects) Lecture 16 Topic 12: The split-plot design and its relatives (Part I) Definition A split plot design results from a two-stage randomization process of a factorial treatment structure. Because of this two-stage

More information

Latin square designs are special block designs with two blocking factors and only one treatment per block instead of every treatment per block.

Latin square designs are special block designs with two blocking factors and only one treatment per block instead of every treatment per block. G. Latin Square Designs Latin square designs are special block designs with two blocking factors and only one treatment per block instead of every treatment per block. 500 CLASSIC AG EXAMPLE: A researcher

More information

STAT22200 Chapter 14

STAT22200 Chapter 14 STAT00 Chapter 4 Yibi Huang Chapter 4 Incomplete Block Designs 4. Balanced Incomplete Block Designs (BIBD) Chapter 4 - Incomplete Block Designs A Brief Introduction to a Class of Most Useful Designs in

More information

Introduction to Block Designs

Introduction to Block Designs School of Electrical Engineering and Computer Science University of Ottawa lucia@eecs.uottawa.ca Winter 2017 What is Design Theory? Combinatorial design theory deals with the arrangement of elements into

More information

Lecture 20: Linear model, the LSE, and UMVUE

Lecture 20: Linear model, the LSE, and UMVUE Lecture 20: Linear model, the LSE, and UMVUE Linear Models One of the most useful statistical models is X i = β τ Z i + ε i, i = 1,...,n, where X i is the ith observation and is often called the ith response;

More information

Allow the investigation of the effects of a number of variables on some response

Allow the investigation of the effects of a number of variables on some response Lecture 12 Topic 9: Factorial treatment structures (Part I) Factorial experiments Allow the investigation of the effects of a number of variables on some response in a highly efficient manner, and in a

More information

RCB - Example. STA305 week 10 1

RCB - Example. STA305 week 10 1 RCB - Example An accounting firm wants to select training program for its auditors who conduct statistical sampling as part of their job. Three training methods are under consideration: home study, presentations

More information

STAT22200 Spring 2014 Chapter 14

STAT22200 Spring 2014 Chapter 14 STAT22200 Spring 2014 Chapter 14 Yibi Huang May 27, 2014 Chapter 14 Incomplete Block Designs 14.1 Balanced Incomplete Block Designs (BIBD) Chapter 14-1 Incomplete Block Designs A Brief Introduction to

More information

Chapter 4 Experiments with Blocking Factors

Chapter 4 Experiments with Blocking Factors Chapter 4 Experiments with Blocking Factors 許湘伶 Design and Analysis of Experiments (Douglas C. Montgomery) hsuhl (NUK) DAE Chap. 4 1 / 54 The Randomized Complete Block Design (RCBD; 隨機化完全集區設計 ) 1 Variability

More information

Confounding and fractional replication in 2 n factorial systems

Confounding and fractional replication in 2 n factorial systems Chapter 20 Confounding and fractional replication in 2 n factorial systems Confounding is a method of designing a factorial experiment that allows incomplete blocks, i.e., blocks of smaller size than the

More information

Introduction to the Design and Analysis of Experiments

Introduction to the Design and Analysis of Experiments Introduction to the Design and Analysis of Experiments Geoffrey M. Clarke, MA,Dip.stats.,c.stat. Honorary Reader in Applied Statistics, University of Kent at Canterbury and Consultant to the Applied Statistics

More information

The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization.

The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization. 1 Chapter 1: Research Design Principles The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization. 2 Chapter 2: Completely Randomized Design

More information

Randomized Complete Block Designs Incomplete Block Designs. Block Designs. 1 Randomized Complete Block Designs. 2 Incomplete Block Designs

Randomized Complete Block Designs Incomplete Block Designs. Block Designs. 1 Randomized Complete Block Designs. 2 Incomplete Block Designs Block Designs Randomized Complete Block Designs 1 Randomized Complete Block Designs 2 0 / 18 1 Randomized Complete Block Designs 2 1 / 18 Randomized Complete Block Design RCBD is the most widely used experimental

More information

Fractional Factorial Designs

Fractional Factorial Designs Fractional Factorial Designs ST 516 Each replicate of a 2 k design requires 2 k runs. E.g. 64 runs for k = 6, or 1024 runs for k = 10. When this is infeasible, we use a fraction of the runs. As a result,

More information

20.0 Experimental Design

20.0 Experimental Design 20.0 Experimental Design Answer Questions 1 Philosophy One-Way ANOVA Egg Sample Multiple Comparisons 20.1 Philosophy Experiments are often expensive and/or dangerous. One wants to use good techniques that

More information

Multiple Predictor Variables: ANOVA

Multiple Predictor Variables: ANOVA Multiple Predictor Variables: ANOVA 1/32 Linear Models with Many Predictors Multiple regression has many predictors BUT - so did 1-way ANOVA if treatments had 2 levels What if there are multiple treatment

More information

Power & Sample Size Calculation

Power & Sample Size Calculation Chapter 7 Power & Sample Size Calculation Yibi Huang Chapter 7 Section 10.3 Power & Sample Size Calculation for CRDs Power & Sample Size for Factorial Designs Chapter 7-1 Power & Sample Size Calculation

More information

Rerandomization to Balance Covariates

Rerandomization to Balance Covariates Rerandomization to Balance Covariates Kari Lock Morgan Department of Statistics Penn State University Joint work with Don Rubin University of Minnesota Biostatistics 4/27/16 The Gold Standard Randomized

More information

20.1. Balanced One-Way Classification Cell means parametrization: ε 1. ε I. + ˆɛ 2 ij =

20.1. Balanced One-Way Classification Cell means parametrization: ε 1. ε I. + ˆɛ 2 ij = 20. ONE-WAY ANALYSIS OF VARIANCE 1 20.1. Balanced One-Way Classification Cell means parametrization: Y ij = µ i + ε ij, i = 1,..., I; j = 1,..., J, ε ij N(0, σ 2 ), In matrix form, Y = Xβ + ε, or 1 Y J

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur nalysis of Variance and Design of Experiment-I MODULE V LECTURE - 9 FCTORIL EXPERIMENTS Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Sums of squares Suppose

More information

B. L. Raktoe and W. T. Federer Cornell University ABSTRACT

B. L. Raktoe and W. T. Federer Cornell University ABSTRACT On Irregular 1_ Fractions of a 2m Factorial 2n B. L. Raktoe and W. T. Federer Cornell University ABSTRACT A rigorous definition of regular and irregular fractional replicates from an sm factorial is presented.

More information