Venus Surface Thermal Emission Observed by VIRTIS on Venus Express

Size: px
Start display at page:

Download "Venus Surface Thermal Emission Observed by VIRTIS on Venus Express"

Transcription

1 Venus Surface Thermal Emission Observed by VIRTIS on Venus Express N. Müller, J. Helbert, G. Hashimoto, C. Tsang, S. Erard, G. Piccioni, P. Drossart The VIRTIS-VEX Team

2 Near Infrared Spectral Windows Highlands Lowlands Topography /km Radiance / W m -2 μm -1 sr -1

3 Atmospheric Emission Topography /km Radiance / W m -2 μm -1 sr -1

4 Data Processing 1.02 μm 1.02 μm VIRTIS 1.40 μm μm Magellan Radiance / W m -2 μm -1 sr -1 Flux / W m -2 μm -1 Temperature / K

5 Characterizing 'normal' surface emission

6 Mosaic of VIRTIS images

7 VIRTIS Brightness derived Topography Translate brightness to topography with empirical relation Galileo NIMS Carlson et al. 1993

8 Magellan Topography Improvements of PDS version: - Magellan ephemerides [Konopliv et al. 1996] - altimeter data reprocessed [Rappaport et al 1999] - distribution: ftp://voir.mit.edu/pub/mg_3003/ Smoothed to 120 km spatial resolution

9 Relative Brightness Relative Brightness - shown is brightness relative to average brightness biased for topography Relation to emissivity - atmosphere attenuates emissivity signal - brightness variation is lower estimate of emissivity variation Surface composition - Vega 2 / Venera 14, basalts - Venera 8/13, high in alkalines

10 NIR and Radar Emissivity Anomalies Radiothermal anomaly - areas higher than 4 to 5 km show very low radar emissivity NIR emissivity - some anomaly might be expected - not enough high regions covered Systematic problem - this approach assumes that there is no trend of emissivity with altitude - radiative transfer modelling required

11 Tessera terrain with high albedo Galileo NIMS observation Hashimoto et al Felsic composition (Feldspar-Silica rich) - will result in low emissivity compared to basalt - other high albedo materials? Composition analogue to - lunar highlands? - terrestrial continents? Altimetry less reliable? - steep slopes difficult - bias to too low altitudes will produce this apparent emissivity effect - bias found in Magellan stereo image mapping [Howington- Kraus et al. 2002]

12 Altimetry 100 km Cloud layer blurs image of surface comparable to convolution with a 90 km FWHM gaussian [Hashimoto & Imamura 2001] Pixel errors (i. e. outlying radar footprints) affect larger area preliminiary analysis indicates that outlying radar footprints are not the cause of the tessera anomalies

13 High relative brightness Flow fields (fluctus) - Cavilaca - Juturna -Kaiwan - Mylitta Volcanic edifices - Imdr regio - Phoebe regio - Themis regio Coronae - Shiwanokia - Shulamite -Selu - Quetzalpetlatl / Boala

14 Lava-flows, Quetzalpetlatl / Boala Corona Goldstone Radar Image [Kratter et al. 2007] Interpretations active volcanism unlikely? unusual composition, e.g. ultra-mafic?

15 Emissivity and Surface Age Tessera emplacement of tessera rock is thought to predate any other unit i.e. stratigraphically old Lava flows. no craters on the unit including Quetzalpetlatl stratigraphically young Gravimetry Themis, Phoebe regios are similar to terrestrial hotspot regions, e.g. Hawaii indicator of recent activity? Radar dark parabolas no clear signature

16 Summary Observations VIRTIS one micron brightness is correlated with Magellan altimetry residual brightness, not accounted for by topography, is partly correlated with geomorphological units from Magellan radar imaging tessera often dark (high albedo) majority of plains have brightness close to global average some (young) lava flows, volcanoes and coronae flanks are bright (low albedo) Possible Interpretations 1. variation of composition: felsic tessera (e.g. granite, anorthosite), widespread mafic plains (e.g. basalt), sporadic ultramafic volcanism (e.g. pikrite, komatiite) 2. varying states or modes of chemical weathering Discussion Brightness is highly sensitive to surface temperature / topography Magellan topography may contain biased errors at tessera terrain unexpected and non-random surface temperature variations?

17 Outlook Work in progress surface windows at 1.10 and 1.18 μm three point spectra of the surface 0.85, 0.90 μm windows imaged by VIRTIS VIS channel but much too noisy so far Surface emissivity so far only brightness corrected for topography radiative transfer modelling required for emissivity [Hashimoto et al. 2008] Recommendations for future instruments / missions targeting the surface Less spectral resolution than VIRTIS, better signal to noise at 6 to 10 bands 0.85, 0.90, 1.02, 1.10 and 1.18 μm: surface windows [Baines et al. 2000] 1.31 μm for cloud correction 1.40 μm as additional dark correction more windows at 1.55, 1.74, 2.30 μm, not used by us but possibly improve surface emissivity retrieval spatial resolution of 20 to 40 km per pixel reliable altimetry of tessera terrains stereo imaging? frequent observations of the same areas, long mission duration / instrument lifetime more global coverage

Surface brightness variations seen by VIRTIS on Venus Express and implications for the evolution of the Lada Terra region, Venus

Surface brightness variations seen by VIRTIS on Venus Express and implications for the evolution of the Lada Terra region, Venus GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L11201, doi:10.1029/2008gl033609, 2008 Surface brightness variations seen by VIRTIS on Venus Express and implications for the evolution of the Lada Terra region,

More information

Constraints on the Interior Dynamics of Venus. Sue Smrekar Jet Propulsion Laboratory

Constraints on the Interior Dynamics of Venus. Sue Smrekar Jet Propulsion Laboratory Constraints on the Interior Dynamics of Venus Sue Smrekar Jet Propulsion Laboratory Venus: Earth s evil twin or distant cousin? Twin: Diameter is 5% smaller Same bulk composition Once had an ocean s worth

More information

VIRTIS-Venus Express

VIRTIS-Venus Express VIRTIS-Venus Express - G. Piccioni, P. Drossart and the VIRTIS-VenusX Team Scientific Team Members by Countries I (1) (PI) Total 14 F (2) PO ES RU NL US D UK P Total (PI) 10 1 2 2 1 2 5 2 1 (1) G. Piccioni,

More information

Venus. Venus. (The most visited planet) Orbit, Rotation Atmosphere. Surface Features Interior. (Greenhouse effect) Mariner 10 image

Venus. Venus. (The most visited planet) Orbit, Rotation Atmosphere. Surface Features Interior. (Greenhouse effect) Mariner 10 image Venus Orbit, Rotation Atmosphere (Greenhouse effect) Surface Features Interior Mariner 10 image Venus (The most visited planet) Mariner 2 (1962) Mariner 5 (1967) Mariner 10 (1974) Poineer Venus (1978)

More information

Thermal, Thermophysical, and Compositional Properties of the Moon Revealed by the Diviner Lunar Radiometer

Thermal, Thermophysical, and Compositional Properties of the Moon Revealed by the Diviner Lunar Radiometer Thermal, Thermophysical, and Compositional Properties of the Moon Revealed by the Diviner Lunar Radiometer Benjamin T. Greenhagen Jet Propulsion Laboratory David A. Paige and the Diviner Science Team LEAG

More information

Venus Earth s Sister Planet

Venus Earth s Sister Planet Venus Earth s Sister Planet 9 9.1 Orbital Properties 3rd brightest object in the sky, after Sun and Moon. Can even be seen in broad daylight Often called the morning star or the evening star, as it is

More information

From orbit. In the atmosphere. On the surface

From orbit. In the atmosphere. On the surface From orbit On the surface In the atmosphere Organizing Committee: Buck Sharpton Lori Glaze Larry Esposito Kevin McGouldrick Stephanie Johnston Chris Lee Christophe Sotin Marty Gilmore Robbie Herrick Day

More information

Recent Hot-Spot Volcanism on Venus from VIRTIS Emissivity Data

Recent Hot-Spot Volcanism on Venus from VIRTIS Emissivity Data Originally published 8 April 2010; corrected 21 April 2010; see page 7. Recent Hot-Spot Volcanism on Venus from VIRTIS Emissivity Data Suzanne E. Smrekar, 1 * Ellen R. Stofan, 2 Nils Mueller, 3,6 Allan

More information

Detection from Space of Active Volcanism on Earth and, Potentially, on Venus and Rocky Exoplanets

Detection from Space of Active Volcanism on Earth and, Potentially, on Venus and Rocky Exoplanets Detection from Space of Active Volcanism on Earth and, Potentially, on Venus and Rocky Exoplanets Pete Mouginis Mark Hawaii Institute Geophysics and Planetology University of Hawaii Overview Styles of

More information

Exploration of Venus by the European Space Agency. Alejandro Cardesín Moinelo European Space Agency IAC Winter School 2016

Exploration of Venus by the European Space Agency. Alejandro Cardesín Moinelo European Space Agency IAC Winter School 2016 Exploration of Venus by the European Space Agency Alejandro Cardesín Moinelo European Space Agency IAC Winter School 2016 Venus, the morning star 2 or evening star Venus and Earth Orbits when we get lucky

More information

Volcanic structures at Venus

Volcanic structures at Venus Volcanic structures at Venus TU Bergakademie Freiberg Abstract. This paper tries to figure out the context between magma vis cositys and the observed volcano structures. To create this paper, different

More information

Venus: Key Ideas: A Warm Up Exercise. Venus at a Glance -- Orbit. Venus at a Glance Planetary Data

Venus: Key Ideas: A Warm Up Exercise. Venus at a Glance -- Orbit. Venus at a Glance Planetary Data Venus A Warm Up Exercise Because Mercury has a high average density despite its relatively low mass, it is thought to a) Have a subsurface ocean b) Have a large iron core c) Be made largely of lead d)

More information

The Moon. Tides. Tides. Mass = 7.4 x 1025 g = MEarth. = 0.27 REarth. (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth

The Moon. Tides. Tides. Mass = 7.4 x 1025 g = MEarth. = 0.27 REarth. (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth The Moon Mass = 7.4 x 1025 g = 0.012 MEarth Radius = 1738 km = 0.27 REarth Density = 3.3 g/cm3 (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth Dark side of the moon We always see the same face of the Moon.

More information

providing 100-m per pixel resolution in nine ~1.0 µm wide infrared bands centered from

providing 100-m per pixel resolution in nine ~1.0 µm wide infrared bands centered from Supporting Text The THEMS instrument consists of separate infrared and visible imagers providing 100-m per pixel resolution in nine ~1.0 µm wide infrared bands centered from 6.78 to 14.88 µm, and 18-m

More information

Mantle dynamics on Venus: insights from numerical modelling

Mantle dynamics on Venus: insights from numerical modelling Utrecht University Department of Earth Sciences Master s Thesis July 1, 2015 Mantle dynamics on Venus: insights from numerical modelling Iris van Zelst 1 st Supervisor: Dr. A.P. van den Berg Department

More information

Venus. Appearance. Earth s Sister? Venus is very bright.

Venus. Appearance. Earth s Sister? Venus is very bright. Venus Earth s Sister? Appearance Venus is very bright. It goes through phases, although full cannot be seen. Angular size varies from 10 to 64 arcsec. Venus is at its greatest brilliance when it is a crescent,

More information

Star groups 88 recognized Stars names by brightness in them. Bright star to. Orion is Sirius

Star groups 88 recognized Stars names by brightness in them. Bright star to. Orion is Sirius Star groups 88 recognized Stars names by brightness in them Orion: Greek Hunter White Tiger: Chinese http://borghetto.astrofili.org/costellazioni/costellazioni.htm Bright star to lower left of Orion is

More information

ASTRONOMY 340 FALL September 2007 Class #6-#7

ASTRONOMY 340 FALL September 2007 Class #6-#7 ASTRONOMY 340 FALL 2007 25 September 2007 Class #6-#7 Review Physical basis of spectroscopy Einstein A,B coefficients probabilities of transistions Absorption/emission coefficients are functions of ρ,

More information

Present Day Volcanism on Venus: Evidence from Microwave Radiometry

Present Day Volcanism on Venus: Evidence from Microwave Radiometry GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl045233, 2010 Present Day Volcanism on Venus: Evidence from Microwave Radiometry N. V. Bondarenko, 1,2 J. W. Head, 3 and M. A. Ivanov 3,4 Received

More information

10/24/2010. Venus Roman goddess of love. Bulk Properties. Summary. Venus is easier to observe than Mercury! Venus and Earth

10/24/2010. Venus Roman goddess of love. Bulk Properties. Summary. Venus is easier to observe than Mercury! Venus and Earth Venus Roman goddess of love Birth of Venus Botticelli (1485) Bulk Properties Summary 1. Venus is 28% closer to the Sun having an orbital period of 225 Earth days 2. Venus is roughly 95% the size, 82% the

More information

Venus nightside: the dark hemisphere at 1 micron and visible wavelengths with amateur equipment

Venus nightside: the dark hemisphere at 1 micron and visible wavelengths with amateur equipment Venus nightside: the dark hemisphere at 1 micron and visible wavelengths with amateur equipment D. Gasparri ¹ ¹ Università di Bologna, Dipartimento di Astronomia, Via Ranzani 1, 40127 Bologna, Italy Abstract

More information

Pfs results at Mars. By V.Formisano and the PFS Team

Pfs results at Mars. By V.Formisano and the PFS Team Pfs results at Mars By V.Formisano and the PFS Team Table of content 0- Generalities 1- Published results 1.1 Temperature fields over Olimpus 1.2 Comparison with ISO SWS 1.3 Polar vortex 1.4 Polar ice

More information

Rotation and Orbital Motion

Rotation and Orbital Motion Venus Rotation and Orbital Motion The interior orbit of Venus means that it never strays far from the Sun in the sky. Because of its highly reflective cloud cover, Venus is brighter than any star in the

More information

From orbit. In the atmosphere. On the surface

From orbit. In the atmosphere. On the surface From orbit On the surface In the atmosphere Organizing Committee: Buck Sharpton Lori Glaze Larry Esposito Kevin McGouldrick Stephanie Johnston Chris Lee Christophe Sotin Marty Gilmore Robbie Herrick To

More information

Venus: The Forgotten,

Venus: The Forgotten, Venus: The Forgotten, Mysterious Planet Dr. Lori S. Glaze NASA s Goddard Space Flight Center September 27, 2017 Why are we so fascinated by Venus? Venus was one of the first wanderers identified by early

More information

VIS/IR- Spectroscopy of terrestrial planets -

VIS/IR- Spectroscopy of terrestrial planets - VIS/IR- Spectroscopy of terrestrial planets - toward the unknown Mercury Gabriele Arnold Deutsches Zentrum für Luft- und Raumfahrt e.v., Institut fuer Planetologie, Universitaet Muenster Moscow, Space

More information

Venus surface data extraction from VIRTIS/Venus Express measurements: Estimation of a quantitative approach

Venus surface data extraction from VIRTIS/Venus Express measurements: Estimation of a quantitative approach JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008je003087, 2008 Venus surface data extraction from VIRTIS/Venus Express measurements: Estimation of a quantitative approach Gabriele Arnold, 1,2

More information

Lecture Outlines. Chapter 9. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 9. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 9 Astronomy Today 7th Edition Chaisson/McMillan Chapter 9 Venus Units of Chapter 9 9.1 Orbital Properties 9.2 Physical Properties 9.3 Long-Distance Observations of Venus 9.4 The

More information

Dynamics of the Venus atmosphere from a Fourier-transform analysis

Dynamics of the Venus atmosphere from a Fourier-transform analysis Mem. S.A.It. Suppl. Vol. 16, 134 c SAIt 2011 Memorie della Supplementi Dynamics of the Venus atmosphere from a Fourier-transform analysis O. Lanciano 1, G. Piccioni 1, R. Hueso 2, A. Sánchez-Lavega 2,

More information

Complete the crossword puzzle. The Moon. (Key # )

Complete the crossword puzzle. The Moon. (Key # ) Name Complete the crossword puzzle. The Moon Date (Key # 1-168014) 1 2 3 4 5 6 7 8 9 10 11 12 Across 1 : The moon appears bigger on the horizon than it does high in the sky, but in reality it is the same

More information

Physics Homework Set 3 Fall 2015

Physics Homework Set 3 Fall 2015 1) Mercury presents the same side to the Sun 1) A) every third orbit. B) every 12 hours. C) all the time, just like our Moon. D) every other orbit. E) Twice every orbit. 2) Both the Moon and Mercury are

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, E10001, doi: /2004je002252, 2004

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, E10001, doi: /2004je002252, 2004 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2004je002252, 2004 Stratigraphy of small shield volcanoes on Venus: Criteria for determining stratigraphic relationships and assessment of relative

More information

Low Cost Planetary Missions Conference Picture: Etna lava flow, with Catania in the background

Low Cost Planetary Missions Conference Picture: Etna lava flow, with Catania in the background Low Cost Planetary Missions Conference 2013 Picture: Etna lava flow, with Catania in the background Venus Express: a low cost mission Mars Express Venus Express Astrium, ESA Astrium, ESA 2001: Call for

More information

Lunar Geology of Apollo 11 Landing Site. Chenango Forks High School Sharon Hartzell Sarah Maximowicz Benjamin Daniels Sarah Andrus Jackson Haskell

Lunar Geology of Apollo 11 Landing Site. Chenango Forks High School Sharon Hartzell Sarah Maximowicz Benjamin Daniels Sarah Andrus Jackson Haskell Lunar Geology of Apollo 11 Landing Site Chenango Forks High School Sharon Hartzell Sarah Maximowicz Benjamin Daniels Sarah Andrus Jackson Haskell Lunar Maria Lunar Maria Lunar Maria Low albedo Volcanic

More information

Unit 3 Lesson 4 The Terrestrial Planets. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 3 Lesson 4 The Terrestrial Planets. Copyright Houghton Mifflin Harcourt Publishing Company Florida Benchmarks SC.8.N.1.5 Analyze the methods used to develop a scientific explanation as seen in different fields of science. SC.8.E.5.3 Distinguish the hierarchical relationships between planets

More information

Class Announcements. Solar System. Objectives for today. Will you read Chap 32 before Wed. class? Chap 32 Beyond the Earth

Class Announcements. Solar System. Objectives for today. Will you read Chap 32 before Wed. class? Chap 32 Beyond the Earth Class Announcements Please fill out an evaluation for this class. If you release your name I ll I give you quiz credit. Will you read Chap 32 before Wed. class? a) Yes b) No Chap 32 Beyond the Earth Objectives

More information

Exploring Venus: Major scientific issues and directions. Summary of the AGU Chapman Conference Presented to VEXAG. Larry W. Esposito 1 May 2006

Exploring Venus: Major scientific issues and directions. Summary of the AGU Chapman Conference Presented to VEXAG. Larry W. Esposito 1 May 2006 Exploring Venus: Major scientific issues and directions. Summary of the AGU Chapman Conference Presented to VEXAG Larry W. Esposito 1 May 2006 Chapman Conference Report Provided overview of current missions

More information

UV-V-NIR Reflectance Spectroscopy

UV-V-NIR Reflectance Spectroscopy UV-V-NIR Reflectance Spectroscopy Methods and Results A. Nathues Naturally-occurring inorganic substances with a definite and predictable chemical composition and physical properties Major groups: Silicates

More information

Composition of the Lower Atmosphere of Venus

Composition of the Lower Atmosphere of Venus Composition of the Lower Atmosphere of Venus Bruno Bézard Observatoire de Paris-Meudon Lower atmosphere measurements In situ measurements Mass spectrometry, gas chromatography Venera 11-12, Pioneer Venus

More information

Spectroscopic Parameter Requirements for Remote Sensing of Terrestrial Planets

Spectroscopic Parameter Requirements for Remote Sensing of Terrestrial Planets Spectroscopic Parameter Requirements for Remote Sensing of Terrestrial Planets The four terrestrial (meaning 'Earth-like') planets of our inner Solar System: Mercury, Venus, Earth and Mars. These images

More information

Thomas Widemann. Richard Ghail. Colin Wilson. Lead Proposer. Science Investigation Lead. Programme Management Lead

Thomas Widemann. Richard Ghail. Colin Wilson. Lead Proposer. Science Investigation Lead. Programme Management Lead Richard Ghail Lead Proposer Thomas Widemann Programme Management Lead Colin Wilson Science Investigation Lead 30 th November 2016 VEXAG 14 Rich Ghail EnVision: European Plans for Venus Key Science Goals:

More information

The Venus OH Nightglow Distribution based on VIRTIS Limb. Observations from Venus Express

The Venus OH Nightglow Distribution based on VIRTIS Limb. Observations from Venus Express 1 2 3 4 5 The Venus OH Nightglow Distribution based on VIRTIS Limb Observations from Venus Express 6 7 8 9 10 11 12 13 14 15 L. Soret, J.-C. Gérard Laboratoire de Physique Atmosphérique et Planétaire,

More information

Introduction to Astronomy

Introduction to Astronomy Introduction to Astronomy AST0111-3 (Astronomía) Semester 2014B Prof. Thomas H. Puzia Venus Venus The atmosphere of Venus is very dense and an opaque layer of clouds covers the planet, such that we cannot

More information

Venus Express: Results, Status and Future Plans

Venus Express: Results, Status and Future Plans Venus Express: Results, Status and Future Plans Håkan Svedhem ESA/ESTEC Present Status The spacecraft and its payload in general is in a good condition, with the following remarks: One of the two coolers

More information

Principal Component Analysis (PCA) of AIRS Data

Principal Component Analysis (PCA) of AIRS Data Principal Component Analysis (PCA) of AIRS Data Mitchell D. Goldberg 1, Lihang Zhou 2, Walter Wolf 2 and Chris Barnet 1 NOAA/NESDIS/Office of Research and Applications, Camp Springs, MD 1 QSS Group Inc.

More information

ELLIPTICAL ORBITS & VENUS

ELLIPTICAL ORBITS & VENUS ELLIPTICAL ORBITS & VENUS Problem set 2 due now on the front table 18 September 2018 ASTRONOMY 111 FALL 2018 1 TIDAL LOCKING AND MERCURY S ORBIT In celestial mechanics, tidal locking means that the heat

More information

Astro 210 Lecture 19 October 8, 2010

Astro 210 Lecture 19 October 8, 2010 Astro 210 Lecture 19 October 8, 2010 Announcements Remember me? HW 5 due HW 6 available, due in class next Friday Night Observing continues next week Last time: The Moon Q: from Earth we only see one side

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/1178105/dc1 Supporting Online Material for Detection of Adsorbed Water and Hydroxyl on the Moon Roger N. Clark E-mail: rclark@usgs.gov This PDF file includes: Materials

More information

PRESENT STATUS OF AKATSUKI

PRESENT STATUS OF AKATSUKI PRESENT STATUS OF AKATSUKI MASATO NAKAMURA, TAKEHIKO SATOH, TAKESHI IMAMURA, NOBUAKI ISHII AKATSIUKI PROJECT TEAM Akatsuki in Japanese Dawn: in English Venus shot on 1 st of January, 2015 in tn the morning

More information

Lunar Geology ASTR 2120 Sarazin

Lunar Geology ASTR 2120 Sarazin Lunar Geology ASTR 2120 Sarazin Interior of the Moon Density low (3.3 gm/cc), very little iron No iron core Very small heat flow out of interior Little radioactive heating No magnetic field No molten iron

More information

Insights into the Evolution of the Solar System from Isotopic Investigations of Samples. Lars Borg

Insights into the Evolution of the Solar System from Isotopic Investigations of Samples. Lars Borg Insights into the Evolution of the Solar System from Isotopic Investigations of Samples Lars Borg Harold Masursky Harold Masursky was a stalwart of the U.S. planetary exploration program for nearly three

More information

Background Image: SPA Basin Interior; LRO WAC, NASA/GSFC/ASU

Background Image: SPA Basin Interior; LRO WAC, NASA/GSFC/ASU B. L. Jolliff1, C. K. Shearer2, N. E. Petro3, D. A. Papanastassiou,4 Y. Liu,4 and L. Alkalai4 1Dept. of Earth & Planetary Sciences, Washington University, St. Louis, MO 2Institute of Meteoritics, University

More information

Malapert Mountain: A Recommended Site for a South Polar Outpost

Malapert Mountain: A Recommended Site for a South Polar Outpost For presentation at the Rutgers Symposium on Lunar Settlements, June 4-8, 2007 Malapert Mountain: A Recommended Site for a South Polar Outpost Paul. D. Lowman Jr. Goddard Space Flight Center, Code 698

More information

Rilles Lunar Rilles are long, narrow, depressions formed by lava flows, resembling channels.

Rilles Lunar Rilles are long, narrow, depressions formed by lava flows, resembling channels. Rilles Lunar Rilles are long, narrow, depressions formed by lava flows, resembling channels. Rugged Terra Rugged terra are mountainous regions of the moon. Wrinkle Ridges Wrinkle Ridges are created through

More information

Examining the Terrestrial Planets (Chapter 20)

Examining the Terrestrial Planets (Chapter 20) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Examining the Terrestrial Planets (Chapter 20) For this assignment you will require: a calculator, colored pencils, a metric ruler, and your geology

More information

This evening s announcements

This evening s announcements This evening s announcements Homework 3 is graded and available for pickup at entry Quiz 4 will be held this Wednesday, March 12. Coverage: Feb. 25: origin of the solar system (chapter 6) Feb. 27: Earth,

More information

PLANET-C: Venus Climate Orbiter mission from Japan. Takeshi Imamura Japan Aerospace Exploration Agency PLANET-C team

PLANET-C: Venus Climate Orbiter mission from Japan. Takeshi Imamura Japan Aerospace Exploration Agency PLANET-C team PLANET-C: Venus Climate Orbiter mission from Japan Takeshi Imamura Japan Aerospace Exploration Agency PLANET-C team Venus Climate Orbiter JAXA s 24th science spacecraft dedicated to the exploration of

More information

Venus. Venus Properties. Interior of Venus. Due to similarities in size, mass, and composition, Venus is often referred to as Earth's sister planet

Venus. Venus Properties. Interior of Venus. Due to similarities in size, mass, and composition, Venus is often referred to as Earth's sister planet Venus Due to similarities in size, mass, and composition, Venus is often referred to as Earth's sister planet Modern measurements and probes that have visited the planet have revealed one of the most uninhabitable

More information

Part 1: the terrestrial planets

Part 1: the terrestrial planets Mercury close up Part 1: the terrestrial planets The weird day on Mercury Weirdness is due to the fact that the rota:on period is comparable to period of revolu:on, and that they are related by the ra:o

More information

Mapping the Surface of Mars Prelab. 1. Explain in your own words what you think a "geologic history" for a planet or moon is?

Mapping the Surface of Mars Prelab. 1. Explain in your own words what you think a geologic history for a planet or moon is? Prelab 1. Explain in your own words what you think a "geologic history" for a planet or moon is? 2. Describe some of the major features seen on the Martian surface by various spacecraft missions over the

More information

Antarctic Infrared Astronomy

Antarctic Infrared Astronomy Antarctic Astronomy Antarctic Infrared Astronomy AIR-T-40 40 cm Antarctic Infra-Red Telescope Overview AIR-C Predicted Performance Science Potential for AIR-T-40 Space Debris Planets Pre-Antarctic observations:

More information

The Sun and Planets Lecture Notes 6.

The Sun and Planets Lecture Notes 6. The Sun and Planets Lecture Notes 6. Lecture 6 Venus 1 Spring Semester 2017 Prof Dr Ravit Helled Cover photo: Venus in true color (Courtesy of NASA) Venus Properties Venus is the second brightest natural

More information

Science Return from Hayabusa

Science Return from Hayabusa Science Return from Hayabusa International Symposium Marco Polo and other Small Body Sample Return Mission 19 May 2009 Portoferraio, Isola d'elba, Italy Makoto Yoshikawa Hayabusa Science Team Japan Aerospace

More information

Extraterrestrial Volcanism

Extraterrestrial Volcanism Extraterrestrial Volcanism What does it take to create volcanic activity? How do different planetary conditions influence volcanism? Venus Volcanism in our solar system. Io Europa Mercury Venus Earth/Moon

More information

Jupiter and its Moons

Jupiter and its Moons Jupiter and its Moons Summary 1. At an average distance of over 5 AU, Jupiter takes nearly 12 years to orbit the Sun 2. Jupiter is by far the largest and most massive planet in the solar system being over

More information

Astronomy Today. Eighth edition. Eric Chaisson Steve McMillan

Astronomy Today. Eighth edition. Eric Chaisson Steve McMillan Global edition Astronomy Today Eighth edition Eric Chaisson Steve McMillan The Distance Scale ~1 Gpc Velocity Distance Hubble s law Supernovae ~200 Mpc Time Tully-Fisher ~25 Mpc ~10,000 pc Time Variable

More information

Mercury and Venus 3/20/07

Mercury and Venus 3/20/07 Announcements Reading Assignment Chapter 13 4 th Homework due today Quiz on Thursday (3/22) Will cover all material since the last exam. This is Chapters 9-12 and the part of 13 covered in the lecture

More information

Geologic history of the Mead impact basin, Venus

Geologic history of the Mead impact basin, Venus Geologic history of the Mead impact basin, Venus Robert R. Herrick Virgil L. Sharpton Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, Texas 77058 ABSTRACT The geologic history of the Mead

More information

Improvement of active volcano monitoring system in east Asia by using SGLI : preparation for realtime high spatial resolution observation

Improvement of active volcano monitoring system in east Asia by using SGLI : preparation for realtime high spatial resolution observation GCOM WS 2014.1.16 Improvement of active volcano monitoring system in east Asia by using SGLI : preparation for realtime high spatial resolution observation T. Kaneko, A. Yasuda, T. Fujii and K. Kajiwara*

More information

Lecture #10: Plan. The Moon Terrestrial Planets

Lecture #10: Plan. The Moon Terrestrial Planets Lecture #10: Plan The Moon Terrestrial Planets Both Sides of the Moon Moon: Direct Exploration Moon: Direct Exploration Moon: Direct Exploration Apollo Landing Sites Moon: Apollo Program Magnificent desolation

More information

Limb observations of CO 2 and CO non-lte emissions in the Venus atmosphere by VIRTIS/Venus Express

Limb observations of CO 2 and CO non-lte emissions in the Venus atmosphere by VIRTIS/Venus Express JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2008je003112, 2009 Limb observations of CO 2 and CO non-lte emissions in the Venus atmosphere by VIRTIS/Venus Express G. Gilli, 1 M. A. López-Valverde,

More information

Dana Felberg Steven Hester David Nielsen Zach Weddle Jack Williams

Dana Felberg Steven Hester David Nielsen Zach Weddle Jack Williams Dana Felberg Steven Hester David Nielsen Zach Weddle Jack Williams To identify key features on the lunar surface near the Apollo 11 Landing site in the Mare Tranquillitatis. Apollo 11 launched: 16 July

More information

Comparison of NASA AIRS and MODIS Land Surface Temperature and Infrared Emissivity Measurements from the EOS AQUA platform

Comparison of NASA AIRS and MODIS Land Surface Temperature and Infrared Emissivity Measurements from the EOS AQUA platform Comparison of NASA AIRS and MODIS Land Surface Temperature and Infrared Emissivity Measurements from the EOS AQUA platform Robert Knuteson, Steve Ackerman, Hank Revercomb, Dave Tobin University of Wisconsin-Madison

More information

What are terrestrial planets like on the inside? Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds. Seismic Waves.

What are terrestrial planets like on the inside? Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds. Seismic Waves. Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds What are terrestrial planets like on the inside? Seismic Waves Vibrations that travel through Earth s interior tell us what Earth is

More information

Constellation Program Office Tier 1 Regions of Interest for Lunar Reconnaissance Orbiter Camera (LROC) Imaging

Constellation Program Office Tier 1 Regions of Interest for Lunar Reconnaissance Orbiter Camera (LROC) Imaging Constellation Program Office Tier 1 Regions of Interest for Lunar Reconnaissance Orbiter Camera (LROC) Imaging Regions of Interest listed in alphabetical order ( no priority implied) East longitudes represented

More information

Figure S1. CRISM maps of modeled mineralogy projected over CTX imagery (same

Figure S1. CRISM maps of modeled mineralogy projected over CTX imagery (same GSA DATA REPOSITORY 2015222 Cannon and Mustard Additional examples Figure S1. CRISM maps of modeled mineralogy projected over CTX imagery (same parameters as Figure 1). A: Taytay Crater (CRISM ID: HRL00005B77).

More information

Image of the Moon from the Galileo Space Craft

Image of the Moon from the Galileo Space Craft Image of the Moon from the Galileo Space Craft Moon: Overview Due to its size (diameter 3476 km, Mercury s diameter is 4880 km) and composition, the moon is sometimes considered as a terrestrial planet

More information

D. Cimini*, V. Cuomo*, S. Laviola*, T. Maestri, P. Mazzetti*, S. Nativi*, J. M. Palmer*, R. Rizzi and F. Romano*

D. Cimini*, V. Cuomo*, S. Laviola*, T. Maestri, P. Mazzetti*, S. Nativi*, J. M. Palmer*, R. Rizzi and F. Romano* D. Cimini*, V. Cuomo*, S. Laviola*, T. Maestri, P. Mazzetti*, S. Nativi*, J. M. Palmer*, R. Rizzi and F. Romano* * Istituto di Metodologie per l Analisi Ambientale, IMAA/CNR, Potenza, Italy ADGB - Dip.

More information

Highs and Lows Floods and Flows

Highs and Lows Floods and Flows Highs and Lows Floods and Flows Planetary Mapping Facilitator Guide Becky Nelson Education Specialist The Lunar and Planetary Institute Highs and Lows, Floods and Flows Planetary Mapping Overview In this

More information

2. Terrestrial Planet G 9. Coulomb Force C 16. Babcock model Q. 3. Continuous Spectrum K 10. Large-impact hypothesis I 17.

2. Terrestrial Planet G 9. Coulomb Force C 16. Babcock model Q. 3. Continuous Spectrum K 10. Large-impact hypothesis I 17. Astronomy 1 S 16 Exam 1 Name Identify terms Label each term with the appropriate letter of a definition listed 1. Spectral line R 8. Albedo H 15. helioseismology E 2. Terrestrial Planet G 9. Coulomb Force

More information

Improving S5P NO 2 retrievals

Improving S5P NO 2 retrievals Institute of Environmental Physics and Remote Sensing IUP/IFE-UB Department 1 Physics/Electrical Engineering Improving S5P NO 2 retrievals ESA ATMOS 2015 Heraklion June 11, 2015 Andreas Richter, A. Hilboll,

More information

A 5 Micron Bright Spot on Titan

A 5 Micron Bright Spot on Titan A 5 Micron Bright Spot on Titan Barnes, Brown, Turtle, McEwen, Lorenz, Janssen, Schaller, Brown, Buratti, Sotin, Griffith, Clark, Perry, Fussner, Barbara, West, Elachi, Bouchez, Roe, Baines, Bellucci,

More information

FUNDAMENTALS OF REMOTE SENSING FOR RISKS ASSESSMENT. 1. Introduction

FUNDAMENTALS OF REMOTE SENSING FOR RISKS ASSESSMENT. 1. Introduction FUNDAMENTALS OF REMOTE SENSING FOR RISKS ASSESSMENT FRANÇOIS BECKER International Space University and University Louis Pasteur, Strasbourg, France; E-mail: becker@isu.isunet.edu Abstract. Remote sensing

More information

The Case for Venus. Martha Gilmore, Wesleyan University, Deputy VEXAG Chair Robert Grimm, SwRI, VEXAG Chair VEXAG Steering Committee

The Case for Venus. Martha Gilmore, Wesleyan University, Deputy VEXAG Chair Robert Grimm, SwRI, VEXAG Chair VEXAG Steering Committee The Case for Venus Martha Gilmore, Wesleyan University, Deputy VEXAG Chair Robert Grimm, SwRI, VEXAG Chair VEXAG Steering Committee Committee on Astrobiology and Planetary Science March 28, 2018 Credit:

More information

S3 Product Notice Altimetry

S3 Product Notice Altimetry S3 Product Notice Altimetry Mission Sensor Product S3-A SRAL / MWR LAND L2 NRT, STC and NTC Product Notice ID Issue/Rev Date Version 1.0 Preparation S3A.PN-STM-L2L.06 04-April-2018 This Product Notice

More information

3/24/2016. Geology 12 Mr. M. Gauthier 24 March 2016

3/24/2016. Geology 12 Mr. M. Gauthier 24 March 2016 Geology 12 Mr. M. Gauthier 24 March 2016 Introduction: Mt. St. Helens Before 1980 Mt. St Helens, in Southern Washington State, had not erupted since 1857 On March 27,1980 minor ashand eruptions were due

More information

Venus Data (Table 12-1) 11b. Cloud-Covered Venus. Venus Data: Numbers. Venus Data: Special Features. Venus Phases & Angular Diameters

Venus Data (Table 12-1) 11b. Cloud-Covered Venus. Venus Data: Numbers. Venus Data: Special Features. Venus Phases & Angular Diameters 11b. Cloud-Covered Venus Venus Data (Table 12-1) The Venusian atmosphere Venus has slow retrograde rotation Venus has a hot dense atmosphere Volcanic eruptions form Venusian clouds Climatic evolution on

More information

8 th Grade Earth Science Brookhaven Academy

8 th Grade Earth Science Brookhaven Academy 8 th Grade Earth Science Brookhaven Academy Science Question What factors effect lava flows on Mars? Why is this question interesting and important? By studying lava flows on Mars the geology of Mars can

More information

Venus: The Atmosphere, Climate, Surface, Interior and Near-Space Environment of an Earth-Like Planet

Venus: The Atmosphere, Climate, Surface, Interior and Near-Space Environment of an Earth-Like Planet Space Sci Rev (2018) 214:35 https://doi.org/10.1007/s11214-018-0467-8 Venus: The Atmosphere, Climate, Surface, Interior and Near-Space Environment of an Earth-Like Planet Fredric W. Taylor 1 Håkan Svedhem

More information

Estimating the volcanic emission rate and atmospheric lifetime of SO 2 from space: a case study for Kīlauea volcano, Hawai i by S. Beirle et al.

Estimating the volcanic emission rate and atmospheric lifetime of SO 2 from space: a case study for Kīlauea volcano, Hawai i by S. Beirle et al. July 1, 2014 Estimating the volcanic emission rate and atmospheric lifetime of SO 2 from space: a case study for Kīlauea volcano, Hawai i by S. Beirle et al. Reply to anonymous reviewer #1 Green: Reviewer

More information

Meteorological Satellite Image Interpretations, Part III. Acknowledgement: Dr. S. Kidder at Colorado State Univ.

Meteorological Satellite Image Interpretations, Part III. Acknowledgement: Dr. S. Kidder at Colorado State Univ. Meteorological Satellite Image Interpretations, Part III Acknowledgement: Dr. S. Kidder at Colorado State Univ. Dates EAS417 Topics Jan 30 Introduction & Matlab tutorial Feb 1 Satellite orbits & navigation

More information

VEXAG Update NASA PSS Meeting 4 September 2014

VEXAG Update NASA PSS Meeting 4 September 2014 VEXAG Update NASA PSS Meeting 4 September 2014 Lori S. Glaze, NASA GSFC - VEXAG Chair Pat Beauchamp Deputy VEXAG Chair 9/4/2014 Planetary Science Subcommittee 1 Activities Mar. 2014 Aug. 2014 March: VEXAG

More information

Chapter 9. ASTRONOMY 202 Spring 2007: Solar System Exploration. Class 27: Planetary Geology [3/26/07] Announcements.

Chapter 9. ASTRONOMY 202 Spring 2007: Solar System Exploration. Class 27: Planetary Geology [3/26/07] Announcements. ASTRONOMY 202 Spring 2007: Solar System Exploration Instructor: Dr. David Alexander Web-site: www.ruf.rice.edu/~dalex/astr202_s07 Class 27: Planetary Geology [3/26/07] Announcements Planetary Geology Planetary

More information

IRFS-2 instrument onboard Meteor-M N2 satellite: measurements analysis

IRFS-2 instrument onboard Meteor-M N2 satellite: measurements analysis IRFS-2 instrument onboard Meteor-M N2 satellite: measurements analysis Polyakov A.V., Virolainen Ya.A., Timofeyev Yu.M. SPbSU, Saint-Petersburg, Russia Uspensky A.B., A.N. Rublev, SRC Planeta, Moscow,

More information

The role of rifting in the generation of melt: Implications for the origin and evolution of the Lada Terra-Lavinia Planitia region of Venus

The role of rifting in the generation of melt: Implications for the origin and evolution of the Lada Terra-Lavinia Planitia region of Venus JOURNAL OF GEOPHYSICAL RESEARCH, VOL 100, NO El, PAGES 1527-1552, JANUARY 25, 1995 The role of rifting in the generation of melt: Implications for the origin and evolution of the Lada Terra-Lavinia Planitia

More information

2nd Annual CICS-MD Science Meeting November 6-7, 2013 Earth System Science Interdisciplinary Center University of Maryland, College Park, MD

2nd Annual CICS-MD Science Meeting November 6-7, 2013 Earth System Science Interdisciplinary Center University of Maryland, College Park, MD Development of Algorithms for Shortwave Radiation Budget from GOES-R R. T. Pinker, M. M. Wonsick GOES-R Algorithm Working Group Radiation Budget Application Team John A. Augustine (NOAA); Hye-Yun Kim (IMSG);

More information

Basalt-Atmosphere Interactions on Venus - The Rocks Perspective. Allan Treiman Susanne Schwenzer LPI

Basalt-Atmosphere Interactions on Venus - The Rocks Perspective. Allan Treiman Susanne Schwenzer LPI Basalt-Atmosphere Interactions on Venus - The Rocks Perspective Allan Treiman Susanne Schwenzer LPI Plan of Talk Hoped to have more results - sorry! So, a selection of research problems on Venus rock-atmosphere

More information

First Lunar Results from the Moon & Earth Radiation Budget Experiment (MERBE)

First Lunar Results from the Moon & Earth Radiation Budget Experiment (MERBE) First Lunar Results from the Moon & Earth Radiation Budget Experiment (MERBE) Grant Matthews Accelerating certainty in climate change prediction GSICS Lunar cal meeting 6 th Dec 2016 Overview "The single

More information

Volcano an opening in Earth s crust through which molten rock, gases, and ash erupt and the landform that develops around this opening.

Volcano an opening in Earth s crust through which molten rock, gases, and ash erupt and the landform that develops around this opening. Chapter 9 Volcano an opening in Earth s crust through which molten rock, gases, and ash erupt and the landform that develops around this opening. 3 Conditions Allow Magma to Form: Decrease in pressure

More information

Kandis Lea Jessup 1 Franklin Mills 2 Emmanuel Marcq 3 Jean-Loup Bertaux 3 Tony Roman 4 Yuk Yung 5. Southwest Research Institute (Boulder CO) 2

Kandis Lea Jessup 1 Franklin Mills 2 Emmanuel Marcq 3 Jean-Loup Bertaux 3 Tony Roman 4 Yuk Yung 5. Southwest Research Institute (Boulder CO) 2 "Coordinated HST, Venus Express, and Venus Climate Orbiter Observations of Venus", NASA program 12433. Kandis Lea Jessup 1 Franklin Mills 2 Emmanuel Marcq 3 Jean-Loup Bertaux 3 Tony Roman 4 Yuk Yung 5

More information