Thomas Widemann. Richard Ghail. Colin Wilson. Lead Proposer. Science Investigation Lead. Programme Management Lead

Size: px
Start display at page:

Download "Thomas Widemann. Richard Ghail. Colin Wilson. Lead Proposer. Science Investigation Lead. Programme Management Lead"

Transcription

1 Richard Ghail Lead Proposer Thomas Widemann Programme Management Lead Colin Wilson Science Investigation Lead 30 th November 2016 VEXAG 14 Rich Ghail EnVision: European Plans for Venus

2 Key Science Goals: Determine the level and nature of current geological activity Determine the sequence of geological events that generated its range of surface features Assess whether Venus once had oceans or was hospitable for life Understand the organising geodynamic framework that controls the release of internal heat over the history of the planet. Using r.m.s. slope as a proxy for crustalscale strain reveals strain partitioning into strong lowland terranes bounded by weak deformation belts and weaker uplands 30 th November 2016 VEXAG 14 Slide 2 Rich Ghail EnVision: European Plans for Venus

3 Key Science Goals: Determine the level and nature of current geological activity Determine the sequence of geological events that generated its range of surface features Assess whether Venus once had oceans or was hospitable for life Understand the organising geodynamic framework that controls the release of internal heat over the history of the planet. Using r.m.s. slope as a proxy for crustalscale strain reveals strain partitioning into strong lowland terranes bounded by weak deformation belts and weaker uplands 30 th November 2016 VEXAG 14 Slide 3 Rich Ghail EnVision: European Plans for Venus

4 Key Science Goals: Determine the level and nature of current geological activity Determine the sequence of geological events that generated its range of surface features Assess whether Venus once had oceans or was hospitable for life Understand the organising geodynamic framework that controls the release of internal heat over the history of the planet. Using r.m.s. slope as a proxy for crustalscale strain reveals strain partitioning into strong lowland terranes bounded by weak deformation belts and weaker uplands 30 th November 2016 VEXAG 14 Slide 4 Rich Ghail EnVision: European Plans for Venus

5 Key Science Goals: Determine the level and nature of current geological activity Determine the sequence of geological events that generated its range of surface features We are more used to thinking about rifts and other structural features than the terranes bounded by them. Note the distributed low level interior strain Assess whether Venus once had oceans or was hospitable for life Understand the organising geodynamic framework that controls the release of internal heat over the history of the planet. 30 th November 2016 VEXAG 14 Slide 5 Rich Ghail EnVision: European Plans for Venus

6 Key Science Goals: Determine the level and nature of current geological activity Determine the sequence of geological events that generated its range of surface features Assess whether Venus once had oceans or was hospitable for life Global Zonal Reconnaissance Exploration Locality Coverage >95% >95% >20% >2% >0 2% Unit Area Global km km km 5 5km Resolution 50km 150m 30m 6m 1m Feature Size 150 km 500 m 100 m 20 m <4 m Geomorphological Features Structures Terra continents, Planitia Chasmata, Dorsa Folds, graben Fault scarps Volcanoes Volcanic rises (Regio) Volcanic edifices Lava Flows Flow textures Sediments Featureless plains Parabolas, halos Landslides Dunes Understand the organising geodynamic framework that controls the release of internal heat over the history of the planet. 30 th November 2016 VEXAG 14 Slide 6 Rich Ghail EnVision: European Plans for Venus

7 Key Science Goals: Determine the level and nature of current geological activity Determine the sequence of geological events that generated its range of surface features Assess whether Venus once had oceans or was hospitable for life Goal Measurement Resolution Instrument Surface change < ±1cma ¹ at m spatial VenSAR I Geomorphology Images at m spatial VenSAR P Topography at m vertical, m spatial VenSAR P Specified targets Images at 1 10 m spatial VenSAR H / VenSAR S Subsurface structure Profiles at m vertical and m spatial SRS Thermal emissivity Signal to noise >100 at <50 km spatial VEM M, VenSAR R SO₂ concentration < ±1% at <300 km spatial and km altitude VEM H / VEM U H₂O concentration < ±10% at <300 km spatial and <15 altitude VEM H / VEM U D/H ratio < ±10% at <300 km spatial and <15 altitude VEM H Gravity field Spherical harmonic degree and order 120 Tracking Spin Rate < ±10 ⁸ (1 minute in one Venus day) VenSAR S + Tracking Spin Axis < ±0 001 in right ascension and declination VenSAR I Understand the organising geodynamic framework that controls the release of internal heat over the history of the planet. 30 th November 2016 VEXAG 14 Slide 7 Rich Ghail EnVision: European Plans for Venus

8 Shrouded in permanent clouds, the 90 bar, 750 K Venus atmosphere is prohibitive for surface rovers and opaque at wavelengths shorter than ~3 5 cm. In other respects the atmosphere is benign: The total electron count is <1 TeV IR brightness temperature ~50 K cooler than Earth Drag free orbits above 220 km altitude EnVision s InSAR coherence requirement drives our choice for an S band radar. 30 th November 2016 VEXAG 14 Slide 8 Rich Ghail EnVision: European Plans for Venus

9 NovaSAR will consist of four small low cost SAR satellites providing global continuous environmental management and disaster monitoring. The first is being funded by the UK government for launch in early VenSAR is undergoing design work to harden against thermal and ionising radiation during interplanetary cruise and at Venus. During operations, the extreme thermal range during the short orbit effectively limits the operating time to about 15 minutes per orbit. 30 th November 2016 VEXAG 14 Slide 9 Rich Ghail EnVision: European Plans for Venus

10 Level 1 data Single look complex images (SLC) Multi look map oriented images (GRD) Radiometry profiles Initial ephemeris data Level 2 data Interim geocoded image mosaics Orbit orbit interferograms Revised ephemeris data Level 3 data Ground surface change / deformation maps Geocoded & orthorectified image mosaics Digital Elevation Models (gridded at 60 m) Resolution Looks Tx Incidence Sensitivity Swath Duration Data VI1 InSAR 27 m 18 4% dB 53km 498s 66Mbps VI2 InSAR 27 m 18 4% dB 53km 498s 68Mbps VI3 InSAR 27 m 18 4% dB 53km 498s 66Mbps VP1 StereoPolSAR 30 m 9 4% db 53 km 873 s 127 Mbps VH1 HiRes 6 m 6 20% db 22 km 291 s 353 Mbps VH2 HiRes 6 m 6 20% db 32 km 291 s 513 Mbps VS1 Spotlight 1 m 1 20% db 5 km 4 s 468 Mbps 30 th VR1 Radiometry 5 30 km n/a 0% 4 +4 ~1 K 38 km <2760 s <0 25 kbps November 2016 VEXAG 14 Slide 10 Rich Ghail EnVision: European Plans for Venus

11 Simulated Magellan 110 m resolution SAR image of Holuhraun, Iceland (derived from Sentinel 1a data). Notice the low contrast from 2 bit BAQ compression and foreshortening due to lack of appropriate DEM. Simulated 30 m resolution HHVHVV StereoPolSAR image (derived from Sentinel 1a data). Note the new lava flow in blue at lower left. Scale bar in all images is 2 km. 30 th November 2016 VEXAG 14 Slide 11 Rich Ghail EnVision: European Plans for Venus

12 Simulated Magellan 110 m resolution SAR image of Holuhraun, Iceland (derived from Sentinel 1a data). Notice the low contrast from 2 bit BAQ compression and foreshortening due to lack of appropriate DEM. Simulated 6 m resolution HiRes image (derived from TerraSAR X data). Simulated 30 m resolution HHVHVV StereoPolSAR image (derived from Sentinel 1a data). Note the new lava flow in blue at lower left. Scale bar in all images is 2 km. 30th November 2016 VEXAG 14 Slide 12 Rich Ghail EnVision: European Plans for Venus

13 NovaSAR 6 m airborne test data, Pembroke Dock Simulated Magellan 110 m resolution SAR image of Holuhraun, Iceland (derived from Sentinel 1a data). Notice the low contrast from 2 bit BAQ compression and foreshortening due to lack of appropriate DEM. Simulated 6 m resolution HiRes image (derived from TerraSAR X data). Simulated 30 m resolution HHVHVV StereoPolSAR image (derived from Sentinel 1a data). Note the new lava flow in blue at lower left. Scale bar in all images is 2 km. 30th November 2016 VEXAG 14 Slide 13 Rich Ghail EnVision: European Plans for Venus

14 The Radar Sounder for EnVision can acquire information on the shallow subsurface with the following main scientific goals: Characterisation of the different stratigraphic and structural patterns of the subsurface. Study the volcanism phenomena and their impact on the geological evolution of the Venusian topography. Detection of subsurface structures non directly linked with surface. Analysis of the materials in the surface and subsurface and their metamorphism linked to the burial process. Synergistic analysis of the data provided by SAR and radar sounder sensors to study the evolution of the planet. Analysis of the total electron content of the ionosphere. One of the main issues for the design of the radar sounder instrument for EnVision concerns the physical and electromagnetic modelling of the surface and subsurface targets. Transmitted central frequency (fc) Transmitted bandwidth (Bw) Antenna type Antenna dimension Power Along track resolution Across track resolution Vertical resolution Estimated maximum penetration depth Data rate Mass (without antenna) Size Pointing requirements In the range 6 30 MHz In the range 2 10 MHz Dipole (deployable) TBD (depending on the central frequency) 30 W < 1 km < 5 km 75 m (Bw=2 MHz) 15 m (Bw=10 MHz) (vacuum) 1.5 Km (fc=6 MHz) 600 m (fc=30 MHz) kbps (depending on selected parameters and operation scenarios) 10 kg cm Nadir SHARAD radargram over a portion of western Medusae Fossae Formation, a lowdensity pyroclastic deposit spanning across the crustal dichotomy of Mars. The deposit labelled "North Hill (nh) is about 500 m thick (taken from [6]). 30 th November 2016 VEXAG 14 Slide 14 Rich Ghail EnVision: European Plans for Venus

15 The Radar Sounder for EnVision can acquire information on the shallow subsurface with the following main scientific goals: Characterization of the different stratigraphic and structural patterns of the subsurface. Study the volcanism phenomena and their impact on the geological evolution of the Venusian topography. Detection of subsurface structures non directly linked with surface. Analysis of the materials in the surface and subsurface and their metamorphism linked to the burial process. Synergistic analysis of the data provided by SAR and radar sounder sensors to study the evolution of the planet. Analysis of the total electron content of the ionosphere. One of the main issues for the design of the radar sounder instrument for EnVision concerns the physical and electromagnetic modelling of the surface and subsurface targets. SHARAD radargram over a portion of western Medusae Fossae Formation, a lowdensity pyroclastic deposit spanning across the crustal dichotomy of Mars. The deposit labelled "North Hill (nh) is about 500 m thick (taken from [6]). 30 th November 2016 VEXAG 14 Slide 15 Rich Ghail EnVision: European Plans for Venus

16 VIRTIS has mapped the hot surface at 1 μm using emissivity data [Helbert, Müller, et al & Müller, Helbert et al. 2009, 2010] VEM M spectral bands and science themes Key Parameter Value Instrument Concept Pushbroom design FOV / swath 60 / 250 km Detector SOFRADIR Neptune 500 X 256 HgCdTe array Cooled focal plane 150 K, pulse tube cooler 14 spectral bands Bandwidth < 10 nm Variation < 1nm Processed Data Rate 190 kb/s (1 Mb/orbit) Mass / Power (CBE) ~5.4 kg / ~18.5 W Volume 30 cm x 30 cm x 40 cm 30 th November 2016 VEXAG 14 Slide 16 Rich Ghail EnVision: European Plans for Venus

17 VEM H is a spectrometer probing the near infrared nightside windows with very high spectral resolution (resolving power ~ 40,000). It will: Quantify SO₂, H₂O and HDO in the lower atmosphere Characterise of volcanic plumes Detect other sources of gas exchange with the surface Complement VenSAR and VEM M surface observations E. Marcq et al. (Venus Express); L. Esposito et al. (earlier data); image ESA/AOES Medialab Left: the optical assembly, which is inverted and mounted on a baseplate on the underside of the radiator. Right: the SOFRADIR detector for NOMAD on ExoMars. VEM U is a small, light, UV spectrometer which will map mesospheric SO₂ abundances on the dayside of Venus. Together with VEM M and VEM H it will link surface, tropospheric and mesospheric changes in SO₂, H₂O and other gases. 30 th November 2016 VEXAG 14 Slide 17 Rich Ghail EnVision: European Plans for Venus

18 Preliminary simulations indicate that an accuracy of ~ in k₂ is achievable by stacking together 3 years of navigation tracking data of EnVision spacecraft, more than sufficient to distinguish between different models of internal structure. Venus apparently rotated more quickly during the period of the Magellan mission (small red error bars, ) than it did in the first Earth based observations (green) or in later measurements from Earth and by Venus Express (blue). Vertical bars indicate measurement uncertainty, horizontal bars the period over which the measurement was made. 30 th November 2016 VEXAG 14 Slide 18 Rich Ghail EnVision: European Plans for Venus

19 EnVision is a 2m cubic platform with a dry mass of 950 kg. Planned for launch from an Ariane 6.2 in October 2029, 200 days aerobraking are anticipated to achieve the 259 km altitude circular polar orbit. The following operating modes are planned during each 24 hour period: Communications mode: 5½hourHGAEarth pointed, solar array oriented towards the Sun, one axis degree of freedom; VenSAR mode: <15 minutes, inertial 3 axes pointed, nadir face facing Venus centre, rolled by up to ±35 around the spacecraft velocity vector (x axis); and Night side science mode: 45 minute nadir face facing Venus centre, inertial 3 axes pointed. Telemetryisprovidedbyafixed3 m, 65 W RF, Ka band high gain antenna. With GMSK (0 5) modulation and 1/4 Turbo codes, a minimum link rate of 4 Mbps is achieved. Platform could support a secondary Cubesat payload 30 th November 2016 VEXAG 14 Slide 19 Rich Ghail EnVision: European Plans for Venus

20 30 th November 2016 VEXAG 14 Slide 20 Rich Ghail EnVision: European Plans for Venus

21 30 th November 2016 VEXAG 14 Slide 21 Rich Ghail EnVision: European Plans for Venus

22 We have a very poor understanding of Venus, particularly its surface materials High resolution imagery, topography and compositional data are needed to understand D InSAR change detection will determine the location and nature of geological activity on Venus today Surface, tropospheric and mesospheric volatile measurements will characterise geochemical cycles Calibrated polarimetric and high resolution contextual imagery of the Venera landing sites is needed to understand what the landers imaged EnVision will take our knowledge of Venus towards that of Mars today Venera 13 landing site [Don P. Mitchell] 30 th November 2016 VEXAG 14 Slide 22 Rich Ghail EnVision: European Plans for Venus

PLANET-C: Venus Climate Orbiter mission from Japan. Takeshi Imamura Japan Aerospace Exploration Agency PLANET-C team

PLANET-C: Venus Climate Orbiter mission from Japan. Takeshi Imamura Japan Aerospace Exploration Agency PLANET-C team PLANET-C: Venus Climate Orbiter mission from Japan Takeshi Imamura Japan Aerospace Exploration Agency PLANET-C team Venus Climate Orbiter JAXA s 24th science spacecraft dedicated to the exploration of

More information

IAA Pre-Summit Conference, Washington, DC, 9 January 2014

IAA Pre-Summit Conference, Washington, DC, 9 January 2014 Sanjay S. Limaye, Luidmilla Zasova, Colin F. Wilson, Richard C. Ghail, A.C. Vandaele, W. J. Markiewicz, Thomas Widemann, Takeshi Imamura, Franck Montmessin, Emmanuel. Marcq, James A. Cutts, James Head

More information

Venus: Key Ideas: A Warm Up Exercise. Venus at a Glance -- Orbit. Venus at a Glance Planetary Data

Venus: Key Ideas: A Warm Up Exercise. Venus at a Glance -- Orbit. Venus at a Glance Planetary Data Venus A Warm Up Exercise Because Mercury has a high average density despite its relatively low mass, it is thought to a) Have a subsurface ocean b) Have a large iron core c) Be made largely of lead d)

More information

Venus. Venus. (The most visited planet) Orbit, Rotation Atmosphere. Surface Features Interior. (Greenhouse effect) Mariner 10 image

Venus. Venus. (The most visited planet) Orbit, Rotation Atmosphere. Surface Features Interior. (Greenhouse effect) Mariner 10 image Venus Orbit, Rotation Atmosphere (Greenhouse effect) Surface Features Interior Mariner 10 image Venus (The most visited planet) Mariner 2 (1962) Mariner 5 (1967) Mariner 10 (1974) Poineer Venus (1978)

More information

Venus. Venus Properties. Interior of Venus. Due to similarities in size, mass, and composition, Venus is often referred to as Earth's sister planet

Venus. Venus Properties. Interior of Venus. Due to similarities in size, mass, and composition, Venus is often referred to as Earth's sister planet Venus Due to similarities in size, mass, and composition, Venus is often referred to as Earth's sister planet Modern measurements and probes that have visited the planet have revealed one of the most uninhabitable

More information

The Main Points. The View from the Surface. Geology of Mars. Lecture #20: Reading:

The Main Points. The View from the Surface. Geology of Mars. Lecture #20: Reading: Surface of Mars Lecture #20: Geology and Geologic Processes View from the Surface History/Evolution of the surface Reading: Chapter 9.4 The Main Points Mars has had a geologically active past that has

More information

PLANET-C: Venus Climate Orbiter mission -Updates- Takehiko Satoh (Kumamoto Univ / JAXA) George Hashimoto (Kobe Univ) PLANET-C team

PLANET-C: Venus Climate Orbiter mission -Updates- Takehiko Satoh (Kumamoto Univ / JAXA) George Hashimoto (Kobe Univ) PLANET-C team PLANET-C: Venus Climate Orbiter mission -Updates- Takehiko Satoh (Kumamoto Univ / JAXA) George Hashimoto (Kobe Univ) PLANET-C team Venus Climate Orbiter JAXA s 24th science spacecraft dedicated to the

More information

IR sounder small satellite for polar orbit weather measurements

IR sounder small satellite for polar orbit weather measurements IR sounder small satellite for polar orbit weather measurements Sara Lampen, Sonny Yi, Jared Lang, Caleb Lampen, Adam Vore, David Warren, Eric Herman The Aerospace Corporation John J. Pereira National

More information

Venus Data (Table 12-1) 11b. Cloud-Covered Venus. Venus Data: Numbers. Venus Data: Special Features. Venus Phases & Angular Diameters

Venus Data (Table 12-1) 11b. Cloud-Covered Venus. Venus Data: Numbers. Venus Data: Special Features. Venus Phases & Angular Diameters 11b. Cloud-Covered Venus Venus Data (Table 12-1) The Venusian atmosphere Venus has slow retrograde rotation Venus has a hot dense atmosphere Volcanic eruptions form Venusian clouds Climatic evolution on

More information

Venus Surface Thermal Emission Observed by VIRTIS on Venus Express

Venus Surface Thermal Emission Observed by VIRTIS on Venus Express Venus Surface Thermal Emission Observed by VIRTIS on Venus Express N. Müller, J. Helbert, G. Hashimoto, C. Tsang, S. Erard, G. Piccioni, P. Drossart The VIRTIS-VEX Team Near Infrared Spectral Windows Highlands

More information

JAXA s Venus Climate Orbiter (PLANET-C) overview. Launch: Jun 2010 Arrival: Dec 2010 Mission life: 2 years

JAXA s Venus Climate Orbiter (PLANET-C) overview. Launch: Jun 2010 Arrival: Dec 2010 Mission life: 2 years JAXA s Venus Climate Orbiter (PLANET-C) overview Launch: Jun 2010 Arrival: Dec 2010 Mission life: 2 years Venus and Earth They have almost the same size and mass. Surface environments are completely different.

More information

Current Status of the ALOS-2 Operation and PALSAR-2 Calibration Activities

Current Status of the ALOS-2 Operation and PALSAR-2 Calibration Activities Current Status of the ALOS-2 Operation and PALSAR-2 Calibration Activities Takeshi Motohka, Ryo Natsuaki, Yukihiro Kankaku, Shinichi Suzuki, Masanobu Shimada (JAXA) Osamu Isoguchi (RESTEC) CEOS SAR CALVAL

More information

Venus many opportunities for small satellites & probes A new view of Earth s sister: Insights following seven years of observations with Venus Express

Venus many opportunities for small satellites & probes A new view of Earth s sister: Insights following seven years of observations with Venus Express Venus many opportunities for small satellites & probes A new view of Earth s sister: Colin Wilson Oxford University Insights following seven years of observations with Venus Express Dmitriy Titov European

More information

Mercury and Venus 3/20/07

Mercury and Venus 3/20/07 Announcements Reading Assignment Chapter 13 4 th Homework due today Quiz on Thursday (3/22) Will cover all material since the last exam. This is Chapters 9-12 and the part of 13 covered in the lecture

More information

China France. Oceanography S A T. The CFOSAT project. e l l i t e. C. Tison (1), D. Hauser (2), A. Mouche (3) CNES, France (2)

China France. Oceanography S A T. The CFOSAT project. e l l i t e. C. Tison (1), D. Hauser (2), A. Mouche (3) CNES, France (2) China France The CFOSAT project C. Tison (1), D. Hauser (2), A. Mouche (3) (1) CNES, France (2) OVSQ, CNRS, LATMOS-IPSL, France (3) IFREMER, LOS, France celine.tison@cnes.fr Oceanography S A T e l l i

More information

Lecture #11: Plan. Terrestrial Planets (cont d) Jovian Planets

Lecture #11: Plan. Terrestrial Planets (cont d) Jovian Planets Lecture #11: Plan Terrestrial Planets (cont d) Jovian Planets Mercury (review) Density = 5.4 kg / liter.. ~ Earth s Rocky mantle + iron/nickel core Slow spin: 59 days (orbital period = 88 days) No satellites

More information

Astronomical Experiments for the Chang E-2 Project

Astronomical Experiments for the Chang E-2 Project Astronomical Experiments for the Chang E-2 Project Maohai Huang 1, Xiaojun Jiang 1, and Yihua Yan 1 1 National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road,Chaoyang District,

More information

Infrared Earth Horizon Sensors for CubeSat Attitude Determination

Infrared Earth Horizon Sensors for CubeSat Attitude Determination Infrared Earth Horizon Sensors for CubeSat Attitude Determination Tam Nguyen Department of Aeronautics and Astronautics Massachusetts Institute of Technology Outline Background and objectives Nadir vector

More information

VIRTIS-Venus Express

VIRTIS-Venus Express VIRTIS-Venus Express - G. Piccioni, P. Drossart and the VIRTIS-VenusX Team Scientific Team Members by Countries I (1) (PI) Total 14 F (2) PO ES RU NL US D UK P Total (PI) 10 1 2 2 1 2 5 2 1 (1) G. Piccioni,

More information

VENUS EXPRESS. The First European Mission to Venus. Gerhard Schwehm and Hakan Svedhem ESA/ESTEC

VENUS EXPRESS. The First European Mission to Venus. Gerhard Schwehm and Hakan Svedhem ESA/ESTEC VENUS EXPRESS The First European Mission to Venus Gerhard Schwehm and Hakan Svedhem ESA/ESTEC Why is ESA going to Venus? Venus is a fascinating planet and an attractive target for planetary sciences. 1960-1990:

More information

Infrared Earth Horizon Sensors for CubeSat Attitude Determination

Infrared Earth Horizon Sensors for CubeSat Attitude Determination Infrared Earth Horizon Sensors for CubeSat Attitude Determination Tam Nguyen Department of Aeronautics and Astronautics Massachusetts Institute of Technology Outline Background and objectives Nadir vector

More information

Orbit and Transmit Characteristics of the CloudSat Cloud Profiling Radar (CPR) JPL Document No. D-29695

Orbit and Transmit Characteristics of the CloudSat Cloud Profiling Radar (CPR) JPL Document No. D-29695 Orbit and Transmit Characteristics of the CloudSat Cloud Profiling Radar (CPR) JPL Document No. D-29695 Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 26 July 2004 Revised

More information

10/24/2010. Venus Roman goddess of love. Bulk Properties. Summary. Venus is easier to observe than Mercury! Venus and Earth

10/24/2010. Venus Roman goddess of love. Bulk Properties. Summary. Venus is easier to observe than Mercury! Venus and Earth Venus Roman goddess of love Birth of Venus Botticelli (1485) Bulk Properties Summary 1. Venus is 28% closer to the Sun having an orbital period of 225 Earth days 2. Venus is roughly 95% the size, 82% the

More information

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space.

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space. www.esa.int EarthCARE mission instruments ESA s EarthCARE satellite payload comprises four instruments: the Atmospheric Lidar, the Cloud Profiling Radar, the Multi-Spectral Imager and the Broad-Band Radiometer.

More information

Aeolus. A Mission to Map the Winds of Mars. Anthony Colaprete Amanda Cook NASA Ames Research Center

Aeolus. A Mission to Map the Winds of Mars. Anthony Colaprete Amanda Cook NASA Ames Research Center Aeolus A Mission to Map the Winds of Mars Anthony Colaprete Amanda Cook NASA Ames Research Center Low-Cost Planetary Missions Conference 12, 2017 What is Aeolus? Science Aeolus will provide the very first

More information

Wind Imaging Spectrometer and Humidity-sounder (WISH): a Practical and Effective NPOESS P3I Sensor

Wind Imaging Spectrometer and Humidity-sounder (WISH): a Practical and Effective NPOESS P3I Sensor Wind Imaging Spectrometer and Humidity-sounder (WISH): a Practical and Effective NPOESS P3I Sensor Jeffery J. Puschell Raytheon Space and Airborne Systems Hung-Lung Huang University of Wisconsin, Madison

More information

ExoMars 2016 Mission

ExoMars 2016 Mission POCKOCMOC POCKOCMOC ExoMars 2016 Mission O. Witasse, J. L. Vago, D. Rodionov, and the ExoMars Team 1 The 8 th International Conference on Mars 18 July 2014, Pasadena (USA) Cooperation ExoMars Programme

More information

Low Cost Planetary Missions Conference Picture: Etna lava flow, with Catania in the background

Low Cost Planetary Missions Conference Picture: Etna lava flow, with Catania in the background Low Cost Planetary Missions Conference 2013 Picture: Etna lava flow, with Catania in the background Venus Express: a low cost mission Mars Express Venus Express Astrium, ESA Astrium, ESA 2001: Call for

More information

Calibration of Ocean Colour Sensors

Calibration of Ocean Colour Sensors Dr. A. Neumann German Aerospace Centre DLR Remote Sensing Technology Institute Marine Remote Sensing What is Calibration, why do we need it? Sensor Components Definition of Terms Calibration Standards

More information

Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis, V. Antakis, G.

Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis, V. Antakis, G. GLEME: GLOBAL LIDAR EXPLORATION OF THE MESOSPHERE Project Technical Officer: E. Armandillo Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis,

More information

Robotic Lunar Exploration Scenario JAXA Plan

Robotic Lunar Exploration Scenario JAXA Plan Workshop May, 2006 Robotic Lunar Exploration Scenario JAXA Plan Tatsuaki HASHIMOTO JAXA 1 Question: What is Space Exploration? Answers: There are as many answers as the number of the people who answer

More information

ASTR 380 Possibilities for Life in the Inner Solar System

ASTR 380 Possibilities for Life in the Inner Solar System ASTR 380 Possibilities for Life in the Inner Solar System ASTR 380 Midterm Test Results Generally people did well: 100-90 = A = 19 people 89 80 = B = 19 people 79 70 = C = 9 people 69 60 = D = 0 < 60 =

More information

From orbit. In the atmosphere. On the surface

From orbit. In the atmosphere. On the surface From orbit On the surface In the atmosphere Organizing Committee: Buck Sharpton Lori Glaze Larry Esposito Kevin McGouldrick Stephanie Johnston Chris Lee Christophe Sotin Marty Gilmore Robbie Herrick Day

More information

The Copernicus Sentinel-5 Mission: Daily Global Data for Air Quality, Climate and Stratospheric Ozone Applications

The Copernicus Sentinel-5 Mission: Daily Global Data for Air Quality, Climate and Stratospheric Ozone Applications SENTINEL-5 The Copernicus Sentinel-5 Mission: Daily Global Data for Air Quality, Climate and Stratospheric Ozone Applications Yasjka Meijer RHEA for ESA, Noordwijk, NL 15/04/2016 Co-Authors: Jörg Langen,

More information

Juno Status and Earth Flyby Plans. C. J. Hansen

Juno Status and Earth Flyby Plans. C. J. Hansen Juno Status and Earth Flyby Plans C. J. Hansen July 2013 Juno will improve our understanding of the history of the solar system by investigating the origin and evolution of Jupiter. To accomplish this

More information

Venus Earth s Sister Planet

Venus Earth s Sister Planet Venus Earth s Sister Planet 9 9.1 Orbital Properties 3rd brightest object in the sky, after Sun and Moon. Can even be seen in broad daylight Often called the morning star or the evening star, as it is

More information

The ExoMars Programme

The ExoMars Programme E X O M A R S The ExoMars Programme PHOOTPRINT Scientific context E X O M A R S - A primitive Mars and an early evolution similar to that early of evolution the Earth similar to that A primitive Mars likely

More information

VenSAR on EnVision: taking Earth Observation radar to Venus

VenSAR on EnVision: taking Earth Observation radar to Venus VenSAR on EnVision: taking Earth Observation radar to Venus Richard C. Ghail Imperial College London, Civil and Environmental Engineering, London, SW7 2AZ, United Kingdom r.ghail@imperial.ac.uk David Hall

More information

Moon Observation by means of Microwave Instruments on board of Small Lunar Orbiter. A preliminary Study

Moon Observation by means of Microwave Instruments on board of Small Lunar Orbiter. A preliminary Study Moon Observation by means of Microwave Instruments on board of Small Lunar Orbiter. A preliminary Study Gemma Manoni (1), Marco D Errico (2), Maria Rosaria Santovito (3), Luigi Colangeli (4), Claudio Scarchilli

More information

SCIENCE WITH DIRECTED AERIAL DR. ALEXEY PANKINE GLOBAL AEROSPACE CORPORATION SAILING THE PLANETS

SCIENCE WITH DIRECTED AERIAL DR. ALEXEY PANKINE GLOBAL AEROSPACE CORPORATION SAILING THE PLANETS : SCIENCE WITH DIRECTED AERIAL ROBOT EXPLORERS (DARE) DR. ALEXEY PANKINE GLOBAL AEROSPACE CORPORATION 1 NEW ARCHITECTURE FOR PLANETARY EXPLORATION KEY ELEMENTS: Long-Duration Planetary Balloon Platforms

More information

The EarthCARE mission: An active view on aerosols, clouds and radiation

The EarthCARE mission: An active view on aerosols, clouds and radiation The EarthCARE mission: An active view on aerosols, clouds and radiation T. Wehr, P. Ingmann, T. Fehr Heraklion, Crete, Greece 08/06/2015 EarthCARE is ESA s sixths Earth Explorer Mission and will be implemented

More information

Future SAR mission concepts

Future SAR mission concepts Future SAR mission concepts PREMIER M. Arcioni, M. Aguirre, P. Bensi, S. D Addio, K. Engel, F. Fois, F. Hélière, M. Kern, A. Lecuyot, C.C. Lin, M. Ludwig, K. Scipal, P. Silvestrin ESTEC, Keplerlaan 1,

More information

What are terrestrial planets like on the inside? Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds. Seismic Waves.

What are terrestrial planets like on the inside? Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds. Seismic Waves. Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds What are terrestrial planets like on the inside? Seismic Waves Vibrations that travel through Earth s interior tell us what Earth is

More information

cheops Assemble your own planet watcher cheops Paper Model Scale 1:15

cheops Assemble your own planet watcher cheops Paper Model Scale 1:15 cheops cheops Assemble your own planet watcher Paper Model Scale 1:15 About CHEOPS The CHaracterising ExOPlanet Satellite, or CHEOPS, is a space science mission dedicated to the study of known exoplanets

More information

Radio Frequency Earth Science

Radio Frequency Earth Science Radio Frequency Earth Science Overview for Committee On Radio Frequency (CORF) National Academy of Science National Research Council April 27, 2005 Bill.Watson@NASA.Gov Program Executive for Ground Networks

More information

Todays Topics 3/19/2018. Light and Telescope. PHYS 1403 Introduction to Astronomy. CCD Camera Makes Digital Images. Astronomical Detectors

Todays Topics 3/19/2018. Light and Telescope. PHYS 1403 Introduction to Astronomy. CCD Camera Makes Digital Images. Astronomical Detectors PHYS 1403 Introduction to Astronomy Light and Telescope Chapter 6 Todays Topics Astronomical Detectors Radio Telescopes Why we need space telescopes? Hubble Space Telescopes Future Space Telescopes Astronomy

More information

Scott Bolton OPAG February 1, 2016

Scott Bolton OPAG February 1, 2016 Scott Bolton OPAG February 1, 2016 Juno Status Launched August 2011 Earth flyby October 2013 Jupiter arrival July 4, 2016 Spacecraft is healthy and all instruments are working. Juno Science Juno Science

More information

Learning Objectives. Thermal Remote Sensing. Thermal = Emitted Infrared

Learning Objectives. Thermal Remote Sensing. Thermal = Emitted Infrared November 2014 lava flow on Kilauea (USGS Volcano Observatory) (http://hvo.wr.usgs.gov) Landsat-based thermal change of Nisyros Island (volcanic) Thermal Remote Sensing Distinguishing materials on the ground

More information

Introduction to Astronomy

Introduction to Astronomy Introduction to Astronomy AST0111-3 (Astronomía) Semester 2014B Prof. Thomas H. Puzia Venus Venus The atmosphere of Venus is very dense and an opaque layer of clouds covers the planet, such that we cannot

More information

JUICE: A European Mission to Jupiter and its Icy Moons. Claire Vallat Prague, 15 th November 2018

JUICE: A European Mission to Jupiter and its Icy Moons. Claire Vallat Prague, 15 th November 2018 JUICE: A European Mission to Jupiter and its Icy Moons Claire Vallat Prague, 15 th November 2018 Emergence of habitable worlds around the gas giants The Jupiter icy moons family portrait [Lammer et al,

More information

AVIATR: Aerial Vehicle for In situ and Airborne Titan Reconnaissance

AVIATR: Aerial Vehicle for In situ and Airborne Titan Reconnaissance AVIATR: Aerial Vehicle for In situ and Airborne Titan Reconnaissance Jason W. Barnes Assistant Professor of Physics University of Idaho OPAG Meeting 2011 October 20 Pasadena, CA TSSM: Titan Saturn System

More information

TROPOMI. Sentinel 5 Precursor instrument for air quality and climate observations. R. Voors Dutch Space. ICSO, 11 October 2012

TROPOMI. Sentinel 5 Precursor instrument for air quality and climate observations. R. Voors Dutch Space. ICSO, 11 October 2012 TROPOMI Sentinel 5 Precursor instrument for air quality and climate observations R. Voors Dutch Space ICSO, 11 October 2012 Sentinel 5 precursor and the TROPOMI payload Climate and Air quality Precursor

More information

ABB Remote Sensing Atmospheric Emitted Radiance Interferometer AERI system overview. Applications

ABB Remote Sensing Atmospheric Emitted Radiance Interferometer AERI system overview. Applications The ABB Atmospheric Emitted Radiance Interferometer AERI provides thermodynamic profiling, trace gas detection, atmospheric cloud aerosol study, air quality monitoring, and more. AERI high level overview

More information

Orbiter Element Brian Cooke

Orbiter Element Brian Cooke Orbiter Element Brian Cooke 47 from orbit Payload focused primarily to address Ocean objective: Radio Subsystem (RS) Laser Altimeter (LA) Magnetometer (MAG) Langmuir Probe (LP) Mapping Camera (MC) Have

More information

China s Chang E Program

China s Chang E Program China s Chang E Program --- Missions Objectives, Plans, Status, and Opportunity for Astronomy Maohai Huang Science and Application Research Center for Lunar and Deepspace Explorations National Astronomical

More information

Spaceborne Atmospheric Boundary Layer Explorer (SABLE)

Spaceborne Atmospheric Boundary Layer Explorer (SABLE) Spaceborne Atmospheric Boundary Layer Explorer (SABLE) Earth Venture-2 mission proposal Proposed SABLE objective: Measure cloud top heights and cloud top winds to quantify and map cloud-top entrainment

More information

ESA s Juice: Mission Summary and Fact Sheet

ESA s Juice: Mission Summary and Fact Sheet ESA s Juice: Mission Summary and Fact Sheet JUICE - JUpiter ICy moons Explorer - is the first large-class mission in ESA's Cosmic Vision 2015-2025 programme. Planned for launch in 2022 and arrival at Jupiter

More information

Giant planets. Giant planets of the Solar System. Giant planets. Gaseous and icy giant planets

Giant planets. Giant planets of the Solar System. Giant planets. Gaseous and icy giant planets Giant planets of the Solar System Planets and Astrobiology (2016-2017) G. Vladilo Giant planets Effective temperature Low values with respect to the rocky planets of the Solar System Below the condensation

More information

Today. Events Homework DUE next time. Terrestrial Planet Geology - Earth. Terrestrial Planet Atmospheres

Today. Events Homework DUE next time. Terrestrial Planet Geology - Earth. Terrestrial Planet Atmospheres Today Terrestrial Planet Geology - Earth Terrestrial Planet Atmospheres Events Homework DUE next time Venus Surface mapped with radar by Magellan orbtier https://www.youtube.com/watch?v=ub_bbs_oh_c Continental

More information

providing 100-m per pixel resolution in nine ~1.0 µm wide infrared bands centered from

providing 100-m per pixel resolution in nine ~1.0 µm wide infrared bands centered from Supporting Text The THEMS instrument consists of separate infrared and visible imagers providing 100-m per pixel resolution in nine ~1.0 µm wide infrared bands centered from 6.78 to 14.88 µm, and 18-m

More information

Red Planet Mars. Chapter Thirteen

Red Planet Mars. Chapter Thirteen Red Planet Mars Chapter Thirteen ASTR 111 003 Fall 2006 Lecture 11 Nov. 13, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17) Ch7: Comparative Planetology

More information

Class Exercise. Today s Class. Overview of Mercury. Terrestrial Planet Interiors. Today s Class: Mercury & Venus

Class Exercise. Today s Class. Overview of Mercury. Terrestrial Planet Interiors. Today s Class: Mercury & Venus Today s Class: Mercury & Venus Homework: Further reading on Venus for next class Sections 10.1 and 10.5 in Cosmic Perspective. Space in the News: 'Frankenstein' Galaxy Surprises Astronomers Presenter:

More information

Presentation by Indian Delegation. to 49 th STSC UNCOPUOS. February 2012 Vienna

Presentation by Indian Delegation. to 49 th STSC UNCOPUOS. February 2012 Vienna Presentation by Indian Delegation to 49 th STSC UNCOPUOS February 2012 Vienna ASTROSAT Astrosat is India s first dedicated multiwavelength astronomy satellite with a capability to observe target sources

More information

ASTRONOMY 340 FALL September 2007 Class #6-#7

ASTRONOMY 340 FALL September 2007 Class #6-#7 ASTRONOMY 340 FALL 2007 25 September 2007 Class #6-#7 Review Physical basis of spectroscopy Einstein A,B coefficients probabilities of transistions Absorption/emission coefficients are functions of ρ,

More information

Interpretation of Polar-orbiting Satellite Observations. Atmospheric Instrumentation

Interpretation of Polar-orbiting Satellite Observations. Atmospheric Instrumentation Interpretation of Polar-orbiting Satellite Observations Outline Polar-Orbiting Observations: Review of Polar-Orbiting Satellite Systems Overview of Currently Active Satellites / Sensors Overview of Sensor

More information

Meteosat Third Generation (MTG): Lightning Imager and its products Jochen Grandell

Meteosat Third Generation (MTG): Lightning Imager and its products Jochen Grandell 1 Go to View menu and click on Slide Master to update this footer. Include DM reference, version number and date Meteosat Third Generation (MTG): Lightning Imager and its products Jochen Grandell Topics

More information

PROOF-OF-CONCEPT DEMONSTRATION OF A MILLIMETRE WAVE IMAGING SOUNDER FOR GEOSTATIONARY EARTH ORBIT

PROOF-OF-CONCEPT DEMONSTRATION OF A MILLIMETRE WAVE IMAGING SOUNDER FOR GEOSTATIONARY EARTH ORBIT PROOF-OF-CONCEPT DEMONSTRATION OF A MILLIMETRE WAVE IMAGING SOUNDER FOR GEOSTATIONARY EARTH ORBIT Anders Carlström 1, Jacob Christensen 1, Anders Emrich 2, Johan Embretsén 2, Karl-Erik Kempe 2, and Peter

More information

Last Class. Today s Class 11/28/2017

Last Class. Today s Class 11/28/2017 Today s Class: The Jovian Planets & Their Water Worlds 1. Exam #3 on Thursday, Nov. 30 th! a) Covers all the reading Nov. 2-28. b) Covers Homework #6 and #7. c) Review Space in the News articles/discussions.

More information

Today. Events. Terrestrial Planet Geology - Earth. Terrestrial Planet Atmospheres. Homework DUE next time

Today. Events. Terrestrial Planet Geology - Earth. Terrestrial Planet Atmospheres. Homework DUE next time Today Terrestrial Planet Geology - Earth Terrestrial Planet Atmospheres Events Homework DUE next time Ring of Fire Boundaries of plates traced by Earthquakes and Volcanos Plate Motions Measurements of

More information

Terrestrial Atmospheres

Terrestrial Atmospheres Terrestrial Atmospheres Why Is There Air? An atmosphere is a layer of gas trapped by the gravity of a planet or moon. Here s Earth s atmosphere viewed from orbit: Why Is There Air? If atoms move faster

More information

TRUTHS-Lite: A Microsatellite Based Climate Benchmark Mission

TRUTHS-Lite: A Microsatellite Based Climate Benchmark Mission IAA-B10-0404 TRUTHS-Lite: A Microsatellite Based Climate Benchmark Mission Craig Underwood 1, Nigel Fox 2, Javier Gorroño 2 1 Surrey Space Centre, University of Surrey, Guildford, Surrey, GU2 7XH, UK 2

More information

2) Elucidate a weakness of two of the lines of evidence you listed in the previous question.

2) Elucidate a weakness of two of the lines of evidence you listed in the previous question. GEO 110 Final Test May 30 2003 Name: IMPORTANT: Please write legibly!!! Short Answer (2 points each) 1) List three of the four lines of evidence that the Johnson Space Center team presented as evidence

More information

Section 2: The Atmosphere

Section 2: The Atmosphere Section 2: The Atmosphere Preview Classroom Catalyst Objectives The Atmosphere Composition of the Atmosphere Air Pressure Layers of the Atmosphere The Troposphere Section 2: The Atmosphere Preview, continued

More information

VENUS: DETAILED MAPPING OF MAXWELL MONTES REGION

VENUS: DETAILED MAPPING OF MAXWELL MONTES REGION VENUS: DETAILED MAPPING OF MAXWELL MONTES REGION Yu. N. Alexandrov, A. A. Crymov, V. A. Kotelnikov, G. M. Petrov, O. N. Rzhiga, A. I. Sidorenko, V. P. Sinilo, A. I. Zakharov, E. L. Akim, A. T. Basilevski,

More information

Venus - Overview. Exploration of Venus. Admin. 9/26/17. Second planet from Sun Earth s sister planet

Venus - Overview. Exploration of Venus. Admin. 9/26/17. Second planet from Sun Earth s sister planet Admin. 9/26/17 1. Class website http://www.astro.ufl.edu/~jt/teaching/ast1002/ 2. Optional Discussion sections: Tue. ~11.30am (period 5), Bryant 3; Thur. ~12.35pm (end of period 5 and period 6), start

More information

ASTRO 120 Sample Exam

ASTRO 120 Sample Exam ASTRO 120 Sample Exam 1) If a planet has a reasonably strong magnetic field, we know that a. It is made entirely of iron b. There is liquid nitrogen below the surface c. It can harbor life d. It has a

More information

Venus Express: Results, Status and Future Plans

Venus Express: Results, Status and Future Plans Venus Express: Results, Status and Future Plans Håkan Svedhem ESA/ESTEC Present Status The spacecraft and its payload in general is in a good condition, with the following remarks: One of the two coolers

More information

Detection from Space of Active Volcanism on Earth and, Potentially, on Venus and Rocky Exoplanets

Detection from Space of Active Volcanism on Earth and, Potentially, on Venus and Rocky Exoplanets Detection from Space of Active Volcanism on Earth and, Potentially, on Venus and Rocky Exoplanets Pete Mouginis Mark Hawaii Institute Geophysics and Planetology University of Hawaii Overview Styles of

More information

InSAR measurements of volcanic deformation at Etna forward modelling of atmospheric errors for interferogram correction

InSAR measurements of volcanic deformation at Etna forward modelling of atmospheric errors for interferogram correction InSAR measurements of volcanic deformation at Etna forward modelling of atmospheric errors for interferogram correction Rachel Holley, Geoff Wadge, Min Zhu Environmental Systems Science Centre, University

More information

INTRODUCTION TO MICROWAVE REMOTE SENSING. Dr. A. Bhattacharya

INTRODUCTION TO MICROWAVE REMOTE SENSING. Dr. A. Bhattacharya 1 INTRODUCTION TO MICROWAVE REMOTE SENSING Dr. A. Bhattacharya Why Microwaves? More difficult than with optical imaging because the technology is more complicated and the image data recorded is more varied.

More information

JUpiter Icy Moons Explorer (JUICE) Status report for OPAG. N. Altobelli (on behalf of O. Witasse) JUICE artist impression (Credits ESA, AOES)

JUpiter Icy Moons Explorer (JUICE) Status report for OPAG. N. Altobelli (on behalf of O. Witasse) JUICE artist impression (Credits ESA, AOES) JUpiter Icy Moons Explorer (JUICE) Status report for OPAG N. Altobelli (on behalf of O. Witasse) JUICE artist impression (Credits ESA, AOES) Message on behalf of the JUICE Science Working Team Congratulations

More information

The Layered Atmosphere:

The Layered Atmosphere: The Layered Atmosphere: The Earth s Atmosphere Like all the planets, the Earth s atmosphere is highly distinct. What makes it different from the other terrestrial planets? Comparative Planetology The basic

More information

Lunar Geology ASTR 2120 Sarazin

Lunar Geology ASTR 2120 Sarazin Lunar Geology ASTR 2120 Sarazin Interior of the Moon Density low (3.3 gm/cc), very little iron No iron core Very small heat flow out of interior Little radioactive heating No magnetic field No molten iron

More information

Astronomy 103: First Exam

Astronomy 103: First Exam Name: Astronomy 103: First Exam Stephen Lepp October 27, 2010 Each question is worth 2 points. Write your name on this exam and on the scantron. 1 Short Answer A. What is the largest of the terrestrial

More information

Mini-RF: An Imaging Radar for the Moon. Ben Bussey The Johns Hopkins University Applied Physics Laboratory

Mini-RF: An Imaging Radar for the Moon. Ben Bussey The Johns Hopkins University Applied Physics Laboratory Mini-RF: An Imaging Radar for the Moon Ben Bussey The Johns Hopkins University Applied Physics Laboratory Paul D. Spudis President s Commission on Implementation of United States Space Exploration Policy

More information

Interiors of Worlds and Heat loss

Interiors of Worlds and Heat loss Interiors of Worlds and Heat loss Differentiation -materials separate into layers by gravity How do we learn about planetary interiors? Measure moment of inertia & average density Observe seismic events

More information

Geomorphologic Mapping by Airborne Laser Scanning in Southern Victoria Land

Geomorphologic Mapping by Airborne Laser Scanning in Southern Victoria Land Geomorphologic Mapping by Airborne Laser Scanning in Southern Victoria Land Bea Csatho, Terry Wilson, Tony Schenk, Garry McKenzie, Byrd Polar Research Center, The Ohio State University, Columbus, OH William

More information

SP-1291 June Mars Express. The Scientific Investigations

SP-1291 June Mars Express. The Scientific Investigations SP-1291 June 2009 Mars Express The Scientific Investigations Operations and Archiving Mars Express Science Planning and Operations R. Pischel & T. Zegers ESA/ESTEC, Research and Scientific Support Department,

More information

Venus Express Aerobraking and End of Mission

Venus Express Aerobraking and End of Mission Venus Express Aerobraking and End of Mission Håkan Svedhem ESA/ESTEC Pericentre velocity vs Orbital Period Examples (VEX): Delta-V needed for Reduction of orbital period: 24h-18h 90m/s 18h-16h 42m/s 18h-12h

More information

2. Terrestrial Planet G 9. Coulomb Force C 16. Babcock model Q. 3. Continuous Spectrum K 10. Large-impact hypothesis I 17.

2. Terrestrial Planet G 9. Coulomb Force C 16. Babcock model Q. 3. Continuous Spectrum K 10. Large-impact hypothesis I 17. Astronomy 1 S 16 Exam 1 Name Identify terms Label each term with the appropriate letter of a definition listed 1. Spectral line R 8. Albedo H 15. helioseismology E 2. Terrestrial Planet G 9. Coulomb Force

More information

A Regional Microsatellite Constellation with Electric Propulsion In Support of Tuscan Agriculture

A Regional Microsatellite Constellation with Electric Propulsion In Support of Tuscan Agriculture Berlin, 20 th - 24 th 2015 University of Pisa 10 th IAA Symposium on Small Satellites for Earth Observation Student Conference A Regional Microsatellite Constellation with Electric Propulsion In Support

More information

Technology Reference Studies

Technology Reference Studies In the proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation 'ASTRA 2004' ESTEC, Noordwijk, The Netherlands, November 2-4, 2004 Technology Reference Studies P.

More information

Planetary Atmospheres

Planetary Atmospheres Planetary Atmospheres Structure Composition Clouds Meteorology Photochemistry Atmospheric Escape EAS 4803/8803 - CP 11:1 Structure Generalized Hydrostatic Equilibrium P( z) = P( 0)e z # ( ) " dr / H r

More information

Image of the Moon from the Galileo Space Craft

Image of the Moon from the Galileo Space Craft Image of the Moon from the Galileo Space Craft Moon: Overview Due to its size (diameter 3476 km, Mercury s diameter is 4880 km) and composition, the moon is sometimes considered as a terrestrial planet

More information

Direct Aerial Robot Explorers (DARE) For Planetary Exploration

Direct Aerial Robot Explorers (DARE) For Planetary Exploration Direct Aerial Robot Explorers (DARE) For Planetary Exploration Presentation to NIAC Fellows Meeting By Dr. Alexey Pankine Global www.gaerospace.com Global October 23, 2002 CONTRIBUTORS Global Prof. Andrew

More information

Astrobiology in the inner Solar System

Astrobiology in the inner Solar System Venus Surface conditions Astrobiology in the inner Solar System Planets and Astrobiology (2016-2017) G. Vladilo T s =735 K p s =92 x 10 5 Pa Atmospheric composition dominated by CO 2, without O 2 Absence

More information

RADAR Remote Sensing Application Examples

RADAR Remote Sensing Application Examples RADAR Remote Sensing Application Examples! All-weather capability: Microwave penetrates clouds! Construction of short-interval time series through cloud cover - crop-growth cycle! Roughness - Land cover,

More information

A Stellar Gyroscope for CubeSat Attitude Determination

A Stellar Gyroscope for CubeSat Attitude Determination A Stellar Gyroscope for CubeSat Attitude Determination Samir A. Rawashdeh and James E. Lumpp, Jr. Space Systems Laboratory University of Kentucky James Barrington-Brown and Massimiliano Pastena SSBV Space

More information

CIRiS: Compact Infrared Radiometer in Space LCPM, August 16, 2017 David Osterman PI, CIRiS Mission

CIRiS: Compact Infrared Radiometer in Space LCPM, August 16, 2017 David Osterman PI, CIRiS Mission 1 CIRiS: Compact Infrared Radiometer in Space LCPM, August 16, 2017 David Osterman PI, CIRiS Mission 8/15/201 7 Overview of the CIRiS instrument and mission The CIRiS instrument is a radiometric thermal

More information