MACHINE LEARNING FOR NATURAL LANGUAGE PROCESSING

Size: px
Start display at page:

Download "MACHINE LEARNING FOR NATURAL LANGUAGE PROCESSING"

Transcription

1 MACHINE LEARNING FOR NATURAL LANGUAGE PROCESSING

2 Outline Some Sample NLP Task [Noah Smith] Structured Prediction For NLP Structured Prediction Methods Conditional Random Fields Structured Perceptron Discussion

3 MOTIVATING STRUCTURED- OUTPUT PREDICTION FOR NLP

4 Types of machine learning Input Attributes Input Attributes Classifier Density Estimator Prediction of categorical output or class One of a few discrete values Probability Input Attributes Regressor Prediction of real-valued output Copyright Andrew W. Moore

5

6

7

8

9

10

11

12 Outline Some Sample NLP Task [Noah Smith] What do these have in common? We re making many related predictions... Structured Prediction For NLP Structured Prediction Methods Structured Perceptron Conditional Random Fields Deep learning and NLP

13

14 via begin-inside-outside token tagging beginx inx* delimits entity X begingpe out out out out begingf ingf

15 via begin-inside-outside token tagging beginx inx* delimits entity X thistoken = english thistokenshape = X+ prevtoken = the prevprevtoken = across nettoken = channel netnettoken = Monday nettokenshape = X+ prevtokenshape = +. thistoken_english = 1 thistokenshape_x+ = 1 prevtoken_the = 1 prevprevtoken_across = 1 begingf begingf ingf a classification task!

16 via begin-inside-outside token tagging A problem: the instances are not i.i.d, nor are the classes. inx usually happens after beginx or inx beginx usually happens after out thistoken_the = 1 thistokenshape_+ = 1 prevtoken_across = 1 thistoken_english = 1 thistokenshape_x+ = 1 prevtoken_the = 1 prevprevtoken_across = 1 thistoken_channel = 1 thistokenshape_x+ = 1 prevtoken_english = 1 prevprevtoken_the = 1 out begingf ingf

17 Structured Output Prediction Structured Output Prediction: deqinition classiqier where output is structured, and input might be structured eample: predict a sequence of begin- in- out tags from a sequence of tokens (represented by a sequence of feature vectors)

18 NER via begin-inside-outside token tagging A problem: with K begin-inside-outside tags and N words, we have N K possible structured labels. = How can we learn to chose among so many possible outputs? y = begingpe out out out out begingf ingf

19 HMMS AND NER

20 out begingpe ingpe e.g., HMMs map a sequence of tokens to a sequence of outputs (the hidden states) begingf beginper ingf inper = y = begingpe out out out out begingf ingf

21 Borkar et al s: HMMs for segmentation n n n Eample: Addresses, bib records Problem: some DBs may split records up differently (eg no mail stop field, combine address and apt #, ) or not at all Solution: Learn to segment tetual form of records Author Year Title Journal Volume Page P.P.Wangikar, T.P. Graycar, D.A. Estell, D.S. Clark, J.S. Dordick (1993) Protein and Solvent Engineering of Subtilising BPN' in Nearly Anhydrous Organic Media J.Amer. Chem. Soc. 115,

22 IE with Hidden Markov Models Must learn transition, emission probabilities Smith Cohen Jordan Transition probabilities dddd dd 0.5 Author 0.9 Year Journal 0.2 Title 0.5 Learning Conve Comm. Trans. Chemical Emission probabilities

23 HMMS limitation: not well-suited to modeling a set of features for each token. thistoken = english thistokenshape = X+ prevtoken = the prevprevtoken = across nettoken = channel netnettoken = Monday nettokenshape = X+ prevtokenshape = +. thistoken_english = 1 thistokenshape_x+ = 1 prevtoken_the = 1 prevprevtoken_across = 1 begingf begingf ingf a classification task!

24 What is a symbol? Ideally we would like to use many, arbitrary, overlapping features of words. identity of word ends in -ski is capitalized is part of a noun phrase is in a list of city names is under node X in WordNet is in bold font is indented is in hyperlink anchor is Wisniewski part of noun phrase S t - 1 ends in -ski O t - 1 S t O t S t+1 O t +1 Lots of learning systems are not confounded by multiple, nonindependent features: decision trees, neural nets, SVMs,

25 Outline Some Sample NLP Task [Noah Smith] Structured Prediction For NLP Structured Prediction Methods HMMs Conditional Random Fields Structured Perceptron Discussion

26 CONDITIONAL RANDOM FIELDS

27 What is a symbol? Ideally we would like to use many, arbitrary, overlapping features of words. identity of word ends in -ski is capitalized is part of a noun phrase is in a list of city names is under node X in WordNet is in bold font is indented is in hyperlink anchor is Wisniewski part of noun phrase S t - 1 ends in -ski O t - 1 S t O t S t+1 O t +1 Lots of learning systems are not confounded by multiple, nonindependent features: decision trees, neural nets, SVMs,

28 Inference for linear-chain MRFs When will prof Cohen post the notes Idea 1: features are properties of two adjacent tokens, and the pair of labels assigned to them. (y(i)==b or y(i)==i) and (token(i) is capitalized) (y(i)==i and y(i-1)==b) and (token(i) is hyphenated) (y(i)==b and y(i-1)==b) eg tell Ziv William is on the way Idea 2: construct a graph where each path is a possible sequence labeling.

29 Inference for a linear-chain MRF B I O B I O B I O B I O B I O B I O B I O When will prof Cohen post the notes Inference: find the highest-weight path Learning: optimize the feature weights so that this highest-weight path is correct relative to the data

30 Inference for a linear-chain MRF When will prof Cohen post the notes B B B B B B B I I I I I I I O O O O O O O Feature + weights define edge weights: weight(y i,y i+1 ) = 2*[(y i =B or I) and iscap( i )] + 1*[(y i =B and isfirstname( i )] - 5*[(y i+1 B and islower( i ) and isupper( i+1 )]

31 CRF learning from Sha & Pereira

32 CRF learning from Sha & Pereira

33 CRF learning from Sha & Pereira Something like forward-backward Idea: Define matri of y,y affinities at stage i M i [y,y ] = unnormalized probability of transition from y to y at stage I M i * M i+1 = unnormalized probability of any path through stages i and i+1

34 Sha & Pereira results CRF beats MEMM (McNemar s test); MEMM probably beats voted perceptron

35 Sha & Pereira results in minutes, 375k eamples

36 THE STRUCTURED PERCEPTRON

37 Review: The perceptron A instance i ^ y i B ^ Compute: y i = v k. i If mistake: v k+1 = v k + y i i y i

38 (3a) The guess v 2 after the two positive eamples: v 2 =v (3b) The guess v 2 after the one positive and one negative eample: v 2 =v v 2 u u v 2 >γ v 1 v u -u - 2 2γ 2γ

39 (3a) The guess v 2 after the two positive eamples: v 2 =v (3b) The guess v 2 after the one positive and one negative eample: v 2 =v v 2 u u v 2 v 1 v u -u - 2 2γ 2γ

40 R = γ 2 2

41 The voted perceptron for ranking A instances b* b B ^ Compute: y i = v k. i Return: the inde b* of the best i If mistake: v k+1 = v k + b - b*

42 u Ranking some s with the target vector u γ -u

43 u Ranking some s with some guess vector v part 1 γ v -u

44 u Ranking some s with some guess vector v part 2. -u v The purple-circled is b* - the one the learner has chosen to rank highest. The green circled is b, the right answer.

45 u Correcting v by adding b b* v -u

46 V k+1 Correcting v by adding b b* (part 2) v k

47 (3a) The guess v 2 after the two positive eamples: v 2 =v u + 2 v 2 u >γ v v 1 -u -u 2γ

48 (3a) The guess v 2 after the two positive eamples: v 2 =v u + 2 v 2 u >γ v v 1 -u -u 3 2γ

49 (3a) The guess v 2 after the two positive eamples: v 2 =v u + 2 v 2 u >γ v 1 v -u 2γ -u 3

50 Notice this doesn t depend at all on the number of s being ranked u (3a) The guess v 2 after the two positive eamples: v 2 =v v 2 u >γ v v 1 -u -u 2γ Neither proof depends on the dimension of the s.

51 The voted perceptron for ranking A instances b* b B ^ Compute: y i = v k. i Return: the inde b* of the best i If mistake: v k+1 = v k + b - b* Change number one is notation: replace with g

52 The voted perceptron for NER A instances g 1 g 2 g 3 g 4 B ^ Compute: y i = v k. g i Return: the inde b* of the best g i b* b If mistake: v k+1 = v k + g b - g b* 1. A sends B the Sha & Pereira paper, some feature functions, and instructions for creating the instances g: A sends a word vector i. Then B could create the instances g 1 =F( i,y 1 ), g 2 = F( i,y 2 ), but instead B just returns the y* that gives the best score for the dot product v k. F( i,y*) by using Viterbi. 2. A sends B the correct label sequence y i. 3. On errors, B sets v k+1 = v k + g b - g b* = v k + F( i,y) - F( i,y*)

53 The voted perceptron for NER A instances z 1 z 2 z 3 z 4 B ^ Compute: y i = v k. z i Return: the inde b* of the best z i b* b If mistake: v k+1 = v k + z b - z b* 1. A sends a word vector i. 2. B just returns the y* that gives the best score for v k. F( i,y*) 3. A sends B the correct label sequence y i. 4. On errors, B sets v k+1 = v k + z b - z b* = v k + F( i,y) - F( i,y*) So, this algorithm can also be viewed as an approimation to the CRF learning algorithm where we re using a Viterbi approimation to the epectations, and stochastic gradient descent to optimize the likelihood.

54 And back to the paper.. EMNLP 2002, Best paper

55 Collins Eperiments POS tagging (with MXPOST features) NP Chunking (words and POS tags from Brill s tagger as features) and BIO output tags Compared Maent Tagging/MEMM s (with iterative scaling) and Voted Perceptron trained HMM s With and w/o averaging With and w/o feature selection (count>5)

56 Collins results

57 Outline Some Sample NLP Task [Noah Smith] Structured Prediction For NLP Structured Prediction Methods Conditional Random Fields Structured Perceptron Discussion

58 Discussion Structured prediction is just one part of NLP There is lots of work on learning and NLP It would be much easier to summarize nonlearning related NLP CRFs/HMMs/structured perceptrons are just one part of structured output prediction Chris Dyer course. Hot topic now: representation learning and deep learning for NLP NAACL 2013: Deep learning for NLP, Manning

http://futurama.wikia.com/wiki/dr._perceptron 1 Where we are Eperiments with a hash-trick implementation of logistic regression Net question: how do you parallelize SGD, or more generally, this kind of

More information

Announcements. Guest lectures schedule: D. Sculley, Google Pgh, 3/26 Alex Beutel, SGD for tensors, 4/7 Alex Smola, something cool, 4/9

Announcements. Guest lectures schedule: D. Sculley, Google Pgh, 3/26 Alex Beutel, SGD for tensors, 4/7 Alex Smola, something cool, 4/9 Announcements Guest lectures schedule: D. Sculley, Google Pgh, 3/26 Ale Beutel, SGD for tensors, 4/7 Ale Smola, something cool, 4/9 Projects Students in 805: First draft of project proposal due 2/17. Some

More information

Statistical NLP for the Web Log Linear Models, MEMM, Conditional Random Fields

Statistical NLP for the Web Log Linear Models, MEMM, Conditional Random Fields Statistical NLP for the Web Log Linear Models, MEMM, Conditional Random Fields Sameer Maskey Week 13, Nov 28, 2012 1 Announcements Next lecture is the last lecture Wrap up of the semester 2 Final Project

More information

Lecture 13: Structured Prediction

Lecture 13: Structured Prediction Lecture 13: Structured Prediction Kai-Wei Chang CS @ University of Virginia kw@kwchang.net Couse webpage: http://kwchang.net/teaching/nlp16 CS6501: NLP 1 Quiz 2 v Lectures 9-13 v Lecture 12: before page

More information

What s an HMM? Extraction with Finite State Machines e.g. Hidden Markov Models (HMMs) Hidden Markov Models (HMMs) for Information Extraction

What s an HMM? Extraction with Finite State Machines e.g. Hidden Markov Models (HMMs) Hidden Markov Models (HMMs) for Information Extraction Hidden Markov Models (HMMs) for Information Extraction Daniel S. Weld CSE 454 Extraction with Finite State Machines e.g. Hidden Markov Models (HMMs) standard sequence model in genomics, speech, NLP, What

More information

Sequential Supervised Learning

Sequential Supervised Learning Sequential Supervised Learning Many Application Problems Require Sequential Learning Part-of of-speech Tagging Information Extraction from the Web Text-to to-speech Mapping Part-of of-speech Tagging Given

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 24, 2016 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

Machine Learning for Structured Prediction

Machine Learning for Structured Prediction Machine Learning for Structured Prediction Grzegorz Chrupa la National Centre for Language Technology School of Computing Dublin City University NCLT Seminar Grzegorz Chrupa la (DCU) Machine Learning for

More information

Conditional Random Fields and beyond DANIEL KHASHABI CS 546 UIUC, 2013

Conditional Random Fields and beyond DANIEL KHASHABI CS 546 UIUC, 2013 Conditional Random Fields and beyond DANIEL KHASHABI CS 546 UIUC, 2013 Outline Modeling Inference Training Applications Outline Modeling Problem definition Discriminative vs. Generative Chain CRF General

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Global linear models Based on slides from Michael Collins Globally-normalized models Why do we decompose to a sequence of decisions? Can we directly estimate the probability

More information

Probabilistic Models for Sequence Labeling

Probabilistic Models for Sequence Labeling Probabilistic Models for Sequence Labeling Besnik Fetahu June 9, 2011 Besnik Fetahu () Probabilistic Models for Sequence Labeling June 9, 2011 1 / 26 Background & Motivation Problem introduction Generative

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 23, 2015 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

Lecture 13: Discriminative Sequence Models (MEMM and Struct. Perceptron)

Lecture 13: Discriminative Sequence Models (MEMM and Struct. Perceptron) Lecture 13: Discriminative Sequence Models (MEMM and Struct. Perceptron) Intro to NLP, CS585, Fall 2014 http://people.cs.umass.edu/~brenocon/inlp2014/ Brendan O Connor (http://brenocon.com) 1 Models for

More information

Conditional Random Field

Conditional Random Field Introduction Linear-Chain General Specific Implementations Conclusions Corso di Elaborazione del Linguaggio Naturale Pisa, May, 2011 Introduction Linear-Chain General Specific Implementations Conclusions

More information

Predicting Sequences: Structured Perceptron. CS 6355: Structured Prediction

Predicting Sequences: Structured Perceptron. CS 6355: Structured Prediction Predicting Sequences: Structured Perceptron CS 6355: Structured Prediction 1 Conditional Random Fields summary An undirected graphical model Decompose the score over the structure into a collection of

More information

More on HMMs and other sequence models. Intro to NLP - ETHZ - 18/03/2013

More on HMMs and other sequence models. Intro to NLP - ETHZ - 18/03/2013 More on HMMs and other sequence models Intro to NLP - ETHZ - 18/03/2013 Summary Parts of speech tagging HMMs: Unsupervised parameter estimation Forward Backward algorithm Bayesian variants Discriminative

More information

NLP Programming Tutorial 11 - The Structured Perceptron

NLP Programming Tutorial 11 - The Structured Perceptron NLP Programming Tutorial 11 - The Structured Perceptron Graham Neubig Nara Institute of Science and Technology (NAIST) 1 Prediction Problems Given x, A book review Oh, man I love this book! This book is

More information

Statistical Methods for NLP

Statistical Methods for NLP Statistical Methods for NLP Sequence Models Joakim Nivre Uppsala University Department of Linguistics and Philology joakim.nivre@lingfil.uu.se Statistical Methods for NLP 1(21) Introduction Structured

More information

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Probabilistic Graphical Models: MRFs and CRFs CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Why PGMs? PGMs can model joint probabilities of many events. many techniques commonly

More information

Conditional Random Fields for Sequential Supervised Learning

Conditional Random Fields for Sequential Supervised Learning Conditional Random Fields for Sequential Supervised Learning Thomas G. Dietterich Adam Ashenfelter Department of Computer Science Oregon State University Corvallis, Oregon 97331 http://www.eecs.oregonstate.edu/~tgd

More information

10 : HMM and CRF. 1 Case Study: Supervised Part-of-Speech Tagging

10 : HMM and CRF. 1 Case Study: Supervised Part-of-Speech Tagging 10-708: Probabilistic Graphical Models 10-708, Spring 2018 10 : HMM and CRF Lecturer: Kayhan Batmanghelich Scribes: Ben Lengerich, Michael Kleyman 1 Case Study: Supervised Part-of-Speech Tagging We will

More information

Undirected Graphical Models for Sequence Analysis

Undirected Graphical Models for Sequence Analysis Undirected Graphical Models for Sequence Analysis Fernando Pereira University of Pennsylvania Joint work with John Lafferty, Andrew McCallum, and Fei Sha Motivation: Information Extraction Co-reference

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima.

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima. http://goo.gl/jv7vj9 Course website KYOTO UNIVERSITY Statistical Machine Learning Theory From Multi-class Classification to Structured Output Prediction Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT

More information

Graphical models for part of speech tagging

Graphical models for part of speech tagging Indian Institute of Technology, Bombay and Research Division, India Research Lab Graphical models for part of speech tagging Different Models for POS tagging HMM Maximum Entropy Markov Models Conditional

More information

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging Stephen Clark Natural Language and Information Processing (NLIP) Group sc609@cam.ac.uk The POS Tagging Problem 2 England NNP s POS fencers

More information

Hidden Markov Models

Hidden Markov Models 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Hidden Markov Models Matt Gormley Lecture 22 April 2, 2018 1 Reminders Homework

More information

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015 Sequence Modelling with Features: Linear-Chain Conditional Random Fields COMP-599 Oct 6, 2015 Announcement A2 is out. Due Oct 20 at 1pm. 2 Outline Hidden Markov models: shortcomings Generative vs. discriminative

More information

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima.

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima. http://goo.gl/xilnmn Course website KYOTO UNIVERSITY Statistical Machine Learning Theory From Multi-class Classification to Structured Output Prediction Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT

More information

Language and Statistics II

Language and Statistics II Language and Statistics II Lecture 19: EM for Models of Structure Noah Smith Epectation-Maimization E step: i,, q i # p r $ t = p r i % ' $ t i, p r $ t i,' soft assignment or voting M step: r t +1 # argma

More information

Conditional Random Fields

Conditional Random Fields Conditional Random Fields Micha Elsner February 14, 2013 2 Sums of logs Issue: computing α forward probabilities can undeflow Normally we d fix this using logs But α requires a sum of probabilities Not

More information

Chunking with Support Vector Machines

Chunking with Support Vector Machines NAACL2001 Chunking with Support Vector Machines Graduate School of Information Science, Nara Institute of Science and Technology, JAPAN Taku Kudo, Yuji Matsumoto {taku-ku,matsu}@is.aist-nara.ac.jp Chunking

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information

Brief Introduction of Machine Learning Techniques for Content Analysis

Brief Introduction of Machine Learning Techniques for Content Analysis 1 Brief Introduction of Machine Learning Techniques for Content Analysis Wei-Ta Chu 2008/11/20 Outline 2 Overview Gaussian Mixture Model (GMM) Hidden Markov Model (HMM) Support Vector Machine (SVM) Overview

More information

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.047 / 6.878 Computational Biology: Genomes, etworks, Evolution Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them HMM, MEMM and CRF 40-957 Special opics in Artificial Intelligence: Probabilistic Graphical Models Sharif University of echnology Soleymani Spring 2014 Sequence labeling aking collective a set of interrelated

More information

Text Mining. March 3, March 3, / 49

Text Mining. March 3, March 3, / 49 Text Mining March 3, 2017 March 3, 2017 1 / 49 Outline Language Identification Tokenisation Part-Of-Speech (POS) tagging Hidden Markov Models - Sequential Taggers Viterbi Algorithm March 3, 2017 2 / 49

More information

Administrivia. What is Information Extraction. Finite State Models. Graphical Models. Hidden Markov Models (HMMs) for Information Extraction

Administrivia. What is Information Extraction. Finite State Models. Graphical Models. Hidden Markov Models (HMMs) for Information Extraction Administrivia Hidden Markov Models (HMMs) for Information Extraction Group meetings next week Feel free to rev proposals thru weekend Daniel S. Weld CSE 454 What is Information Extraction Landscape of

More information

lecture 6: modeling sequences (final part)

lecture 6: modeling sequences (final part) Natural Language Processing 1 lecture 6: modeling sequences (final part) Ivan Titov Institute for Logic, Language and Computation Outline After a recap: } Few more words about unsupervised estimation of

More information

Part of Speech Tagging: Viterbi, Forward, Backward, Forward- Backward, Baum-Welch. COMP-599 Oct 1, 2015

Part of Speech Tagging: Viterbi, Forward, Backward, Forward- Backward, Baum-Welch. COMP-599 Oct 1, 2015 Part of Speech Tagging: Viterbi, Forward, Backward, Forward- Backward, Baum-Welch COMP-599 Oct 1, 2015 Announcements Research skills workshop today 3pm-4:30pm Schulich Library room 313 Start thinking about

More information

A brief introduction to Conditional Random Fields

A brief introduction to Conditional Random Fields A brief introduction to Conditional Random Fields Mark Johnson Macquarie University April, 2005, updated October 2010 1 Talk outline Graphical models Maximum likelihood and maximum conditional likelihood

More information

with Local Dependencies

with Local Dependencies CS11-747 Neural Networks for NLP Structured Prediction with Local Dependencies Xuezhe Ma (Max) Site https://phontron.com/class/nn4nlp2017/ An Example Structured Prediction Problem: Sequence Labeling Sequence

More information

Log-Linear Models, MEMMs, and CRFs

Log-Linear Models, MEMMs, and CRFs Log-Linear Models, MEMMs, and CRFs Michael Collins 1 Notation Throughout this note I ll use underline to denote vectors. For example, w R d will be a vector with components w 1, w 2,... w d. We use expx

More information

Sequence Labeling: HMMs & Structured Perceptron

Sequence Labeling: HMMs & Structured Perceptron Sequence Labeling: HMMs & Structured Perceptron CMSC 723 / LING 723 / INST 725 MARINE CARPUAT marine@cs.umd.edu HMM: Formal Specification Q: a finite set of N states Q = {q 0, q 1, q 2, q 3, } N N Transition

More information

Expectation Maximization (EM)

Expectation Maximization (EM) Expectation Maximization (EM) The EM algorithm is used to train models involving latent variables using training data in which the latent variables are not observed (unlabeled data). This is to be contrasted

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Logistic Regression: Online, Lazy, Kernelized, Sequential, etc.

Logistic Regression: Online, Lazy, Kernelized, Sequential, etc. Logistic Regression: Online, Lazy, Kernelized, Sequential, etc. Harsha Veeramachaneni Thomson Reuter Research and Development April 1, 2010 Harsha Veeramachaneni (TR R&D) Logistic Regression April 1, 2010

More information

Structured Prediction

Structured Prediction Structured Prediction Classification Algorithms Classify objects x X into labels y Y First there was binary: Y = {0, 1} Then multiclass: Y = {1,...,6} The next generation: Structured Labels Structured

More information

Regularization Introduction to Machine Learning. Matt Gormley Lecture 10 Feb. 19, 2018

Regularization Introduction to Machine Learning. Matt Gormley Lecture 10 Feb. 19, 2018 1-61 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Regularization Matt Gormley Lecture 1 Feb. 19, 218 1 Reminders Homework 4: Logistic

More information

Multiclass Classification-1

Multiclass Classification-1 CS 446 Machine Learning Fall 2016 Oct 27, 2016 Multiclass Classification Professor: Dan Roth Scribe: C. Cheng Overview Binary to multiclass Multiclass SVM Constraint classification 1 Introduction Multiclass

More information

Maximum Entropy Markov Models

Maximum Entropy Markov Models Wi nøt trei a høliday in Sweden this yër? September 19th 26 Background Preliminary CRF work. Published in 2. Authors: McCallum, Freitag and Pereira. Key concepts: Maximum entropy / Overlapping features.

More information

8: Hidden Markov Models

8: Hidden Markov Models 8: Hidden Markov Models Machine Learning and Real-world Data Helen Yannakoudakis 1 Computer Laboratory University of Cambridge Lent 2018 1 Based on slides created by Simone Teufel So far we ve looked at

More information

CMSC 723: Computational Linguistics I Session #5 Hidden Markov Models. The ischool University of Maryland. Wednesday, September 30, 2009

CMSC 723: Computational Linguistics I Session #5 Hidden Markov Models. The ischool University of Maryland. Wednesday, September 30, 2009 CMSC 723: Computational Linguistics I Session #5 Hidden Markov Models Jimmy Lin The ischool University of Maryland Wednesday, September 30, 2009 Today s Agenda The great leap forward in NLP Hidden Markov

More information

Hidden Markov Models

Hidden Markov Models 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Hidden Markov Models Matt Gormley Lecture 19 Nov. 5, 2018 1 Reminders Homework

More information

Lecture 5 Neural models for NLP

Lecture 5 Neural models for NLP CS546: Machine Learning in NLP (Spring 2018) http://courses.engr.illinois.edu/cs546/ Lecture 5 Neural models for NLP Julia Hockenmaier juliahmr@illinois.edu 3324 Siebel Center Office hours: Tue/Thu 2pm-3pm

More information

CSE 490 U Natural Language Processing Spring 2016

CSE 490 U Natural Language Processing Spring 2016 CSE 490 U Natural Language Processing Spring 2016 Feature Rich Models Yejin Choi - University of Washington [Many slides from Dan Klein, Luke Zettlemoyer] Structure in the output variable(s)? What is the

More information

The Noisy Channel Model and Markov Models

The Noisy Channel Model and Markov Models 1/24 The Noisy Channel Model and Markov Models Mark Johnson September 3, 2014 2/24 The big ideas The story so far: machine learning classifiers learn a function that maps a data item X to a label Y handle

More information

A gentle introduction to Hidden Markov Models

A gentle introduction to Hidden Markov Models A gentle introduction to Hidden Markov Models Mark Johnson Brown University November 2009 1 / 27 Outline What is sequence labeling? Markov models Hidden Markov models Finding the most likely state sequence

More information

Simple Neural Nets For Pattern Classification

Simple Neural Nets For Pattern Classification CHAPTER 2 Simple Neural Nets For Pattern Classification Neural Networks General Discussion One of the simplest tasks that neural nets can be trained to perform is pattern classification. In pattern classification

More information

Conditional Random Fields: An Introduction

Conditional Random Fields: An Introduction University of Pennsylvania ScholarlyCommons Technical Reports (CIS) Department of Computer & Information Science 2-24-2004 Conditional Random Fields: An Introduction Hanna M. Wallach University of Pennsylvania

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Trevor Cohn 24. Hidden Markov Models & message passing Looking back Representation of joint distributions Conditional/marginal independence

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Slides mostly from Mitch Marcus and Eric Fosler (with lots of modifications). Have you seen HMMs? Have you seen Kalman filters? Have you seen dynamic programming? HMMs are dynamic

More information

Andrew McCallum Department of Computer Science University of Massachusetts Amherst, MA

Andrew McCallum Department of Computer Science University of Massachusetts Amherst, MA University of Massachusetts TR 04-49; July 2004 1 Collective Segmentation and Labeling of Distant Entities in Information Extraction Charles Sutton Department of Computer Science University of Massachusetts

More information

Midterm sample questions

Midterm sample questions Midterm sample questions CS 585, Brendan O Connor and David Belanger October 12, 2014 1 Topics on the midterm Language concepts Translation issues: word order, multiword translations Human evaluation Parts

More information

Random Field Models for Applications in Computer Vision

Random Field Models for Applications in Computer Vision Random Field Models for Applications in Computer Vision Nazre Batool Post-doctorate Fellow, Team AYIN, INRIA Sophia Antipolis Outline Graphical Models Generative vs. Discriminative Classifiers Markov Random

More information

Statistical Methods for NLP

Statistical Methods for NLP Statistical Methods for NLP Information Extraction, Hidden Markov Models Sameer Maskey Week 5, Oct 3, 2012 *many slides provided by Bhuvana Ramabhadran, Stanley Chen, Michael Picheny Speech Recognition

More information

Applied Natural Language Processing

Applied Natural Language Processing Applied Natural Language Processing Info 256 Lecture 20: Sequence labeling (April 9, 2019) David Bamman, UC Berkeley POS tagging NNP Labeling the tag that s correct for the context. IN JJ FW SYM IN JJ

More information

Neural Networks. Nicholas Ruozzi University of Texas at Dallas

Neural Networks. Nicholas Ruozzi University of Texas at Dallas Neural Networks Nicholas Ruozzi University of Texas at Dallas Handwritten Digit Recognition Given a collection of handwritten digits and their corresponding labels, we d like to be able to correctly classify

More information

2.2 Structured Prediction

2.2 Structured Prediction The hinge loss (also called the margin loss), which is optimized by the SVM, is a ramp function that has slope 1 when yf(x) < 1 and is zero otherwise. Two other loss functions squared loss and exponential

More information

Machine Learning Basics III

Machine Learning Basics III Machine Learning Basics III Benjamin Roth CIS LMU München Benjamin Roth (CIS LMU München) Machine Learning Basics III 1 / 62 Outline 1 Classification Logistic Regression 2 Gradient Based Optimization Gradient

More information

Segmental Recurrent Neural Networks for End-to-end Speech Recognition

Segmental Recurrent Neural Networks for End-to-end Speech Recognition Segmental Recurrent Neural Networks for End-to-end Speech Recognition Liang Lu, Lingpeng Kong, Chris Dyer, Noah Smith and Steve Renals TTI-Chicago, UoE, CMU and UW 9 September 2016 Background A new wave

More information

Machine Learning, Fall 2009: Midterm

Machine Learning, Fall 2009: Midterm 10-601 Machine Learning, Fall 009: Midterm Monday, November nd hours 1. Personal info: Name: Andrew account: E-mail address:. You are permitted two pages of notes and a calculator. Please turn off all

More information

Deep Learning for NLP

Deep Learning for NLP Deep Learning for NLP Instructor: Wei Xu Ohio State University CSE 5525 Many slides from Greg Durrett Outline Motivation for neural networks Feedforward neural networks Applying feedforward neural networks

More information

Final Examination CS 540-2: Introduction to Artificial Intelligence

Final Examination CS 540-2: Introduction to Artificial Intelligence Final Examination CS 540-2: Introduction to Artificial Intelligence May 7, 2017 LAST NAME: SOLUTIONS FIRST NAME: Problem Score Max Score 1 14 2 10 3 6 4 10 5 11 6 9 7 8 9 10 8 12 12 8 Total 100 1 of 11

More information

Linear Models for Classification: Discriminative Learning (Perceptron, SVMs, MaxEnt)

Linear Models for Classification: Discriminative Learning (Perceptron, SVMs, MaxEnt) Linear Models for Classification: Discriminative Learning (Perceptron, SVMs, MaxEnt) Nathan Schneider (some slides borrowed from Chris Dyer) ENLP 12 February 2018 23 Outline Words, probabilities Features,

More information

Intro to Neural Networks and Deep Learning

Intro to Neural Networks and Deep Learning Intro to Neural Networks and Deep Learning Jack Lanchantin Dr. Yanjun Qi UVA CS 6316 1 Neurons 1-Layer Neural Network Multi-layer Neural Network Loss Functions Backpropagation Nonlinearity Functions NNs

More information

ML4NLP Multiclass Classification

ML4NLP Multiclass Classification ML4NLP Multiclass Classification CS 590NLP Dan Goldwasser Purdue University dgoldwas@purdue.edu Social NLP Last week we discussed the speed-dates paper. Interesting perspective on NLP problems- Can we

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

Statistical NLP for the Web

Statistical NLP for the Web Statistical NLP for the Web Neural Networks, Deep Belief Networks Sameer Maskey Week 8, October 24, 2012 *some slides from Andrew Rosenberg Announcements Please ask HW2 related questions in courseworks

More information

Chapter 4 Dynamic Bayesian Networks Fall Jin Gu, Michael Zhang

Chapter 4 Dynamic Bayesian Networks Fall Jin Gu, Michael Zhang Chapter 4 Dynamic Bayesian Networks 2016 Fall Jin Gu, Michael Zhang Reviews: BN Representation Basic steps for BN representations Define variables Define the preliminary relations between variables Check

More information

Hidden Markov Models

Hidden Markov Models CS 2750: Machine Learning Hidden Markov Models Prof. Adriana Kovashka University of Pittsburgh March 21, 2016 All slides are from Ray Mooney Motivating Example: Part Of Speech Tagging Annotate each word

More information

From perceptrons to word embeddings. Simon Šuster University of Groningen

From perceptrons to word embeddings. Simon Šuster University of Groningen From perceptrons to word embeddings Simon Šuster University of Groningen Outline A basic computational unit Weighting some input to produce an output: classification Perceptron Classify tweets Written

More information

COMS 4771 Introduction to Machine Learning. Nakul Verma

COMS 4771 Introduction to Machine Learning. Nakul Verma COMS 4771 Introduction to Machine Learning Nakul Verma Announcements HW1 due next lecture Project details are available decide on the group and topic by Thursday Last time Generative vs. Discriminative

More information

Jessica Wehner. Summer Fellow Bioengineering and Bioinformatics Summer Institute University of Pittsburgh 29 May 2008

Jessica Wehner. Summer Fellow Bioengineering and Bioinformatics Summer Institute University of Pittsburgh 29 May 2008 Journal Club Jessica Wehner Summer Fellow Bioengineering and Bioinformatics Summer Institute University of Pittsburgh 29 May 2008 Comparison of Probabilistic Combination Methods for Protein Secondary Structure

More information

Learning to translate with neural networks. Michael Auli

Learning to translate with neural networks. Michael Auli Learning to translate with neural networks Michael Auli 1 Neural networks for text processing Similar words near each other France Spain dog cat Neural networks for text processing Similar words near each

More information

Hidden Markov Models in Language Processing

Hidden Markov Models in Language Processing Hidden Markov Models in Language Processing Dustin Hillard Lecture notes courtesy of Prof. Mari Ostendorf Outline Review of Markov models What is an HMM? Examples General idea of hidden variables: implications

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Lecture 12: Algorithms for HMMs

Lecture 12: Algorithms for HMMs Lecture 12: Algorithms for HMMs Nathan Schneider (some slides from Sharon Goldwater; thanks to Jonathan May for bug fixes) ENLP 26 February 2018 Recap: tagging POS tagging is a sequence labelling task.

More information

Revision: Neural Network

Revision: Neural Network Revision: Neural Network Exercise 1 Tell whether each of the following statements is true or false by checking the appropriate box. Statement True False a) A perceptron is guaranteed to perfectly learn

More information

Feedforward Neural Networks

Feedforward Neural Networks Chapter 4 Feedforward Neural Networks 4. Motivation Let s start with our logistic regression model from before: P(k d) = softma k =k ( λ(k ) + w d λ(k, w) ). (4.) Recall that this model gives us a lot

More information

Semi-Markov Conditional Random Fields for Information Extraction

Semi-Markov Conditional Random Fields for Information Extraction Semi-Markov Conditional Random Fields for Information Extraction Sunita Sarawagi Indian Institute of Technology Bombay, India sunita@iitb.ac.in William W. Cohen Center for Automated Learning & Discovery

More information

Generative and Discriminative Approaches to Graphical Models CMSC Topics in AI

Generative and Discriminative Approaches to Graphical Models CMSC Topics in AI Generative and Discriminative Approaches to Graphical Models CMSC 35900 Topics in AI Lecture 2 Yasemin Altun January 26, 2007 Review of Inference on Graphical Models Elimination algorithm finds single

More information

Neural Networks, Computation Graphs. CMSC 470 Marine Carpuat

Neural Networks, Computation Graphs. CMSC 470 Marine Carpuat Neural Networks, Computation Graphs CMSC 470 Marine Carpuat Binary Classification with a Multi-layer Perceptron φ A = 1 φ site = 1 φ located = 1 φ Maizuru = 1 φ, = 2 φ in = 1 φ Kyoto = 1 φ priest = 0 φ

More information

Sequential Data Modeling - The Structured Perceptron

Sequential Data Modeling - The Structured Perceptron Sequential Data Modeling - The Structured Perceptron Graham Neubig Nara Institute of Science and Technology (NAIST) 1 Prediction Problems Given x, predict y 2 Prediction Problems Given x, A book review

More information

Algorithms for NLP. Classification II. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley

Algorithms for NLP. Classification II. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Algorithms for NLP Classification II Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Minimize Training Error? A loss function declares how costly each mistake is E.g. 0 loss for correct label,

More information

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October,

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, 23 2013 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run

More information

Structured Prediction

Structured Prediction Machine Learning Fall 2017 (structured perceptron, HMM, structured SVM) Professor Liang Huang (Chap. 17 of CIML) x x the man bit the dog x the man bit the dog x DT NN VBD DT NN S =+1 =-1 the man bit the

More information

Structure Learning in Sequential Data

Structure Learning in Sequential Data Structure Learning in Sequential Data Liam Stewart liam@cs.toronto.edu Richard Zemel zemel@cs.toronto.edu 2005.09.19 Motivation. Cau, R. Kuiper, and W.-P. de Roever. Formalising Dijkstra's development

More information

CISC 889 Bioinformatics (Spring 2004) Hidden Markov Models (II)

CISC 889 Bioinformatics (Spring 2004) Hidden Markov Models (II) CISC 889 Bioinformatics (Spring 24) Hidden Markov Models (II) a. Likelihood: forward algorithm b. Decoding: Viterbi algorithm c. Model building: Baum-Welch algorithm Viterbi training Hidden Markov models

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information