Size: px
Start display at page:

Download ""

Transcription

1 1

2 Where we are Eperiments with a hash-trick implementation of logistic regression Net question: how do you parallelize SGD, or more generally, this kind of streaming algorithm? each eample affects the net prediction è order matters è parallelization changes the behavior we will step back to perceptrons and then step forward to parallel perceptrons then another nice parallel learning algorithm then a midterm 2

3 Recap: perceptrons

4 The perceptron A ^ instance i Compute: y B i =sign( v k. i ) ^ If mistake: v k+1 = v k + y i i y i y i 2

5 The perceptron A ^ instance i Compute: y B i =sign( v k. i ) If mistake: v k+1 = v k + y i i u ^ y i y i A lot like SGD update for logistic regression! positive Mistake bound: 2 æ R = ç è g ö ø 2 -u negative 2γ margin 2

6 On-line to batch learning m 1 =3 m 2 =4 1. Pick a v k at random according to m k /m, the fraction of eamples it was used for. 2. Predict using the v k you just picked. 3. (Actually, use some sort of deterministic approimation to this). m=10

7 predict using sign(v*. ) m 1 =3 m 2 =4 1. Pick a v k at random according to m k /m, the fraction of eamples it was used for. 2. Predict using the v k you just picked. 3. (Actually, use some sort of deterministic approimation to this). m=10

8 predict using sign(v*. ) Also: there s a sparsification trick that makes learning the averaged perceptron fast Last perceptron Averaging/voting

9 KERNELS AND PERCEPTRONS

10 The kernel perceptron A instance i ^ y i B y i ^ Compute: y i = v k. i Compute : yˆ å = i. + - i. - k k k + ÎFN å k - ÎFP If mistake: v k+1 = v k + y i i If If falsepositive (toohigh) mistake : add falsepositive (toolow) mistake : add i i to FP to FN Mathematically the same as before but allows use of the kernel trick 10

11 The kernel perceptron A instance i ^ y i y i B K(, ) º å yˆ K(, + ) - K(, - ) k + k å = i k i k ÎFN ÎFP k k - ^ Compute: y i = v k. i Compute : yˆ å = i. + - i. - k k k + ÎFN å k - ÎFP If mistake: v k+1 = v k + y i i If If falsepositive (toohigh) mistake : add falsepositive (toolow) mistake : add i i to FP to FN Mathematically the same as before but allows use of the kernel trick Other kernel methods (SVM, Gaussian processes) aren t constrained to limited set (+1/-1/0) of weights on the K(,v) values. 11

12 Some common kernels Linear kernel: Polynomial kernel: K(, ') º ' K (, ') º ( ' + 1) d Gaussian kernel: K(, ') º e - -' 2 /s 12

13 Some common kernels Polynomial kernel: K (, ') º ( ' + 1) d for d=2 ), +, ), = ) ) = ) ) ) ) = ) + ) +2 ) 0 ) ( ) ) ) ( + + )+1 1, ), +, ) +, ) +, + +, 1, ), +, ) +, ) +, + + = 1, 2 ), 2 +, 2 ) +, ) +, + +, 1, 2 ), 2 +, 2 ) +, ) +,

14 Some common kernels Polynomial kernel: K (, ') º ( ' + 1) d for d=2 ), +, ), = 1, 2 ), 2 +, 2 ) +, ) +, + +, 1, 2 ), 2 +, 2 ) +, ) +, + + Similarity with the kernel on is equivalent to dotproduct similarity on a transformed feature vector φ() 14

15 Eplicitly map from to φ() i.e. to the point corresponding to in the Hilbert space (RKHS) Kernels 101 Duality: two ways to look at this Implicitly map from to φ() by changing the kernel function K y ˆ = w = w = å k + K(, w) + - yˆ = f( ) w å k + å ÎFN k - Î FP k Observation about perceptron k + ) - å w = f( f( ) k ÎFN - Î FP k - k - å yˆ K(, + ) - K(, - ) k + å = i k i k ÎFN ÎFP k - K(, k ) º f ( ) f( k ) Generalization of perceptron same behavior but compute time/space are different Generalization: add weights to the sums for w 15

16 Kernels 101 Duality Gram matri: K: k ij = K( i, j ) K(, ) = K(,) è Gram matri is symmetric K(,) > 0 è diagonal of K is positive è K is positive semi-definite è z T K z >= 0 for all z 16

17 A FAMILIAR KERNEL

18 Learning as optimization for regularized logistic regression + hashes Algorithm: Initialize arrays W, A of size R and set k=0 For each iteration t=1, T For each eample ( i,y i ) V is a hash table For j : j >0 increment V[h[j]] by j p i = ; k++ For each hash value h: V[h]>0: V[h] =»W[h] *= (1 - λ2µ) k-a[h]»w[h] = W[h] + λ(y i - p i )V[h]»A[h] = k j i j:hash( j )%R ==h 18

19 19

20 ϕ[h] = j:hash( j)%m==h Some details Slightly different hash to avoid systematic bias V[h] = j i j:hash( j )%R ==h ξ( j) i j, where ξ( j) { 1,+1 } m is the number of buckets you hash into (R in my discussion) 20

21 ϕ[h] = j:hash( j)%m==h Some details Slightly different hash to avoid systematic bias ξ( j) i j, where ξ( j) 1,+1 { } I.e., for large feature sets the variance should be low 21

22 Some details I.e. a hashed vector is probably close to the original vector 22

23 Some details I.e. the inner products between and are probably not changed too much by the hash function: a classifier will probably still work 23

24 The Voted Perceptron for Ranking and Structured Classification William Cohen

25 The voted perceptron for ranking A instances b* b B ^ Compute: y i = v k. i Return: the inde b* of the best i If mistake: v k+1 = v k + b - b*

26 u Ranking some s with the target vector u γ -u

27 u Ranking some s with some guess vector v part 1 γ v -u

28 u Ranking some s with some guess vector v part 2. -u v The purple-circled is b* - the one the learner has chosen to rank highest. The green circled is b, the right answer.

29 u Correcting v by adding b b* v -u

30 V k+1 Correcting v by adding b b* (part 2) v k

31 (3a) The guess v 2 after the two positive eamples: v 2 =v u + 2 v 2 u >γ v v 1 -u -u 2γ

32 (3a) The guess v 2 after the two positive eamples: v 2 =v u + 2 v 2 u >γ v v 1 -u -u 3 2γ

33 (3a) The guess v 2 after the two positive eamples: v 2 =v u + 2 v 2 u >γ v 1 v -u 2γ -u 3

34 Notice this doesn t depend at all on the number of s being ranked u (3a) The guess v 2 after the two positive eamples: v 2 =v v 2 u >γ v v 1 -u -u 2γ Neither proof depends on the dimension of the s.

35 Ranking perceptrons è structured perceptrons The API: A sends B a (maybe huge) set of items to rank B finds the single best one according to the current weight vector A tells B which one was actually best Structured classification on a sequence Input: list of words: =(w 1,,w n ) Output: list of labels: y=(y 1,,y n ) If there are K classes, there are K n labels possible for

36 Borkar et al s: HMMs for segmentation Eample: Addresses, bib records Problem: some DBs may split records up differently (eg no mail stop field, combine address and apt #, ) or not at all Solution: Learn to segment tetual form of records Author Year Title Journal Volume Page P.P.Wangikar, T.P. Graycar, D.A. Estell, D.S. Clark, J.S. Dordick (1993) Protein and Solvent Engineering of Subtilising BPN' in Nearly Anhydrous Organic Media J.Amer. Chem. Soc. 115,

37 IE with Hidden Markov Models Smith Cohen Jordan Transition probabilities dddd dd 0.5 Author 0.9 Year Journal 0.2 Title 0.5 Learning Conve Comm. Trans. Chemical Emission probabilities

38 Inference for linear-chain CRFs When will prof Cohen post the notes Idea 1: features are properties of two adjacent tokens, and the pair of labels assigned to them (Begin,Inside,Outside) (y(i)==b or y(i)==i) and (token(i) is capitalized) (y(i)==i and y(i-1)==b) and (token(i) is hyphenated) (y(i)==b and y(i-1)==b) eg tell Rose William is on the way Idea 2: construct a graph where each path is a possible sequence labeling.

39 Inference for a linear-chain CRF When will prof Cohen post the notes B B B B B B B I I I I I I I O O O O O O O Inference: find the highest-weight path given a weighting of features This can be done efficiently using dynamic programming (Viterbi)

40 Ranking perceptrons è structured perceptrons The API: A sends B a (maybe huge) set of items to rank B finds the single best one according to the current weight vector A tells B which one was actually best Structured classification on a sequence Input: list of words: =(w 1,,w n ) Output: list of labels: y=(y 1,,y n ) If there are K classes, there are K n labels possible for

41 Ranking perceptrons è structured perceptrons New API: A sends B the word sequence B finds the single best y according to the current weight vector using Viterbi A tells B which y was actually best This is equivalent to ranking pairs g=(,y ) Structured classification on a sequence Input: list of words: =(w 1,,w n ) Output: list of labels: y=(y 1,,y n ) If there are K classes, there are K n labels possible for

42 The voted perceptron for ranking A instances b* b B ^ Compute: y i = v k. i Return: the inde b* of the best i If mistake: v k+1 = v k + b - b* Change number one is notation: replace with g

43 The voted perceptron for structured classification tasks A instances g 1 g 2 g 3 g 4 B ^ Compute: y i = v k. g i Return: the inde b* of the best g i b* b If mistake: v k+1 = v k + g b - g b* 1. A sends B feature functions, and instructions for creating the instances g: A sends a word vector i. Then B could create the instances g 1 =F( i,y 1 ), g 2 = F( i,y 2 ), but instead B just returns the y* that gives the best score for the dot product v k. F( i,y*) by using Viterbi. 2. A sends B the correct label sequence y i. 3. On errors, B sets v k+1 = v k + g b - g b* = v k + F( i,y) - F( i,y*)

44 Results from the original paper. EMNLP 2002, Best paper

45 Collins Eperiments POS tagging NP Chunking (words and POS tags from Brill s tagger as features) and BIO output tags Compared logistic regression methods (MaEnt) and Voted Perceptron trained HMM s With and w/o averaging With and w/o feature selection (count>5)

46 Collins results

47 Where we are Eperiments with a hash-trick implementation of logistic regression Net question: how do you parallelize SGD, or more generally, this kind of streaming algorithm? each eample affects the net prediction è order matters è parallelization changes the behavior we will step back to perceptrons and then step forward to parallel perceptrons then another nice parallel learning algorithm then a midterm 47

MACHINE LEARNING FOR NATURAL LANGUAGE PROCESSING

MACHINE LEARNING FOR NATURAL LANGUAGE PROCESSING MACHINE LEARNING FOR NATURAL LANGUAGE PROCESSING Outline Some Sample NLP Task [Noah Smith] Structured Prediction For NLP Structured Prediction Methods Conditional Random Fields Structured Perceptron Discussion

More information

Announcements. Guest lectures schedule: D. Sculley, Google Pgh, 3/26 Alex Beutel, SGD for tensors, 4/7 Alex Smola, something cool, 4/9

Announcements. Guest lectures schedule: D. Sculley, Google Pgh, 3/26 Alex Beutel, SGD for tensors, 4/7 Alex Smola, something cool, 4/9 Announcements Guest lectures schedule: D. Sculley, Google Pgh, 3/26 Ale Beutel, SGD for tensors, 4/7 Ale Smola, something cool, 4/9 Projects Students in 805: First draft of project proposal due 2/17. Some

More information

Lecture 13: Discriminative Sequence Models (MEMM and Struct. Perceptron)

Lecture 13: Discriminative Sequence Models (MEMM and Struct. Perceptron) Lecture 13: Discriminative Sequence Models (MEMM and Struct. Perceptron) Intro to NLP, CS585, Fall 2014 http://people.cs.umass.edu/~brenocon/inlp2014/ Brendan O Connor (http://brenocon.com) 1 Models for

More information

Machine Learning for Structured Prediction

Machine Learning for Structured Prediction Machine Learning for Structured Prediction Grzegorz Chrupa la National Centre for Language Technology School of Computing Dublin City University NCLT Seminar Grzegorz Chrupa la (DCU) Machine Learning for

More information

Topics we covered. Machine Learning. Statistics. Optimization. Systems! Basics of probability Tail bounds Density Estimation Exponential Families

Topics we covered. Machine Learning. Statistics. Optimization. Systems! Basics of probability Tail bounds Density Estimation Exponential Families Midterm Review Topics we covered Machine Learning Optimization Basics of optimization Convexity Unconstrained: GD, SGD Constrained: Lagrange, KKT Duality Linear Methods Perceptrons Support Vector Machines

More information

Sequential Supervised Learning

Sequential Supervised Learning Sequential Supervised Learning Many Application Problems Require Sequential Learning Part-of of-speech Tagging Information Extraction from the Web Text-to to-speech Mapping Part-of of-speech Tagging Given

More information

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015 Sequence Modelling with Features: Linear-Chain Conditional Random Fields COMP-599 Oct 6, 2015 Announcement A2 is out. Due Oct 20 at 1pm. 2 Outline Hidden Markov models: shortcomings Generative vs. discriminative

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 23, 2015 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 24, 2016 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

Linear smoother. ŷ = S y. where s ij = s ij (x) e.g. s ij = diag(l i (x))

Linear smoother. ŷ = S y. where s ij = s ij (x) e.g. s ij = diag(l i (x)) Linear smoother ŷ = S y where s ij = s ij (x) e.g. s ij = diag(l i (x)) 2 Online Learning: LMS and Perceptrons Partially adapted from slides by Ryan Gabbard and Mitch Marcus (and lots original slides by

More information

Statistical NLP for the Web Log Linear Models, MEMM, Conditional Random Fields

Statistical NLP for the Web Log Linear Models, MEMM, Conditional Random Fields Statistical NLP for the Web Log Linear Models, MEMM, Conditional Random Fields Sameer Maskey Week 13, Nov 28, 2012 1 Announcements Next lecture is the last lecture Wrap up of the semester 2 Final Project

More information

Deviations from linear separability. Kernel methods. Basis expansion for quadratic boundaries. Adding new features Systematic deviation

Deviations from linear separability. Kernel methods. Basis expansion for quadratic boundaries. Adding new features Systematic deviation Deviations from linear separability Kernel methods CSE 250B Noise Find a separator that minimizes a convex loss function related to the number of mistakes. e.g. SVM, logistic regression. Systematic deviation

More information

Kernel methods CSE 250B

Kernel methods CSE 250B Kernel methods CSE 250B Deviations from linear separability Noise Find a separator that minimizes a convex loss function related to the number of mistakes. e.g. SVM, logistic regression. Deviations from

More information

Hidden Markov Models

Hidden Markov Models 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Hidden Markov Models Matt Gormley Lecture 22 April 2, 2018 1 Reminders Homework

More information

6.867 Machine learning

6.867 Machine learning 6.867 Machine learning Mid-term eam October 8, 6 ( points) Your name and MIT ID: .5.5 y.5 y.5 a).5.5 b).5.5.5.5 y.5 y.5 c).5.5 d).5.5 Figure : Plots of linear regression results with different types of

More information

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima.

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima. http://goo.gl/jv7vj9 Course website KYOTO UNIVERSITY Statistical Machine Learning Theory From Multi-class Classification to Structured Output Prediction Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT

More information

Announcements. CS 188: Artificial Intelligence Spring Classification. Today. Classification overview. Case-Based Reasoning

Announcements. CS 188: Artificial Intelligence Spring Classification. Today. Classification overview. Case-Based Reasoning CS 188: Artificial Intelligence Spring 21 Lecture 22: Nearest Neighbors, Kernels 4/18/211 Pieter Abbeel UC Berkeley Slides adapted from Dan Klein Announcements On-going: contest (optional and FUN!) Remaining

More information

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima.

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima. http://goo.gl/xilnmn Course website KYOTO UNIVERSITY Statistical Machine Learning Theory From Multi-class Classification to Structured Output Prediction Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT

More information

Conditional Random Field

Conditional Random Field Introduction Linear-Chain General Specific Implementations Conclusions Corso di Elaborazione del Linguaggio Naturale Pisa, May, 2011 Introduction Linear-Chain General Specific Implementations Conclusions

More information

Machine Learning. Support Vector Machines. Manfred Huber

Machine Learning. Support Vector Machines. Manfred Huber Machine Learning Support Vector Machines Manfred Huber 2015 1 Support Vector Machines Both logistic regression and linear discriminant analysis learn a linear discriminant function to separate the data

More information

Linear, threshold units. Linear Discriminant Functions and Support Vector Machines. Biometrics CSE 190 Lecture 11. X i : inputs W i : weights

Linear, threshold units. Linear Discriminant Functions and Support Vector Machines. Biometrics CSE 190 Lecture 11. X i : inputs W i : weights Linear Discriminant Functions and Support Vector Machines Linear, threshold units CSE19, Winter 11 Biometrics CSE 19 Lecture 11 1 X i : inputs W i : weights θ : threshold 3 4 5 1 6 7 Courtesy of University

More information

Support vector machines Lecture 4

Support vector machines Lecture 4 Support vector machines Lecture 4 David Sontag New York University Slides adapted from Luke Zettlemoyer, Vibhav Gogate, and Carlos Guestrin Q: What does the Perceptron mistake bound tell us? Theorem: The

More information

Intro to Neural Networks and Deep Learning

Intro to Neural Networks and Deep Learning Intro to Neural Networks and Deep Learning Jack Lanchantin Dr. Yanjun Qi UVA CS 6316 1 Neurons 1-Layer Neural Network Multi-layer Neural Network Loss Functions Backpropagation Nonlinearity Functions NNs

More information

Lecture 13: Structured Prediction

Lecture 13: Structured Prediction Lecture 13: Structured Prediction Kai-Wei Chang CS @ University of Virginia kw@kwchang.net Couse webpage: http://kwchang.net/teaching/nlp16 CS6501: NLP 1 Quiz 2 v Lectures 9-13 v Lecture 12: before page

More information

Logistic Regression: Online, Lazy, Kernelized, Sequential, etc.

Logistic Regression: Online, Lazy, Kernelized, Sequential, etc. Logistic Regression: Online, Lazy, Kernelized, Sequential, etc. Harsha Veeramachaneni Thomson Reuter Research and Development April 1, 2010 Harsha Veeramachaneni (TR R&D) Logistic Regression April 1, 2010

More information

Support Vector Machines

Support Vector Machines Two SVM tutorials linked in class website (please, read both): High-level presentation with applications (Hearst 1998) Detailed tutorial (Burges 1998) Support Vector Machines Machine Learning 10701/15781

More information

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them HMM, MEMM and CRF 40-957 Special opics in Artificial Intelligence: Probabilistic Graphical Models Sharif University of echnology Soleymani Spring 2014 Sequence labeling aking collective a set of interrelated

More information

CIS 520: Machine Learning Oct 09, Kernel Methods

CIS 520: Machine Learning Oct 09, Kernel Methods CIS 520: Machine Learning Oct 09, 207 Kernel Methods Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture They may or may not cover all the material discussed

More information

Predicting Sequences: Structured Perceptron. CS 6355: Structured Prediction

Predicting Sequences: Structured Perceptron. CS 6355: Structured Prediction Predicting Sequences: Structured Perceptron CS 6355: Structured Prediction 1 Conditional Random Fields summary An undirected graphical model Decompose the score over the structure into a collection of

More information

Jeff Howbert Introduction to Machine Learning Winter

Jeff Howbert Introduction to Machine Learning Winter Classification / Regression Support Vector Machines Jeff Howbert Introduction to Machine Learning Winter 2012 1 Topics SVM classifiers for linearly separable classes SVM classifiers for non-linearly separable

More information

10 : HMM and CRF. 1 Case Study: Supervised Part-of-Speech Tagging

10 : HMM and CRF. 1 Case Study: Supervised Part-of-Speech Tagging 10-708: Probabilistic Graphical Models 10-708, Spring 2018 10 : HMM and CRF Lecturer: Kayhan Batmanghelich Scribes: Ben Lengerich, Michael Kleyman 1 Case Study: Supervised Part-of-Speech Tagging We will

More information

Learning Methods for Linear Detectors

Learning Methods for Linear Detectors Intelligent Systems: Reasoning and Recognition James L. Crowley ENSIMAG 2 / MoSIG M1 Second Semester 2011/2012 Lesson 20 27 April 2012 Contents Learning Methods for Linear Detectors Learning Linear Detectors...2

More information

Ad Placement Strategies

Ad Placement Strategies Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox 2014 Emily Fox January

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1394 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1394 1 / 34 Table

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Hypothesis Space variable size deterministic continuous parameters Learning Algorithm linear and quadratic programming eager batch SVMs combine three important ideas Apply optimization

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1396 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1396 1 / 44 Table

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2010 Lecture 24: Perceptrons and More! 4/22/2010 Pieter Abbeel UC Berkeley Slides adapted from Dan Klein Announcements W7 due tonight [this is your last written for

More information

SVMs, Duality and the Kernel Trick

SVMs, Duality and the Kernel Trick SVMs, Duality and the Kernel Trick Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February 26 th, 2007 2005-2007 Carlos Guestrin 1 SVMs reminder 2005-2007 Carlos Guestrin 2 Today

More information

Part of Speech Tagging: Viterbi, Forward, Backward, Forward- Backward, Baum-Welch. COMP-599 Oct 1, 2015

Part of Speech Tagging: Viterbi, Forward, Backward, Forward- Backward, Baum-Welch. COMP-599 Oct 1, 2015 Part of Speech Tagging: Viterbi, Forward, Backward, Forward- Backward, Baum-Welch COMP-599 Oct 1, 2015 Announcements Research skills workshop today 3pm-4:30pm Schulich Library room 313 Start thinking about

More information

Conditional Random Fields

Conditional Random Fields Conditional Random Fields Micha Elsner February 14, 2013 2 Sums of logs Issue: computing α forward probabilities can undeflow Normally we d fix this using logs But α requires a sum of probabilities Not

More information

Machine Learning: The Perceptron. Lecture 06

Machine Learning: The Perceptron. Lecture 06 Machine Learning: he Perceptron Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu 1 McCulloch-Pitts Neuron Function 0 1 w 0 activation / output function 1 w 1 w w

More information

Brief Introduction of Machine Learning Techniques for Content Analysis

Brief Introduction of Machine Learning Techniques for Content Analysis 1 Brief Introduction of Machine Learning Techniques for Content Analysis Wei-Ta Chu 2008/11/20 Outline 2 Overview Gaussian Mixture Model (GMM) Hidden Markov Model (HMM) Support Vector Machine (SVM) Overview

More information

SVMs: Non-Separable Data, Convex Surrogate Loss, Multi-Class Classification, Kernels

SVMs: Non-Separable Data, Convex Surrogate Loss, Multi-Class Classification, Kernels SVMs: Non-Separable Data, Convex Surrogate Loss, Multi-Class Classification, Kernels Karl Stratos June 21, 2018 1 / 33 Tangent: Some Loose Ends in Logistic Regression Polynomial feature expansion in logistic

More information

Introduction to Logistic Regression and Support Vector Machine

Introduction to Logistic Regression and Support Vector Machine Introduction to Logistic Regression and Support Vector Machine guest lecturer: Ming-Wei Chang CS 446 Fall, 2009 () / 25 Fall, 2009 / 25 Before we start () 2 / 25 Fall, 2009 2 / 25 Before we start Feel

More information

Math 350: An exploration of HMMs through doodles.

Math 350: An exploration of HMMs through doodles. Math 350: An exploration of HMMs through doodles. Joshua Little (407673) 19 December 2012 1 Background 1.1 Hidden Markov models. Markov chains (MCs) work well for modelling discrete-time processes, or

More information

Comments. Assignment 3 code released. Thought questions 3 due this week. Mini-project: hopefully you have started. implement classification algorithms

Comments. Assignment 3 code released. Thought questions 3 due this week. Mini-project: hopefully you have started. implement classification algorithms Neural networks Comments Assignment 3 code released implement classification algorithms use kernels for census dataset Thought questions 3 due this week Mini-project: hopefully you have started 2 Example:

More information

An Introduction to Machine Learning

An Introduction to Machine Learning An Introduction to Machine Learning L6: Structured Estimation Alexander J. Smola Statistical Machine Learning Program Canberra, ACT 0200 Australia Alex.Smola@nicta.com.au Tata Institute, Pune, January

More information

Kernel Methods. Barnabás Póczos

Kernel Methods. Barnabás Póczos Kernel Methods Barnabás Póczos Outline Quick Introduction Feature space Perceptron in the feature space Kernels Mercer s theorem Finite domain Arbitrary domain Kernel families Constructing new kernels

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Language and Statistics II

Language and Statistics II Language and Statistics II Lecture 19: EM for Models of Structure Noah Smith Epectation-Maimization E step: i,, q i # p r $ t = p r i % ' $ t i, p r $ t i,' soft assignment or voting M step: r t +1 # argma

More information

Probabilistic Models for Sequence Labeling

Probabilistic Models for Sequence Labeling Probabilistic Models for Sequence Labeling Besnik Fetahu June 9, 2011 Besnik Fetahu () Probabilistic Models for Sequence Labeling June 9, 2011 1 / 26 Background & Motivation Problem introduction Generative

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Global linear models Based on slides from Michael Collins Globally-normalized models Why do we decompose to a sequence of decisions? Can we directly estimate the probability

More information

Kernelized Perceptron Support Vector Machines

Kernelized Perceptron Support Vector Machines Kernelized Perceptron Support Vector Machines Emily Fox University of Washington February 13, 2017 What is the perceptron optimizing? 1 The perceptron algorithm [Rosenblatt 58, 62] Classification setting:

More information

Lab 12: Structured Prediction

Lab 12: Structured Prediction December 4, 2014 Lecture plan structured perceptron application: confused messages application: dependency parsing structured SVM Class review: from modelization to classification What does learning mean?

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 Exam policy: This exam allows two one-page, two-sided cheat sheets; No other materials. Time: 2 hours. Be sure to write your name and

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Algorithms for NLP. Classification II. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley

Algorithms for NLP. Classification II. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Algorithms for NLP Classification II Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Minimize Training Error? A loss function declares how costly each mistake is E.g. 0 loss for correct label,

More information

Lecture 3: Pattern Classification. Pattern classification

Lecture 3: Pattern Classification. Pattern classification EE E68: Speech & Audio Processing & Recognition Lecture 3: Pattern Classification 3 4 5 The problem of classification Linear and nonlinear classifiers Probabilistic classification Gaussians, mitures and

More information

Machine Learning Practice Page 2 of 2 10/28/13

Machine Learning Practice Page 2 of 2 10/28/13 Machine Learning 10-701 Practice Page 2 of 2 10/28/13 1. True or False Please give an explanation for your answer, this is worth 1 pt/question. (a) (2 points) No classifier can do better than a naive Bayes

More information

10/05/2016. Computational Methods for Data Analysis. Massimo Poesio SUPPORT VECTOR MACHINES. Support Vector Machines Linear classifiers

10/05/2016. Computational Methods for Data Analysis. Massimo Poesio SUPPORT VECTOR MACHINES. Support Vector Machines Linear classifiers Computational Methods for Data Analysis Massimo Poesio SUPPORT VECTOR MACHINES Support Vector Machines Linear classifiers 1 Linear Classifiers denotes +1 denotes -1 w x + b>0 f(x,w,b) = sign(w x + b) How

More information

CS60021: Scalable Data Mining. Large Scale Machine Learning

CS60021: Scalable Data Mining. Large Scale Machine Learning J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 1 CS60021: Scalable Data Mining Large Scale Machine Learning Sourangshu Bhattacharya Example: Spam filtering Instance

More information

Hidden Markov Models

Hidden Markov Models 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Hidden Markov Models Matt Gormley Lecture 19 Nov. 5, 2018 1 Reminders Homework

More information

Multiclass and Introduction to Structured Prediction

Multiclass and Introduction to Structured Prediction Multiclass and Introduction to Structured Prediction David S. Rosenberg New York University March 27, 2018 David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 March 27, 2018 1 / 49 Contents

More information

Logistic Regression Logistic

Logistic Regression Logistic Case Study 1: Estimating Click Probabilities L2 Regularization for Logistic Regression Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Carlos Guestrin January 10 th,

More information

5.6 Nonparametric Logistic Regression

5.6 Nonparametric Logistic Regression 5.6 onparametric Logistic Regression Dmitri Dranishnikov University of Florida Statistical Learning onparametric Logistic Regression onparametric? Doesnt mean that there are no parameters. Just means that

More information

Introduction to Machine Learning Midterm, Tues April 8

Introduction to Machine Learning Midterm, Tues April 8 Introduction to Machine Learning 10-701 Midterm, Tues April 8 [1 point] Name: Andrew ID: Instructions: You are allowed a (two-sided) sheet of notes. Exam ends at 2:45pm Take a deep breath and don t spend

More information

Kernels and the Kernel Trick. Machine Learning Fall 2017

Kernels and the Kernel Trick. Machine Learning Fall 2017 Kernels and the Kernel Trick Machine Learning Fall 2017 1 Support vector machines Training by maximizing margin The SVM objective Solving the SVM optimization problem Support vectors, duals and kernels

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

CSE 151 Machine Learning. Instructor: Kamalika Chaudhuri

CSE 151 Machine Learning. Instructor: Kamalika Chaudhuri CSE 151 Machine Learning Instructor: Kamalika Chaudhuri Linear Classification Given labeled data: (xi, feature vector yi) label i=1,..,n where y is 1 or 1, find a hyperplane to separate from Linear Classification

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2010 Lecture 22: Nearest Neighbors, Kernels 4/18/2011 Pieter Abbeel UC Berkeley Slides adapted from Dan Klein Announcements On-going: contest (optional and FUN!)

More information

Machine Learning, Fall 2009: Midterm

Machine Learning, Fall 2009: Midterm 10-601 Machine Learning, Fall 009: Midterm Monday, November nd hours 1. Personal info: Name: Andrew account: E-mail address:. You are permitted two pages of notes and a calculator. Please turn off all

More information

Kernel Machines. Pradeep Ravikumar Co-instructor: Manuela Veloso. Machine Learning

Kernel Machines. Pradeep Ravikumar Co-instructor: Manuela Veloso. Machine Learning Kernel Machines Pradeep Ravikumar Co-instructor: Manuela Veloso Machine Learning 10-701 SVM linearly separable case n training points (x 1,, x n ) d features x j is a d-dimensional vector Primal problem:

More information

Bayes Decision Theory - I

Bayes Decision Theory - I Bayes Decision Theory - I Nuno Vasconcelos (Ken Kreutz-Delgado) UCSD Statistical Learning from Data Goal: Given a relationship between a feature vector and a vector y, and iid data samples ( i,y i ), find

More information

Lecture 5 Neural models for NLP

Lecture 5 Neural models for NLP CS546: Machine Learning in NLP (Spring 2018) http://courses.engr.illinois.edu/cs546/ Lecture 5 Neural models for NLP Julia Hockenmaier juliahmr@illinois.edu 3324 Siebel Center Office hours: Tue/Thu 2pm-3pm

More information

Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Linear classifier Which classifier? x 2 x 1 2 Linear classifier Margin concept x 2

More information

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October,

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, 23 2013 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run

More information

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation.

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. CS 189 Spring 2015 Introduction to Machine Learning Midterm You have 80 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. No calculators or electronic items.

More information

Evaluation. Andrea Passerini Machine Learning. Evaluation

Evaluation. Andrea Passerini Machine Learning. Evaluation Andrea Passerini passerini@disi.unitn.it Machine Learning Basic concepts requires to define performance measures to be optimized Performance of learning algorithms cannot be evaluated on entire domain

More information

Machine Learning A Geometric Approach

Machine Learning A Geometric Approach Machine Learning A Geometric Approach Linear Classification: Perceptron Professor Liang Huang some slides from Alex Smola (CMU) Perceptron Frank Rosenblatt deep learning multilayer perceptron linear regression

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information

MACHINE LEARNING ADVANCED MACHINE LEARNING

MACHINE LEARNING ADVANCED MACHINE LEARNING MACHINE LEARNING ADVANCED MACHINE LEARNING Recap of Important Notions on Estimation of Probability Density Functions 22 MACHINE LEARNING Discrete Probabilities Consider two variables and y taking discrete

More information

Sequence Labeling: HMMs & Structured Perceptron

Sequence Labeling: HMMs & Structured Perceptron Sequence Labeling: HMMs & Structured Perceptron CMSC 723 / LING 723 / INST 725 MARINE CARPUAT marine@cs.umd.edu HMM: Formal Specification Q: a finite set of N states Q = {q 0, q 1, q 2, q 3, } N N Transition

More information

More on HMMs and other sequence models. Intro to NLP - ETHZ - 18/03/2013

More on HMMs and other sequence models. Intro to NLP - ETHZ - 18/03/2013 More on HMMs and other sequence models Intro to NLP - ETHZ - 18/03/2013 Summary Parts of speech tagging HMMs: Unsupervised parameter estimation Forward Backward algorithm Bayesian variants Discriminative

More information

Final Examination CS 540-2: Introduction to Artificial Intelligence

Final Examination CS 540-2: Introduction to Artificial Intelligence Final Examination CS 540-2: Introduction to Artificial Intelligence May 7, 2017 LAST NAME: SOLUTIONS FIRST NAME: Problem Score Max Score 1 14 2 10 3 6 4 10 5 11 6 9 7 8 9 10 8 12 12 8 Total 100 1 of 11

More information

Multiclass and Introduction to Structured Prediction

Multiclass and Introduction to Structured Prediction Multiclass and Introduction to Structured Prediction David S. Rosenberg Bloomberg ML EDU November 28, 2017 David S. Rosenberg (Bloomberg ML EDU) ML 101 November 28, 2017 1 / 48 Introduction David S. Rosenberg

More information

NLP Programming Tutorial 11 - The Structured Perceptron

NLP Programming Tutorial 11 - The Structured Perceptron NLP Programming Tutorial 11 - The Structured Perceptron Graham Neubig Nara Institute of Science and Technology (NAIST) 1 Prediction Problems Given x, A book review Oh, man I love this book! This book is

More information

Foundation of Intelligent Systems, Part I. SVM s & Kernel Methods

Foundation of Intelligent Systems, Part I. SVM s & Kernel Methods Foundation of Intelligent Systems, Part I SVM s & Kernel Methods mcuturi@i.kyoto-u.ac.jp FIS - 2013 1 Support Vector Machines The linearly-separable case FIS - 2013 2 A criterion to select a linear classifier:

More information

COMP 875 Announcements

COMP 875 Announcements Announcements Tentative presentation order is out Announcements Tentative presentation order is out Remember: Monday before the week of the presentation you must send me the final paper list (for posting

More information

Machine Learning, Midterm Exam

Machine Learning, Midterm Exam 10-601 Machine Learning, Midterm Exam Instructors: Tom Mitchell, Ziv Bar-Joseph Wednesday 12 th December, 2012 There are 9 questions, for a total of 100 points. This exam has 20 pages, make sure you have

More information

Evaluation requires to define performance measures to be optimized

Evaluation requires to define performance measures to be optimized Evaluation Basic concepts Evaluation requires to define performance measures to be optimized Performance of learning algorithms cannot be evaluated on entire domain (generalization error) approximation

More information

Natural Language Processing. Classification. Features. Some Definitions. Classification. Feature Vectors. Classification I. Dan Klein UC Berkeley

Natural Language Processing. Classification. Features. Some Definitions. Classification. Feature Vectors. Classification I. Dan Klein UC Berkeley Natural Language Processing Classification Classification I Dan Klein UC Berkeley Classification Automatically make a decision about inputs Example: document category Example: image of digit digit Example:

More information

Multi-class SVMs. Lecture 17: Aykut Erdem April 2016 Hacettepe University

Multi-class SVMs. Lecture 17: Aykut Erdem April 2016 Hacettepe University Multi-class SVMs Lecture 17: Aykut Erdem April 2016 Hacettepe University Administrative We will have a make-up lecture on Saturday April 23, 2016. Project progress reports are due April 21, 2016 2 days

More information

Outline. Basic concepts: SVM and kernels SVM primal/dual problems. Chih-Jen Lin (National Taiwan Univ.) 1 / 22

Outline. Basic concepts: SVM and kernels SVM primal/dual problems. Chih-Jen Lin (National Taiwan Univ.) 1 / 22 Outline Basic concepts: SVM and kernels SVM primal/dual problems Chih-Jen Lin (National Taiwan Univ.) 1 / 22 Outline Basic concepts: SVM and kernels Basic concepts: SVM and kernels SVM primal/dual problems

More information

COMS 4771 Introduction to Machine Learning. Nakul Verma

COMS 4771 Introduction to Machine Learning. Nakul Verma COMS 4771 Introduction to Machine Learning Nakul Verma Announcements HW1 due next lecture Project details are available decide on the group and topic by Thursday Last time Generative vs. Discriminative

More information

CS395T Computational Statistics with Application to Bioinformatics

CS395T Computational Statistics with Application to Bioinformatics CS395T Computational Statistics with Application to Bioinformatics Prof. William H. Press Spring Term, 2009 The University of Texas at Austin Unit 21: Support Vector Machines The University of Texas at

More information

Data Mining in Bioinformatics HMM

Data Mining in Bioinformatics HMM Data Mining in Bioinformatics HMM Microarray Problem: Major Objective n Major Objective: Discover a comprehensive theory of life s organization at the molecular level 2 1 Data Mining in Bioinformatics

More information

Structured Prediction

Structured Prediction Machine Learning Fall 2017 (structured perceptron, HMM, structured SVM) Professor Liang Huang (Chap. 17 of CIML) x x the man bit the dog x the man bit the dog x DT NN VBD DT NN S =+1 =-1 the man bit the

More information

Linear Classification and SVM. Dr. Xin Zhang

Linear Classification and SVM. Dr. Xin Zhang Linear Classification and SVM Dr. Xin Zhang Email: eexinzhang@scut.edu.cn What is linear classification? Classification is intrinsically non-linear It puts non-identical things in the same class, so a

More information

Multiclass Classification-1

Multiclass Classification-1 CS 446 Machine Learning Fall 2016 Oct 27, 2016 Multiclass Classification Professor: Dan Roth Scribe: C. Cheng Overview Binary to multiclass Multiclass SVM Constraint classification 1 Introduction Multiclass

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information