Fast, Cheap and Deep Scaling machine learning

Size: px
Start display at page:

Download "Fast, Cheap and Deep Scaling machine learning"

Transcription

1 Fast, Cheap and Deep Scaling machine learning SFW Alexander Smola CMU Machine Learning and github.com/dmlc

2 Many thanks to Mu Li Dave Andersen Chris Dyer Li Zhou Ziqi Liu Manzil Zaheer Qicong Chen Amr Ahmed (Google) Yu-Xiang Wang Jay Yoon Lee Ha Loc Do (SMU) CXXNET Team Tianqi Chen (UW) Bing Xu Naiyang Wang Minerva Team Minjie Wang Tianjun Xiao Jianpeng Li Jiaxing Zhang

3 This talk in 3 slides

4 Parameter Server Server Server Data (local or cloud) read Data (local or cloud) read Data (local or cloud) read local state (or copy) local state (or copy) local state (or copy) write update write update write update Data (local or cloud) Data (local or cloud) Data (local or cloud)

5 Multicore Data (local or cloud) read Parameter Server local state (or copy) write update Data (local or cloud)

6 GPUs (for Deep Learning) Data (local or cloud) read Parameter Server local state (or copy) write update Data (local or cloud)

7 Details Parameter Server Basics Logistic Regression (Classification) Large Distributed State Factorization Machines (CTR) Memory Subsystem Matrix Factorization (Recommender) GPUs Deep Learning (Images)

8 p(click {z} =:y ad, query,w) {z } =:x Estimate Click Through Rate

9 Click Through Rate (CTR) Linear function class Logistic regression Optimization Problem minimize w f(x) =hw, xi p(y x, w) = mx i=1 Solve distributed over many machines (typically 1TB to 1PB of data) exp ( y hw, xi) sparse models for advertising log(1 + exp( y i hw, x i i)) + kwk 1

10 Optimization Algorithm Compute gradient on data l1 norm is nonsmooth, hence proximal operator argmin w kwk kw (w t g t )k 2 Updates for l1 are very simple w i sgn(w i ) max(0, w i ) All steps decompose by coordinates Solve in parallel (and asynchronously)

11 Parameter Server Template Smola & Narayanamurthy, 2010, VLDB Gonzalez et al., 2012, WSDM Dean et al, 2012, NIPS Shervashidze et al., 2013, WWW Google, Baidu, Facebook, Amazon, Yahoo, Microsoft Compute gradient on (subset of data) on each client Send gradient from client to server asynchronously push(key_list,value_list,timestamp) Proximal gradient update on server per coordinate Server returns parameters pull(key_list,value_list,timestamp)

12 Solving it at scale Li et al., OSDI TB data, variables Local file system stores files 1000 servers (corp cloud), 1h time, 140 MB/s learning Online solver System A System B Parameter Server time (hour) 1.1 TB (Criteo), variables, samples S3 stores files (no preing) - better IO library 5 machines (c4.8xlarge), 1000s time, 220 MB/s learning 2014

13 Details Parameter Server Basics Logistic Regression (Classification) Large Distributed State Factorization Machines (CTR) Memory Subsystem Matrix Factorization (Recommender) GPUs Deep Learning (Images)

14 p(y x, w) A Linear Model is not enough

15 Factorization Machines Linear Model f(x) =hw, xi memory hog Polynomial Expansion (Rendle, 2012) f(x) =hw, xi + X i<j x i x j tr V (2) V (2) i j + X i<j<k x i x j x k tr V (3) V (3) V (3) i j k +... too large for individual machine

16 Prefetching to the rescue Most keys are infrequent (power law distribution) Prefetch the embedding vectors for a minibatch from t=1 t=1 t=2 t=2 t=3 t= parameter server Compute gradients and push to server Variable dimensionality embedding Enforcing sparsity (ANOVA style) Adaptive gradient normalization Frequency adaptive regularization (CF style)

17 Better Models what relative logloss (%) everyone else does (Criteo 1TB) no mem adaption freqency freqency + l1 shrk k

18 Faster Solver (small Criteo) test logloss LibFM DiFacto, 1 worker DiFacto, 10 workers LibFM died on large models sec

19 Multiple Machines Li, Wang, Liu, Smola, WSDM 16, submitted x LibFM speed on 16 machines speedup (x) Criteo2 CTR # of machines

20 Details Parameter Server Basics Logistic Regression (Classification) Large Distributed State Factorization Machines (CTR) Memory Subsystem Matrix Factorization (Recommender) GPUs Deep Learning (Images)

21 Recommender Systems Users u, movies m (or projects) Function class rum = hvu, wm i + bu + bm Loss function for recommendation (Yelp, Netflix) X u m (hvu, wm i + bu + bm yum ) 2

22 Recommender Systems Regularized Objective X u m (hv u,w m i + b u + b m + b 0 r um ) hkuk 2 Frob + kv k2 Frob Update operations v u (1 t )v u t w m (hv u,w m i + b u + b m + b 0 r um ) w m (1 t )w m t v u (hv u,w m i + b u + b m + b 0 r um ) Very simple SGD algorithm (random pairs) This should be cheap i memory subsystem

23 This should be cheap O(md) burst reads and O(m) random reads Netflix dataset m = 100 million, d = 2048 dimensions, 30 steps Runtime should be > 4500s 60 GB/s memory bandwidth = 3300s 100 ns random reads = 1200s We get 560s. Why? Liu, Wang, Smola, RecSys 2015

24 Power law in Collaborative Filtering 10 4 Netflix dataset 10 3 # movies # ratings

25 Key Ideas Stratify ratings by users (only 1 cache miss / read per user / out of core) Keep frequent movies in cache (stratify by blocks of movie popularity) Avoid false sharing between sockets (key cached in the wrong CPU causes miss)

26 Key Ideas GraphChi Partitioning

27 Key Ideas SC-SGD partitioning

28 Speed (c4.8xlarge) C-SGD Fast SGLD Graphchi Graphlab BIDMach 5000 C-SGD Fast SGLD Graphchi Graphlab Seconds g2.8xlarge Seconds Num of Dimensions Netflix - 100M, 15 iterations Num of Dimensions Yahoo - 250M, 30 iterations

29 Convergence Testing RMSE C-SGD at k=2048 GraphChi SGD at k=2048 Fast SGLD at k=2048 GraphChi blocks (users, movies) into random groups Poor mixing Slow convergence Runtime in sec (30 epoches in total)

30 Details Parameter Server Basics Logistic Regression (Classification) Large Distributed State Factorization Machines (CTR) Memory Subsystem Matrix Factorization (Recommender) GPUs Deep Learning (Images) github.com/dmlc

31 The Challenge Multiple good single-machine toolkits Caffe - convolution optimized (images) CXXNET - good tensor library Minerva - Scheduler & Layout on CPU/GPU Torch - Lua + interesting C preor (very very popular, though) Theano - Deep network compiler built by ML Don t reinvent the wheel for deep learning Integrate with parameter server

32 Minerva (dmlc/minerva) Tensor interface in python (similar to numpy) Dataflow engine Auto parallel execution On multi-core CPU On multi-gpu Optimizes layout automatically Zhang et al, 14 (NIPS workshop)

33 Minerva Scaling Images/ second AlexNet VGGNet GoogLeNet 1 card cards cards

34 Distributed Deep Learning

35 Distributed Deep Learning

36 Scaling on AWS g2.2xlarge 1Gbit network limit (alexnet scaling)

37 Amazon just released g2.8xlarge 12 instances (48 $0.50/h spot Minibatch size 512 BSP with 1 delay between machines 2 GB/s bandwidth between machines (awful) , , , , , , , , , , , (all over the place in availability zone) Compressing to 1 byte per coordinate helps a bit but adds latency due to extra pass (need to fix) 37x speedup on 48 GPUS Imagenet 12 dataset in trained in 4h, i.e. $24 (with alexnet; googlenet even better for network)

38 Summary Parameter Server Basics Data (local or cloud) read Logistic Regression local state (or copy) Large Distributed State Factorization Machines Server write update Data (local or cloud) Data (local or cloud) Memory Subsystem read We are hiring! Matrix Factorization write update local state (or copy) GPUs Deep Learning Server Data (local or cloud) Data (local or cloud) read Much more - Topic Models, NLP local state (or copy) Docker, Sketches, Fault Tolerance write Data (local or cloud) update

Faster Machine Learning via Low-Precision Communication & Computation. Dan Alistarh (IST Austria & ETH Zurich), Hantian Zhang (ETH Zurich)

Faster Machine Learning via Low-Precision Communication & Computation. Dan Alistarh (IST Austria & ETH Zurich), Hantian Zhang (ETH Zurich) Faster Machine Learning via Low-Precision Communication & Computation Dan Alistarh (IST Austria & ETH Zurich), Hantian Zhang (ETH Zurich) 2 How many bits do you need to represent a single number in machine

More information

Distributed Machine Learning: A Brief Overview. Dan Alistarh IST Austria

Distributed Machine Learning: A Brief Overview. Dan Alistarh IST Austria Distributed Machine Learning: A Brief Overview Dan Alistarh IST Austria Background The Machine Learning Cambrian Explosion Key Factors: 1. Large s: Millions of labelled images, thousands of hours of speech

More information

Scalable Asynchronous Gradient Descent Optimization for Out-of-Core Models

Scalable Asynchronous Gradient Descent Optimization for Out-of-Core Models Scalable Asynchronous Gradient Descent Optimization for Out-of-Core Models Chengjie Qin 1, Martin Torres 2, and Florin Rusu 2 1 GraphSQL, Inc. 2 University of California Merced August 31, 2017 Machine

More information

arxiv: v2 [cs.lg] 5 May 2015

arxiv: v2 [cs.lg] 5 May 2015 fastfm: A Library for Factorization Machines Immanuel Bayer University of Konstanz 78457 Konstanz, Germany immanuel.bayer@uni-konstanz.de arxiv:505.0064v [cs.lg] 5 May 05 Editor: Abstract Factorization

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Nov 2, 2016 Outline SGD-typed algorithms for Deep Learning Parallel SGD for deep learning Perceptron Prediction value for a training data: prediction

More information

Matrix Factorization and Factorization Machines for Recommender Systems

Matrix Factorization and Factorization Machines for Recommender Systems Talk at SDM workshop on Machine Learning Methods on Recommender Systems, May 2, 215 Chih-Jen Lin (National Taiwan Univ.) 1 / 54 Matrix Factorization and Factorization Machines for Recommender Systems Chih-Jen

More information

Quantum Artificial Intelligence and Machine Learning: The Path to Enterprise Deployments. Randall Correll. +1 (703) Palo Alto, CA

Quantum Artificial Intelligence and Machine Learning: The Path to Enterprise Deployments. Randall Correll. +1 (703) Palo Alto, CA Quantum Artificial Intelligence and Machine : The Path to Enterprise Deployments Randall Correll randall.correll@qcware.com +1 (703) 867-2395 Palo Alto, CA 1 Bundled software and services Professional

More information

ARock: an algorithmic framework for asynchronous parallel coordinate updates

ARock: an algorithmic framework for asynchronous parallel coordinate updates ARock: an algorithmic framework for asynchronous parallel coordinate updates Zhimin Peng, Yangyang Xu, Ming Yan, Wotao Yin ( UCLA Math, U.Waterloo DCO) UCLA CAM Report 15-37 ShanghaiTech SSDS 15 June 25,

More information

StreamSVM Linear SVMs and Logistic Regression When Data Does Not Fit In Memory

StreamSVM Linear SVMs and Logistic Regression When Data Does Not Fit In Memory StreamSVM Linear SVMs and Logistic Regression When Data Does Not Fit In Memory S.V. N. (vishy) Vishwanathan Purdue University and Microsoft vishy@purdue.edu October 9, 2012 S.V. N. Vishwanathan (Purdue,

More information

A Practitioner s Guide to MXNet

A Practitioner s Guide to MXNet 1/34 A Practitioner s Guide to MXNet Xingjian Shi Hong Kong University of Science and Technology (HKUST) HKUST CSE Seminar, March 31st, 2017 2/34 Outline 1 Introduction Deep Learning Basics MXNet Highlights

More information

DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY

DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY 1 On-line Resources http://neuralnetworksanddeeplearning.com/index.html Online book by Michael Nielsen http://matlabtricks.com/post-5/3x3-convolution-kernelswith-online-demo

More information

Logistic Regression. COMP 527 Danushka Bollegala

Logistic Regression. COMP 527 Danushka Bollegala Logistic Regression COMP 527 Danushka Bollegala Binary Classification Given an instance x we must classify it to either positive (1) or negative (0) class We can use {1,-1} instead of {1,0} but we will

More information

Binary Principal Component Analysis in the Netflix Collaborative Filtering Task

Binary Principal Component Analysis in the Netflix Collaborative Filtering Task Binary Principal Component Analysis in the Netflix Collaborative Filtering Task László Kozma, Alexander Ilin, Tapani Raiko first.last@tkk.fi Helsinki University of Technology Adaptive Informatics Research

More information

Matrix Factorization Techniques for Recommender Systems

Matrix Factorization Techniques for Recommender Systems Matrix Factorization Techniques for Recommender Systems Patrick Seemann, December 16 th, 2014 16.12.2014 Fachbereich Informatik Recommender Systems Seminar Patrick Seemann Topics Intro New-User / New-Item

More information

arxiv: v3 [cs.lg] 23 Nov 2016

arxiv: v3 [cs.lg] 23 Nov 2016 Journal of Machine Learning Research 17 (2016) 1-5 Submitted 7/15; Revised 5/16; Published 10/16 fastfm: A Library for Factorization Machines Immanuel Bayer University of Konstanz 78457 Konstanz, Germany

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 18, 2016 Outline One versus all/one versus one Ranking loss for multiclass/multilabel classification Scaling to millions of labels Multiclass

More information

Collaborative Filtering

Collaborative Filtering Collaborative Filtering Nicholas Ruozzi University of Texas at Dallas based on the slides of Alex Smola & Narges Razavian Collaborative Filtering Combining information among collaborating entities to make

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 11, 2016 Paper presentations and final project proposal Send me the names of your group member (2 or 3 students) before October 15 (this Friday)

More information

Large-Scale Behavioral Targeting

Large-Scale Behavioral Targeting Large-Scale Behavioral Targeting Ye Chen, Dmitry Pavlov, John Canny ebay, Yandex, UC Berkeley (This work was conducted at Yahoo! Labs.) June 30, 2009 Chen et al. (KDD 09) Large-Scale Behavioral Targeting

More information

A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices

A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices Ryota Tomioka 1, Taiji Suzuki 1, Masashi Sugiyama 2, Hisashi Kashima 1 1 The University of Tokyo 2 Tokyo Institute of Technology 2010-06-22

More information

Impression Store: Compressive Sensing-based Storage for. Big Data Analytics

Impression Store: Compressive Sensing-based Storage for. Big Data Analytics Impression Store: Compressive Sensing-based Storage for Big Data Analytics Jiaxing Zhang, Ying Yan, Liang Jeff Chen, Minjie Wang, Thomas Moscibroda & Zheng Zhang Microsoft Research The Curse of O(N) in

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 27, 2015 Outline One versus all/one versus one Ranking loss for multiclass/multilabel classification Scaling to millions of labels Multiclass

More information

Maximum Margin Matrix Factorization for Collaborative Ranking

Maximum Margin Matrix Factorization for Collaborative Ranking Maximum Margin Matrix Factorization for Collaborative Ranking Joint work with Quoc Le, Alexandros Karatzoglou and Markus Weimer Alexander J. Smola sml.nicta.com.au Statistical Machine Learning Program

More information

A Gradient-based Adaptive Learning Framework for Efficient Personal Recommendation

A Gradient-based Adaptive Learning Framework for Efficient Personal Recommendation A Gradient-based Adaptive Learning Framework for Efficient Personal Recommendation Yue Ning 1 Yue Shi 2 Liangjie Hong 2 Huzefa Rangwala 3 Naren Ramakrishnan 1 1 Virginia Tech 2 Yahoo Research. Yue Shi

More information

CNTK Microsoft s Open Source Deep Learning Toolkit. Taifeng Wang Lead Researcher, Microsoft Research Asia 2016 GTC China

CNTK Microsoft s Open Source Deep Learning Toolkit. Taifeng Wang Lead Researcher, Microsoft Research Asia 2016 GTC China CNTK Microsoft s Open Source Deep Learning Toolkit Taifeng Wang Lead Researcher, Microsoft Research Asia 2016 GTC China Deep learning in Microsoft Cognitive Services https://how-old.net http://www.captionbot.ai

More information

Dot-Product Join: Scalable In-Database Linear Algebra for Big Model Analytics

Dot-Product Join: Scalable In-Database Linear Algebra for Big Model Analytics Dot-Product Join: Scalable In-Database Linear Algebra for Big Model Analytics Chengjie Qin 1 and Florin Rusu 2 1 GraphSQL, Inc. 2 University of California Merced June 29, 2017 Machine Learning (ML) Is

More information

Master Thesis Communication Filters for Distributed Optimization with the Parameter Server

Master Thesis Communication Filters for Distributed Optimization with the Parameter Server Master Thesis Communication Filters for Distributed Optimization with the Parameter Server Yipei Wang 2015 May School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Thesis Committee:

More information

A Distributed Solver for Kernelized SVM

A Distributed Solver for Kernelized SVM and A Distributed Solver for Kernelized Stanford ICME haoming@stanford.edu bzhe@stanford.edu June 3, 2015 Overview and 1 and 2 3 4 5 Support Vector Machines and A widely used supervised learning model,

More information

Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence

Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence oé LAMDA Group H ŒÆOŽÅ Æ EâX ^ #EâI[ : liwujun@nju.edu.cn Dec 10, 2016 Wu-Jun Li (http://cs.nju.edu.cn/lwj)

More information

THE STATE OF CONTEMPORARY COMPUTING SUBSTRATES FOR OPTIMIZATION METHODS. Benjamin Recht UC Berkeley

THE STATE OF CONTEMPORARY COMPUTING SUBSTRATES FOR OPTIMIZATION METHODS. Benjamin Recht UC Berkeley THE STATE OF CONTEMPORARY COMPUTING SUBSTRATES FOR OPTIMIZATION METHODS Benjamin Recht UC Berkeley MY QUIXOTIC QUEST FOR SUPERLINEAR ALGORITHMS Benjamin Recht UC Berkeley Collaborators Slides extracted

More information

Recommendation Systems

Recommendation Systems Recommendation Systems Popularity Recommendation Systems Predicting user responses to options Offering news articles based on users interests Offering suggestions on what the user might like to buy/consume

More information

Outline. Overview CNTK introduction. Educational resources Conclusions. Symbolic loop Batch scheduling Data parallel training

Outline. Overview CNTK introduction. Educational resources Conclusions. Symbolic loop Batch scheduling Data parallel training Outline Overview CNTK introduction Symbolic loop Batch scheduling Data parallel training Educational resources Conclusions Outline Overview CNTK introduction Symbolic loop Batch scheduling Data parallel

More information

Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent

Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent KDD 2011 Rainer Gemulla, Peter J. Haas, Erik Nijkamp and Yannis Sismanis Presenter: Jiawen Yao Dept. CSE, UT Arlington 1 1

More information

Deep Learning: a gentle introduction

Deep Learning: a gentle introduction Deep Learning: a gentle introduction Jamal Atif jamal.atif@dauphine.fr PSL, Université Paris-Dauphine, LAMSADE February 8, 206 Jamal Atif (Université Paris-Dauphine) Deep Learning February 8, 206 / Why

More information

Introduction to Logistic Regression

Introduction to Logistic Regression Introduction to Logistic Regression Guy Lebanon Binary Classification Binary classification is the most basic task in machine learning, and yet the most frequent. Binary classifiers often serve as the

More information

A Parallel SGD method with Strong Convergence

A Parallel SGD method with Strong Convergence A Parallel SGD method with Strong Convergence Dhruv Mahajan Microsoft Research India dhrumaha@microsoft.com S. Sundararajan Microsoft Research India ssrajan@microsoft.com S. Sathiya Keerthi Microsoft Corporation,

More information

ECE521 W17 Tutorial 1. Renjie Liao & Min Bai

ECE521 W17 Tutorial 1. Renjie Liao & Min Bai ECE521 W17 Tutorial 1 Renjie Liao & Min Bai Schedule Linear Algebra Review Matrices, vectors Basic operations Introduction to TensorFlow NumPy Computational Graphs Basic Examples Linear Algebra Review

More information

Large-scale Stochastic Optimization

Large-scale Stochastic Optimization Large-scale Stochastic Optimization 11-741/641/441 (Spring 2016) Hanxiao Liu hanxiaol@cs.cmu.edu March 24, 2016 1 / 22 Outline 1. Gradient Descent (GD) 2. Stochastic Gradient Descent (SGD) Formulation

More information

Collaborative Filtering. Radek Pelánek

Collaborative Filtering. Radek Pelánek Collaborative Filtering Radek Pelánek 2017 Notes on Lecture the most technical lecture of the course includes some scary looking math, but typically with intuitive interpretation use of standard machine

More information

Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee

Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee Shen-Yi Zhao and

More information

A Randomized Approach for Crowdsourcing in the Presence of Multiple Views

A Randomized Approach for Crowdsourcing in the Presence of Multiple Views A Randomized Approach for Crowdsourcing in the Presence of Multiple Views Presenter: Yao Zhou joint work with: Jingrui He - 1 - Roadmap Motivation Proposed framework: M2VW Experimental results Conclusion

More information

Parallel Matrix Factorization for Recommender Systems

Parallel Matrix Factorization for Recommender Systems Under consideration for publication in Knowledge and Information Systems Parallel Matrix Factorization for Recommender Systems Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit S. Dhillon Department of

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

Using R for Iterative and Incremental Processing

Using R for Iterative and Incremental Processing Using R for Iterative and Incremental Processing Shivaram Venkataraman, Indrajit Roy, Alvin AuYoung, Robert Schreiber UC Berkeley and HP Labs UC BERKELEY Big Data, Complex Algorithms PageRank (Dominant

More information

Block stochastic gradient update method

Block stochastic gradient update method Block stochastic gradient update method Yangyang Xu and Wotao Yin IMA, University of Minnesota Department of Mathematics, UCLA November 1, 2015 This work was done while in Rice University 1 / 26 Stochastic

More information

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis T. BEN-NUN, T. HOEFLER Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis https://www.arxiv.org/abs/1802.09941 What is Deep Learning good for? Digit Recognition Object

More information

Stochastic Gradient Descent. CS 584: Big Data Analytics

Stochastic Gradient Descent. CS 584: Big Data Analytics Stochastic Gradient Descent CS 584: Big Data Analytics Gradient Descent Recap Simplest and extremely popular Main Idea: take a step proportional to the negative of the gradient Easy to implement Each iteration

More information

CSC321 Lecture 16: ResNets and Attention

CSC321 Lecture 16: ResNets and Attention CSC321 Lecture 16: ResNets and Attention Roger Grosse Roger Grosse CSC321 Lecture 16: ResNets and Attention 1 / 24 Overview Two topics for today: Topic 1: Deep Residual Networks (ResNets) This is the state-of-the

More information

Coordinate Update Algorithm Short Course The Package TMAC

Coordinate Update Algorithm Short Course The Package TMAC Coordinate Update Algorithm Short Course The Package TMAC Instructor: Wotao Yin (UCLA Math) Summer 2016 1 / 16 TMAC: A Toolbox of Async-Parallel, Coordinate, Splitting, and Stochastic Methods C++11 multi-threading

More information

Learning in a Distributed and Heterogeneous Environment

Learning in a Distributed and Heterogeneous Environment Learning in a Distributed and Heterogeneous Environment Martin Jaggi EPFL Machine Learning and Optimization Laboratory mlo.epfl.ch Inria - EPFL joint Workshop - Paris - Feb 15 th Machine Learning Methods

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Info 59/259 Lecture 4: Text classification 3 (Sept 5, 207) David Bamman, UC Berkeley . https://www.forbes.com/sites/kevinmurnane/206/04/0/what-is-deep-learning-and-how-is-it-useful

More information

Linear classifiers: Overfitting and regularization

Linear classifiers: Overfitting and regularization Linear classifiers: Overfitting and regularization Emily Fox University of Washington January 25, 2017 Logistic regression recap 1 . Thus far, we focused on decision boundaries Score(x i ) = w 0 h 0 (x

More information

Scaling Neighbourhood Methods

Scaling Neighbourhood Methods Quick Recap Scaling Neighbourhood Methods Collaborative Filtering m = #items n = #users Complexity : m * m * n Comparative Scale of Signals ~50 M users ~25 M items Explicit Ratings ~ O(1M) (1 per billion)

More information

Deep Learning (CNNs)

Deep Learning (CNNs) 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Deep Learning (CNNs) Deep Learning Readings: Murphy 28 Bishop - - HTF - - Mitchell

More information

Warm up. Regrade requests submitted directly in Gradescope, do not instructors.

Warm up. Regrade requests submitted directly in Gradescope, do not  instructors. Warm up Regrade requests submitted directly in Gradescope, do not email instructors. 1 float in NumPy = 8 bytes 10 6 2 20 bytes = 1 MB 10 9 2 30 bytes = 1 GB For each block compute the memory required

More information

6.034 Introduction to Artificial Intelligence

6.034 Introduction to Artificial Intelligence 6.34 Introduction to Artificial Intelligence Tommi Jaakkola MIT CSAIL The world is drowning in data... The world is drowning in data...... access to information is based on recommendations Recommending

More information

Large-scale Collaborative Ranking in Near-Linear Time

Large-scale Collaborative Ranking in Near-Linear Time Large-scale Collaborative Ranking in Near-Linear Time Liwei Wu Depts of Statistics and Computer Science UC Davis KDD 17, Halifax, Canada August 13-17, 2017 Joint work with Cho-Jui Hsieh and James Sharpnack

More information

Decoupled Collaborative Ranking

Decoupled Collaborative Ranking Decoupled Collaborative Ranking Jun Hu, Ping Li April 24, 2017 Jun Hu, Ping Li WWW2017 April 24, 2017 1 / 36 Recommender Systems Recommendation system is an information filtering technique, which provides

More information

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 LECTURERS: NAMAN AGARWAL AND BRIAN BULLINS SCRIBE: KIRAN VODRAHALLI Contents 1 Introduction 1 1.1 History of Optimization.....................................

More information

Ad Placement Strategies

Ad Placement Strategies Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox 2014 Emily Fox January

More information

HOMEWORK #4: LOGISTIC REGRESSION

HOMEWORK #4: LOGISTIC REGRESSION HOMEWORK #4: LOGISTIC REGRESSION Probabilistic Learning: Theory and Algorithms CS 274A, Winter 2018 Due: Friday, February 23rd, 2018, 11:55 PM Submit code and report via EEE Dropbox You should submit a

More information

SVAN 2016 Mini Course: Stochastic Convex Optimization Methods in Machine Learning

SVAN 2016 Mini Course: Stochastic Convex Optimization Methods in Machine Learning SVAN 2016 Mini Course: Stochastic Convex Optimization Methods in Machine Learning Mark Schmidt University of British Columbia, May 2016 www.cs.ubc.ca/~schmidtm/svan16 Some images from this lecture are

More information

Deep neural networks and fraud detection

Deep neural networks and fraud detection U.U.D.M. Project Report 2017:38 Deep neural networks and fraud detection Yifei Lu Examensarbete i matematik, 30 hp Handledare: Kaj Nyström Examinator: Erik Ekström Oktober 2017 Department of Mathematics

More information

Andriy Mnih and Ruslan Salakhutdinov

Andriy Mnih and Ruslan Salakhutdinov MATRIX FACTORIZATION METHODS FOR COLLABORATIVE FILTERING Andriy Mnih and Ruslan Salakhutdinov University of Toronto, Machine Learning Group 1 What is collaborative filtering? The goal of collaborative

More information

Optimization geometry and implicit regularization

Optimization geometry and implicit regularization Optimization geometry and implicit regularization Suriya Gunasekar Joint work with N. Srebro (TTIC), J. Lee (USC), D. Soudry (Technion), M.S. Nacson (Technion), B. Woodworth (TTIC), S. Bhojanapalli (TTIC),

More information

AdaDelay: Delay Adaptive Distributed Stochastic Optimization

AdaDelay: Delay Adaptive Distributed Stochastic Optimization Suvrit Sra Adams Wei Yu Mu Li Alexander J. Smola MI CMU CMU CMU Abstract We develop distributed stochastic convex optimization algorithms under a delayed gradient model in which server nodes update parameters

More information

Using SVD to Recommend Movies

Using SVD to Recommend Movies Michael Percy University of California, Santa Cruz Last update: December 12, 2009 Last update: December 12, 2009 1 / Outline 1 Introduction 2 Singular Value Decomposition 3 Experiments 4 Conclusion Last

More information

Deep Learning for NLP

Deep Learning for NLP Deep Learning for NLP Instructor: Wei Xu Ohio State University CSE 5525 Many slides from Greg Durrett Outline Motivation for neural networks Feedforward neural networks Applying feedforward neural networks

More information

Asynchrony begets Momentum, with an Application to Deep Learning

Asynchrony begets Momentum, with an Application to Deep Learning Asynchrony begets Momentum, with an Application to Deep Learning Ioannis Mitliagkas Dept. of Computer Science Stanford University Email: imit@stanford.edu Ce Zhang Dept. of Computer Science ETH, Zurich

More information

Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee

Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee Shen-Yi Zhao and Wu-Jun Li National Key Laboratory for Novel Software Technology Department of Computer

More information

Online Advertising is Big Business

Online Advertising is Big Business Online Advertising Online Advertising is Big Business Multiple billion dollar industry $43B in 2013 in USA, 17% increase over 2012 [PWC, Internet Advertising Bureau, April 2013] Higher revenue in USA

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 27, 2015 Outline Linear regression Ridge regression and Lasso Time complexity (closed form solution) Iterative Solvers Regression Input: training

More information

Comments. Assignment 3 code released. Thought questions 3 due this week. Mini-project: hopefully you have started. implement classification algorithms

Comments. Assignment 3 code released. Thought questions 3 due this week. Mini-project: hopefully you have started. implement classification algorithms Neural networks Comments Assignment 3 code released implement classification algorithms use kernels for census dataset Thought questions 3 due this week Mini-project: hopefully you have started 2 Example:

More information

HOMEWORK #4: LOGISTIC REGRESSION

HOMEWORK #4: LOGISTIC REGRESSION HOMEWORK #4: LOGISTIC REGRESSION Probabilistic Learning: Theory and Algorithms CS 274A, Winter 2019 Due: 11am Monday, February 25th, 2019 Submit scan of plots/written responses to Gradebook; submit your

More information

EE-559 Deep learning 1.4. Tensor basics and linear regression. François Fleuret Mon Mar 18 20:04:34 UTC 2019

EE-559 Deep learning 1.4. Tensor basics and linear regression. François Fleuret   Mon Mar 18 20:04:34 UTC 2019 EE-559 Deep learning 1.4. Tensor basics and linear regression François Fleuret https://fleuret.org/ee559/ Mon Mar 18 20:04:34 UTC 2019 A tensor is a generalized matrix, a finite table of numerical values

More information

Neural Networks and Deep Learning

Neural Networks and Deep Learning Neural Networks and Deep Learning Professor Ameet Talwalkar November 12, 2015 Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 1 / 16 Outline 1 Review of last lecture AdaBoost

More information

Online Videos FERPA. Sign waiver or sit on the sides or in the back. Off camera question time before and after lecture. Questions?

Online Videos FERPA. Sign waiver or sit on the sides or in the back. Off camera question time before and after lecture. Questions? Online Videos FERPA Sign waiver or sit on the sides or in the back Off camera question time before and after lecture Questions? Lecture 1, Slide 1 CS224d Deep NLP Lecture 4: Word Window Classification

More information

Convolutional Neural Networks II. Slides from Dr. Vlad Morariu

Convolutional Neural Networks II. Slides from Dr. Vlad Morariu Convolutional Neural Networks II Slides from Dr. Vlad Morariu 1 Optimization Example of optimization progress while training a neural network. (Loss over mini-batches goes down over time.) 2 Learning rate

More information

Large-Scale Feature Learning with Spike-and-Slab Sparse Coding

Large-Scale Feature Learning with Spike-and-Slab Sparse Coding Large-Scale Feature Learning with Spike-and-Slab Sparse Coding Ian J. Goodfellow, Aaron Courville, Yoshua Bengio ICML 2012 Presented by Xin Yuan January 17, 2013 1 Outline Contributions Spike-and-Slab

More information

SP-CNN: A Scalable and Programmable CNN-based Accelerator. Dilan Manatunga Dr. Hyesoon Kim Dr. Saibal Mukhopadhyay

SP-CNN: A Scalable and Programmable CNN-based Accelerator. Dilan Manatunga Dr. Hyesoon Kim Dr. Saibal Mukhopadhyay SP-CNN: A Scalable and Programmable CNN-based Accelerator Dilan Manatunga Dr. Hyesoon Kim Dr. Saibal Mukhopadhyay Motivation Power is a first-order design constraint, especially for embedded devices. Certain

More information

This ensures that we walk downhill. For fixed λ not even this may be the case.

This ensures that we walk downhill. For fixed λ not even this may be the case. Gradient Descent Objective Function Some differentiable function f : R n R. Gradient Descent Start with some x 0, i = 0 and learning rate λ repeat x i+1 = x i λ f(x i ) until f(x i+1 ) ɛ Line Search Variant

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

More information

INF 5860 Machine learning for image classification. Lecture 5 : Introduction to TensorFlow Tollef Jahren February 14, 2018

INF 5860 Machine learning for image classification. Lecture 5 : Introduction to TensorFlow Tollef Jahren February 14, 2018 INF 5860 Machine learning for image classification Lecture 5 : Introduction to TensorFlow Tollef Jahren February 14, 2018 OUTLINE Deep learning frameworks TensorFlow TensorFlow graphs TensorFlow session

More information

Administrative Issues. CS5242 mirror site: https://web.bii.a-star.edu.sg/~leehk/cs5424.html

Administrative Issues. CS5242 mirror site: https://web.bii.a-star.edu.sg/~leehk/cs5424.html Administrative Issues CS5242 mirror site: https://web.bii.a-star.edu.sg/~leehk/cs5424.html 1 Assignments (10% * 4 = 40%) For each assignment It has multiple sub-tasks, including coding tasks You need to

More information

Matrix Factorization and Collaborative Filtering

Matrix Factorization and Collaborative Filtering 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Matrix Factorization and Collaborative Filtering MF Readings: (Koren et al., 2009)

More information

Introduction to Convolutional Neural Networks (CNNs)

Introduction to Convolutional Neural Networks (CNNs) Introduction to Convolutional Neural Networks (CNNs) nojunk@snu.ac.kr http://mipal.snu.ac.kr Department of Transdisciplinary Studies Seoul National University, Korea Jan. 2016 Many slides are from Fei-Fei

More information

Neural Networks: Backpropagation

Neural Networks: Backpropagation Neural Networks: Backpropagation Machine Learning Fall 2017 Based on slides and material from Geoffrey Hinton, Richard Socher, Dan Roth, Yoav Goldberg, Shai Shalev-Shwartz and Shai Ben-David, and others

More information

Scikit-learn. scikit. Machine learning for the small and the many Gaël Varoquaux. machine learning in Python

Scikit-learn. scikit. Machine learning for the small and the many Gaël Varoquaux. machine learning in Python Scikit-learn Machine learning for the small and the many Gaël Varoquaux scikit machine learning in Python In this meeting, I represent low performance computing Scikit-learn Machine learning for the small

More information

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang Deep Learning Basics Lecture 7: Factor Analysis Princeton University COS 495 Instructor: Yingyu Liang Supervised v.s. Unsupervised Math formulation for supervised learning Given training data x i, y i

More information

ArcGIS Enterprise: What s New. Philip Heede Shannon Kalisky Melanie Summers Shreyas Shinde

ArcGIS Enterprise: What s New. Philip Heede Shannon Kalisky Melanie Summers Shreyas Shinde ArcGIS Enterprise: What s New Philip Heede Shannon Kalisky Melanie Summers Shreyas Shinde ArcGIS Enterprise is the new name for ArcGIS for Server ArcGIS Enterprise Software Components ArcGIS Server Portal

More information

Collaborative topic models: motivations cont

Collaborative topic models: motivations cont Collaborative topic models: motivations cont Two topics: machine learning social network analysis Two people: " boy Two articles: article A! girl article B Preferences: The boy likes A and B --- no problem.

More information

An Integrative Model for Parallelism

An Integrative Model for Parallelism An Integrative Model for Parallelism Victor Eijkhout ICERM workshop 2012/01/09 Introduction Formal part Examples Extension to other memory models Conclusion tw-12-exascale 2012/01/09 2 Introduction tw-12-exascale

More information

CSE446: Neural Networks Spring Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer

CSE446: Neural Networks Spring Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer CSE446: Neural Networks Spring 2017 Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer Human Neurons Switching time ~ 0.001 second Number of neurons 10 10 Connections per neuron 10 4-5 Scene

More information

2018 EE448, Big Data Mining, Lecture 4. (Part I) Weinan Zhang Shanghai Jiao Tong University

2018 EE448, Big Data Mining, Lecture 4. (Part I) Weinan Zhang Shanghai Jiao Tong University 2018 EE448, Big Data Mining, Lecture 4 Supervised Learning (Part I) Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/ee448/index.html Content of Supervised Learning

More information

ECS171: Machine Learning

ECS171: Machine Learning ECS171: Machine Learning Lecture 4: Optimization (LFD 3.3, SGD) Cho-Jui Hsieh UC Davis Jan 22, 2018 Gradient descent Optimization Goal: find the minimizer of a function min f (w) w For now we assume f

More information

Scalable Coordinate Descent Approaches to Parallel Matrix Factorization for Recommender Systems

Scalable Coordinate Descent Approaches to Parallel Matrix Factorization for Recommender Systems Scalable Coordinate Descent Approaches to Parallel Matrix Factorization for Recommender Systems Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit Dhillon Department of Computer Science University of Texas

More information

Introduction to (Convolutional) Neural Networks

Introduction to (Convolutional) Neural Networks Introduction to (Convolutional) Neural Networks Philipp Grohs Summer School DL and Vis, Sept 2018 Syllabus 1 Motivation and Definition 2 Universal Approximation 3 Backpropagation 4 Stochastic Gradient

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning First-Order Methods, L1-Regularization, Coordinate Descent Winter 2016 Some images from this lecture are taken from Google Image Search. Admin Room: We ll count final numbers

More information

CS260: Machine Learning Algorithms

CS260: Machine Learning Algorithms CS260: Machine Learning Algorithms Lecture 4: Stochastic Gradient Descent Cho-Jui Hsieh UCLA Jan 16, 2019 Large-scale Problems Machine learning: usually minimizing the training loss min w { 1 N min w {

More information