Block stochastic gradient update method

Size: px
Start display at page:

Download "Block stochastic gradient update method"

Transcription

1 Block stochastic gradient update method Yangyang Xu and Wotao Yin IMA, University of Minnesota Department of Mathematics, UCLA November 1, 2015 This work was done while in Rice University 1 / 26

2 Stochastic gradient method Consider the stochastic programming Stochastic gradient update (SG): min F(x) = E ξ f (x; ξ). x X x k+1 = P X ( x k α k g k) g k a stochastic gradient, often E[ g k ] F(x k ) Originally for stochastic problem where exact gradient not available Now also popular for deterministic problem where exact gradient expensive; e.g., F(x) = 1 N fi(x) with large N N i=1 Faster than deterministic gradient method to reach not-high accuracy 2 / 26

3 Stochastic gradient method First appears in [Robbins-Monro 51]; now tons of works O(1/ k) rate for weakly convex problem and O(1/k) for strongly convex problem (e.g., [Nemirovski et. al 09]) For deterministic problem, linear convergence is possible if exact gradient allowed periodically [Xiao-Zhang 14] Convergence in terms of first-order optimality condition for nonconvex problem [Ghadimi-Lan 13] 3 / 26

4 Block gradient descent Consider the problem f is smooth min F(x) = f (x 1,..., x s) + x r i s possibly nonsmooth and extended-valued Block gradient update (BGD): x k+1 i k s r i(x i). = arg min x ik ik f (x k ), x ik x k i k + 1 2α k x ik x k i k r ik (x ik ) Simpler than classic block coordinate descent, i.e., block minimization Allows different ways to choose i k : cyclicly, greedily, or randomly Low iteration complexity Larger stepsize than full gradient and often faster convergence i=1 4 / 26

5 Block gradient descent First appears in [Tseng-Yun 09]; famous since [Nesverov 12] Both cyclic and randomized selection: O(1/k) for weakly convex problem and linear convergence for strongly convex problem (e.g., [Hong et. al 15]) Cyclic version harder than random or greedy version to analyze Subsequence convergence for nonconvex problem and whole sequence convergence if certain local property holds (e.g., [X.-Yin 14]) 5 / 26

6 Stochastic programming with block structure Consider problem min Φ(x) = E ξ f (x 1,..., x s; ξ) + x s r i(x i) i=1 (BSP) Example: tensor regression [Zhou-Li-Zhu 13] min E[l(X 1 X s; A, b)] X 1,...,X s This talk presents an algorithm for (BSP) with properties: Only requiring stochastic block gradient Simple update and low computational complexity Guaranteed convergence Optimal convergence rate if the problem is convex 6 / 26

7 How and why use stochastic partial gradient in BGD exact partial gradient unavailable or expensive stochastic gradient works but performs not as well random cyclic selection, i.e., shuffle and then cycle random shuffling for faster convergence and more stable performance [Chang-Hsieh-Lin 08] cyclic for lower computational complexity but analysis more difficult 7 / 26

8 Block stochastic gradient method At each iteration/cycle k 1. Sample one function or a batch of functions 2. Random shuffle blocks to (k 1,..., k s) 3. From i = 1 through s, do x k+1 k i = arg min x ki g k k i, x ki + 1 2α k k i x ki x k k i 2 + r ki (x ki ) g k k i stochastic partial gradient, dependent on sampled functions and intermediate point (x k+1 k <i, xk k i ) possibly biased estimate, i.e., E[ g k k i F(x k+1 k <i, x k k i )] 0, where F(x) = E ξ f (x; ξ) 8 / 26

9 Pros and cons of cyclic selection Pros: lower computational complexity, e.g., for Φ(x) = E (a,b) (a x b) 2 with x R n cyclic selection takes about 2n to update all coordinates once random selection takes n to update one coordinate Gauss-seidel type fast convergence (see numerical results later) Cons: biased stochastic partial gradient makes analysis more difficult 9 / 26

10 Literature Just a few papers so far [Liu-Wright, arxiv14]: an asynchronous parallel randomized Kaczmarz algorithm [Dang-Lan, SIOPT15]: stochastic block mirror descent methods for nonsmooth and stochastic optimization [Zhao et al. NIPS14]: accelerated mini-batch randomized block coordinate descent method [Wang-Banerjee, arxiv14]: randomized block coordinate descent for online and stochastic optimization [Hua-Kadomoto-Yamashita, OptOnline15]: regret analysis of block coordinate gradient methods for online convex programming 10 / 26

11 Assumptions Recall F(x) = E ξ f (x; ξ). Let δ k i = g k i xi F(x k+1 <i, x k i). Error bound of stochastic partial gradient: E[δ k i x k 1 ] A max αj k, i, k, (A = 0 if unbiased) j E δ k i 2 σ 2 k σ 2, i, k. Lipschitz continuous partial gradient: xi F(x + (0,..., d i,..., 0)) xi F(x) L i d i, i, x, d. 11 / 26

12 Convergence of block stochastic gradient Convex case: F and r i s are convex. Take α k i = α k = O( 1 k ), i, k, and let x k = k κ=1 ακxκ+1 k κ=1 ακ. Then E[Φ( x k ) Φ(x )] O(log k/ k). Can be improved to O(1/ k) if the number of iterations is pre-known, and thus achieves the optimal order of rate Strongly convex case: Φ is strongly convex. Take αi k = α k = O( 1 ), i, k. k Then E x k x 2 O(1/k). Again, optimal order of rate is achieved 12 / 26

13 Convergence of block stochastic gradient Unconstrained smooth nonconvex case: If {α k i } is taken such that then αi k =, k=1 (αi k ) 2 <, i, k=1 lim E Φ(x k ) = 0. k Nonsmooth nonconvex case: If α k i < 2 L i, i, k, and k=1 σ2 k <, then lim E [ dist(0, Φ(x k )) ] = 0. k 13 / 26

14 Numerical experiments Tested problems Stochastic least square Linear logistic regression Bilinear logistic regression Low-rank tensor recovery from Gaussian measurements Tested methods block stochastic gradient (BSG) [proposed] block gradient (deterministic) stochastic gradient method (SG) stochastic block mirror descent (SBMD) [Dang-Lan 15] 14 / 26

15 Stochastic least square Consider min x E (a,b) 1 2 (a x b) 2 a N (0, I), b = a ˆx + η, and η N (0, 0.01) ˆx is the optimal solution, and minimum value {(a i, b i)} observed sequentially from i = 1 to N Deterministic (partial) gradient unavailable 15 / 26

16 Objective values by different methods N Samples BSG SG SBMD-10 SBMD-50 SBMD e e e e e e e e e e e e e e-3 One coordinate as one block SBMD-t: SBMD with t coordinates selected each update Objective valued by another 100,000 samples Each update of all methods costs O(n) Observation: Better to update more coordinates and BSG performs best 16 / 26

17 Logistic regression min w,b 1 N N log ( 1 + exp [ ( y i x i w + b )]) i=1 (LR) Training samples {(x i, y i)} N i=1 with y i { 1, +1} Deterministic problem but exact gradient expensive for large N Stochastic gradient faster than deterministic gradient for not-high accuracy 17 / 26

18 Performance of different methods on logistic regression Objective Optimal value BSG SBMD 10 SBMD 50 SBMD 100 SG Epochs (a) random dataset Objective Optimal value BSG SBMD 1k SBMD 3k SG Epochs (b) gisette dataset Random dataset: 2000 Gaussian random samples of dimension 200 gisette dataset: 6,000 samples of dimension 5000, from LIBSVM Datasets Observation: BSG gives best performance among compared methods. 18 / 26

19 Low-rank tensor recovery from Gaussian measurements min X 1 2N N (A l (X 1 X 2 X 3) b l ) 2 (LRTR) l=1 b l = A l (M) = G l, M with G l N (0, I), l G l s are dense For large N, reading all G l may out of memory even for medium G l Deterministic problem but exact gradient too expensive for large N 19 / 26

20 Peformance of block deterministic and stochastic gradient 10 0 Objective BSG BCGD Epochs G l R and N = 15, 000 BCGD: block deterministic gradient G l R and N = 40, 000 Original (top) and recovered (bottom) by BSG with 50 epochs BSG: block stochastic gradient Observation: BSG faster and BCGD trapped at bad local solution 20 / 26

21 Bilinear logistic regression 1 min U,V,b N N log ( 1 + exp [ ( y i UV, X i + b )]) i=1 (BLR) Training samples {(X i, y i)} N i=1 with y i { 1, +1} Better than linear logistic regression for 2D dataset [Dyrholm et al. 07] 21 / 26

22 BCI competition EEG dataset Recorded from a healthy person using 118 channels; Visual cues (letter presentation) were shown; Performed: left hand, right foot, or tongue; 2100 marked data points of left hand and right foot were used; Each data point is / 26

23 Performance of block deterministic and stochastic gradient Deterministic Stochastic Objective Epochs Observation: stochastic method faster than deterministic one 23 / 26

24 Performance of linear and bilinear logistic regression 1 Prediction Accuracy BSG BCGD LibLinear Runs Each run, 2000 for training and 100 for testing BSG and BCGD run to 30 epochs LibLinear solves linear logistic regression Observation: bilinear model better than linear one on EEG data 24 / 26

25 Conclusions Proposed a block stochastic gradient method for stochastic programming Combines block gradient and stochastic gradient methods Inherits both advantages and better than either one individually Analyzed its convergence and rate Optimal order of convergence rate for convex problems Convergence in terms of first-order optimality condition for nonconvex problems Tested on both convex and nonconvex problems stochastic least square linear and bilinear logistic regression low-rank tensor recovery from dense Gaussian measurements 25 / 26

26 References Y. Xu and W. Yin. Block stochastic gradient iteration for convex and nonconvex optimization. SIOPT15. J. Shi, Y. Xu and R. Baraniuk. Sparse bilinear logistic regression. arxiv14. C. Dang and G. Lan. Stochastic block mirror descent methods for nonsmooth and stochastic optimization. SIOPT15. Y. Xu and W. Yin. A block coordinate descent method for regularized multi-convex optimization with applications to nonnegative tensor factorization and completion. SIIMS13. A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming, SIOPT / 26

ARock: an algorithmic framework for asynchronous parallel coordinate updates

ARock: an algorithmic framework for asynchronous parallel coordinate updates ARock: an algorithmic framework for asynchronous parallel coordinate updates Zhimin Peng, Yangyang Xu, Ming Yan, Wotao Yin ( UCLA Math, U.Waterloo DCO) UCLA CAM Report 15-37 ShanghaiTech SSDS 15 June 25,

More information

Accelerated primal-dual methods for linearly constrained convex problems

Accelerated primal-dual methods for linearly constrained convex problems Accelerated primal-dual methods for linearly constrained convex problems Yangyang Xu SIAM Conference on Optimization May 24, 2017 1 / 23 Accelerated proximal gradient For convex composite problem: minimize

More information

Stochastic and online algorithms

Stochastic and online algorithms Stochastic and online algorithms stochastic gradient method online optimization and dual averaging method minimizing finite average Stochastic and online optimization 6 1 Stochastic optimization problem

More information

Convex Optimization Lecture 16

Convex Optimization Lecture 16 Convex Optimization Lecture 16 Today: Projected Gradient Descent Conditional Gradient Descent Stochastic Gradient Descent Random Coordinate Descent Recall: Gradient Descent (Steepest Descent w.r.t Euclidean

More information

Block Coordinate Descent for Regularized Multi-convex Optimization

Block Coordinate Descent for Regularized Multi-convex Optimization Block Coordinate Descent for Regularized Multi-convex Optimization Yangyang Xu and Wotao Yin CAAM Department, Rice University February 15, 2013 Multi-convex optimization Model definition Applications Outline

More information

Stochastic Gradient Descent. Ryan Tibshirani Convex Optimization

Stochastic Gradient Descent. Ryan Tibshirani Convex Optimization Stochastic Gradient Descent Ryan Tibshirani Convex Optimization 10-725 Last time: proximal gradient descent Consider the problem min x g(x) + h(x) with g, h convex, g differentiable, and h simple in so

More information

Optimizing Nonconvex Finite Sums by a Proximal Primal-Dual Method

Optimizing Nonconvex Finite Sums by a Proximal Primal-Dual Method Optimizing Nonconvex Finite Sums by a Proximal Primal-Dual Method Davood Hajinezhad Iowa State University Davood Hajinezhad Optimizing Nonconvex Finite Sums by a Proximal Primal-Dual Method 1 / 35 Co-Authors

More information

Stochastic Composition Optimization

Stochastic Composition Optimization Stochastic Composition Optimization Algorithms and Sample Complexities Mengdi Wang Joint works with Ethan X. Fang, Han Liu, and Ji Liu ORFE@Princeton ICCOPT, Tokyo, August 8-11, 2016 1 / 24 Collaborators

More information

Modern Stochastic Methods. Ryan Tibshirani (notes by Sashank Reddi and Ryan Tibshirani) Convex Optimization

Modern Stochastic Methods. Ryan Tibshirani (notes by Sashank Reddi and Ryan Tibshirani) Convex Optimization Modern Stochastic Methods Ryan Tibshirani (notes by Sashank Reddi and Ryan Tibshirani) Convex Optimization 10-725 Last time: conditional gradient method For the problem min x f(x) subject to x C where

More information

Accelerated Block-Coordinate Relaxation for Regularized Optimization

Accelerated Block-Coordinate Relaxation for Regularized Optimization Accelerated Block-Coordinate Relaxation for Regularized Optimization Stephen J. Wright Computer Sciences University of Wisconsin, Madison October 09, 2012 Problem descriptions Consider where f is smooth

More information

Stochastic Optimization Algorithms Beyond SG

Stochastic Optimization Algorithms Beyond SG Stochastic Optimization Algorithms Beyond SG Frank E. Curtis 1, Lehigh University involving joint work with Léon Bottou, Facebook AI Research Jorge Nocedal, Northwestern University Optimization Methods

More information

Linear Convergence under the Polyak-Łojasiewicz Inequality

Linear Convergence under the Polyak-Łojasiewicz Inequality Linear Convergence under the Polyak-Łojasiewicz Inequality Hamed Karimi, Julie Nutini and Mark Schmidt The University of British Columbia LCI Forum February 28 th, 2017 1 / 17 Linear Convergence of Gradient-Based

More information

Asynchronous Parallel Computing in Signal Processing and Machine Learning

Asynchronous Parallel Computing in Signal Processing and Machine Learning Asynchronous Parallel Computing in Signal Processing and Machine Learning Wotao Yin (UCLA Math) joint with Zhimin Peng (UCLA), Yangyang Xu (IMA), Ming Yan (MSU) Optimization and Parsimonious Modeling IMA,

More information

Minimizing Finite Sums with the Stochastic Average Gradient Algorithm

Minimizing Finite Sums with the Stochastic Average Gradient Algorithm Minimizing Finite Sums with the Stochastic Average Gradient Algorithm Joint work with Nicolas Le Roux and Francis Bach University of British Columbia Context: Machine Learning for Big Data Large-scale

More information

Coordinate Descent and Ascent Methods

Coordinate Descent and Ascent Methods Coordinate Descent and Ascent Methods Julie Nutini Machine Learning Reading Group November 3 rd, 2015 1 / 22 Projected-Gradient Methods Motivation Rewrite non-smooth problem as smooth constrained problem:

More information

Comparison of Modern Stochastic Optimization Algorithms

Comparison of Modern Stochastic Optimization Algorithms Comparison of Modern Stochastic Optimization Algorithms George Papamakarios December 214 Abstract Gradient-based optimization methods are popular in machine learning applications. In large-scale problems,

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

More information

ECS171: Machine Learning

ECS171: Machine Learning ECS171: Machine Learning Lecture 4: Optimization (LFD 3.3, SGD) Cho-Jui Hsieh UC Davis Jan 22, 2018 Gradient descent Optimization Goal: find the minimizer of a function min f (w) w For now we assume f

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 8: Optimization Cho-Jui Hsieh UC Davis May 9, 2017 Optimization Numerical Optimization Numerical Optimization: min X f (X ) Can be applied

More information

Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence

Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence oé LAMDA Group H ŒÆOŽÅ Æ EâX ^ #EâI[ : liwujun@nju.edu.cn Dec 10, 2016 Wu-Jun Li (http://cs.nju.edu.cn/lwj)

More information

Optimal Regularized Dual Averaging Methods for Stochastic Optimization

Optimal Regularized Dual Averaging Methods for Stochastic Optimization Optimal Regularized Dual Averaging Methods for Stochastic Optimization Xi Chen Machine Learning Department Carnegie Mellon University xichen@cs.cmu.edu Qihang Lin Javier Peña Tepper School of Business

More information

Barzilai-Borwein Step Size for Stochastic Gradient Descent

Barzilai-Borwein Step Size for Stochastic Gradient Descent Barzilai-Borwein Step Size for Stochastic Gradient Descent Conghui Tan The Chinese University of Hong Kong chtan@se.cuhk.edu.hk Shiqian Ma The Chinese University of Hong Kong sqma@se.cuhk.edu.hk Yu-Hong

More information

Stochastic Quasi-Newton Methods

Stochastic Quasi-Newton Methods Stochastic Quasi-Newton Methods Donald Goldfarb Department of IEOR Columbia University UCLA Distinguished Lecture Series May 17-19, 2016 1 / 35 Outline Stochastic Approximation Stochastic Gradient Descent

More information

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison Optimization Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison optimization () cost constraints might be too much to cover in 3 hours optimization (for big

More information

Expanding the reach of optimal methods

Expanding the reach of optimal methods Expanding the reach of optimal methods Dmitriy Drusvyatskiy Mathematics, University of Washington Joint work with C. Kempton (UW), M. Fazel (UW), A.S. Lewis (Cornell), and S. Roy (UW) BURKAPALOOZA! WCOM

More information

LARGE-SCALE NONCONVEX STOCHASTIC OPTIMIZATION BY DOUBLY STOCHASTIC SUCCESSIVE CONVEX APPROXIMATION

LARGE-SCALE NONCONVEX STOCHASTIC OPTIMIZATION BY DOUBLY STOCHASTIC SUCCESSIVE CONVEX APPROXIMATION LARGE-SCALE NONCONVEX STOCHASTIC OPTIMIZATION BY DOUBLY STOCHASTIC SUCCESSIVE CONVEX APPROXIMATION Aryan Mokhtari, Alec Koppel, Gesualdo Scutari, and Alejandro Ribeiro Department of Electrical and Systems

More information

Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization

Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu Department of Computer Science, University of Rochester {lianxiangru,huangyj0,raingomm,ji.liu.uwisc}@gmail.com

More information

Asynchronous Mini-Batch Gradient Descent with Variance Reduction for Non-Convex Optimization

Asynchronous Mini-Batch Gradient Descent with Variance Reduction for Non-Convex Optimization Proceedings of the hirty-first AAAI Conference on Artificial Intelligence (AAAI-7) Asynchronous Mini-Batch Gradient Descent with Variance Reduction for Non-Convex Optimization Zhouyuan Huo Dept. of Computer

More information

arxiv: v1 [math.oc] 9 Oct 2018

arxiv: v1 [math.oc] 9 Oct 2018 Cubic Regularization with Momentum for Nonconvex Optimization Zhe Wang Yi Zhou Yingbin Liang Guanghui Lan Ohio State University Ohio State University zhou.117@osu.edu liang.889@osu.edu Ohio State University

More information

Optimization Methods for Machine Learning

Optimization Methods for Machine Learning Optimization Methods for Machine Learning Sathiya Keerthi Microsoft Talks given at UC Santa Cruz February 21-23, 2017 The slides for the talks will be made available at: http://www.keerthis.com/ Introduction

More information

Math 164: Optimization Barzilai-Borwein Method

Math 164: Optimization Barzilai-Borwein Method Math 164: Optimization Barzilai-Borwein Method Instructor: Wotao Yin Department of Mathematics, UCLA Spring 2015 online discussions on piazza.com Main features of the Barzilai-Borwein (BB) method The BB

More information

Proximal Newton Method. Ryan Tibshirani Convex Optimization /36-725

Proximal Newton Method. Ryan Tibshirani Convex Optimization /36-725 Proximal Newton Method Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: primal-dual interior-point method Given the problem min x subject to f(x) h i (x) 0, i = 1,... m Ax = b where f, h

More information

Stochastic gradient methods for machine learning

Stochastic gradient methods for machine learning Stochastic gradient methods for machine learning Francis Bach INRIA - Ecole Normale Supérieure, Paris, France Joint work with Eric Moulines, Nicolas Le Roux and Mark Schmidt - January 2013 Context Machine

More information

Mini-batch Stochastic Approximation Methods for Nonconvex Stochastic Composite Optimization

Mini-batch Stochastic Approximation Methods for Nonconvex Stochastic Composite Optimization Noname manuscript No. (will be inserted by the editor) Mini-batch Stochastic Approximation Methods for Nonconvex Stochastic Composite Optimization Saeed Ghadimi Guanghui Lan Hongchao Zhang the date of

More information

Linearly-Convergent Stochastic-Gradient Methods

Linearly-Convergent Stochastic-Gradient Methods Linearly-Convergent Stochastic-Gradient Methods Joint work with Francis Bach, Michael Friedlander, Nicolas Le Roux INRIA - SIERRA Project - Team Laboratoire d Informatique de l École Normale Supérieure

More information

An interior-point stochastic approximation method and an L1-regularized delta rule

An interior-point stochastic approximation method and an L1-regularized delta rule Photograph from National Geographic, Sept 2008 An interior-point stochastic approximation method and an L1-regularized delta rule Peter Carbonetto, Mark Schmidt and Nando de Freitas University of British

More information

Proximal Newton Method. Zico Kolter (notes by Ryan Tibshirani) Convex Optimization

Proximal Newton Method. Zico Kolter (notes by Ryan Tibshirani) Convex Optimization Proximal Newton Method Zico Kolter (notes by Ryan Tibshirani) Convex Optimization 10-725 Consider the problem Last time: quasi-newton methods min x f(x) with f convex, twice differentiable, dom(f) = R

More information

Linear Convergence under the Polyak-Łojasiewicz Inequality

Linear Convergence under the Polyak-Łojasiewicz Inequality Linear Convergence under the Polyak-Łojasiewicz Inequality Hamed Karimi, Julie Nutini, Mark Schmidt University of British Columbia Linear of Convergence of Gradient-Based Methods Fitting most machine learning

More information

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization Dimitri P. Bertsekas Laboratory for Information and Decision Systems Massachusetts Institute of Technology February 2014

More information

Minimizing the Difference of L 1 and L 2 Norms with Applications

Minimizing the Difference of L 1 and L 2 Norms with Applications 1/36 Minimizing the Difference of L 1 and L 2 Norms with Department of Mathematical Sciences University of Texas Dallas May 31, 2017 Partially supported by NSF DMS 1522786 2/36 Outline 1 A nonconvex approach:

More information

Learning with stochastic proximal gradient

Learning with stochastic proximal gradient Learning with stochastic proximal gradient Lorenzo Rosasco DIBRIS, Università di Genova Via Dodecaneso, 35 16146 Genova, Italy lrosasco@mit.edu Silvia Villa, Băng Công Vũ Laboratory for Computational and

More information

A Brief Overview of Practical Optimization Algorithms in the Context of Relaxation

A Brief Overview of Practical Optimization Algorithms in the Context of Relaxation A Brief Overview of Practical Optimization Algorithms in the Context of Relaxation Zhouchen Lin Peking University April 22, 2018 Too Many Opt. Problems! Too Many Opt. Algorithms! Zero-th order algorithms:

More information

Importance Sampling for Minibatches

Importance Sampling for Minibatches Importance Sampling for Minibatches Dominik Csiba School of Mathematics University of Edinburgh 07.09.2016, Birmingham Dominik Csiba (University of Edinburgh) Importance Sampling for Minibatches 07.09.2016,

More information

Stochastic Gradient Descent. CS 584: Big Data Analytics

Stochastic Gradient Descent. CS 584: Big Data Analytics Stochastic Gradient Descent CS 584: Big Data Analytics Gradient Descent Recap Simplest and extremely popular Main Idea: take a step proportional to the negative of the gradient Easy to implement Each iteration

More information

Distributed Consensus Optimization

Distributed Consensus Optimization Distributed Consensus Optimization Ming Yan Michigan State University, CMSE/Mathematics September 14, 2018 Decentralized-1 Backgroundwhy andwe motivation need decentralized optimization? I Decentralized

More information

Parallel Coordinate Optimization

Parallel Coordinate Optimization 1 / 38 Parallel Coordinate Optimization Julie Nutini MLRG - Spring Term March 6 th, 2018 2 / 38 Contours of a function F : IR 2 IR. Goal: Find the minimizer of F. Coordinate Descent in 2D Contours of a

More information

Why should you care about the solution strategies?

Why should you care about the solution strategies? Optimization Why should you care about the solution strategies? Understanding the optimization approaches behind the algorithms makes you more effectively choose which algorithm to run Understanding the

More information

Distributed Inexact Newton-type Pursuit for Non-convex Sparse Learning

Distributed Inexact Newton-type Pursuit for Non-convex Sparse Learning Distributed Inexact Newton-type Pursuit for Non-convex Sparse Learning Bo Liu Department of Computer Science, Rutgers Univeristy Xiao-Tong Yuan BDAT Lab, Nanjing University of Information Science and Technology

More information

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Qiang Liu and Dilin Wang NIPS 2016 Discussion by Yunchen Pu March 17, 2017 March 17, 2017 1 / 8 Introduction Let x R d

More information

Selected Topics in Optimization. Some slides borrowed from

Selected Topics in Optimization. Some slides borrowed from Selected Topics in Optimization Some slides borrowed from http://www.stat.cmu.edu/~ryantibs/convexopt/ Overview Optimization problems are almost everywhere in statistics and machine learning. Input Model

More information

CS260: Machine Learning Algorithms

CS260: Machine Learning Algorithms CS260: Machine Learning Algorithms Lecture 4: Stochastic Gradient Descent Cho-Jui Hsieh UCLA Jan 16, 2019 Large-scale Problems Machine learning: usually minimizing the training loss min w { 1 N min w {

More information

Big Data Analytics: Optimization and Randomization

Big Data Analytics: Optimization and Randomization Big Data Analytics: Optimization and Randomization Tianbao Yang Tutorial@ACML 2015 Hong Kong Department of Computer Science, The University of Iowa, IA, USA Nov. 20, 2015 Yang Tutorial for ACML 15 Nov.

More information

Bias-free Sparse Regression with Guaranteed Consistency

Bias-free Sparse Regression with Guaranteed Consistency Bias-free Sparse Regression with Guaranteed Consistency Wotao Yin (UCLA Math) joint with: Stanley Osher, Ming Yan (UCLA) Feng Ruan, Jiechao Xiong, Yuan Yao (Peking U) UC Riverside, STATS Department March

More information

Nesterov s Acceleration

Nesterov s Acceleration Nesterov s Acceleration Nesterov Accelerated Gradient min X f(x)+ (X) f -smooth. Set s 1 = 1 and = 1. Set y 0. Iterate by increasing t: g t 2 @f(y t ) s t+1 = 1+p 1+4s 2 t 2 y t = x t + s t 1 s t+1 (x

More information

A Sparsity Preserving Stochastic Gradient Method for Composite Optimization

A Sparsity Preserving Stochastic Gradient Method for Composite Optimization A Sparsity Preserving Stochastic Gradient Method for Composite Optimization Qihang Lin Xi Chen Javier Peña April 3, 11 Abstract We propose new stochastic gradient algorithms for solving convex composite

More information

Stochastic gradient methods for machine learning

Stochastic gradient methods for machine learning Stochastic gradient methods for machine learning Francis Bach INRIA - Ecole Normale Supérieure, Paris, France Joint work with Eric Moulines, Nicolas Le Roux and Mark Schmidt - September 2012 Context Machine

More information

Trade-Offs in Distributed Learning and Optimization

Trade-Offs in Distributed Learning and Optimization Trade-Offs in Distributed Learning and Optimization Ohad Shamir Weizmann Institute of Science Includes joint works with Yossi Arjevani, Nathan Srebro and Tong Zhang IHES Workshop March 2016 Distributed

More information

Coordinate Update Algorithm Short Course Subgradients and Subgradient Methods

Coordinate Update Algorithm Short Course Subgradients and Subgradient Methods Coordinate Update Algorithm Short Course Subgradients and Subgradient Methods Instructor: Wotao Yin (UCLA Math) Summer 2016 1 / 30 Notation f : H R { } is a closed proper convex function domf := {x R n

More information

Accelerated Stochastic Block Coordinate Gradient Descent for Sparsity Constrained Nonconvex Optimization

Accelerated Stochastic Block Coordinate Gradient Descent for Sparsity Constrained Nonconvex Optimization Accelerated Stochastic Block Coordinate Gradient Descent for Sparsity Constrained Nonconvex Optimization Jinghui Chen Department of Systems and Information Engineering University of Virginia Quanquan Gu

More information

Parallel Successive Convex Approximation for Nonsmooth Nonconvex Optimization

Parallel Successive Convex Approximation for Nonsmooth Nonconvex Optimization Parallel Successive Convex Approximation for Nonsmooth Nonconvex Optimization Meisam Razaviyayn meisamr@stanford.edu Mingyi Hong mingyi@iastate.edu Zhi-Quan Luo luozq@umn.edu Jong-Shi Pang jongship@usc.edu

More information

Coordinate descent methods

Coordinate descent methods Coordinate descent methods Master Mathematics for data science and big data Olivier Fercoq November 3, 05 Contents Exact coordinate descent Coordinate gradient descent 3 3 Proximal coordinate descent 5

More information

Finite-sum Composition Optimization via Variance Reduced Gradient Descent

Finite-sum Composition Optimization via Variance Reduced Gradient Descent Finite-sum Composition Optimization via Variance Reduced Gradient Descent Xiangru Lian Mengdi Wang Ji Liu University of Rochester Princeton University University of Rochester xiangru@yandex.com mengdiw@princeton.edu

More information

Kaggle.

Kaggle. Administrivia Mini-project 2 due April 7, in class implement multi-class reductions, naive bayes, kernel perceptron, multi-class logistic regression and two layer neural networks training set: Project

More information

Lecture 1: Supervised Learning

Lecture 1: Supervised Learning Lecture 1: Supervised Learning Tuo Zhao Schools of ISYE and CSE, Georgia Tech ISYE6740/CSE6740/CS7641: Computational Data Analysis/Machine from Portland, Learning Oregon: pervised learning (Supervised)

More information

On Acceleration with Noise-Corrupted Gradients. + m k 1 (x). By the definition of Bregman divergence:

On Acceleration with Noise-Corrupted Gradients. + m k 1 (x). By the definition of Bregman divergence: A Omitted Proofs from Section 3 Proof of Lemma 3 Let m x) = a i On Acceleration with Noise-Corrupted Gradients fxi ), u x i D ψ u, x 0 ) denote the function under the minimum in the lower bound By Proposition

More information

Lecture 23: November 21

Lecture 23: November 21 10-725/36-725: Convex Optimization Fall 2016 Lecturer: Ryan Tibshirani Lecture 23: November 21 Scribes: Yifan Sun, Ananya Kumar, Xin Lu Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

arxiv: v3 [cs.lg] 15 Sep 2018

arxiv: v3 [cs.lg] 15 Sep 2018 Asynchronous Stochastic Proximal Methods for onconvex onsmooth Optimization Rui Zhu 1, Di iu 1, Zongpeng Li 1 Department of Electrical and Computer Engineering, University of Alberta School of Computer

More information

Proximal Minimization by Incremental Surrogate Optimization (MISO)

Proximal Minimization by Incremental Surrogate Optimization (MISO) Proximal Minimization by Incremental Surrogate Optimization (MISO) (and a few variants) Julien Mairal Inria, Grenoble ICCOPT, Tokyo, 2016 Julien Mairal, Inria MISO 1/26 Motivation: large-scale machine

More information

Day 3 Lecture 3. Optimizing deep networks

Day 3 Lecture 3. Optimizing deep networks Day 3 Lecture 3 Optimizing deep networks Convex optimization A function is convex if for all α [0,1]: f(x) Tangent line Examples Quadratics 2-norms Properties Local minimum is global minimum x Gradient

More information

Stochastic Optimization

Stochastic Optimization Introduction Related Work SGD Epoch-GD LM A DA NANJING UNIVERSITY Lijun Zhang Nanjing University, China May 26, 2017 Introduction Related Work SGD Epoch-GD Outline 1 Introduction 2 Related Work 3 Stochastic

More information

SVRG++ with Non-uniform Sampling

SVRG++ with Non-uniform Sampling SVRG++ with Non-uniform Sampling Tamás Kern András György Department of Electrical and Electronic Engineering Imperial College London, London, UK, SW7 2BT {tamas.kern15,a.gyorgy}@imperial.ac.uk Abstract

More information

Large-scale Stochastic Optimization

Large-scale Stochastic Optimization Large-scale Stochastic Optimization 11-741/641/441 (Spring 2016) Hanxiao Liu hanxiaol@cs.cmu.edu March 24, 2016 1 / 22 Outline 1. Gradient Descent (GD) 2. Stochastic Gradient Descent (SGD) Formulation

More information

Subgradient Method. Guest Lecturer: Fatma Kilinc-Karzan. Instructors: Pradeep Ravikumar, Aarti Singh Convex Optimization /36-725

Subgradient Method. Guest Lecturer: Fatma Kilinc-Karzan. Instructors: Pradeep Ravikumar, Aarti Singh Convex Optimization /36-725 Subgradient Method Guest Lecturer: Fatma Kilinc-Karzan Instructors: Pradeep Ravikumar, Aarti Singh Convex Optimization 10-725/36-725 Adapted from slides from Ryan Tibshirani Consider the problem Recall:

More information

arxiv: v1 [math.oc] 1 Jul 2016

arxiv: v1 [math.oc] 1 Jul 2016 Convergence Rate of Frank-Wolfe for Non-Convex Objectives Simon Lacoste-Julien INRIA - SIERRA team ENS, Paris June 8, 016 Abstract arxiv:1607.00345v1 [math.oc] 1 Jul 016 We give a simple proof that the

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 9. Alternating Direction Method of Multipliers

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 9. Alternating Direction Method of Multipliers Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 9 Alternating Direction Method of Multipliers Shiqian Ma, MAT-258A: Numerical Optimization 2 Separable convex optimization a special case is min f(x)

More information

Stochastic Gradient Descent

Stochastic Gradient Descent Stochastic Gradient Descent Machine Learning CSE546 Carlos Guestrin University of Washington October 9, 2013 1 Logistic Regression Logistic function (or Sigmoid): Learn P(Y X) directly Assume a particular

More information

Randomized Block Coordinate Non-Monotone Gradient Method for a Class of Nonlinear Programming

Randomized Block Coordinate Non-Monotone Gradient Method for a Class of Nonlinear Programming Randomized Block Coordinate Non-Monotone Gradient Method for a Class of Nonlinear Programming Zhaosong Lu Lin Xiao June 25, 2013 Abstract In this paper we propose a randomized block coordinate non-monotone

More information

Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization

Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization Alexander Rakhlin University of Pennsylvania Ohad Shamir Microsoft Research New England Karthik Sridharan University of Pennsylvania

More information

Linear and Sublinear Linear Algebra Algorithms: Preconditioning Stochastic Gradient Algorithms with Randomized Linear Algebra

Linear and Sublinear Linear Algebra Algorithms: Preconditioning Stochastic Gradient Algorithms with Randomized Linear Algebra Linear and Sublinear Linear Algebra Algorithms: Preconditioning Stochastic Gradient Algorithms with Randomized Linear Algebra Michael W. Mahoney ICSI and Dept of Statistics, UC Berkeley ( For more info,

More information

Randomized Smoothing Techniques in Optimization

Randomized Smoothing Techniques in Optimization Randomized Smoothing Techniques in Optimization John Duchi Based on joint work with Peter Bartlett, Michael Jordan, Martin Wainwright, Andre Wibisono Stanford University Information Systems Laboratory

More information

Simple Optimization, Bigger Models, and Faster Learning. Niao He

Simple Optimization, Bigger Models, and Faster Learning. Niao He Simple Optimization, Bigger Models, and Faster Learning Niao He Big Data Symposium, UIUC, 2016 Big Data, Big Picture Niao He (UIUC) 2/26 Big Data, Big Picture Niao He (UIUC) 3/26 Big Data, Big Picture

More information

A Randomized Nonmonotone Block Proximal Gradient Method for a Class of Structured Nonlinear Programming

A Randomized Nonmonotone Block Proximal Gradient Method for a Class of Structured Nonlinear Programming A Randomized Nonmonotone Block Proximal Gradient Method for a Class of Structured Nonlinear Programming Zhaosong Lu Lin Xiao June 8, 2014 Abstract In this paper we propose a randomized nonmonotone block

More information

Randomized Coordinate Descent with Arbitrary Sampling: Algorithms and Complexity

Randomized Coordinate Descent with Arbitrary Sampling: Algorithms and Complexity Randomized Coordinate Descent with Arbitrary Sampling: Algorithms and Complexity Zheng Qu University of Hong Kong CAM, 23-26 Aug 2016 Hong Kong based on joint work with Peter Richtarik and Dominique Cisba(University

More information

Fast Stochastic Optimization Algorithms for ML

Fast Stochastic Optimization Algorithms for ML Fast Stochastic Optimization Algorithms for ML Aaditya Ramdas April 20, 205 This lecture is about efficient algorithms for minimizing finite sums min w R d n i= f i (w) or min w R d n f i (w) + λ 2 w 2

More information

Stochastic Gradient Descent with Variance Reduction

Stochastic Gradient Descent with Variance Reduction Stochastic Gradient Descent with Variance Reduction Rie Johnson, Tong Zhang Presenter: Jiawen Yao March 17, 2015 Rie Johnson, Tong Zhang Presenter: JiawenStochastic Yao Gradient Descent with Variance Reduction

More information

Adaptive Primal Dual Optimization for Image Processing and Learning

Adaptive Primal Dual Optimization for Image Processing and Learning Adaptive Primal Dual Optimization for Image Processing and Learning Tom Goldstein Rice University tag7@rice.edu Ernie Esser University of British Columbia eesser@eos.ubc.ca Richard Baraniuk Rice University

More information

Randomized Smoothing for Stochastic Optimization

Randomized Smoothing for Stochastic Optimization Randomized Smoothing for Stochastic Optimization John Duchi Peter Bartlett Martin Wainwright University of California, Berkeley NIPS Big Learn Workshop, December 2011 Duchi (UC Berkeley) Smoothing and

More information

Barzilai-Borwein Step Size for Stochastic Gradient Descent

Barzilai-Borwein Step Size for Stochastic Gradient Descent Barzilai-Borwein Step Size for Stochastic Gradient Descent Conghui Tan Shiqian Ma Yu-Hong Dai Yuqiu Qian May 16, 2016 Abstract One of the major issues in stochastic gradient descent (SGD) methods is how

More information

Classification Logistic Regression

Classification Logistic Regression Announcements: Classification Logistic Regression Machine Learning CSE546 Sham Kakade University of Washington HW due on Friday. Today: Review: sub-gradients,lasso Logistic Regression October 3, 26 Sham

More information

A Randomized Nonmonotone Block Proximal Gradient Method for a Class of Structured Nonlinear Programming

A Randomized Nonmonotone Block Proximal Gradient Method for a Class of Structured Nonlinear Programming A Randomized Nonmonotone Block Proximal Gradient Method for a Class of Structured Nonlinear Programming Zhaosong Lu Lin Xiao March 9, 2015 (Revised: May 13, 2016; December 30, 2016) Abstract We propose

More information

StreamSVM Linear SVMs and Logistic Regression When Data Does Not Fit In Memory

StreamSVM Linear SVMs and Logistic Regression When Data Does Not Fit In Memory StreamSVM Linear SVMs and Logistic Regression When Data Does Not Fit In Memory S.V. N. (vishy) Vishwanathan Purdue University and Microsoft vishy@purdue.edu October 9, 2012 S.V. N. Vishwanathan (Purdue,

More information

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 LECTURERS: NAMAN AGARWAL AND BRIAN BULLINS SCRIBE: KIRAN VODRAHALLI Contents 1 Introduction 1 1.1 History of Optimization.....................................

More information

Math 273a: Optimization Subgradient Methods

Math 273a: Optimization Subgradient Methods Math 273a: Optimization Subgradient Methods Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com Nonsmooth convex function Recall: For ˉx R n, f(ˉx) := {g R

More information

Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization

Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization Shai Shalev-Shwartz and Tong Zhang School of CS and Engineering, The Hebrew University of Jerusalem Optimization for Machine

More information

Machine Learning Tom M. Mitchell Machine Learning Department Carnegie Mellon University. September 20, 2012

Machine Learning Tom M. Mitchell Machine Learning Department Carnegie Mellon University. September 20, 2012 Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University September 20, 2012 Today: Logistic regression Generative/Discriminative classifiers Readings: (see class website)

More information

An Evolving Gradient Resampling Method for Machine Learning. Jorge Nocedal

An Evolving Gradient Resampling Method for Machine Learning. Jorge Nocedal An Evolving Gradient Resampling Method for Machine Learning Jorge Nocedal Northwestern University NIPS, Montreal 2015 1 Collaborators Figen Oztoprak Stefan Solntsev Richard Byrd 2 Outline 1. How to improve

More information

min f(x). (2.1) Objectives consisting of a smooth convex term plus a nonconvex regularization term;

min f(x). (2.1) Objectives consisting of a smooth convex term plus a nonconvex regularization term; Chapter 2 Gradient Methods The gradient method forms the foundation of all of the schemes studied in this book. We will provide several complementary perspectives on this algorithm that highlight the many

More information

Recent Developments of Alternating Direction Method of Multipliers with Multi-Block Variables

Recent Developments of Alternating Direction Method of Multipliers with Multi-Block Variables Recent Developments of Alternating Direction Method of Multipliers with Multi-Block Variables Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong 2014 Workshop

More information

Coordinate Update Algorithm Short Course The Package TMAC

Coordinate Update Algorithm Short Course The Package TMAC Coordinate Update Algorithm Short Course The Package TMAC Instructor: Wotao Yin (UCLA Math) Summer 2016 1 / 16 TMAC: A Toolbox of Async-Parallel, Coordinate, Splitting, and Stochastic Methods C++11 multi-threading

More information

Accelerating Stochastic Optimization

Accelerating Stochastic Optimization Accelerating Stochastic Optimization Shai Shalev-Shwartz School of CS and Engineering, The Hebrew University of Jerusalem and Mobileye Master Class at Tel-Aviv, Tel-Aviv University, November 2014 Shalev-Shwartz

More information