Three-scale Radar Backscattering Model of the Ocean Surface Based on Second-order Scattering

Size: px
Start display at page:

Download "Three-scale Radar Backscattering Model of the Ocean Surface Based on Second-order Scattering"

Transcription

1 PIERS ONLINE, VOL. 4, NO. 2, Three-scale Radar Backscattering Model of the Ocean Surface Based on Second-order Scattering Ying Yu 1, 2, Xiao-Qing Wang 1, Min-Hui Zhu 1, and Jiang Xiao 1, 1 National Key Laboratory of Microwave Imaging Technology Institute of Electronics, Beijing , China 2 Graduate University of Chinese Academy of Sciences, Beijing , China Abstract Based on the second-order composite surface and stochastic multi-scale models, an ocean surface backscattering model is proposed in this paper, including both the large- /intermediate-/small-scale scattering and the second-order Bragg scattering. Within this frame, we derive a second-order Bragg scattering expression, and develop an analytic solution of hydrodynamic modulation function according to weak hydrodynamic interaction theory. In addition, tilt modulation is simulated through the observation angle transform between nominal and local coordinate systems. The result shows that reasonable agreement between measured and simulated data is obtained, and this model is better than the two models mentioned above. 1. INTRODUCTION In recent years, airborne and spaceborne imaging radars have received considerable attentions in the area of ocean observation. But it is expensive and difficult to obtain accurate data in the measurements due to complicated conditions on the ocean surface. Therefore, a number of radar backscattering models are given, which have been important aroaches in the remote sensing of the ocean. Before 1990s, many physical models of microwave backscatter from the ocean surface have relied on Kirchhoff scattering, Bragg scattering, two-scale and composite surface theories [1 3]. After 1990s, more and more accurate models have been proposed based on the fruit of previous ones. One of them is the improved composite surface model proposed by Romeiser et al., [4], which considers second-order Bragg scattering. And another one is the stochastic multi-scale model proposed by Plant et al., [5], which divides ocean surface waves into large-/intermediate-/smallscale waves continuously. In this paper, the model divides ocean surface into intermediate-small-scale and large-scale spectra. Within this frame, the second-order Bragg scattering expressions are derived and an analytic solution of hydrodynamic function is developed according to weak hydrodynamic interaction theory. In addition, tilt modulation is implemented through the observation angle transform between nominal and local coordinate systems. Finally, a comparison between simulated and measured data is made, which shows well performance of the model. 2. THREE-SCALE MODEL BASED ON SECOND-ORDER SCATTERING 2.1. Large-/Intermediate-small Scale Backscatter Cross Section If only considering single scattering, backscatter cross section for large scale waves is computed by traditional Kirchhoff method [6]: l = exp { 4ε is kz 2 } ke 2 f pq 2 4kz 2 + kx 2 + ky) 2 16kzSS) 4 1/2 exp { Syy kx 2 + S xx ky 2 )} 2S xy k x k y 8 SS k 2 z where k e is transmitted wavenumber, θ i is incidence angle, ε is is mean square of intermediate-small scale wave height, SS is slope variance of large scale waves, S xx, S yy are mean square of large scale slopes in x and y directions, f pq is polarization coefficient [6], p = h s, v s, q = h i, v i denote received and transmitted polarization modes respectively. And backscatter cross section for intermediate-small scale waves is obtained from integral equation: is = k2 e 4π exp [ 4kz 2 ] Γ pq 2 exp [j k B ) x] { exp [ 4kzϕ 2 is x) ] 1 } dx 2) where ϕ is x) is correlation function of intermediate-small scale waves, k B is Bragg wavenumber, Γ pq is polarization coefficient [6]. Because ϕ is x) includes intermediate and small scale waves, is also includes traditional Bragg scattering besides intermediate scale waves scattering. 1)

2 PIERS ONLINE, VOL. 4, NO. 2, Second-order Bragg Backscatter Cross Section For a small facet which is tilted with respect to a horizontal reference plane, one obtains: pq0 = 4πke 4 cos θi 2 Γ pq 2 [ψ kb ) + ψ k B )] = T s p, s n ) [ψ k B ) + ψ k B )] 3) where ψk B ) denotes Bragg wave spectrum, s p, s n denote large scale waves slopes parallel and normal to the radar look direction respectively, T s p, s n ) denote tilt modulation term. The Taylor expansion of T s p, s n ) with respect to slope s p, s n ), which only keeps up to second order, reads as follow: T s p, s n ) T 0) + T 1p + T 1n + T 2 + T 2 + T 2pn 4) where T s p = T 1p, 1 2 T 2 s s 2 2 p = T 2, 2 T p s n s p s n = T 2pn. When considering hydrodynamic modulation, wave spectrum turns as: where ψ h = ψ/ψ 0 denotes relatively change rate of spectrum. Do the same thing to ψ as to T s p, s n ), we obtain: ψ = ψ ψ h ) 5) ψ ψ 0) + ψ 1p + ψ 1n + ψ 2 + ψ 2 + ψ 2pn + ψ 0) ψ h + ψ 1p ψ h + ψ 1n ψ h 6) where ψ0 s p = ψ 1p, 1 2 ψ 0 2 s s 2 2 p = ψ 2, 2 ψ 0 p s n s p s n = ψ 2pn. We insert Equation 4) and 6) into 3), and compute expectation values in a cell: pq = pq+ + pq 0) + + 0) + 2) + + 2) 0) + = ψ k B) T 0) 2) + = tt+ + tt+ + pn tt+ + th+ + th+ = ψ kb ) T 2 + T 1p ψ 1p + T 0) ψ 2 th+ = T 0) ψ1p ψ h + ψ 0) ψ h T 1p = ψ kb ) T 2 + T 1n ψ 1n + T 0) ψ 2 th+ = T 0) ψ1n ψ h + ψ 0) ψ h T 1n pn = ψ kb ) T 2pn + T 1n ψ 1p + T 1p ψ 1n + T 0) ψ 2pn 7) Here represents second-order contributions associated with surface slopes parallel to the azimuthal radar look direction, symbol + represents Bragg waves traveling away from the antea, the rest are named by analogy. The second-order hydrodynamic modulation terms are neglected in this paper the same as in literature [4]. Part of second-order scattering terms is derived as follow, the rest can be deduced by analogy: {1 tt+ = 2 ψ k B) 2 T s 2 + T ψ p s p k + ψ ) φ [ T 0) 2 ) ψ kb 2 ) ] k ψ φb 2 φ 2 +T 0) 2 ψ k φ T 0) ψ 2 k B k s 2 + ψ 2 )} φ B p φ s 2 dkdφk 3 cos 2 φ φ 0 ) ψ k) 8) p T th+ = dkdφψ h k B ) ψk B ) k 2 cos φ φ 0 ) ψk) [ ψ +T 0) dkdφ ψ h k B ) k + ψ )] φ k 2 cos φ φ 0 )ψk) 9) where ψ h k B ) denotes hydrodynamic modulation term of Bragg waves by intermediate scale waves. As we can see, expressions 8) and 9) are consistent with 7).

3 PIERS ONLINE, VOL. 4, NO. 2, HYDRODYNAMIC AND TILT MODULATIONS 3.1. An Analytic Solution of Hydrodynamic Modulation According to weak hydrodynamic interaction theory, the action balance equation reads: dn = dt t + dx dt x + dk ) dt k N = S x, k, t) 10) Nx, k, t) = Ψx, k, t) ρω 0k) 11) k where N is the action spectral density of the wave packet, S is a source function. function in this model is a nonlinear form: ) S k, x, t) = µn 1 NN0 An analytic solution of the action balance equation is derived as follow: δq x, k, t) Q 0 = The source 12) { j [k u K, ωc )] K k Q 0 ) jω c µ + j c g + U 0 ) K exp [j K x ω ct)] + c.c.} dkdω c 13) where Qx, k, t) = 1/Nx, k, t), Q 0 = 1/N 0, µ is relaxation rate, c g is group velocity of the wave packet Tilt Modulation As in Figure 1, according to the transformation between nominal and local coordinate systems, local observation angles are obtained: θ = atg s p ) δ = atg [ s n cos θ] θ i = a cos [cos θ + θ i ) cos δ] ) sin ϕ θi sin δ sin θ + cos θ i sin δ cos θ i = atg sin θ cos θ + cos θ i sin θ θ i represents local incidence angle, ϕ i is local azimuth angle. z z' k e θ i θ δ y x Figure 1: Nominal and local coordinate system. 4. MODEL RESULTS In this section, we compute average cross sections of different parameter sets. And we compare them with the measured data in the literatures cited. The result shows well agreement with the measured data. Figure 2 compares model results with data collected from an airship by Plant et al., [5] as a function of azimuth angle. It shows well agreement between them quantitatively, and suggests this model is not only fit for scattering of intermediate incidence angles but also small incidence angles. The reason lies in that the model considers not only traditional Bragg scattering but also intermediate and large scale scattering.

4 PIERS ONLINE, VOL. 4, NO. 2, Figure 2: Average cross sections at various azimuthal angles. Frequency: 14 GHz; incidence angle: 10 degree; wind speed: 8 m/s). Figure 3: Average cross sections at various wind speeds. Frequency: 5.3 GHz; VV polarization; incidence angle: 45 degree). Figure 3 shows model predictions and data from Romeiser et al., [4] for cross sections versus wind speed in upwind, downwind and crosswind directions. The fit of all predictions to the data is rather good. As we can see, the magnitudes of backscatter cross sections from the bottom up are in crosswind, downwind and upwind directions. Figure 4: Azimuthally averaged cross sections at various frequencies. Incidence angle: 30 degree; wind speed: 10 m/s). Figure 5: Upwind/crosswind ratio at various frequencies. Parameters are the same as Figure 4). Figure 6: Upwind/downwind ratio at various frequencies. Parameters are the same as Figure 4).

5 PIERS ONLINE, VOL. 4, NO. 2, Figures 4, 5, 6 compare measured and modeled cross sections, upwind/crosswind ratio and upwind/downwind ratio for the two like-polarizations. The results show fits of the model to the data [7] are reasonably good. And the model predictions are better than those in literature [5]. It is because we consider second-order scattering here which is not included in [5]. 5. CONCLUSIONS The radar backscattering model in this paper is better than those mentioned in [4] and [5]. To explain it theoretically, our model considers not only traditional Bragg scattering but also second-order scattering. Besides Bragg scattering, intermediate and large scale waves scattering is considered as well. Therefore, this model can predict the backscatter characteristics for small to intermediate incidence angles, frequencies from L to Ku band, wind speeds up to 20 m/s. REFERENCES 1. Wright, J. W., A new model for sea clutter, IEEE Trans. Anteas Propag., Vol. 16, , Holliday, D., Resolution of a controversy surrounding the Kirchhoff aroach and the small perturbation method in rough surface scattering theory, IEEE Trans. Anteas Propag., Vol. 35, , Plant, W. J., A two-scale model of short wind generated waves scatterometry, J. Geophys. Res., Vol. 91, 10,735 10,749, Romeiser, R. and W. Alpers, An improved composite surface model for the radar backscattering cross section of the ocean surface 1. Theory of the model and optimization/validation by scatterometer data, Journal of Geophysical Research, Vol. 102, No. C11, 25,237 25,250, Plant, W. J., A stochastic, multiscale model of microwave backscatter from the ocean, Journal of Geophysical Research, Vol. 107, No. C9, 3120, doi: /2001jc000909, Fung, A. K., Microwave Scattering and Emission Models and Their Alications, Artech House, Boston London, Unal, C. M. H., P. Snoeij, et al., The polarization-dependent relation between radar backscatter from the ocean surface and surface wind vector at frequencies between 1 and 18 GHz, IEEE Trans. Geosci. Remote Sens., Vol. 29, No. 4, , 1991.

MICROWAVE DOPPLER SPECTRA OF SEA ECHOES AT HIGH INCIDENCE ANGLES: INFLUENCES OF LARGE- SCALE WAVES

MICROWAVE DOPPLER SPECTRA OF SEA ECHOES AT HIGH INCIDENCE ANGLES: INFLUENCES OF LARGE- SCALE WAVES Progress In Electromagnetics Research B, Vol. 8, 99 113, 13 MICROWAVE DOPPLER SPECTRA OF SEA ECHOES AT HIGH INCIDENCE ANGLES: INFLUENCES OF LARGE- SCALE WAVES Yunhua Wang 1, *, Yanmin Zhang, and Lixin

More information

SCATTERING ANALYSIS FOR SHIP KELVIN WAKES ON TWO-DIMENSIONAL LINEAR AND NONLINEAR SEA SURFACES

SCATTERING ANALYSIS FOR SHIP KELVIN WAKES ON TWO-DIMENSIONAL LINEAR AND NONLINEAR SEA SURFACES Progress In Electromagnetics Research B, Vol. 2, 4 423, 213 SCATTERING ANALYSIS FOR SHIP KELVIN WAKES ON TWO-DIMENSIONAL LINEAR AND NONLINEAR SEA SURFACES Rong-Qing Sun 1, Min Zhang 1, *, Chao Wang 2,

More information

A stochastic, multiscale model of microwave backscatter from the ocean

A stochastic, multiscale model of microwave backscatter from the ocean JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. C9, 3120, doi:10.1029/2001jc000909, 2002 A stochastic, multiscale model of microwave backscatter from the ocean William J. Plant Applied Physics Laboratory,

More information

Microwave sea return at moderate to high incidence angles

Microwave sea return at moderate to high incidence angles INSTITUTE OF PHYSICS PUBLISHING Waves Random Media 13 (23) 339 354 WAVES IN RANDOM MEDIA PII: S959-7174(3)62458-4 Microwave sea return at moderate to high incidence angles William J Plant Applied Physics

More information

Training Course on Radar & Optical RS, IES, Cēsis, Latvia, 5-9 September SAR Marine Applications. Practicals

Training Course on Radar & Optical RS, IES, Cēsis, Latvia, 5-9 September SAR Marine Applications. Practicals SAR Marine Applications Practicals Martin Gade Uni Hamburg, Institut für Meereskunde martin.gade@uni-hamburg.de SAR Marine Applications Friday, 9 Sep, Morning: 1 - History & Basics Introduction Radar/SAR

More information

Wave number spectrum and mean square slope of intermediate-scale ocean surface waves

Wave number spectrum and mean square slope of intermediate-scale ocean surface waves JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2005jc003002, 2005 Wave number spectrum and mean square slope of intermediate-scale ocean surface waves Paul A. Hwang Oceanography Division, Naval

More information

Comparison of Travel-time statistics of Backscattered Pulses from Gaussian and Non-Gaussian Rough Surfaces

Comparison of Travel-time statistics of Backscattered Pulses from Gaussian and Non-Gaussian Rough Surfaces Comparison of Travel-time statistics of Backscattered Pulses from Gaussian and Non-Gaussian Rough Surfaces GAO Wei, SHE Huqing Yichang Testing Technology Research Institute No. 55 Box, Yichang, Hubei Province

More information

Thermal Emission from a Layered Medium Bounded by a Slightly Rough Interface

Thermal Emission from a Layered Medium Bounded by a Slightly Rough Interface 368 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 39, NO. 2, FEBRUARY 2001 Thermal Emission from a Layered Medium Bounded by a Slightly Rough Interface Joel T. Johnson, Member, IEEE Abstract

More information

Progress In Electromagnetics Research, Vol. 119, , 2011

Progress In Electromagnetics Research, Vol. 119, , 2011 Progress In Electromagnetics Research, Vol. 119, 279 298, 211 INVESTIGATION OF LOW-GRAZING-ANGLE MICROWAVE BACKSCATTERING FROM THREE- DIMENSIONAL BREAKING SEA WAVES W. Luo 1, M. Zhang 1, *, C. Wang 2,

More information

SAR Raw Signal Simulation of Oil Slicks in Ocean Environments

SAR Raw Signal Simulation of Oil Slicks in Ocean Environments IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 9, SEPTEMBER 2002 1935 SAR Raw Signal Simulation of Oil Slicks in Ocean Environments Giorgio Franceschetti, Life Fellow, IEEE, Antonio Iodice,

More information

PROBING THE OCEAN SURFACE WITH MICROWAVE RADAR

PROBING THE OCEAN SURFACE WITH MICROWAVE RADAR DONALD R. THOMPSON PROBING THE OCEAN SURFACE WITH MICROWAVE RADAR A simple physical picture is presented to show how microwave radiation is scattered from a rough surface that evolves with time. In particular,

More information

Evaluation of the Sacttering Matrix of Flat Dipoles Embedded in Multilayer Structures

Evaluation of the Sacttering Matrix of Flat Dipoles Embedded in Multilayer Structures PIERS ONLINE, VOL. 4, NO. 5, 2008 536 Evaluation of the Sacttering Matrix of Flat Dipoles Embedded in Multilayer Structures S. J. S. Sant Anna 1, 2, J. C. da S. Lacava 2, and D. Fernandes 2 1 Instituto

More information

Platform measurements of Ka-band sea surface radar Doppler characteristics. Yu. Yu. Yurovsky, Semyon Grodsky (UMD), V. N. Kudryavtsev, and B.

Platform measurements of Ka-band sea surface radar Doppler characteristics. Yu. Yu. Yurovsky, Semyon Grodsky (UMD), V. N. Kudryavtsev, and B. Platform measurements of Ka-band sea surface radar Doppler characteristics Yu. Yu. Yurovsky, Semyon Grodsky (UMD), V. N. Kudryavtsev, and B. Chapron With support from NASA/PhO, IOWVST 2017 Outline Instrument

More information

A PRACTICAL METHODOLOGY FOR ESTIMATING WAVE SPECTRA FROM THE SIR-B

A PRACTICAL METHODOLOGY FOR ESTIMATING WAVE SPECTRA FROM THE SIR-B FRANK M. MONALDO A PRACTICAL METHODOLOGY FOR ESTIMATING WAVE SPECTRA FROM THE SIR-B A step-by-step procedure is outlined to convert synthetic aperture radar imagery into estimates of ocean surface-wave

More information

Numerical Studies of Backscattering from Time Evolving Sea Surfaces: Comparison of Hydrodynamic Models

Numerical Studies of Backscattering from Time Evolving Sea Surfaces: Comparison of Hydrodynamic Models Numerical Studies of Backscattering from Time Evolving Sea Surfaces: Comparison of Hydrodynamic Models J. T. Johnson and G. R. Baker Dept. of Electrical Engineering/ Mathematics The Ohio State University

More information

Oceanographic Aspect of Tropical Cyclone Wind and Wave Remote Sensing

Oceanographic Aspect of Tropical Cyclone Wind and Wave Remote Sensing 14 Oceanographic Aspect of Tropical Cyclone Wind and Wave Remote Sensing Paul A. Hwang, Yalin Fan, Xiaofeng Li, and Weizeng Shao CONTENTS 14.1 Introduction...287 14.2 Enabling Scientific Principle: Fetch-

More information

China France. Oceanography S A T. The CFOSAT project. e l l i t e. C. Tison (1), D. Hauser (2), A. Mouche (3) CNES, France (2)

China France. Oceanography S A T. The CFOSAT project. e l l i t e. C. Tison (1), D. Hauser (2), A. Mouche (3) CNES, France (2) China France The CFOSAT project C. Tison (1), D. Hauser (2), A. Mouche (3) (1) CNES, France (2) OVSQ, CNRS, LATMOS-IPSL, France (3) IFREMER, LOS, France celine.tison@cnes.fr Oceanography S A T e l l i

More information

A study of the slope probability density function of the ocean waves from radar observations

A study of the slope probability density function of the ocean waves from radar observations Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007jc004264, 2008 A study of the slope probability density function of the ocean waves from radar observations D. Hauser,

More information

PUBLICATIONS. Journal of Geophysical Research: Oceans

PUBLICATIONS. Journal of Geophysical Research: Oceans PUBLICATIONS Journal of Geophysical Research: Oceans RESEARCH ARTICLE Key Points: Roughness and breaking contributions of radar returns vary with polarization VV is dominated by roughness, HH and VH contain

More information

Math 4263 Homework Set 1

Math 4263 Homework Set 1 Homework Set 1 1. Solve the following PDE/BVP 2. Solve the following PDE/BVP 2u t + 3u x = 0 u (x, 0) = sin (x) u x + e x u y = 0 u (0, y) = y 2 3. (a) Find the curves γ : t (x (t), y (t)) such that that

More information

INTERACTION AND REMOTE SENSING OF SURFACE WAVES AND TURBULENCE

INTERACTION AND REMOTE SENSING OF SURFACE WAVES AND TURBULENCE INTERACTION AND REMOTE SENSING OF SURFACE WAVES AND TURBULENCE W. Kendall Melville Scripps Institution of Oceanography University of California, San Diego La Jolla, CA 9293-23 phone: (69) 534-478, fax:

More information

A Statistical Kirchhoff Model for EM Scattering from Gaussian Rough Surface

A Statistical Kirchhoff Model for EM Scattering from Gaussian Rough Surface Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26 187 A Statistical Kirchhoff Model for EM Scattering from Gaussian Rough Surface Yang Du 1, Tao Xu 1, Yingliang Luo 1,

More information

A Wavelet Technique to Extract the Backscatter Signatures from SAR Images of the Sea

A Wavelet Technique to Extract the Backscatter Signatures from SAR Images of the Sea 266 PIERS Proceedings, Moscow, Russia, August 18 21, 2009 A Wavelet Technique to Extract the Backscatter Signatures from SAR Images of the Sea S. Zecchetto 1, F. De Biasio 1, and P. Trivero 2 1 Istituto

More information

Two-scale treatment of low-grazing-angle scattering from spilling breaker water waves

Two-scale treatment of low-grazing-angle scattering from spilling breaker water waves RADIO SCIENCE, VOL. 37, NO. 4, 1054, 10.1029/2001RS002517, 2002 Two-scale treatment of low-grazing-angle scattering from spilling breaker water waves James C. West and Shiou-Jyh Ja 1 School of Electrical

More information

IMPACT OF RAIN, SWELL, AND SEA SURFACE CURRENTS ON THE ELECTROMAGNETIC BIAS IN GNSS-REFLECTOMETRY

IMPACT OF RAIN, SWELL, AND SEA SURFACE CURRENTS ON THE ELECTROMAGNETIC BIAS IN GNSS-REFLECTOMETRY 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/ republishing this material for advertising

More information

P.A. TROCH, F. VANDERSTEENE, Z. SU, and R. HOEBEN Laboratory for Hydrology and Water Management University of Gent Coupure Links Gent Belgium

P.A. TROCH, F. VANDERSTEENE, Z. SU, and R. HOEBEN Laboratory for Hydrology and Water Management University of Gent Coupure Links Gent Belgium ESTIMATING MICROWAVE OBSERVATION EPTH IN BARE SOIL THROUGH MULTI-FREQUENCY SCATTEROMETRY P.A. TROCH, F. VANERSTEENE, Z. SU, and R. HOEBEN Laboratory for Hydrology and Water Management University of Gent

More information

A COMPREHENSIVE FACET MODEL FOR BISTATIC SAR IMAGERY OF DYNAMIC OCEAN SCENE

A COMPREHENSIVE FACET MODEL FOR BISTATIC SAR IMAGERY OF DYNAMIC OCEAN SCENE Progress In Electromagnetics Research, Vol. 13, 47 445, 1 A COMPREHENSIVE FACET MODEL FOR BISTATIC SAR IMAGERY OF DYNAMIC OCEAN SCENE Y.-W. Zhao 1, M. Zhang 1, *, X.-P. Geng, and P. Zhou 1 School of Science,

More information

Modelling Microwave Scattering from Rough Sea Ice Surfaces

Modelling Microwave Scattering from Rough Sea Ice Surfaces Modelling Microwave Scattering from Rough Sea Ice Surfaces Xu Xu 1, Anthony P. Doulgeris 1, Frank Melandsø 1, Camilla Brekke 1 1. Department of Physics and Technology, UiT The Arctic University of Norway,

More information

Frequency and Spatial Features of Waves Scattering on Fractals

Frequency and Spatial Features of Waves Scattering on Fractals nd Chaotic Modeling and Simulation International Conference, -5 June 009, Chania Crete Greece Frequency and Spatial Features of Waves Scattering on Fractals A.V. Laktyunkin, A.A. Potapov V.A. Kotelinikov

More information

Wave Propagation in Heterogeneous Media: Born and Rytov Approximations. Chris Sherman

Wave Propagation in Heterogeneous Media: Born and Rytov Approximations. Chris Sherman Wave Propagation in Heterogeneous Media: Born and Rytov Approximations Chris Sherman Stochastic Scalar Wave Equation Wave Equation: &! " %& 1 # t V x ' ) () u(x,t) = 0 (*) Velocity Perturbation: = V o

More information

Advanced Computational Physics Course Hartmut Ruhl, LMU, Munich. People involved. People involved. Literature. Schrödinger equation.

Advanced Computational Physics Course Hartmut Ruhl, LMU, Munich. People involved. People involved. Literature. Schrödinger equation. June 13, 017 ASC, room A 38, phone 089-180410, email hartmut.ruhl@lmu.de Patrick Böhl, ASC, room A05, phone 089-1804640, email patrick.boehl@physik.uni-muenchen.de. Useful literature Dennis M. Sullivan,

More information

Magnetotelluric (MT) Method

Magnetotelluric (MT) Method Magnetotelluric (MT) Method Dr. Hendra Grandis Graduate Program in Applied Geophysics Faculty of Mining and Petroleum Engineering ITB Geophysical Methods Techniques applying physical laws (or theory) to

More information

Progress In Electromagnetics Research M, Vol. 21, 33 45, 2011

Progress In Electromagnetics Research M, Vol. 21, 33 45, 2011 Progress In Electromagnetics Research M, Vol. 21, 33 45, 211 INTERFEROMETRIC ISAR THREE-DIMENSIONAL IMAGING USING ONE ANTENNA C. L. Liu *, X. Z. Gao, W. D. Jiang, and X. Li College of Electronic Science

More information

S. L. Durden and S. Tanelli Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Dr., Pasadena, CA 91109, USA

S. L. Durden and S. Tanelli Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Dr., Pasadena, CA 91109, USA Progress In Electromagnetics Research Letters, Vol. 8, 115 124, 2009 APPLICATION OF CLUTTER SUPPRESSION METHODS TO A GEOSTATIONARY WEATHER RADAR CONCEPT S. L. Durden and S. Tanelli Jet Propulsion Laboratory

More information

Wave Turbulence and Condensation in an Optical Experiment

Wave Turbulence and Condensation in an Optical Experiment Wave Turbulence and Condensation in an Optical Experiment S. Residori, U. Bortolozzo Institut Non Linéaire de Nice, CNRS, France S. Nazarenko, J. Laurie Mathematics Institute, University of Warwick, UK

More information

Improving Sea Surface Microwave Emissivity Model for Radiance Assimilation

Improving Sea Surface Microwave Emissivity Model for Radiance Assimilation Improving Sea Surface Microwave Emissivity Model for Radiance Assimilation Quanhua (Mark) Liu 1, Steve English 2, Fuzhong Weng 3 1 Joint Center for Satellite Data Assimilation, Maryland, U.S.A 2 Met. Office,

More information

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3 Review of Fundamental Equations Supplementary notes on Section. and.3 Introduction of the velocity potential: irrotational motion: ω = u = identity in the vector analysis: ϕ u = ϕ Basic conservation principles:

More information

SIMULATION ANALYSIS OF THE EFFECT OF MEA- SURED PARAMETERS ON THE EMISSIVITY ESTIMA- TION OF CALIBRATION LOAD IN BISTATIC REFLEC- TION MEASUREMENT

SIMULATION ANALYSIS OF THE EFFECT OF MEA- SURED PARAMETERS ON THE EMISSIVITY ESTIMA- TION OF CALIBRATION LOAD IN BISTATIC REFLEC- TION MEASUREMENT Progress In Electromagnetics Research, Vol. 125, 327 341, 2012 SIMULATION ANALYSIS OF THE EFFECT OF MEA- SURED PARAMETERS ON THE EMISSIVITY ESTIMA- TION OF CALIBRATION LOAD IN BISTATIC REFLEC- TION MEASUREMENT

More information

Calibrating SeaWinds and QuikSCAT scatterometers using natural land targets

Calibrating SeaWinds and QuikSCAT scatterometers using natural land targets Brigham Young University BYU ScholarsArchive All Faculty Publications 2005-04-01 Calibrating SeaWinds and QuikSCAT scatterometers using natural land targets David G. Long david_long@byu.edu Lucas B. Kunz

More information

Q-Winds Hurricane Retrieval Algorithm using QuikSCAT Scatterometer

Q-Winds Hurricane Retrieval Algorithm using QuikSCAT Scatterometer Q-Winds Hurricane Retrieval Algorithm using QuikSCAT Scatterometer Pete Laupattarakasem Doctoral Dissertation Defense March 23 rd, 2009 Presentation Outline Dissertation Objective Background Scatterometry/Radiometry

More information

A Discussion on the Applicable Condition of Rayleigh Scattering

A Discussion on the Applicable Condition of Rayleigh Scattering www.ijrsa.org International Journal of Remote Sensing Applications (IJRSA) Volume 5, 015 doi: 10.14355/ijrsa.015.05.007 A Discussion on the Applicable Condition of Rayleigh Scattering Nan Li *1, Yiqing

More information

FEASIBILITY ANALYSIS FOR SPACE-BORNE IMPLEMENTATION OF CIRCULAR SYNTHETIC APERTURE RADAR

FEASIBILITY ANALYSIS FOR SPACE-BORNE IMPLEMENTATION OF CIRCULAR SYNTHETIC APERTURE RADAR 38 1 2016 2 1) 2) ( 100190) (circular synthetic aperture radar CSAR) 360. CSAR.. CSAR..,,, V412.4 A doi 10.6052/1000-0879-15-329 FEASIBILITY ANALYSIS FOR SPACE-BORNE IMPLEMENTATION OF CIRCULAR SYNTHETIC

More information

Remote sensing of sea ice

Remote sensing of sea ice Remote sensing of sea ice Ice concentration/extent Age/type Drift Melting Thickness Christian Haas Remote Sensing Methods Passive: senses shortwave (visible), thermal (infrared) or microwave radiation

More information

Introduction to Seismology Spring 2008

Introduction to Seismology Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 12.510 Introduction to Seismology Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 12.510 Introduction

More information

On Vertical Variations of Wave-Induced Radiation Stress Tensor

On Vertical Variations of Wave-Induced Radiation Stress Tensor Archives of Hydro-Engineering and Environmental Mechanics Vol. 55 (2008), No. 3 4, pp. 83 93 IBW PAN, ISSN 1231 3726 On Vertical Variations of Wave-Induced Radiation Stress Tensor Włodzimierz Chybicki

More information

Akira Ishimaru, Sermsak Jaruwatanadilok and Yasuo Kuga

Akira Ishimaru, Sermsak Jaruwatanadilok and Yasuo Kuga INSTITUTE OF PHYSICS PUBLISHING Waves Random Media 4 (4) 499 5 WAVES IN RANDOMMEDIA PII: S959-774(4)789- Multiple scattering effects on the radar cross section (RCS) of objects in a random medium including

More information

SATELLITE SYNTHETIC APERTURE RADAR SEA SURFACE DOPPLER MEASUREMENTS

SATELLITE SYNTHETIC APERTURE RADAR SEA SURFACE DOPPLER MEASUREMENTS 1 SATELLITE SYNTHETIC APERTURE RADAR SEA SURFACE DOPPLER MEASUREMENTS B. Chapron 1, F. Collard 2, and V. Kerbaol 2 1 Laboratoire d Océanographie Spatiale, IFREMER 2 BOOST-Technologies, Plouzané, France

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

A radiative transfer model function for 85.5 GHz Special Sensor Microwave Imager ocean brightness temperatures

A radiative transfer model function for 85.5 GHz Special Sensor Microwave Imager ocean brightness temperatures RADIO SCIENCE, VOL. 38, NO. 4, 8066, doi:10.1029/2002rs002655, 2003 A radiative transfer model function for 85.5 GHz Special Sensor Microwave Imager ocean brightness temperatures Thomas Meissner and Frank

More information

Books. B. Borden, Radar Imaging of Airborne Targets, Institute of Physics, 1999.

Books. B. Borden, Radar Imaging of Airborne Targets, Institute of Physics, 1999. Books B. Borden, Radar Imaging of Airborne Targets, Institute of Physics, 1999. C. Elachi, Spaceborne Radar Remote Sensing: Applications and Techniques, IEEE Press, New York, 1987. W. C. Carrara, R. G.

More information

Intensity of convective motions in marine atmospheric boundary layer retrieved from ocean surface radar imagery

Intensity of convective motions in marine atmospheric boundary layer retrieved from ocean surface radar imagery Intensity of convective motions in marine atmospheric boundary layer retrieved from ocean surface radar imagery M. I. Mityagina To cite this version: M. I. Mityagina. Intensity of convective motions in

More information

Texture-Analysis-Incorporated Wind Parameters Extraction from Rain-Contaminated X-Band Nautical Radar Images

Texture-Analysis-Incorporated Wind Parameters Extraction from Rain-Contaminated X-Band Nautical Radar Images remote sensing Article Texture-Analysis-Incorporated Wind Parameters Extraction from Rain-Contaminated X-Band Nautical Radar Images Weimin Huang *, Ying Liu and Eric W. Gill Department of Electrical and

More information

Optical and radar observations of steep and breaking waves of decimeter range ( mesowaves ) on the sea surface: electrodynamical and hydrophysical

Optical and radar observations of steep and breaking waves of decimeter range ( mesowaves ) on the sea surface: electrodynamical and hydrophysical Optical and radar observations of steep and breaking waves of decimeter range ( mesowaves ) on the sea surface: electrodynamical and hydrophysical interpretation Kravtsov Yu.A., Bulatov M.G., Raev M.D.,

More information

AREAS of unusually low sea-surface mean square slope. Visual Demonstration of Three-Scale Sea-Surface Roughness Under Light Wind Conditions

AREAS of unusually low sea-surface mean square slope. Visual Demonstration of Three-Scale Sea-Surface Roughness Under Light Wind Conditions IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 43, NO. 8, AUGUST 2005 1751 Visual Demonstration of Three-Scale Sea-Surface Roughness Under Light Wind Conditions Edward J. Walsh, Senior Member,

More information

J.-C. Zhang, Y.-Z. Yin, and J.-P. Ma National Laboratory of Antennas and Microwave Technology Xidian University Xi an, Shaanxi , P. R.

J.-C. Zhang, Y.-Z. Yin, and J.-P. Ma National Laboratory of Antennas and Microwave Technology Xidian University Xi an, Shaanxi , P. R. Progress In Electromagnetics Research Letters, Vol. 6, 55 60, 2009 MULTIFUNCTIONAL MEANDER LINE POLARIZER J.-C. Zhang, Y.-Z. Yin, and J.-P. Ma National Laboratory of Antennas and Microwave Technology Xidian

More information

STUDIES OF OCEAN S SCATTERING PROPERTIES BASED ON AIRSAR DATA

STUDIES OF OCEAN S SCATTERING PROPERTIES BASED ON AIRSAR DATA STUDIES OF OCEAN S SCATTERING PROPERTIES BASED ON AIRSAR DATA Wang Wenguang *, Sun Jinping, Wang Jun, Hu Rui School of EIE, Beihang University, Beijing 00083, China- wwenguang@ee.buaa.edu.cn KEY WORDS:

More information

Math 46, Applied Math (Spring 2008): Final

Math 46, Applied Math (Spring 2008): Final Math 46, Applied Math (Spring 2008): Final 3 hours, 80 points total, 9 questions, roughly in syllabus order (apart from short answers) 1. [16 points. Note part c, worth 7 points, is independent of the

More information

ANALYSIS OF MICROWAVE EMISSION OF EXPONEN- TIALLY CORRELATED ROUGH SOIL SURFACES FROM 1.4 GHz TO 36.5 GHz

ANALYSIS OF MICROWAVE EMISSION OF EXPONEN- TIALLY CORRELATED ROUGH SOIL SURFACES FROM 1.4 GHz TO 36.5 GHz Progress In Electromagnetics Research, Vol. 18, 25 219, 21 ANALYSIS OF MICROWAVE EMISSION OF EXPONEN- TIALLY CORRELATED ROUGH SOIL SURFACES FROM 1.4 GHz TO 36.5 GHz P. Xu and K.-S. Chen Communication Research

More information

Analysis of Infrared Measurements of Microbreaking and Whitecaps

Analysis of Infrared Measurements of Microbreaking and Whitecaps Analysis of Infrared Measurements of Microbreaking and Whitecaps Andrew T. Jessup Applied Physics Laboratory, University of Washington 1013 NE 40th St. Seattle, WA 98105-6698 phone (206) 685-2609 fax (206)

More information

The Probability Density Function of Ocean Surface Slopes and Its Effects on Radar Backscatter

The Probability Density Function of Ocean Surface Slopes and Its Effects on Radar Backscatter The University of Southern Mississippi The Aquila Digital Community Faculty Publications 5-1-1997 The Probability Density Function of Ocean Surface Slopes and Its Effects on Radar Backscatter Y. Liu University

More information

Calculation of Reflection and Transmission Coefficients in scuff-transmission

Calculation of Reflection and Transmission Coefficients in scuff-transmission Calculation of Reflection and Transmission Coefficients in scuff-transmission Homer Reid May 9, 2015 Contents 1 The Setup 2 2 Scattering coefficients from surface currents 4 2.1 Computation of b(q).........................

More information

Advancing Remote-Sensing Methods for Monitoring Geophysical Parameters

Advancing Remote-Sensing Methods for Monitoring Geophysical Parameters Advancing Remote-Sensing Methods for Monitoring Geophysical Parameters Christian Mätzler (Retired from University of Bern) Now consultant for Gamma Remote Sensing, Switzerland matzler@iap.unibe.ch TERENO

More information

P7.5 STUDIES OF SEA SURFACE NORMALIZED RADAR CROSS SECTIONS OBSERVED BY CLOUDSAT

P7.5 STUDIES OF SEA SURFACE NORMALIZED RADAR CROSS SECTIONS OBSERVED BY CLOUDSAT P7.5 STUDIES OF SEA SURFACE NORMALIZED RADAR CROSS SECTIONS OBSERVED BY CLOUDSAT Ninoslav Majurec 1, Joel T. Johnson 1, and Simone Tanelli 1 ElectroScience Laboratory, The Ohio State University, Columbus,

More information

Linear and Nonlinear Rogue Wave Statistics in the Presence of Random Currents

Linear and Nonlinear Rogue Wave Statistics in the Presence of Random Currents Linear and Nonlinear Rogue Wave Statistics in the Presence of Random Currents Lev Kaplan (Tulane University) In collaboration with Alex Dahlen and Eric Heller (Harvard) Linghang Ying and Zhouheng Zhuang

More information

Simulations and Observations of GNSS Ocean Surface Reflections

Simulations and Observations of GNSS Ocean Surface Reflections Simulations and Observations of GNSS Ocean Surface Reflections Per Høeg Hans-Henrik von Benzon Ocean Surface Reflections Figure of the geometry of ocean reflections The presented simulations involve ocean

More information

Research on Ground Penetrating Radar Migration Imaging Technology

Research on Ground Penetrating Radar Migration Imaging Technology Sensors & Transducers, Vol. 80, Issue 0, October 04, pp. 5-55 Sensors & Transducers 04 by IFSA Publishing, S. L. http://www.sensorsportal.com Research on Ground Penetrating Radar Migration Imaging Technology

More information

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Central concepts: Phase velocity: velocity with which surfaces of constant phase move Group velocity: velocity with which slow

More information

Mapping Surface Oil Extent from the Deepwater Horizon Oil Spill Using ASCAT Backscatter

Mapping Surface Oil Extent from the Deepwater Horizon Oil Spill Using ASCAT Backscatter Mapping Surface Oil Extent from the Deepwater Horizon Oil Spill Using ASCAT Backscatter Richard D. Lindsley and David G. Long Microwave Earth Remote Sensing Laboratory Brigham Young University Provo, UT

More information

CHAPTER VI EFFECT OF SALINITY ON DIELECTRIC PROPERTIES OF SOILS

CHAPTER VI EFFECT OF SALINITY ON DIELECTRIC PROPERTIES OF SOILS CHAPTER VI EFFECT OF SALINITY ON DIELECTRIC PROPERTIES OF SOILS 6.1 INTRODUCTION: The identification of effect of saline water on soils with their location is useful to both the planner s and farmer s

More information

SINGLE-LOOK SAR IMAGES AND DETECTION OF SEA DARK AREAS

SINGLE-LOOK SAR IMAGES AND DETECTION OF SEA DARK AREAS SINGLE-LOOK SAR IMAGES AND DETECTION OF SEA DARK AREAS Attilio Gambardella (1), Ferdinando Nunziata (), Antonio Sorrentino (), Giuseppe Ferrara () and Maurizio Migliaccio () (1) Università degli Studi

More information

Mutah University, P.O. Box 7, Mutah, Al-Karak, 61710, Jordan 2 Department of Electrical Engineering,

Mutah University, P.O. Box 7, Mutah, Al-Karak, 61710, Jordan 2 Department of Electrical Engineering, American Journal of Applied Sciences 5 (12): 1764-1768, 2008 ISSN 1546-9239 2008 Science Publications Models for Mixed Ensemble of Hydrometeors and their Use in Calculating the Total Random Cross Section

More information

Radar Remote Sensing of Ice and Sea State and Air-Sea Interaction in the Marginal Ice Zone

Radar Remote Sensing of Ice and Sea State and Air-Sea Interaction in the Marginal Ice Zone DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radar Remote Sensing of Ice and Sea State and Air-Sea Interaction in the Marginal Ice Zone Hans C. Graber RSMAS Department

More information

Modeling microwave emissions of erg surfaces in the Sahara desert

Modeling microwave emissions of erg surfaces in the Sahara desert Brigham Young University BYU ScholarsArchive All Faculty Publications 2005-12-01 Modeling microwave emissions of erg surfaces in the Sahara desert David G. Long david_long@byu.edu Haroon Stephen Follow

More information

SAMPLE CHAPTERS UNESCO EOLSS WAVES IN THE OCEANS. Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany

SAMPLE CHAPTERS UNESCO EOLSS WAVES IN THE OCEANS. Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany WAVES IN THE OCEANS Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany Keywords: Wind waves, dispersion, internal waves, inertial oscillations, inertial waves,

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 32

ECE Spring Prof. David R. Jackson ECE Dept. Notes 32 ECE 6345 Spring 215 Prof. David R. Jackson ECE Dept. Notes 32 1 Overview In this set of notes we extend the spectral-domain method to analyze infinite periodic structures. Two typical examples of infinite

More information

Electromagnetic Radiation. Physical Principles of Remote Sensing

Electromagnetic Radiation. Physical Principles of Remote Sensing Electromagnetic Radiation Physical Principles of Remote Sensing Outline for 4/3/2003 Properties of electromagnetic radiation The electromagnetic spectrum Spectral emissivity Radiant temperature vs. kinematic

More information

arxiv:physics/ v3 [physics.gen-ph] 2 Jan 2006

arxiv:physics/ v3 [physics.gen-ph] 2 Jan 2006 A Wave Interpretation of the Compton Effect As a Further Demonstration of the Postulates of de Broglie arxiv:physics/0506211v3 [physics.gen-ph] 2 Jan 2006 Ching-Chuan Su Department of Electrical Engineering

More information

Sea ice extent from satellite microwave sensors

Sea ice extent from satellite microwave sensors Sea ice extent from satellite microwave sensors Maria Belmonte Rivas Introduction In 2007, the summer extent of Arctic sea ice observed by the Special Sensor Microwave Imager (SSM/I) reached its lowest

More information

INDIVIDUAL WAVE HEIGHT FROM SAR

INDIVIDUAL WAVE HEIGHT FROM SAR INDIVIDUAL WAVE HEIGHT FROM SAR W. Rosenthal (1), S.Lehner (2) (1), GKSS, D 2102 Geesthacht, Email:Wolfgang.Rosenthal@gkss.de (2), DLR, D82234 Wessling,, Email:Susanne.Lehner@dlr.de ABSTRACT Safety of

More information

Wind Parameters from Scatterometry

Wind Parameters from Scatterometry Wind Parameters from Scatterometr Zorana Jelenak, Moira Sten-Ross and Aleksandar Jelenak Department of Phsics and Electronic Engineering Universit of Waikato Private Bag 3105 Hamilton, New Zealand Email:

More information

Introduction to Seismology

Introduction to Seismology 1.510 Introduction to Seismology Lecture 5 Feb., 005 1 Introduction At previous lectures, we derived the equation of motion (λ + µ) ( u(x, t)) µ ( u(x, t)) = ρ u(x, t) (1) t This equation of motion can

More information

THE SCATTERING FROM AN ELLIPTIC CYLINDER IRRADIATED BY AN ELECTROMAGNETIC WAVE WITH ARBITRARY DIRECTION AND POLARIZATION

THE SCATTERING FROM AN ELLIPTIC CYLINDER IRRADIATED BY AN ELECTROMAGNETIC WAVE WITH ARBITRARY DIRECTION AND POLARIZATION Progress In Electromagnetics Research Letters, Vol. 5, 137 149, 2008 THE SCATTERING FROM AN ELLIPTIC CYLINDER IRRADIATED BY AN ELECTROMAGNETIC WAVE WITH ARBITRARY DIRECTION AND POLARIZATION Y.-L. Li, M.-J.

More information

Random deformation of Gaussian fields with an application to Lagrange models for asymmetric ocean waves

Random deformation of Gaussian fields with an application to Lagrange models for asymmetric ocean waves Int. Statistical Inst.: Proc. 58th World Statistical Congress,, Dublin (Session CPS) p.77 Random deformation of Gaussian fields with an application to Lagrange models for asymmetric ocean waves Lindgren,

More information

Envelope PDF in Multipath Fading Channels with Random Number of Paths and Nonuniform Phase Distributions

Envelope PDF in Multipath Fading Channels with Random Number of Paths and Nonuniform Phase Distributions Envelope PDF in Multipath Fading Channels with andom umber of Paths and onuniform Phase Distributions ALI ABDI AD MOSTAFA KAVEH DEPT. OF ELEC. AD COMP. EG., UIVESITY OF MIESOTA 4-74 EE/CSCI BLDG., UIO

More information

Localisation of Rayleigh-Bloch waves and stability of resonant loads on arrays of bottom-mounted cylinders with respect to positional disorder

Localisation of Rayleigh-Bloch waves and stability of resonant loads on arrays of bottom-mounted cylinders with respect to positional disorder Localisation of Rayleigh-Bloch waves and stability of resonant loads on arrays of bottom-mounted cylinders with respect to positional disorder Luke Bennetts University of Adelaide, Australia Collaborators

More information

WAVE PROPAGATION AND SCATTERING IN RANDOM MEDIA

WAVE PROPAGATION AND SCATTERING IN RANDOM MEDIA WAVE PROPAGATION AND SCATTERING IN RANDOM MEDIA AKIRA ISHIMARU UNIVERSITY of WASHINGTON IEEE Antennas & Propagation Society, Sponsor IEEE PRESS The Institute of Electrical and Electronics Engineers, Inc.

More information

Internal Wave Generation and Scattering from Rough Topography

Internal Wave Generation and Scattering from Rough Topography Internal Wave Generation and Scattering from Rough Topography Kurt L. Polzin Corresponding author address: Kurt L. Polzin, MS#21 WHOI Woods Hole MA, 02543. E-mail: kpolzin@whoi.edu Abstract Several claims

More information

THREE-DIMENSIONAL CRITICAL SEISMIC GROUND ACCELERATION TIME HISTORIES FOR HIGH-TECH FACILITIES

THREE-DIMENSIONAL CRITICAL SEISMIC GROUND ACCELERATION TIME HISTORIES FOR HIGH-TECH FACILITIES 4th International Conference on Earthquake Engineering Taipei, Taiwan October 2-3, 26 Paper No. 79 THREE-DIMENSIONAL CRITICAL SEISMIC GROUND ACCELERATION TIME HISTORIES FOR HIGH-TECH FACILITIES You-Lin

More information

Microwave Remote Sensing of Sea Ice

Microwave Remote Sensing of Sea Ice Microwave Remote Sensing of Sea Ice What is Sea Ice? Passive Microwave Remote Sensing of Sea Ice Basics Sea Ice Concentration Active Microwave Remote Sensing of Sea Ice Basics Sea Ice Type Sea Ice Motion

More information

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 Chapter 11 Taylor Series Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 First-Order Approximation We want to approximate function f by some simple function. Best possible approximation

More information

BINARY CLASSIFICATIOI'\ OF WII'\D FIELDS THROuGH HYPOTHESIS TESTING ON SCATTEROMETER MEASUREMENTS

BINARY CLASSIFICATIOI'\ OF WII'\D FIELDS THROuGH HYPOTHESIS TESTING ON SCATTEROMETER MEASUREMENTS BNARY CLASSFCATO'\ OF W'\D FELDS THROuGH HYPOTHESS TESTNG ON SCATTEROMETER MEASUREMENTS Paul E. Johnson Brigham Young university, MERS Laboratory 459 CB, Provo, UT 8462 81-378-4884, FAX: 81-378-6586, e-mail:

More information

IN SPITE of more than one half-century of theoretical developments

IN SPITE of more than one half-century of theoretical developments IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 11, NOVEMBER 215 5889 The GO4 Model in Near-Nadir Microwave Scattering From the Sea Surface Olivier Boisot, Frédéric Nouguier, Bertrand

More information

NUMERICAL APPROACH ON DOPPLER SPECTRUM ANALYSIS FOR MOVING TARGETS ABOVE A TIME- EVOLVING SEA SURFACE

NUMERICAL APPROACH ON DOPPLER SPECTRUM ANALYSIS FOR MOVING TARGETS ABOVE A TIME- EVOLVING SEA SURFACE Progress In Electromagnetics Research, Vol. 138, 351 365, 2013 NUMERICAL APPROACH ON DOPPLER SPECTRUM ANALYSIS FOR MOVING TARGETS ABOVE A TIME- EVOLVING SEA SURFACE Conghui Qi, Zhiqin Zhao *, and Zaiping

More information

Modeling Surface and Subsurface Scattering from Saline Soils

Modeling Surface and Subsurface Scattering from Saline Soils Modeling Surface and Subsurface Scattering from Saline Soils PolInSAR 2007 Tony Freeman, Jet Propulsion Laboratory Tom Farr, Jet Propulsion Laboratory Philippe Paillou, Astronomical Observatory of Bordeaux

More information

Nonlinear & Stochastic Growth Processes in Beam-Plasma Systems: Recent Work on Type III Bursts

Nonlinear & Stochastic Growth Processes in Beam-Plasma Systems: Recent Work on Type III Bursts Nonlinear & Stochastic Growth Processes in Beam-Plasma Systems: Recent Work on Type III Bursts Iver H. Cairns 1, Daniel B. Graham 1,2, Bo Li 1, A. Layden 1, B. Layden (1 = U. Sydney, 2 = Swed. Int. Sp.

More information

HIGH RESOLUTION RANGE PROFILE IDENTIFYING SIMULATION OF LASER RADAR BASED ON PULSE BEAM SCATTERING CHARACTERISTICS OF TAR- GETS

HIGH RESOLUTION RANGE PROFILE IDENTIFYING SIMULATION OF LASER RADAR BASED ON PULSE BEAM SCATTERING CHARACTERISTICS OF TAR- GETS Progress In Electromagnetics Research, PIER 96, 193 24, 29 HIGH RESOLUTION RANGE PROFILE IDENTIFYING SIMULATION OF LASER RADAR BASED ON PULSE BEAM SCATTERING CHARACTERISTICS OF TAR- GETS M.-J. Wang Institute

More information

ANALYTICAL SOLUTIONS OF DIFFERENTIAL-DIFFERENCE SINE-GORDON EQUATION

ANALYTICAL SOLUTIONS OF DIFFERENTIAL-DIFFERENCE SINE-GORDON EQUATION THERMAL SCIENCE, Year 07, Vol., No. 4, pp. 70-705 70 Introduction ANALYTICAL SOLUTIONS OF DIFFERENTIAL-DIFFERENCE SINE-GORDON EQUATION by Da-Jiang DING, Di-Qing JIN, and Chao-Qing DAI * School of Sciences,

More information

Quiz 6: Modern Physics Solution

Quiz 6: Modern Physics Solution Quiz 6: Modern Physics Solution Name: Attempt all questions. Some universal constants: Roll no: h = Planck s constant = 6.63 10 34 Js = Reduced Planck s constant = 1.06 10 34 Js 1eV = 1.6 10 19 J d 2 TDSE

More information

Satellite Remote Sensing SIO 135/SIO 236. Electromagnetic Radiation and Polarization

Satellite Remote Sensing SIO 135/SIO 236. Electromagnetic Radiation and Polarization Satellite Remote Sensing SIO 135/SIO 236 Electromagnetic Radiation and Polarization 1 Electromagnetic Radiation The first requirement for remote sensing is to have an energy source to illuminate the target.

More information

High Resolution Vector Wind Retrieval from SeaWinds Scatterometer Data

High Resolution Vector Wind Retrieval from SeaWinds Scatterometer Data High Resolution Vector Wind Retrieval from SeaWinds Scatterometer Data David G. Long Brigham Young University, 459 Clyde Building, Provo, UT 84602 long@ee.byu.edu http://www.scp.byu.edu Abstract The SeaWinds

More information