Advanced Computational Physics Course Hartmut Ruhl, LMU, Munich. People involved. People involved. Literature. Schrödinger equation.

Size: px
Start display at page:

Download "Advanced Computational Physics Course Hartmut Ruhl, LMU, Munich. People involved. People involved. Literature. Schrödinger equation."

Transcription

1 June 13, 017

2

3 ASC, room A 38, phone , hartmut.ruhl@lmu.de Patrick Böhl, ASC, room A05, phone , patrick.boehl@physik.uni-muenchen.de.

4 Useful literature Dennis M. Sullivan, Electromagnetic Simulation Using The FDTD Method, IEEE Press Series on RF and Microwave Technology, Poger D. Pollard and Richard Booton, ISBN: Frederick Ira Moxley III, Fei Zhu, and Weizhong Dai, A Generalized FDTD Method with Absorbing Boundary Condition for Solving a Time-Dependent Linear Equation, American J. of Comp. Math., (01).

5 The generalized FDTD method To derive a generalized FDTD scheme we write Next we expand ψ Re (x, t n) and ψ Re (x, t n 1 ) about t n 0.5 h t ψ Re (x, t) = ( m A + V (x) ) ψ Im (x, t), h (1) h t ψ Im (x, t) = (+ m A V (x) ) ψ Re (x, t). h () ψ Re (x, t n) = ψ Re (x, t n 0.5 ) + t ψ Re (x, t n 1 ) = ψ Re (x, t n 0.5 ) t t ψ Re (x, t n 0.5 ) (3) + 1! ( t ) t ψ Re (x, t n 0.5) + 1 3! ( t ) 3 3 t ψ Re (x, t n 0.5) ±... t ψ Re (x, t n 0.5 ) (4) + 1! ( t ) t ψ Re (x, t n 0.5) 1 3! ( t ) 3 3 t ψ Re (x, t n 0.5) ±...

6 The generalized FDTD method Subtracting ψ Re (x, t n 1 ) from ψ Re (x, t n) yields ψ Re (x, t n) = ψ Re (x, t n 1 ) + ( t p+1 p=0 ) 1 (p + 1)! p+1 ψ t Re (x, t n 0.5 ). (5) With the help of the the time derivatives can be evaluated. We obtain up to order N ψ Re (x, t n) = ψ Re (x, t n 1 ) (6) N + ( t p+1 p+1 p=0 ) ( 1) ha (p + 1)! ( m V h p+1 ) ψ Im (x, t n 0.5 ) +O ( t N+3 ). Expanding ψ Im (x, t n+0.5 ) and ψ Im (x, t n 0.5 ) about ψ Im (x, t n) and applying the yields ψ Im (x, t n+0.5 ) = ψ Im (x, t n 0.5 ) (7) N + ( t p+1 p p=0 ) ( 1) ha (p + 1)! ( m V h p+1 ) ψ Re (x, t n) +O ( t N+3 ).

7 The generalized FDTD method The discrete becomes ψ n N j,re = ψn 1 j,re + ( t p+1 p+1 p=0 ) ( 1) ha (p + 1)! ( ψ n+0.5 j,im = ψn 0.5 j,im N + ( t p=0 p+1 p ) ( 1) (p + 1)! ( ha m V h p+1 ) Next a specific discrete representation of the operator A has to be given. For ψ n 0.5 j,im, (8) m V h p+1 ) ψ n j,re. (9) A ψ n j,re = ψ n j+1,re ψn j,re + ψn j 1,Re x (10) we obtain A ψ n j,re = 1 k x ( 4 sin x ) λn Re ei(jk x), (11) A ψ n+0.5 j,im = 1 k x ( 4 sin x ) λn Im ei(jk x), (1) where the ansatz ψ n j,re = λn Re ei(jk x), ψ n+0.5 j,im = λn Im ei(jk x) (13) has been made.

8 The generalized FDTD method The discrete becomes λ n Re = λn 1 Re λ n Im = λn 1 Im Alternatively, this can be writen as N + p=0 N + p=0 ( 1) p h t (p + 1)! ( m x ( 1) p+1 sin k x h t (p + 1)! ( k x sin m x + V t h ) p+1 λ n 1 Im, (14) + V t h ) p+1 λ n Re. (15) λ n Re = λn 1 Re + α λn 1 Im, (16) λ n Im = λn 1 Im α λn Re, (17) where N ( 1) p α = p=0 (p + 1)! ( h t m x sin k x + V t h ) p+1. (18) We find λ n+1 Re λn Re = λn Re λn 1 Re + α (λn Im + λn 1 Im ), λn Im = λn 1 Im α λn Re. (19)

9 The generalized FDTD method Finally, we find or λ n+1 Re ( α ) λ n Re + λn 1 Re = 0 (0) λ Re ( α ) λ Re + 1 = 0. (1) The solution of this is This leads to λ Re = e iω t e iω t e iω t = α () 1 cos ω t = α sin ω t = α 4. (3) sin ω t N ( 1) p = p=0 (p + 1)! ( h t m x sin k x + V t p+1 h ). (4)

10 The generalized FDTD method For vanishing potential we obtain for the t 4 x order approximation sin ω t = h t k x sin 1 h t m x 3! ( k x sin m x )3. (5) The plots below compare analytical (yellow), t x order FDTD (red), and t 4 x order FDTD (blue) dispersion relations for (a) a Courant factor of 0.99 and (b) a Courant factor 0.6. For the Courant factor 0.6 the second and first orders are almost identical implying that the higher order FDTD scheme is much more stable than the lowest order one (a) (b)

11 The generalized FDTD method: Comparison For the classical FDTD method we have found i ψ 0,Re sin ( ω t ) = ψ h t 0,Im m x i ψ 0,Im sin ( ω t ) = +ψ h t 0,Re m x sin ( k x ), (6) sin ( k x ) (7) or alternatively i sin ( ω t ) h t m x h t m x sin ( k x sin ( k x ) ) i sin ( ω t ) This yields the lowest order dispersion contribution of the generalized FDTD scheme ( ψ Re ) = 0. (8) ψ Im sin ( ω t ) = ( h t m x ) sin 4 ( k x ). (9)

12 : Dispersion Plot of the discrete dispersion relation of the for (c) x = 0.01µm and t = m e x / h and (d) t = 0.5 m e x / h (c) (d)

13 The generalized FDTD method If we make use of a 4th order discrete representation of the operator A we obtain A ψ n j,re = ψ n j+,re + 16ψn j+1,re 30ψn j,re + 16ψn j 1,Re ψn j,re 1 x (30) A ψ n j,re = 4 k x sin (3 + sin k x 3 x ) λn Re ei(jk x), (31) A ψ n+0.5 j,im = 4 k x sin (3 + sin k x 3 x ) λn Im ei(jk x), (3) where the ansatz ψ n j,re = λn Re ei(jk x), ψ n+0.5 j,im = λn Im ei(jk x) (33) has been made. The discrete becomes ψ n N j,re = ψn 1 j,re + ( t p+1 p+1 p=0 ) ( 1) ha (p + 1)! ( ψ n+0.5 j,im = ψn 0.5 j,im N + ( t p=0 p+1 p ) ( 1) (p + 1)! ( ha m V h p+1 ) ψ n 0.5 j,im, (34) m V h p+1 ) ψ n j,re. (35)

14 The generalized FDTD method For vanishing potential we obtain for the t x 4 order FDTD dispersion sin ω t h t k x = ( sin (3 + sin k x 3m x )) (36) and for the t 4 x 4 order dispersion sin ω t h t k x = ( sin (3 + sin k x 3m x ) (37) 1 h t 3! ( k x sin (3 + sin k x 3m x ))3. The plots below compare analytical (blue), t x 4 order FDTD (red), t x order FDTD (green), t 4 x 4 order FDTD (yellow), and t 4 x order (blue) dispersion relations for (e) a Courant factor of 0.75 and (f) The t 4 x 4 scheme is stable for 0.99 and approximates dispersion better (e) (f)

15 : Exercises Exercise: Write a C-program for the t 4 x and t 4 x 4 order FDTD solvers of the free with periodic boundary conditions in 3D. Assume that x w ψ( x, 0) = e x y w e y z w e z e ik x0 x (38) holds, where w x, w y, and w z determine the widths of the Gaussian wave packet and k x0 is the initial momentum of the wave. Obtain the t 4 x and t 4 x 4 order dispersion relations of the free in 3D. Compare the speed of integration with the t x order scheme.

16 : Dispersion in 3D In 3D we obtain sin ( ω t h t ) = ( m x ) sin 4 kx x ( ) (39) h t + ( m y ) sin 4 ky y ( ) h t + ( m z ) sin 4 kz z ( ) or ω t = arcsin h t ( m x ) sin 4 kx x ( ) (40) h t + ( m y ) sin 4 ky y ( ) 1 h t + ( m z ) sin 4 kz z ( ), where the more general expressions from above have to be inserted for higher order integrators.

17 : Dispersion D Plot of (g) the discrete dispersion relation of the for x = y = 0.01µm and (h) the difference between the analytical and the discrete dispersion relations for 1 t = ( h me x ) + ( h me y ) (41) ky ky (g) kx (h) kx

18 Plot of the real part of a Gaussian wave packet propagating to the right with h = m e = 1, box dimensions L x = L y = L z = 1.0, resolution x = y = z = 0.01, t = , Gaussian packet widths w x = w y = w z = 0.1. Plot (i) gives the real part of the wave packet at t = 0 and plot (j) at t = 300 t with the t x order scheme. (i) (j)

19 Plot of the absolute value of a Gaussian wave packet propagating to the right with h = m e = 1, box dimensions L x = L y = L z = 1.0, resolution x = y = z = 0.01, t = , Gaussian packet widths w x = w y = w z = 0.1. Plot (k) gives the absolute value of the wave packet at t = 0 and plot (l) at t = 300 t with the t x order scheme. (k) (l)

20 : Exercises Exercise: Write a C-program for the t x order FDTD solver of the with an attractive and repulsive harmonic potential with periodic boundary conditions in 3D. Assume that x L ψ( x, 0) = e y L x e y z L e z e ik x0 x (4) and x r V ( x) = V 0 e x y r e y z r e z (43) holds, where w x, w y, and w z determine the widths of the Gaussian wave packet and k x0 is the initial momentum of the wave, while r x, r y, and r z represent the widths of the potential.

Superposition of electromagnetic waves

Superposition of electromagnetic waves Superposition of electromagnetic waves February 9, So far we have looked at properties of monochromatic plane waves. A more complete picture is found by looking at superpositions of many frequencies. Many

More information

in terms of the classical frequency, ω = , puts the classical Hamiltonian in the form H = p2 2m + mω2 x 2

in terms of the classical frequency, ω = , puts the classical Hamiltonian in the form H = p2 2m + mω2 x 2 One of the most important problems in quantum mechanics is the simple harmonic oscillator, in part because its properties are directly applicable to field theory. The treatment in Dirac notation is particularly

More information

in Electromagnetics Numerical Method Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD

in Electromagnetics Numerical Method Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD 2141418 Numerical Method in Electromagnetics Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD ISE, Chulalongkorn University, 2 nd /2018 Email: charusluk.v@chula.ac.th Website: Light

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6.2 Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite-Potential Well

More information

Three-scale Radar Backscattering Model of the Ocean Surface Based on Second-order Scattering

Three-scale Radar Backscattering Model of the Ocean Surface Based on Second-order Scattering PIERS ONLINE, VOL. 4, NO. 2, 2008 171 Three-scale Radar Backscattering Model of the Ocean Surface Based on Second-order Scattering Ying Yu 1, 2, Xiao-Qing Wang 1, Min-Hui Zhu 1, and Jiang Xiao 1, 1 National

More information

Transient Phenomena in Quantum Bound States Subjected to a Sudden Perturbation

Transient Phenomena in Quantum Bound States Subjected to a Sudden Perturbation Symmetry, Integrability and Geometry: Methods and Applications Vol. (5), Paper 3, 9 pages Transient Phenomena in Quantum Bound States Subjected to a Sudden Perturbation Marcos MOSHINSKY and Emerson SADURNÍ

More information

Part III. Interaction with Single Electrons - Plane Wave Orbits

Part III. Interaction with Single Electrons - Plane Wave Orbits Part III - Orbits 52 / 115 3 Motion of an Electron in an Electromagnetic 53 / 115 Single electron motion in EM plane wave Electron momentum in electromagnetic wave with fields E and B given by Lorentz

More information

A Propagating Wave Packet The Group Velocity

A Propagating Wave Packet The Group Velocity Lecture 7 A Propagating Wave Packet The Group Velocity Phys 375 Overview and Motivation: Last time we looked at a solution to the Schrödinger equation (SE) with an initial condition (,) that corresponds

More information

WAVE PACKETS & SUPERPOSITION

WAVE PACKETS & SUPERPOSITION 1 WAVE PACKETS & SUPERPOSITION Reading: Main 9. PH41 Fourier notes 1 x k Non dispersive wave equation x ψ (x,t) = 1 v t ψ (x,t) So far, we know that this equation results from application of Newton s law

More information

PHYS 3313 Section 001 Lecture # 22

PHYS 3313 Section 001 Lecture # 22 PHYS 3313 Section 001 Lecture # 22 Dr. Barry Spurlock Simple Harmonic Oscillator Barriers and Tunneling Alpha Particle Decay Schrodinger Equation on Hydrogen Atom Solutions for Schrodinger Equation for

More information

Comparison of Finite Differences and WKB Method for Approximating Tunneling Times of the One Dimensional Schrödinger Equation Student: Yael Elmatad

Comparison of Finite Differences and WKB Method for Approximating Tunneling Times of the One Dimensional Schrödinger Equation Student: Yael Elmatad Comparison of Finite Differences and WKB Method for Approximating Tunneling Times of the One Dimensional Schrödinger Equation Student: Yael Elmatad Overview The goal of this research was to examine the

More information

MCQs E M WAVES. Physics Without Fear.

MCQs E M WAVES. Physics Without Fear. MCQs E M WAVES Physics Without Fear Electromagnetic Waves At A Glance Ampere s law B. dl = μ 0 I relates magnetic fields due to current sources. Maxwell argued that this law is incomplete as it does not

More information

Practice Exam in Electrodynamics (T3) June 26, 2018

Practice Exam in Electrodynamics (T3) June 26, 2018 Practice Exam in Electrodynamics T3) June 6, 018 Please fill in: Name and Surname: Matriculation number: Number of additional sheets: Please read carefully: Write your name and matriculation number on

More information

Opinions on quantum mechanics. CHAPTER 6 Quantum Mechanics II. 6.1: The Schrödinger Wave Equation. Normalization and Probability

Opinions on quantum mechanics. CHAPTER 6 Quantum Mechanics II. 6.1: The Schrödinger Wave Equation. Normalization and Probability CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6. Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite- 6.6 Simple Harmonic

More information

From The Picture Book of Quantum Mechanics, S. Brandt and H.D. Dahmen, 4th ed., c 2012 by Springer-Verlag New York.

From The Picture Book of Quantum Mechanics, S. Brandt and H.D. Dahmen, 4th ed., c 2012 by Springer-Verlag New York. 1 Fig. 6.1. Bound states in an infinitely deep square well. The long-dash line indicates the potential energy V (x). It vanishes for d/2 < x < d/2 and is infinite elsewhere. Points x = ±d/2 are indicated

More information

Wave Properties of Particles Louis debroglie:

Wave Properties of Particles Louis debroglie: Wave Properties of Particles Louis debroglie: If light is both a wave and a particle, why not electrons? In 194 Louis de Broglie suggested in his doctoral dissertation that there is a wave connected with

More information

arxiv: v1 [physics.comp-ph] 9 Dec 2008

arxiv: v1 [physics.comp-ph] 9 Dec 2008 arxiv:812.187v1 [physics.comp-ph] 9 Dec 28 Three-dimensional Finite Difference-Time Domain Solution of Dirac Equation Neven Simicevic Center for Applied Physics Studies, Louisiana Tech University, Ruston,

More information

SOLUTIONS for Homework #2. 1. The given wave function can be normalized to the total probability equal to 1, ψ(x) = Ne λ x.

SOLUTIONS for Homework #2. 1. The given wave function can be normalized to the total probability equal to 1, ψ(x) = Ne λ x. SOLUTIONS for Homework #. The given wave function can be normalized to the total probability equal to, ψ(x) = Ne λ x. () To get we choose dx ψ(x) = N dx e λx =, () 0 N = λ. (3) This state corresponds to

More information

Lecture 7. 1 Wavepackets and Uncertainty 1. 2 Wavepacket Shape Changes 4. 3 Time evolution of a free wave packet 6. 1 Φ(k)e ikx dk. (1.

Lecture 7. 1 Wavepackets and Uncertainty 1. 2 Wavepacket Shape Changes 4. 3 Time evolution of a free wave packet 6. 1 Φ(k)e ikx dk. (1. Lecture 7 B. Zwiebach February 8, 06 Contents Wavepackets and Uncertainty Wavepacket Shape Changes 4 3 Time evolution of a free wave packet 6 Wavepackets and Uncertainty A wavepacket is a superposition

More information

1. Reminder: E-Dynamics in homogenous media and at interfaces

1. Reminder: E-Dynamics in homogenous media and at interfaces 0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2. Photonic Crystals 2.1 Introduction 2.2 1D Photonic Crystals 2.3 2D and 3D Photonic Crystals 2.4 Numerical Methods 2.4.1

More information

1. Estimate the lifetime of an excited state of hydrogen. Give your answer in terms of fundamental constants.

1. Estimate the lifetime of an excited state of hydrogen. Give your answer in terms of fundamental constants. Sample final questions.. Estimate the lifetime of an excited state of hydrogen. Give your answer in terms of fundamental constants. 2. A one-dimensional harmonic oscillator, originally in the ground state,

More information

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 13 Thermodynamics of QM particles

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 13 Thermodynamics of QM particles Physics 576 Stellar Astrophysics Prof. James Buckley Lecture 13 Thermodynamics of QM particles Reading/Homework Assignment Read chapter 3 in Rose. Midterm Exam, April 5 (take home) Final Project, May 4

More information

Towards Realistic Simulation of Photonic Crystal Waveguide Losses

Towards Realistic Simulation of Photonic Crystal Waveguide Losses Towards Realistic Simulation of Photonic Crystal Waveguide Losses R.Kappeler 1, P.Kaspar 1, G.Stark 1, F.Robin 1, Ch.Hafner 2 and H.Jäckel 1 1 Communication Photonics Group, Electronics Laboratory, ETH

More information

FDFD. The Finite-Difference Frequency-Domain Method. Hans-Dieter Lang

FDFD. The Finite-Difference Frequency-Domain Method. Hans-Dieter Lang FDFD The Finite-Difference Frequency-Domain Method Hans-Dieter Lang Friday, December 14, 212 ECE 1252 Computational Electrodynamics Course Project Presentation University of Toronto H.-D. Lang FDFD 1/18

More information

I WAVES (ENGEL & REID, 13.2, 13.3 AND 12.6)

I WAVES (ENGEL & REID, 13.2, 13.3 AND 12.6) I WAVES (ENGEL & REID, 13., 13.3 AND 1.6) I.1 Introduction A significant part of the lecture From Quantum to Matter is devoted to developing the basic concepts of quantum mechanics. This is not possible

More information

Course Nov 03, Statistische Mechanik plus. Course Hartmut Ruhl, LMU, Munich. People involved. Hinweis.

Course Nov 03, Statistische Mechanik plus. Course Hartmut Ruhl, LMU, Munich. People involved. Hinweis. Nov 03, 016 ASC, room A 38, phone 089-180410, email hartmut.ruhl@lmu.de Patrick Böhl, ASC, room A05, phone 089-1804640, email patrick.boehl@physik.uni-muenchen.de. Das folgende Material ist nicht prüfungsrelevant.

More information

ANALYSIS OF DISPERSION RELATION OF PIECEWISE LINEAR RECURSIVE CONVOLUTION FDTD METHOD FOR SPACE-VARYING PLASMA

ANALYSIS OF DISPERSION RELATION OF PIECEWISE LINEAR RECURSIVE CONVOLUTION FDTD METHOD FOR SPACE-VARYING PLASMA Progress In Electromagnetics Research Letters, Vol. 22, 83 93, 2011 ANALYSIS OF DISPERSION RELATION OF PIECEWISE LINEAR RECURSIVE CONVOLUTION FDTD METHOD FOR SPACE-VARYING PLASMA X. Ai Science and Technology

More information

The Overhauser Instability

The Overhauser Instability The Overhauser Instability Zoltán Radnai and Richard Needs TCM Group ESDG Talk 14th February 2007 Typeset by FoilTEX Introduction Hartree-Fock theory and Homogeneous Electron Gas Noncollinear spins and

More information

Optical Lattices. Chapter Polarization

Optical Lattices. Chapter Polarization Chapter Optical Lattices Abstract In this chapter we give details of the atomic physics that underlies the Bose- Hubbard model used to describe ultracold atoms in optical lattices. We show how the AC-Stark

More information

Figure 4.4: b < f. Figure 4.5: f < F b < f. k 1 = F b, k 2 = F + b. ( ) < F b < f k 1 = f, k 2 = F + b. where:, (see Figure 4.6).

Figure 4.4: b < f. Figure 4.5: f < F b < f. k 1 = F b, k 2 = F + b. ( ) < F b < f k 1 = f, k 2 = F + b. where:, (see Figure 4.6). Figure 4.4: b < f ii.) f < F b < f where: k = F b, k = F + b, (see Figure 4.5). Figure 4.5: f < F b < f. k = F b, k = F + b. ( ) < F b < f k = f, k = F + b iii.) f + b where:, (see Figure 4.6). 05 ( )

More information

8.03 Lecture 12. Systems we have learned: Wave equation: (1) String with constant tension and mass per unit length ρ L T v p = ρ L

8.03 Lecture 12. Systems we have learned: Wave equation: (1) String with constant tension and mass per unit length ρ L T v p = ρ L 8.03 Lecture 1 Systems we have learned: Wave equation: ψ = ψ v p x There are three different kinds of systems discussed in the lecture: (1) String with constant tension and mass per unit length ρ L T v

More information

BASIC WAVE CONCEPTS. Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, Giancoli?

BASIC WAVE CONCEPTS. Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, Giancoli? 1 BASIC WAVE CONCEPTS Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, 9.1.2 Giancoli? REVIEW SINGLE OSCILLATOR: The oscillation functions you re used to describe how one quantity (position, charge, electric field,

More information

arxiv:physics/ v3 [physics.gen-ph] 2 Jan 2006

arxiv:physics/ v3 [physics.gen-ph] 2 Jan 2006 A Wave Interpretation of the Compton Effect As a Further Demonstration of the Postulates of de Broglie arxiv:physics/0506211v3 [physics.gen-ph] 2 Jan 2006 Ching-Chuan Su Department of Electrical Engineering

More information

NYU Physics Preliminary Examination in Electricity & Magnetism Fall 2011

NYU Physics Preliminary Examination in Electricity & Magnetism Fall 2011 This is a closed-book exam. No reference materials of any sort are permitted. Full credit will be given for complete solutions to the following five questions. 1. An impenetrable sphere of radius a carries

More information

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space Electromagnetic Waves 1 1. Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space 1 Retarded Potentials For volume charge & current = 1 4πε

More information

Stability and dispersion analysis of high order FDTD methods for Maxwell s equations in dispersive media

Stability and dispersion analysis of high order FDTD methods for Maxwell s equations in dispersive media Contemporary Mathematics Volume 586 013 http://dx.doi.org/.90/conm/586/11666 Stability and dispersion analysis of high order FDTD methods for Maxwell s equations in dispersive media V. A. Bokil and N.

More information

12. Nonlinear optics I

12. Nonlinear optics I 1. Nonlinear optics I What are nonlinear-optical effects and why do they occur? Maxwell's equations in a medium Nonlinear-optical media Second-harmonic generation Conservation laws for photons ("Phasematching")

More information

Exam in Fluid Mechanics 5C1214

Exam in Fluid Mechanics 5C1214 Eam in Fluid Mechanics 5C1214 Final eam in course 5C1214 13/01 2004 09-13 in Q24 Eaminer: Prof. Dan Henningson The point value of each question is given in parenthesis and you need more than 20 points

More information

Physics 442. Electro-Magneto-Dynamics. M. Berrondo. Physics BYU

Physics 442. Electro-Magneto-Dynamics. M. Berrondo. Physics BYU Physics 44 Electro-Magneto-Dynamics M. Berrondo Physics BYU 1 Paravectors Φ= V + cα Φ= V cα 1 = t c 1 = + t c J = c + ρ J J ρ = c J S = cu + em S S = cu em S Physics BYU EM Wave Equation Apply to Maxwell

More information

Lecture 12: Particle in 1D boxes, Simple Harmonic Oscillators

Lecture 12: Particle in 1D boxes, Simple Harmonic Oscillators Lecture 1: Particle in 1D boes, Simple Harmonic Oscillators U U() ψ() U n= n=0 n=1 n=3 Lecture 1, p 1 This week and last week are critical for the course: Week 3, Lectures 7-9: Week 4, Lectures 10-1: Light

More information

The Casimir Effect. Notes by Asaf Szulc

The Casimir Effect. Notes by Asaf Szulc The Casimir Effect Notes by Asaf Szulc Introduction The Casimir effect describes the attraction between two perfectly conducting and uncharged parallel plates confined in vacuum. It was the Dutch physicist

More information

DOING PHYSICS WITH MATLAB

DOING PHYSICS WITH MATLAB DOING PHYSICS WITH MATLAB ELECTROMAGNETISM USING THE FDTD METHOD [1D] Propagation of Electromagnetic Waves Matlab Download Director ft_3.m ft_sources.m Download and run the script ft_3.m. Carefull inspect

More information

MATH 53H - Solutions to Problem Set III

MATH 53H - Solutions to Problem Set III MATH 53H - Solutions to Problem Set III. Fix λ not an eigenvalue of L. Then det(λi L) 0 λi L is invertible. We have then p L+N (λ) = det(λi L N) = det(λi L) det(i (λi L) N) = = p L (λ) det(i (λi L) N)

More information

Math 304 Answers to Selected Problems

Math 304 Answers to Selected Problems Math Answers to Selected Problems Section 6.. Find the general solution to each of the following systems. a y y + y y y + y e y y y y y + y f y y + y y y + 6y y y + y Answer: a This is a system of the

More information

Principles of Molecular Spectroscopy

Principles of Molecular Spectroscopy Principles of Molecular Spectroscopy What variables do we need to characterize a molecule? Nuclear and electronic configurations: What is the structure of the molecule? What are the bond lengths? How strong

More information

z 0 > 0 z = 0 h; (x, 0)

z 0 > 0 z = 0 h; (x, 0) n = (q 1,..., q n ) T (,, t) V (,, t) L(,, t) = T V d dt ( ) L q i L q i = 0, i = 1,..., n. l l 0 l l 0 l > l 0 {x} + = max(0, x) x = k{l l 0 } +ˆ, k > 0 ˆ (x, z) x z (0, z 0 ) (0, z 0 ) z 0 > 0 x z =

More information

Math Questions for the 2011 PhD Qualifier Exam 1. Evaluate the following definite integral 3" 4 where! ( x) is the Dirac! - function. # " 4 [ ( )] dx x 2! cos x 2. Consider the differential equation dx

More information

Lecture 4. 1 de Broglie wavelength and Galilean transformations 1. 2 Phase and Group Velocities 4. 3 Choosing the wavefunction for a free particle 6

Lecture 4. 1 de Broglie wavelength and Galilean transformations 1. 2 Phase and Group Velocities 4. 3 Choosing the wavefunction for a free particle 6 Lecture 4 B. Zwiebach February 18, 2016 Contents 1 de Broglie wavelength and Galilean transformations 1 2 Phase and Group Velocities 4 3 Choosing the wavefunction for a free particle 6 1 de Broglie wavelength

More information

Nonstandard Finite Difference Time Domain (NSFDTD) Method for Solving the Schrödinger Equation

Nonstandard Finite Difference Time Domain (NSFDTD) Method for Solving the Schrödinger Equation Pramana J. Phys. (2018)?: #### DOI??/?? c Indian Academy of Sciences Nonstandard Finite Difference Time Domain (NSFDTD) Method for Solving the Schrödinger Equation I WAYAN SUDIARTA mitru et al. [11] have

More information

Progress In Electromagnetics Research M, Vol. 20, 81 94, 2011

Progress In Electromagnetics Research M, Vol. 20, 81 94, 2011 Progress In Electromagnetics Research M, Vol. 2, 8 94, 2 PHOTONIC BAND STRUCTURES AND ENHANCE- MENT OF OMNIDIRECTIONAL REFLECTION BANDS BY USING A TERNARY D PHOTONIC CRYSTAL IN- CLUDING LEFT-HANDED MATERIALS

More information

FDTD for 1D wave equation. Equation: 2 H Notations: o o. discretization. ( t) ( x) i i i i i

FDTD for 1D wave equation. Equation: 2 H Notations: o o. discretization. ( t) ( x) i i i i i FDTD for 1D wave equation Equation: 2 H = t 2 c2 2 H x 2 Notations: o t = nδδ, x = iδx o n H nδδ, iδx = H i o n E nδδ, iδx = E i discretization H 2H + H H 2H + H n+ 1 n n 1 n n n i i i 2 i+ 1 i i 1 = c

More information

Comparison of a Finite Difference and a Mixed Finite Element Formulation of the Uniaxial Perfectly Matched Layer

Comparison of a Finite Difference and a Mixed Finite Element Formulation of the Uniaxial Perfectly Matched Layer Comparison of a Finite Difference and a Mixed Finite Element Formulation of the Uniaxial Perfectly Matched Layer V. A. Bokil a and M. W. Buksas b Center for Research in Scientific Computation a North Carolina

More information

Quantum Theory of Light and Matter

Quantum Theory of Light and Matter Quantum Theory of Light and Matter Field quantization Paul Eastham February 23, 2012 Quantization in an electromagnetic cavity Quantum theory of an electromagnetic cavity e.g. planar conducting cavity,

More information

Today in Physics 218: back to electromagnetic waves

Today in Physics 218: back to electromagnetic waves Today in Physics 18: back to electromagnetic waves Impedance Plane electromagnetic waves Energy and momentum in plane electromagnetic waves Radiation pressure Artist s conception of a solar sail: a spacecraft

More information

Physics 443, Solutions to PS 1 1

Physics 443, Solutions to PS 1 1 Physics 443, Solutions to PS. Griffiths.9 For Φ(x, t A exp[ a( mx + it], we need that + h Φ(x, t dx. Using the known result of a Gaussian intergral + exp[ ax ]dx /a, we find that: am A h. ( The Schrödinger

More information

Fiber Optics. Equivalently θ < θ max = cos 1 (n 0 /n 1 ). This is geometrical optics. Needs λ a. Two kinds of fibers:

Fiber Optics. Equivalently θ < θ max = cos 1 (n 0 /n 1 ). This is geometrical optics. Needs λ a. Two kinds of fibers: Waves can be guided not only by conductors, but by dielectrics. Fiber optics cable of silica has nr varying with radius. Simplest: core radius a with n = n 1, surrounded radius b with n = n 0 < n 1. Total

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenomena Physics 5c Lecture Fourier Analysis (H&L Sections 3. 4) (Georgi Chapter ) What We Did Last ime Studied reflection of mechanical waves Similar to reflection of electromagnetic waves Mechanical

More information

Longitudinal Beam Dynamics

Longitudinal Beam Dynamics Longitudinal Beam Dynamics Shahin Sanaye Hajari School of Particles and Accelerators, Institute For Research in Fundamental Science (IPM), Tehran, Iran IPM Linac workshop, Bahman 28-30, 1396 Contents 1.

More information

Complex Numbers; Digression. Handouts - Download and Read! Cyclic Groups. Character Tables for Cyclic Groups

Complex Numbers; Digression. Handouts - Download and Read! Cyclic Groups. Character Tables for Cyclic Groups Handouts - Download and Read! http://www.chem.tamu.edu/rgroup/hughbanks/ courses/67/handouts/handouts.html translation_groups.pdf translation_groups.pdf transitions.pdf Provides background for selection

More information

ELECTROMAGNETISM SUMMARY

ELECTROMAGNETISM SUMMARY Review of E and B ELECTROMAGNETISM SUMMARY (Rees Chapters 2 and 3) The electric field E is a vector function. E q o q If we place a second test charged q o in the electric field of the charge q, the two

More information

SURFACE WAVES & DISPERSION

SURFACE WAVES & DISPERSION SEISMOLOGY Master Degree Programme in Physics - UNITS Physics of the Earth and of the Environment SURFACE WAVES & DISPERSION FABIO ROMANELLI Department of Mathematics & Geosciences University of Trieste

More information

arxiv:quant-ph/ v1 10 Oct 1995

arxiv:quant-ph/ v1 10 Oct 1995 arxiv:quant-ph/9511v1 1 Oct 1995 A PARTICLE THEORY OF THE CASIMIR EFFECT Patrick Suppes, Adonai S. Sant Anna Ventura Hall, Stanford University Stanford, California 9435-4115, USA J. Acacio de Barros Departamento

More information

An Introduction to Lattice Vibrations

An Introduction to Lattice Vibrations An Introduction to Lattice Vibrations Andreas Wacker 1 Mathematical Physics, Lund University November 3, 2015 1 Introduction Ideally, the atoms in a crystal are positioned in a regular manner following

More information

City, University of London Institutional Repository

City, University of London Institutional Repository City Research Online City, University of London Institutional Repository Citation: Themistos, C., Rahman, B. M., Markides, C., Uthman, M., Quadir, A. & Kejalakshmy, N. (214). Characterization of graphene-based

More information

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor It turns out that the boundary condition of the wavefunction going to zero at infinity is sufficient to quantize the value of energy that

More information

Lecture 10. Central potential

Lecture 10. Central potential Lecture 10 Central potential 89 90 LECTURE 10. CENTRAL POTENTIAL 10.1 Introduction We are now ready to study a generic class of three-dimensional physical systems. They are the systems that have a central

More information

CHAPTER 1 Systems of Linear Equations

CHAPTER 1 Systems of Linear Equations CHAPTER Systems of Linear Equations Section. Introduction to Systems of Linear Equations. Because the equation is in the form a x a y b, it is linear in the variables x and y. 0. Because the equation cannot

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

Wave properties of matter & Quantum mechanics I. Chapter 5

Wave properties of matter & Quantum mechanics I. Chapter 5 Wave properties of matter & Quantum mechanics I Chapter 5 X-ray diffraction Max von Laue suggested that if x-rays were a form of electromagnetic radiation, interference effects should be observed. Crystals

More information

Quantization of scalar fields

Quantization of scalar fields Quantization of scalar fields March 8, 06 We have introduced several distinct types of fields, with actions that give their field equations. These include scalar fields, S α ϕ α ϕ m ϕ d 4 x and complex

More information

Fundamentals of wave kinetic theory

Fundamentals of wave kinetic theory Fundamentals of wave kinetic theory Introduction to the subject Perturbation theory of electrostatic fluctuations Landau damping - mathematics Physics of Landau damping Unmagnetized plasma waves The plasma

More information

Full Wave Analysis of RF Signal Attenuation in a Lossy Rough Surface Cave Using a High Order Time Domain Vector Finite Element Method

Full Wave Analysis of RF Signal Attenuation in a Lossy Rough Surface Cave Using a High Order Time Domain Vector Finite Element Method Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 425 Full Wave Analysis of RF Signal Attenuation in a Lossy Rough Surface Cave Using a High Order Time Domain Vector Finite

More information

Light Waves and Polarization

Light Waves and Polarization Light Waves and Polarization Xavier Fernando Ryerson Communications Lab http://www.ee.ryerson.ca/~fernando The Nature of Light There are three theories explain the nature of light: Quantum Theory Light

More information

The 3 dimensional Schrödinger Equation

The 3 dimensional Schrödinger Equation Chapter 6 The 3 dimensional Schrödinger Equation 6.1 Angular Momentum To study how angular momentum is represented in quantum mechanics we start by reviewing the classical vector of orbital angular momentum

More information

Part E1. Transient Fields: Leapfrog Integration. Prof. Dr.-Ing. Rolf Schuhmann

Part E1. Transient Fields: Leapfrog Integration. Prof. Dr.-Ing. Rolf Schuhmann Part E1 Transient Fields: Leapfrog Integration Prof. Dr.-Ing. Rolf Schuhmann MAXWELL Grid Equations in time domain d 1 h() t MC e( t) dt d 1 e() t M Ch() t j( t) dt Transient Fields system of 1 st order

More information

Introduction to Polarization

Introduction to Polarization Phone: Ext 659, E-mail: hcchui@mail.ncku.edu.tw Fall/007 Introduction to Polarization Text Book: A Yariv and P Yeh, Photonics, Oxford (007) 1.6 Polarization States and Representations (Stokes Parameters

More information

Time-resolved vs. frequency- resolved spectroscopy

Time-resolved vs. frequency- resolved spectroscopy Time-resolved vs. frequency- resolved spectroscopy 1 Response to the impulsation Response to the impulsation Using the equation: Linear response to the δ function: It implies that the response function

More information

Electrodynamics HW Problems 06 EM Waves

Electrodynamics HW Problems 06 EM Waves Electrodynamics HW Problems 06 EM Waves 1. Energy in a wave on a string 2. Traveling wave on a string 3. Standing wave 4. Spherical traveling wave 5. Traveling EM wave 6. 3- D electromagnetic plane wave

More information

Problem 1: Spin 1 2. particles (10 points)

Problem 1: Spin 1 2. particles (10 points) Problem 1: Spin 1 particles 1 points 1 Consider a system made up of spin 1/ particles. If one measures the spin of the particles, one can only measure spin up or spin down. The general spin state of a

More information

Wave propagation in an inhomogeneous plasma

Wave propagation in an inhomogeneous plasma DRAFT Wave propagation in an inhomogeneous plasma Felix I. Parra Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX NP, UK This version is of 7 February 208. Introduction In

More information

Introduction to Seismology Spring 2008

Introduction to Seismology Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 12.510 Introduction to Seismology Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 12.510 Introduction

More information

Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Electro Dynamic

Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Electro Dynamic Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Name Electro Dynamic Instructions: Use SI units. Short answers! No derivations here, just state your responses clearly. 1. (2) Write an

More information

Nonstandard Finite Difference Time Domain Algorithm for Berenger s Perfectly Matched Layer

Nonstandard Finite Difference Time Domain Algorithm for Berenger s Perfectly Matched Layer ACES JOURNAL, VOL. 6, NO., FEBRUARY 011 153 Nonstandard Finite Difference Time Domain Algorithm for Berenger s Perfectly Matched Layer Naoki Okada and James B. Cole Graduate School of Systems and Information

More information

Review of Power Series

Review of Power Series Review of Power Series MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Introduction In addition to the techniques we have studied so far, we may use power

More information

Electromagnetic energy and momentum

Electromagnetic energy and momentum Electromagnetic energy and momentum Conservation of energy: the Poynting vector In previous chapters of Jackson we have seen that the energy density of the electric eq. 4.89 in Jackson and magnetic eq.

More information

Modern Physics. Unit 3: Operators, Tunneling and Wave Packets Lecture 3.3: The Momentum Operator

Modern Physics. Unit 3: Operators, Tunneling and Wave Packets Lecture 3.3: The Momentum Operator Modern Physics Unit 3: Operators, Tunneling and Wave Packets Lecture 3.3: The Momentum Operator Ron Reifenberger Professor of Physics Purdue University 1 There are many operators in QM H Ψ= EΨ, or ˆop

More information

PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 505 FINAL EXAMINATION. January 18, 2013, 1:30 4:30pm, A06 Jadwin Hall SOLUTIONS

PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 505 FINAL EXAMINATION. January 18, 2013, 1:30 4:30pm, A06 Jadwin Hall SOLUTIONS PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 55 FINAL EXAMINATION January 18, 13, 1:3 4:3pm, A6 Jadwin Hall SOLUTIONS This exam contains five problems Work any three of the five problems All problems

More information

Chemistry 24b Lecture 23 Spring Quarter 2004 Instructor: Richard Roberts. (1) It induces a dipole moment in the atom or molecule.

Chemistry 24b Lecture 23 Spring Quarter 2004 Instructor: Richard Roberts. (1) It induces a dipole moment in the atom or molecule. Chemistry 24b Lecture 23 Spring Quarter 2004 Instructor: Richard Roberts Absorption and Dispersion v E * of light waves has two effects on a molecule or atom. (1) It induces a dipole moment in the atom

More information

Physics 3323, Fall 2014 Problem Set 13 due Friday, Dec 5, 2014

Physics 3323, Fall 2014 Problem Set 13 due Friday, Dec 5, 2014 Physics 333, Fall 014 Problem Set 13 due Friday, Dec 5, 014 Reading: Finish Griffiths Ch. 9, and 10..1, 10.3, and 11.1.1-1. Reflecting on polarizations Griffiths 9.15 (3rd ed.: 9.14). In writing (9.76)

More information

Week 5-6: Lectures The Charged Scalar Field

Week 5-6: Lectures The Charged Scalar Field Notes for Phys. 610, 2011. These summaries are meant to be informal, and are subject to revision, elaboration and correction. They will be based on material covered in class, but may differ from it by

More information

Non-linear Optics II (Modulators & Harmonic Generation)

Non-linear Optics II (Modulators & Harmonic Generation) Non-linear Optics II (Modulators & Harmonic Generation) P.E.G. Baird MT2011 Electro-optic modulation of light An electro-optic crystal is essentially a variable phase plate and as such can be used either

More information

Part VIII. Interaction with Solids

Part VIII. Interaction with Solids I with Part VIII I with Solids 214 / 273 vs. long pulse is I with Traditional i physics (ICF ns lasers): heating and creation of long scale-length plasmas Laser reflected at critical density surface Fast

More information

Numerical Assessment of Finite Difference Time Domain and Complex-Envelope Alternating-Direction-Implicit Finite-Difference-Time-Domain

Numerical Assessment of Finite Difference Time Domain and Complex-Envelope Alternating-Direction-Implicit Finite-Difference-Time-Domain Proceedings of the Federated Conference on Computer Science and Information Systems pp. 255 260 ISBN 978-83-60810-22-4 Numerical Assessment of Finite Difference Time Domain and Complex-Envelope Alternating-Direction-Implicit

More information

Non-stationary States and Electric Dipole Transitions

Non-stationary States and Electric Dipole Transitions Pre-Lab Lecture II Non-stationary States and Electric Dipole Transitions You will recall that the wavefunction for any system is calculated in general from the time-dependent Schrödinger equation ĤΨ(x,t)=i

More information

1 Heisenberg Representation

1 Heisenberg Representation 1 Heisenberg Representation What we have been ealing with so far is calle the Schröinger representation. In this representation, operators are constants an all the time epenence is carrie by the states.

More information

Electromagnetic Waves

Electromagnetic Waves Physics 8 Electromagnetic Waves Overview. The most remarkable conclusion of Maxwell s work on electromagnetism in the 860 s was that waves could exist in the fields themselves, traveling with the speed

More information

Heating and current drive: Radio Frequency

Heating and current drive: Radio Frequency Heating and current drive: Radio Frequency Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 13 th February 2012 Dr Ben Dudson Magnetic Confinement Fusion (1 of 26)

More information

Nonlinear wave-wave interactions involving gravitational waves

Nonlinear wave-wave interactions involving gravitational waves Nonlinear wave-wave interactions involving gravitational waves ANDREAS KÄLLBERG Department of Physics, Umeå University, Umeå, Sweden Thessaloniki, 30/8-5/9 2004 p. 1/38 Outline Orthonormal frames. Thessaloniki,

More information

Wave Turbulence and Condensation in an Optical Experiment

Wave Turbulence and Condensation in an Optical Experiment Wave Turbulence and Condensation in an Optical Experiment S. Residori, U. Bortolozzo Institut Non Linéaire de Nice, CNRS, France S. Nazarenko, J. Laurie Mathematics Institute, University of Warwick, UK

More information

Explanations of animations

Explanations of animations Explanations of animations This directory has a number of animations in MPEG4 format showing the time evolutions of various starting wave functions for the particle-in-a-box, the free particle, and the

More information