Linear and Nonlinear Rogue Wave Statistics in the Presence of Random Currents

Size: px
Start display at page:

Download "Linear and Nonlinear Rogue Wave Statistics in the Presence of Random Currents"

Transcription

1 Linear and Nonlinear Rogue Wave Statistics in the Presence of Random Currents Lev Kaplan (Tulane University) In collaboration with Alex Dahlen and Eric Heller (Harvard) Linghang Ying and Zhouheng Zhuang (Tulane) 1

2 Talk Outline Linear rogue wave formation Mechanism: Refraction from current eddies Combining refraction with stochasticity The freak index Implications for extreme wave statistics Introducing wave nonlinearity Wave statistics in 4 th order nonlinear equation Scaling with parameters describing sea state Can linear and nonlinear effects work in concert? 2

3 Rogue Waves: Refraction Picture Focus on linear refraction of incoming wave (velocity v) by random current eddies (current speed u rms << v) For deep water surface gravity waves with current ( r, k ) gk u( r) k dk dt Current correlated on scale (typical eddy size) Ray picture justified if k >> 1 x x dx dt k x 3

4 How caustics form: refraction from current eddies Parallel incoming rays encountering pair of eddies Effect similar to potential dip in particle mechanics Focusing when all paths in a given neighborhood coalesce at a single point (caustic), producing infinite ray density Different groups of paths coalesce at different points ( bad lens analogy) 4

5 How caustics form: refraction from current eddies Generic result: cusp singularity followed by two lines of fold caustics At each y after cusp singularity, we have infinite density at some values of x Phase space picture 5

6 Refraction from weak, random currents First singularities form after d u rms 2/3 Further evolution: exponential proliferation of caustics Tendrils decorate original branches Branch statistics described by single distance scale d v 6

7 Refraction from weak, random currents Of course, singularities washed out on wavelength scale Qualitative structure independent of dispersion relation (e.g. ~ k 2 for Schrödinger vs. ~ k 1/2 for ocean waves) details of random current field Can calculate distribution of branch strengths, fall off with distance, etc (LK, PRL 2002) 7

8 Analogies with other physical systems Electron flow in nanostructures (10-6 m) Topinka et al, Nature (2001) Microwave resonators, Stöckmann group (1 m) Long-range ocean acoustics, Tomsovic et al (20 km) Twinkling of starlight, Berry (2000 km) Gravitational lensing, Tyson (10 9 light years) 8

9 Microwave scattering experiments Höhmann et al (PRL 2010) Experimentally observed branched flow Ray simulation 9

10 Branching pattern for tsunami waves 10

11 Problems with refraction picture of rogue waves Assumes single-wavelength and unidirectional initial conditions, which are unrealistic and unstable (Dysthe) Singularities washed out only on wavelength scale Predicts regular sequence of extreme waves every time No predictions for actual wave heights or probabilities Solution: replace incoming plane wave with random initial spectrum Finite range of wavelengths and directions 11

12 Smearing of caustics for stochastic incoming sea Singularities washed out by randomness in initial conditions: k Hot spots of enhanced average energy density remain as reminders of where caustics would have been 12

13 Smearing of caustics for stochastic incoming sea Competing effects of focusing and initial stochasticity: k x = initial wave vector spread k x = wave vector change due to refraction 13

14 Quantifying residual effect of caustics: the freak index Define freak index = k x / k x Equivalently = / = k x / k = initial directional spread = typical deflection before formation of first cusp ~ (u rms / v) 2/3 ~ / d Most dangerous: well-collimated sea impinging on strong random current field ( 1) Hot spots corresponding to first smooth cusps have highest energy density ( y) 1 2 ( y / d) ( y) d / y 14

15 Typical ray calculation for ocean waves = 10º = 20º 15

16 Implications for Rogue Wave Statistics Simulations (using Schrodinger equation): long-time average and regions of extreme events average >3 SWH >2.2 SWH 2 1 SWH=significant wave height 4 crest to trough 16

17 Calculation: Rogue Waves No currents: Rayleigh height distribution (random superposition of waves) 2 2 P( h) ( h / )exp( h / 2 ) With currents: Superpose locally Gaussian wave statistics on pattern of hot/cold spots caused by refraction Local height distribution I r is position-dependent variance of the water elevation (proportional to ray density; high in focusing regions, low in defocusing regions) Total wave height distribution: P h h I h I 2 2 I ( ) ( / )exp( / 2 ) P( h) PI ( h) f ( I ) di Nov. 11, Rogue11

18 Calculation: Rogue Waves Thus, calculate wave height probability by combining Rayleigh distribution P h h h 2 2 ( ) ( / )exp( / 2 ) Distribution f(i), which describes ray dynamics and depends on scattering strength (freak index) Rogue wave forecasting?? Nov. 11, Rogue11

19 Analytics: limit of small freak index P(h x SWH) exp( 2 x / I) f(i ) di 2 For <<1: f(i) well approximated by χ 2 distribution of n ~ --2 degrees of freedom (mean 1,width ~ ) 2 n/4 2( nx ) P(h x SWH) Kn/2(2 nx) ( n / 2) Nov. 11, Rogue11

20 Analytics: limit of small freak index 2 n/4 2( nx ) P(h x SWH) Kn/2(2 nx) ( n / 2) Perturbative limit: for x 2 <<1 (x << n 1/4 ) 4 n P(h x SWH) [ 1 (x x )] exp( 2x ) Asymptotic limit: for x 3 >>1 (x >> n 3/2 ) ( n 1)/2 ( nx) P(h x SWH) exp( 2 nx) ( n / 2) Nov. 11, Rogue11

21 Numerical Simulations Incoming sea with v=7.8 m/s (T=10 s, =156 m) u (x,y) f (x,y) Random current with rms velocity u rms = 0.5 m/s and correlation =20 km Dimensionless parameters: / << 1 (ray limit) ~ (u rms / v) 2/3 << 1 (small-angle scattering) = spreading angle = 5 to 25 = / = freak index ( =3.5 to 0.7) 21

22 Wave height distribution for ocean waves 22

23 Numerical test of N vs γ 23

24 Probability enhancement over Rayleigh predictions u rms = 0.5 m/s v=7.8 m/s 24

25 Extension to nonlinear waves NLS with current: where t xx yy x 0 ia A A A A U A ( x, y, t) ~ A( x, y, t) e ik 0 x i 0 t 25

26 26

27 Extension to nonlinear waves Key result: for moderate steepness, full wave height distribution again reasonably approximated by K-distribution with N degrees of freedom Wave height probability depends on single parameter N ( Rayleigh as N ) How does N depend on wave steepness, incoming angular spread, spectral width, etc? 27

28 Δθ = 2.6º Δk / k = 0.1 u = 0 Steepness ε = k (mean crest height) October 11, 2011 Rogue11: Dresden 28

29 N as function of incoming angular spread for fixed steepness and frequency spread 29

30 N as function of incoming frequency spread for fixed steepness and angular spread 30

31 N as function of steepness for fixed incoming angular spread and frequency spread 31

32 Finally, combine currents and nonlinearity! 32

33 Summary Linear refraction of stochastic Gaussian sea produces lumpy energy density Skews formerly Rayleigh distribution of wave heights Importance of refraction quantified by freak index Spectacular effects in tail even for small Very similar wave height distribution in the presence of moderate nonlinearity Even more dramatic results obtained when random currents and nonlinearity are acting in concert Refraction may serve as trigger for full non-linear evolution 33

34 Thank you! Ying, Zhuang, Heller, and Kaplan, Nonlinearity 24, R67 (2011) 34

Rogue Waves: Refraction of Gaussian Seas and Rare Event Statistics

Rogue Waves: Refraction of Gaussian Seas and Rare Event Statistics Rogue Waves: Refraction of Gaussian Seas and Rare Event Statistics Eric J. Heller (Harvard University) Lev Kaplan (Tulane University) Aug. 15, 2006 Cuernavaca: Quantum Chaos (RMT) 1/27 Talk outline: Introduction:

More information

Linear and Nonlinear Rogue Wave Statistics in the Presence of Random Currents

Linear and Nonlinear Rogue Wave Statistics in the Presence of Random Currents Linear and Nonlinear Rogue Wave Statistics in the Presence of Random Currents Lev Kaplan and Linghang Ying (Tulane University) In collaboration with Alex Dahlen and Eric Heller (Harvard) Zhouheng Zhuang

More information

arxiv: v1 [nlin.cd] 9 Jul 2012

arxiv: v1 [nlin.cd] 9 Jul 2012 Linear and Nonlinear Rogue Wave Statistics in the Presence of Random Currents arxiv:1207.2162v1 [nlin.cd] 9 Jul 2012 L. H. Ying, 1 Z. Zhuang 2, E. J. Heller, 3 and L. Kaplan, 1 1 Department of Physics

More information

Microwave studies of chaotic systems

Microwave studies of chaotic systems Maribor, Let s face chaos, July 2008 p. Microwave studies of chaotic systems Lecture 1: Currents and vortices Hans-Jürgen Stöckmann stoeckmann@physik.uni-marburg.de Fachbereich Physik, Philipps-Universität

More information

Is Quantum Mechanics Chaotic? Steven Anlage

Is Quantum Mechanics Chaotic? Steven Anlage Is Quantum Mechanics Chaotic? Steven Anlage Physics 40 0.5 Simple Chaos 1-Dimensional Iterated Maps The Logistic Map: x = 4 x (1 x ) n+ 1 μ n n Parameter: μ Initial condition: 0 = 0.5 μ 0.8 x 0 = 0.100

More information

On deviations from Gaussian statistics for surface gravity waves

On deviations from Gaussian statistics for surface gravity waves On deviations from Gaussian statistics for surface gravity waves M. Onorato, A. R. Osborne, and M. Serio Dip. Fisica Generale, Università di Torino, Torino - 10125 - Italy Abstract. Here we discuss some

More information

Rogue Wave Statistics and Dynamics Using Large-Scale Direct Simulations

Rogue Wave Statistics and Dynamics Using Large-Scale Direct Simulations Rogue Wave Statistics and Dynamics Using Large-Scale Direct Simulations Dick K.P. Yue Center for Ocean Engineering Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge,

More information

Rogue Waves. Alex Andrade Mentor: Dr. Ildar Gabitov. Physical Mechanisms of the Rogue Wave Phenomenon Christian Kharif, Efim Pelinovsky

Rogue Waves. Alex Andrade Mentor: Dr. Ildar Gabitov. Physical Mechanisms of the Rogue Wave Phenomenon Christian Kharif, Efim Pelinovsky Rogue Waves Alex Andrade Mentor: Dr. Ildar Gabitov Physical Mechanisms of the Rogue Wave Phenomenon Christian Kharif, Efim Pelinovsky Rogue Waves in History Rogue Waves have been part of marine folklore

More information

Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a 3D wave basin

Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a 3D wave basin Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a 3D wave basin M. Onorato 1, L. Cavaleri 2, O.Gramstad 3, P.A.E.M. Janssen 4, J. Monbaliu 5, A. R. Osborne

More information

FREAK WAVES: BEYOND THE BREATHER SOLUTIONS OF NLS EQUATION

FREAK WAVES: BEYOND THE BREATHER SOLUTIONS OF NLS EQUATION UNIVERSITA DI TORINO Dipartimento di Fisica FREAK WAVES: BEYOND THE BREATHER SOLUTIONS OF NLS EQUATION M. Onorato Collaborators: A. Toffoli, A. Iafrati, G. Cavaleri, L. Bertotti, E. Bitner-Gregersen, A.

More information

Influence of varying bathymetry in rogue wave occurrence within unidirectional and directional sea-states

Influence of varying bathymetry in rogue wave occurrence within unidirectional and directional sea-states J. Ocean Eng. Mar. Energy (217) 3:39 324 DOI 1.17/s4722-17-86-6 RESEARCH ARTICLE Influence of varying bathymetry in rogue wave occurrence within unidirectional and directional sea-states Guillaume Ducrozet

More information

Experimental study of the wind effect on the focusing of transient wave groups

Experimental study of the wind effect on the focusing of transient wave groups Experimental study of the wind effect on the focusing of transient wave groups J.P. Giovanangeli 1), C. Kharif 1) and E. Pelinovsky 1,) 1) Institut de Recherche sur les Phénomènes Hors Equilibre, Laboratoire

More information

Rogue events in complex linear and nonlinear photonic media

Rogue events in complex linear and nonlinear photonic media Rogue events in complex linear and nonlinear photonic media M. Mattheakis 1,2,3*, I. J. Pitsios 1,4,*, G. P. Tsironis 1,2,5, S. Tzortzakis 1,4,6 1. Institute of Electronic Structure and Laser, Foundation

More information

Spatial evolution of an initially narrow-banded wave train

Spatial evolution of an initially narrow-banded wave train DOI 10.1007/s40722-017-0094-6 RESEARCH ARTICLE Spatial evolution of an initially narrow-banded wave train Lev Shemer 1 Anna Chernyshova 1 Received: 28 February 2017 / Accepted: 26 July 2017 Springer International

More information

Interaction Matrix Element Fluctuations

Interaction Matrix Element Fluctuations Interaction Matrix Element Fluctuations in Quantum Dots Lev Kaplan Tulane University and Yoram Alhassid Yale University Interaction Matrix Element Fluctuations in Quantum Dots mpipks Dresden March 5-8,

More information

Occurrence of Freak Waves from Envelope Equations in Random Ocean Wave Simulations

Occurrence of Freak Waves from Envelope Equations in Random Ocean Wave Simulations Occurrence of Freak Waves from Envelope Equations in Random Ocean Wave Simulations Miguel Onorato, Alfred R. Osborne, Marina Serio, and Tomaso Damiani Universitá di Torino, Via P. Giuria, - 025, Torino,

More information

Fundamental Research to Support Direct Phase-Resolved Simulation of Nonlinear Ocean Wavefield Evolution

Fundamental Research to Support Direct Phase-Resolved Simulation of Nonlinear Ocean Wavefield Evolution DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Fundamental Research to Support Direct Phase-Resolved Simulation of Nonlinear Ocean Wavefield Evolution Dick K.P. Yue Center

More information

Modeling and predicting rogue waves in deep water

Modeling and predicting rogue waves in deep water Modeling and predicting rogue waves in deep water C M Schober University of Central Florida, Orlando, Florida - USA Abstract We investigate rogue waves in the framework of the nonlinear Schrödinger (NLS)

More information

COMPUTATIONALLY EFFICIENT NUMERICAL MODEL FOR THE EVOLUTION OF DIRECTIONAL OCEAN SURFACE WAVES

COMPUTATIONALLY EFFICIENT NUMERICAL MODEL FOR THE EVOLUTION OF DIRECTIONAL OCEAN SURFACE WAVES XIX International Conference on Water Resources CMWR 01 University of Illinois at Urbana-Champaign June 17-,01 COMPUTATIONALLY EFFICIENT NUMERICAL MODEL FOR THE EVOLUTION OF DIRECTIONAL OCEAN SURFACE WAVES

More information

Simulations and Observations of GNSS Ocean Surface Reflections

Simulations and Observations of GNSS Ocean Surface Reflections Simulations and Observations of GNSS Ocean Surface Reflections Per Høeg Hans-Henrik von Benzon Ocean Surface Reflections Figure of the geometry of ocean reflections The presented simulations involve ocean

More information

Stability and instability of solitons in inhomogeneous media

Stability and instability of solitons in inhomogeneous media Stability and instability of solitons in inhomogeneous media Yonatan Sivan, Tel Aviv University, Israel now at Purdue University, USA G. Fibich, Tel Aviv University, Israel M. Weinstein, Columbia University,

More information

Physical mechanisms of the Rogue Wave phenomenon

Physical mechanisms of the Rogue Wave phenomenon Physical mechanisms of the Rogue Wave phenomenon Manuel A. Andrade. Mentor: Dr. Ildar Gabitov. Math 585. 1 "We were in a storm and the tanker was running before the sea. This amazing wave came from the

More information

Physics 116C The Distribution of the Sum of Random Variables

Physics 116C The Distribution of the Sum of Random Variables Physics 116C The Distribution of the Sum of Random Variables Peter Young (Dated: December 2, 2013) Consider a random variable with a probability distribution P(x). The distribution is normalized, i.e.

More information

Space-Time Wave Extremes in WAVEWATCH III: Implementation and Validation for the Adriatic Sea Case Study

Space-Time Wave Extremes in WAVEWATCH III: Implementation and Validation for the Adriatic Sea Case Study Space-Time Wave Extremes in WAVEWATCH III: Implementation and Validation for the Adriatic Sea Case Study Francesco Barbariol 1, Jose-Henrique G.M. Alves 2,3, Alvise Benetazzo 1, Filippo Bergamasco 1, Luciana

More information

Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves

Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves European Journal of Mechanics B/Fluids 25 (2006) 586 601 Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves M. Onorato a,, A.R. Osborne a,m.serio

More information

Turbulent spectra generated by singularities

Turbulent spectra generated by singularities Turbulent spectra generated by singularities p. Turbulent spectra generated by singularities E.A. Kuznetsov Landau Institute for Theoretical Physics, Moscow Russia In collaboration with: V. Naulin A.H.

More information

Interaction Matrix Element Fluctuations

Interaction Matrix Element Fluctuations Interaction Matrix Element Fluctuations in Quantum Dots Lev Kaplan Tulane University and Yoram Alhassid Yale University Interaction Matrix Element Fluctuations p. 1/29 Outline Motivation: ballistic quantum

More information

Interaction Matrix Element Fluctuations

Interaction Matrix Element Fluctuations Interaction Matrix Element Fluctuations in Quantum Dots Lev Kaplan Tulane University and Yoram Alhassid Yale University Interaction Matrix Element Fluctuations p. 1/37 Outline Motivation: ballistic quantum

More information

Three-scale Radar Backscattering Model of the Ocean Surface Based on Second-order Scattering

Three-scale Radar Backscattering Model of the Ocean Surface Based on Second-order Scattering PIERS ONLINE, VOL. 4, NO. 2, 2008 171 Three-scale Radar Backscattering Model of the Ocean Surface Based on Second-order Scattering Ying Yu 1, 2, Xiao-Qing Wang 1, Min-Hui Zhu 1, and Jiang Xiao 1, 1 National

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 3 October 29, 2012 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline Reminder: Probability density function Cumulative

More information

Physics 4488/6562: Statistical Mechanics Material for Week 2 Exercises due Monday Feb 5 Last

Physics 4488/6562: Statistical Mechanics   Material for Week 2 Exercises due Monday Feb 5 Last Physics 4488/6562: Statistical Mechanics http://www.physics.cornell.edu/sethna/teaching/562/ Material for Week 2 Exercises due Monday Feb 5 Last correction at January 26, 218, 11:5 am c 217, James Sethna,

More information

36. TURBULENCE. Patriotism is the last refuge of a scoundrel. - Samuel Johnson

36. TURBULENCE. Patriotism is the last refuge of a scoundrel. - Samuel Johnson 36. TURBULENCE Patriotism is the last refuge of a scoundrel. - Samuel Johnson Suppose you set up an experiment in which you can control all the mean parameters. An example might be steady flow through

More information

FUNDAMENTALS OF OCEAN ACOUSTICS

FUNDAMENTALS OF OCEAN ACOUSTICS FUNDAMENTALS OF OCEAN ACOUSTICS Third Edition L.M. Brekhovskikh Yu.P. Lysanov Moscow, Russia With 120 Figures Springer Contents Preface to the Third Edition Preface to the Second Edition Preface to the

More information

INTERNAL GRAVITY WAVES

INTERNAL GRAVITY WAVES INTERNAL GRAVITY WAVES B. R. Sutherland Departments of Physics and of Earth&Atmospheric Sciences University of Alberta Contents Preface List of Tables vii xi 1 Stratified Fluids and Waves 1 1.1 Introduction

More information

Wave Turbulence and Condensation in an Optical Experiment

Wave Turbulence and Condensation in an Optical Experiment Wave Turbulence and Condensation in an Optical Experiment S. Residori, U. Bortolozzo Institut Non Linéaire de Nice, CNRS, France S. Nazarenko, J. Laurie Mathematics Institute, University of Warwick, UK

More information

Two-Dimensional simulation of thermal blooming effects in ring pattern laser beam propagating into absorbing CO2 gas

Two-Dimensional simulation of thermal blooming effects in ring pattern laser beam propagating into absorbing CO2 gas Two-Dimensional simulation of thermal blooming effects in ring pattern laser beam propagating into absorbing CO gas M. H. Mahdieh 1, and B. Lotfi Department of Physics, Iran University of Science and Technology,

More information

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems Fourth Edition Richard Haberman Department of Mathematics Southern Methodist University PEARSON Prentice Hall PEARSON

More information

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics)

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Probability quantifies randomness and uncertainty How do I estimate the normalization and logarithmic slope of a X ray continuum, assuming

More information

Rogue Waves. Thama Duba, Colin Please, Graeme Hocking, Kendall Born, Meghan Kennealy. 18 January /25

Rogue Waves. Thama Duba, Colin Please, Graeme Hocking, Kendall Born, Meghan Kennealy. 18 January /25 1/25 Rogue Waves Thama Duba, Colin Please, Graeme Hocking, Kendall Born, Meghan Kennealy 18 January 2019 2/25 What is a rogue wave Mechanisms causing rogue waves Where rogue waves have been reported Modelling

More information

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X.

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X. Estimating σ 2 We can do simple prediction of Y and estimation of the mean of Y at any value of X. To perform inferences about our regression line, we must estimate σ 2, the variance of the error term.

More information

Gaussian Beam Approximations

Gaussian Beam Approximations Gaussian Beam Approximations Olof Runborg CSC, KTH Joint with Hailiang Liu, Iowa, and Nick Tanushev, Austin Technischen Universität München München, January 2011 Olof Runborg (KTH) Gaussian Beam Approximations

More information

The fine-scale structure of dark matter halos

The fine-scale structure of dark matter halos COSMO11, Porto, August 2011 The fine-scale structure of dark matter halos Simon White Max-Planck-Institute for Astrophysics COSMO11, Porto, August 2011 Mark Vogelsberger The fine-scale structure of dark

More information

Model Equation, Stability and Dynamics for Wavepacket Solitary Waves

Model Equation, Stability and Dynamics for Wavepacket Solitary Waves p. 1/1 Model Equation, Stability and Dynamics for Wavepacket Solitary Waves Paul Milewski Mathematics, UW-Madison Collaborator: Ben Akers, PhD student p. 2/1 Summary Localized solitary waves exist in the

More information

37. 3rd order nonlinearities

37. 3rd order nonlinearities 37. 3rd order nonlinearities Characterizing 3rd order effects The nonlinear refractive index Self-lensing Self-phase modulation Solitons When the whole idea of χ (n) fails Attosecond pulses! χ () : New

More information

One Dimensional Dynamical Systems

One Dimensional Dynamical Systems 16 CHAPTER 2 One Dimensional Dynamical Systems We begin by analyzing some dynamical systems with one-dimensional phase spaces, and in particular their bifurcations. All equations in this Chapter are scalar

More information

Physics 403 Probability Distributions II: More Properties of PDFs and PMFs

Physics 403 Probability Distributions II: More Properties of PDFs and PMFs Physics 403 Probability Distributions II: More Properties of PDFs and PMFs Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Last Time: Common Probability Distributions

More information

The role of resonant wave interactions in the evolution of extreme wave events

The role of resonant wave interactions in the evolution of extreme wave events The role of resonant wave interactions in the evolution of extreme wave events Richard Gibson & Chris Swan Department of Civil and Environmental Engineering Imperial College London SW7 2AZ United Kingdom

More information

Fig 2. Light curves resulting from the source trajectories in the maps of Fig. 1.

Fig 2. Light curves resulting from the source trajectories in the maps of Fig. 1. Planet/Binary Degeneracy I High-magnification events with double-peak structure Not only planets but also very wide or very close binaries can also produce such a perturbations. Can we distinguish them

More information

v t + fu = 1 p y w t = 1 p z g u x + v y + w

v t + fu = 1 p y w t = 1 p z g u x + v y + w 1 For each of the waves that we will be talking about we need to know the governing equators for the waves. The linear equations of motion are used for many types of waves, ignoring the advective terms,

More information

Numerical modeling of rock deformation: 03 Analytical methods - Folding

Numerical modeling of rock deformation: 03 Analytical methods - Folding Numerical modeling of rock deformation: 0 Analytical methods - Folding Stefan Schmalholz schmalholz@erdw.ethz.ch NO E 6 AS 2009, Thursday 0-2, NO D Overview Application of linear stability analysis Dominant

More information

Physical mechanisms of the Rogue Wave phenomenon

Physical mechanisms of the Rogue Wave phenomenon Physical mechanisms of the Rogue Wave phenomenon Final Report Manuel A. Andrade. Mentor: Dr. Ildar Gabitov. Math 585. 1 "We were in a storm and the tanker was running before the sea. This amazing wave

More information

Evolution of random directional wave and rogue/freak wave occurrence

Evolution of random directional wave and rogue/freak wave occurrence Evolution of random directional wave and rogue/freak wave occurrence Takui Waseda 1,, Takeshi Kinoshita 1 Hitoshi Tamura 1 University of Tokyo, JAMSTEC Motivation Hypothesis Meteorological conditions and

More information

Boundary. DIFFERENTIAL EQUATIONS with Fourier Series and. Value Problems APPLIED PARTIAL. Fifth Edition. Richard Haberman PEARSON

Boundary. DIFFERENTIAL EQUATIONS with Fourier Series and. Value Problems APPLIED PARTIAL. Fifth Edition. Richard Haberman PEARSON APPLIED PARTIAL DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems Fifth Edition Richard Haberman Southern Methodist University PEARSON Boston Columbus Indianapolis New York San Francisco

More information

Lecture No 1 Introduction to Diffusion equations The heat equat

Lecture No 1 Introduction to Diffusion equations The heat equat Lecture No 1 Introduction to Diffusion equations The heat equation Columbia University IAS summer program June, 2009 Outline of the lectures We will discuss some basic models of diffusion equations and

More information

Yair Zarmi Physics Department & Jacob Blaustein Institutes for Desert Research Ben-Gurion University of the Negev Midreshet Ben-Gurion, Israel

Yair Zarmi Physics Department & Jacob Blaustein Institutes for Desert Research Ben-Gurion University of the Negev Midreshet Ben-Gurion, Israel PERTURBED NONLINEAR EVOLUTION EQUATIONS AND ASYMPTOTIC INTEGRABILITY Yair Zarmi Physics Department & Jacob Blaustein Institutes for Desert Research Ben-Gurion University of the Negev Midreshet Ben-Gurion,

More information

Chapter 33. Electromagnetic Waves

Chapter 33. Electromagnetic Waves Chapter 33 Electromagnetic Waves Today s information age is based almost entirely on the physics of electromagnetic waves. The connection between electric and magnetic fields to produce light is own of

More information

Tides Light the Electromagnetic Spectrum Thermal Radiation. Events. Homework Due Next time (Sept. 22) Exam I on Sept. 24

Tides Light the Electromagnetic Spectrum Thermal Radiation. Events. Homework Due Next time (Sept. 22) Exam I on Sept. 24 Events Today Tides Light the Electromagnetic Spectrum Thermal Radiation Homework Due Next time (Sept. 22) Exam I on Sept. 24 Why are stars and planets spherical? Gravity pulls - it is an attractive force

More information

Cosmology with high (z>1) redshift galaxy surveys

Cosmology with high (z>1) redshift galaxy surveys Cosmology with high (z>1) redshift galaxy surveys Donghui Jeong Texas Cosmology Center and Astronomy Department University of Texas at Austin Ph. D. thesis defense talk, 17 May 2010 Cosmology with HETDEX

More information

9 Rossby Waves. 9.1 Non-divergent barotropic vorticity equation. CSU ATS601 Fall (Holton Chapter 7, Vallis Chapter 5)

9 Rossby Waves. 9.1 Non-divergent barotropic vorticity equation. CSU ATS601 Fall (Holton Chapter 7, Vallis Chapter 5) 9 Rossby Waves (Holton Chapter 7, Vallis Chapter 5) 9.1 Non-divergent barotropic vorticity equation We are now at a point that we can discuss our first fundamental application of the equations of motion:

More information

Generalization to Absence of Spherical Symmetry p. 48 Scattering by a Uniform Sphere (Mie Theory) p. 48 Calculation of the [characters not

Generalization to Absence of Spherical Symmetry p. 48 Scattering by a Uniform Sphere (Mie Theory) p. 48 Calculation of the [characters not Scattering of Electromagnetic Waves p. 1 Formalism and General Results p. 3 The Maxwell Equations p. 3 Stokes Parameters and Polarization p. 4 Definition of the Stokes Parameters p. 4 Significance of the

More information

13. ANALYSIS OF THE NORTH SEA DATA

13. ANALYSIS OF THE NORTH SEA DATA . ANALYSIS OF THE NORTH SEA DATA.. Introduction The aim of the analysis of this additional data from the North Sea (the WADIC project) is not the mere repetition of the analysis of Chapter for another

More information

Seismic Imaging. William W. Symes. C. I. M. E. Martina Franca September

Seismic Imaging. William W. Symes. C. I. M. E. Martina Franca September Seismic Imaging William W. Symes C. I. M. E. Martina Franca September 2002 www.trip.caam.rice.edu 1 0 offset (km) -4-3 -2-1 1 2 time (s) 3 4 5 How do you turn lots of this... (field seismogram from the

More information

Exploring Gravity Wave Dynamics, Sources, and Predictability in DeepWave

Exploring Gravity Wave Dynamics, Sources, and Predictability in DeepWave Exploring Gravity Wave Dynamics, Sources, and Predictability in DeepWave James D. Doyle 1, Stephen D. Eckermann 2, Eric Hendricks 1, Qingfang Jiang 1, P. Alex Reinecke 1, Carolyn A. Reynolds 1, David C.

More information

Recapitulation: Questions on Chaps. 1 and 2 #A

Recapitulation: Questions on Chaps. 1 and 2 #A Recapitulation: Questions on Chaps. 1 and 2 #A Chapter 1. Introduction What is the importance of plasma physics? How are plasmas confined in the laboratory and in nature? Why are plasmas important in astrophysics?

More information

An evaluation of ocean wave model performances with linear and nonlinear dissipation source terms in Lake Erie

An evaluation of ocean wave model performances with linear and nonlinear dissipation source terms in Lake Erie An evaluation of ocean wave model performances with linear and nonlinear dissipation source terms in Lake Erie Roop Lalbeharry 1, Arno Behrens 2, Heinz Guenther 2 and Laurie Wilson 1 1 Meteorological Service

More information

No-hair and uniqueness results for analogue black holes

No-hair and uniqueness results for analogue black holes No-hair and uniqueness results for analogue black holes LPT Orsay, France April 25, 2016 [FM, Renaud Parentani, and Robin Zegers, PRD93 065039] Outline Introduction 1 Introduction 2 3 Introduction Hawking

More information

THE OCCURRENCE PROBABILITIES OF ROGUE WAVES IN DIFFERENT NONLINEAR STAGES

THE OCCURRENCE PROBABILITIES OF ROGUE WAVES IN DIFFERENT NONLINEAR STAGES THE OCCURRENCE PROBABILITIES OF ROGUE WAVES IN DIFFERENT NONLINEAR STAGES Aifeng Tao 1,2, Keren Qi 1,2, Jinhai Zheng 1,2, Ji Peng 1,2, Yuqing Wu 1,2 The occurrence probabilities of Rogue Waves in different

More information

Breakup of Ring Beams Carrying Orbital Angular Momentum in Sodium Vapor

Breakup of Ring Beams Carrying Orbital Angular Momentum in Sodium Vapor Breakup of Ring Beams Carrying Orbital Angular Momentum in Sodium Vapor Petros Zerom, Matthew S. Bigelow and Robert W. Boyd The Institute of Optics, University of Rochester, Rochester, New York 14627 Now

More information

Rogue waves in large-scale fully-non-linear High-Order-Spectral simulations

Rogue waves in large-scale fully-non-linear High-Order-Spectral simulations Rogue waves in large-scale fully-non-linear High-Order-Spectral simulations Guillaume Ducrozet, Félicien Bonnefoy & Pierre Ferrant Laboratoire de Mécanique des Fluides - UMR CNRS 6598 École Centrale de

More information

37. 3rd order nonlinearities

37. 3rd order nonlinearities 37. 3rd order nonlinearities Characterizing 3rd order effects The nonlinear refractive index Self-lensing Self-phase modulation Solitons When the whole idea of χ (n) fails Attosecond pulses! χ () : New

More information

Cosmic Tides. Ue-Li Pen, Ravi Sheth, Xuelei Chen, Zhigang Li CITA, ICTP, NAOC. October 23, Introduction Tides Cosmic Variance Summary

Cosmic Tides. Ue-Li Pen, Ravi Sheth, Xuelei Chen, Zhigang Li CITA, ICTP, NAOC. October 23, Introduction Tides Cosmic Variance Summary Cosmic Ue-Li Pen, Ravi Sheth, Xuelei Chen, Zhigang Li CITA, ICTP, NAOC October 23, 2013 U. Pen Cosmic Overview What is a tide? and large scale structure Overcoming cosmic variance Neutrinos and more U.

More information

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-3A Spring 2007 Electromagnetic Waves Lecture 22 Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 33 Electromagnetic Waves Today s information age is based almost

More information

The Scattering of Electromagnetic Waves. By Noboru HOKKYO Department of Physics, Osaka City University (Read. May. 15, 1956; Received June 23, 1956)

The Scattering of Electromagnetic Waves. By Noboru HOKKYO Department of Physics, Osaka City University (Read. May. 15, 1956; Received June 23, 1956) The Scattering of Electromagnetic Waves by Plasma Oscillations By Noboru HOKKYO Department of Physics, Osaka City University (Read. May. 15, 1956; Received June 23, 1956) Abstract Theory of plasma oscillation

More information

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1 Laser Optics-II 1 Outline Absorption Modes Irradiance Reflectivity/Absorption Absorption coefficient will vary with the same effects as the reflectivity For opaque materials: reflectivity = 1 - absorptivity

More information

Influence of Generalized (r, q) Distribution Function on Electrostatic Waves

Influence of Generalized (r, q) Distribution Function on Electrostatic Waves Commun. Theor. Phys. (Beijing, China) 45 (2006) pp. 550 554 c International Academic Publishers Vol. 45, No. 3, March 15, 2006 Influence of Generalized (r, q) istribution Function on Electrostatic Waves

More information

Linear pulse propagation

Linear pulse propagation Ultrafast Laser Physics Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Linear pulse propagation Ultrafast Laser Physics ETH Zurich Superposition of many monochromatic

More information

Matter Waves. Chapter 5

Matter Waves. Chapter 5 Matter Waves Chapter 5 De Broglie pilot waves Electromagnetic waves are associated with quanta - particles called photons. Turning this fact on its head, Louis de Broglie guessed : Matter particles have

More information

13.1 Ion Acoustic Soliton and Shock Wave

13.1 Ion Acoustic Soliton and Shock Wave 13 Nonlinear Waves In linear theory, the wave amplitude is assumed to be sufficiently small to ignore contributions of terms of second order and higher (ie, nonlinear terms) in wave amplitude In such a

More information

ARTICLE IN PRESS. JID:EJMFLU AID:2246 /FLA [m3sc+; v 1.64; Prn:1/08/2006; 14:22] P.1 (1-27)

ARTICLE IN PRESS. JID:EJMFLU AID:2246 /FLA [m3sc+; v 1.64; Prn:1/08/2006; 14:22] P.1 (1-27) JID:EJMFLU AID:2246 /FLA [m3sc+; v 1.64; Prn:1/08/2006; 14:22] P.1 (1-27) 3 European Journal of Mechanics B/Fluids ( ) 3 Evolution of wide-spectrum unidirectional wave groups in a tank: an experimental

More information

Experiments on extreme wave generation using the Soliton on Finite Background

Experiments on extreme wave generation using the Soliton on Finite Background Experiments on extreme wave generation using the Soliton on Finite Background René H.M. Huijsmans 1, Gert Klopman 2,3, Natanael Karjanto 3, and Andonawati 4 1 Maritime Research Institute Netherlands, Wageningen,

More information

15.1 The Regression Model: Analysis of Residuals

15.1 The Regression Model: Analysis of Residuals 15.1 The Regression Model: Analysis of Residuals Tom Lewis Fall Term 2009 Tom Lewis () 15.1 The Regression Model: Analysis of Residuals Fall Term 2009 1 / 12 Outline 1 The regression model 2 Estimating

More information

Soliton Molecules. Fedor Mitschke Universität Rostock, Institut für Physik. Benasque, October

Soliton Molecules. Fedor Mitschke Universität Rostock, Institut für Physik. Benasque, October Soliton Soliton Molecules Molecules and and Optical Optical Rogue Rogue Waves Waves Benasque, October 2014 Fedor Mitschke Universität Rostock, Institut für Physik fedor.mitschke@uni-rostock.de Part II

More information

Random deformation of Gaussian fields with an application to Lagrange models for asymmetric ocean waves

Random deformation of Gaussian fields with an application to Lagrange models for asymmetric ocean waves Int. Statistical Inst.: Proc. 58th World Statistical Congress,, Dublin (Session CPS) p.77 Random deformation of Gaussian fields with an application to Lagrange models for asymmetric ocean waves Lindgren,

More information

Concentration Inequalities for Random Matrices

Concentration Inequalities for Random Matrices Concentration Inequalities for Random Matrices M. Ledoux Institut de Mathématiques de Toulouse, France exponential tail inequalities classical theme in probability and statistics quantify the asymptotic

More information

Establishing Relationships Linear Least Squares Fitting. Lecture 6 Physics 2CL Summer 2010

Establishing Relationships Linear Least Squares Fitting. Lecture 6 Physics 2CL Summer 2010 Establishing Relationships Linear Least Squares Fitting Lecture 6 Physics 2CL Summer 2010 Outline Determining the relationship between measured values Physics for experiment # 3 Oscillations & resonance

More information

Frequency Based Fatigue

Frequency Based Fatigue Frequency Based Fatigue Professor Darrell F. Socie Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign 001-01 Darrell Socie, All Rights Reserved Deterministic versus

More information

Fundamentals of Fluid Dynamics: Waves in Fluids

Fundamentals of Fluid Dynamics: Waves in Fluids Fundamentals of Fluid Dynamics: Waves in Fluids Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI (after: D.J. ACHESON s Elementary Fluid Dynamics ) bluebox.ippt.pan.pl/ tzielins/ Institute

More information

Today: 5 July 2008 ٢

Today: 5 July 2008 ٢ Anderson localization M. Reza Rahimi Tabar IPM 5 July 2008 ١ Today: 5 July 2008 ٢ Short History of Anderson Localization ٣ Publication 1) F. Shahbazi, etal. Phys. Rev. Lett. 94, 165505 (2005) 2) A. Esmailpour,

More information

The effects of non linear internal wave curvature on acoustic propagation

The effects of non linear internal wave curvature on acoustic propagation The effects of non linear internal wave curvature on acoustic propagation Jim Lynch, Tim Duda, Ying Tsong Lin, Art Newhall, Mike Caruso, and Hans Graber WHOI and U. Miami Lots of work in past 20 years

More information

21. Propagation of Gaussian beams

21. Propagation of Gaussian beams 1. Propagation of Gaussian beams How to propagate a Gaussian beam Rayleigh range and confocal parameter Transmission through a circular aperture Focusing a Gaussian beam Depth of field Gaussian beams and

More information

Wave Turbulence and the Phillips Spectrum

Wave Turbulence and the Phillips Spectrum Wave Turbulence and the Phillips Spectrum Alan Newell Department of Mathematics University of Arizona September 29, 2008 The role of the generalized Phillips spectrum in wave turbulence 1 What is wave

More information

Singularity Formation in Nonlinear Schrödinger Equations with Fourth-Order Dispersion

Singularity Formation in Nonlinear Schrödinger Equations with Fourth-Order Dispersion Singularity Formation in Nonlinear Schrödinger Equations with Fourth-Order Dispersion Boaz Ilan, University of Colorado at Boulder Gadi Fibich (Tel Aviv) George Papanicolaou (Stanford) Steve Schochet (Tel

More information

Evolution of a nonlinear wave field along a tank: experiments and numerical simulations based on the spatial Zakharov equation

Evolution of a nonlinear wave field along a tank: experiments and numerical simulations based on the spatial Zakharov equation J. Fluid Mech. (), vol. 7, pp. 7 9. Printed in the United Kingdom c Cambridge University Press 7 Evolution of a nonlinear wave field along a tank: experiments and numerical simulations based on the spatial

More information

Applied Probability and Stochastic Processes

Applied Probability and Stochastic Processes Applied Probability and Stochastic Processes In Engineering and Physical Sciences MICHEL K. OCHI University of Florida A Wiley-Interscience Publication JOHN WILEY & SONS New York - Chichester Brisbane

More information

PH 222-2C Fall Electromagnetic Waves Lectures Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-2C Fall Electromagnetic Waves Lectures Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-2C Fall 2012 Electromagnetic Waves Lectures 21-22 Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 33 Electromagnetic Waves Today s information age is based almost

More information

Implementing frictional damping of waves under sea-ice in the Arctic MFC wave model

Implementing frictional damping of waves under sea-ice in the Arctic MFC wave model Implementing frictional damping of waves under sea-ice in the Arctic MFC wave model Øyvind Saetra, Ana Carrasco and Graig Sutherland MET - Research and Development Department Division for Ocean and Ice

More information

Beam Shape Effects in Non Linear Compton Scattering

Beam Shape Effects in Non Linear Compton Scattering Beam Shape Effects in Non Linear Compton Scattering Signatures of High Intensity QED Daniel Seipt with T. Heinzl and B. Kämpfer Introduction QED vs. classical calculations, Multi Photon radiation Temporal

More information

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall.

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall. Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. Summary of Chapter 38 In Quantum Mechanics particles are represented by wave functions Ψ. The absolute square of the wave function Ψ 2

More information

Questioning Quantum Mechanics? Kurt Barry SASS Talk January 25 th, 2012

Questioning Quantum Mechanics? Kurt Barry SASS Talk January 25 th, 2012 Questioning Quantum Mechanics? Kurt Barry SASS Talk January 25 th, 2012 2 Model of the Universe Fundamental Theory Low-Energy Limit Effective Field Theory Quantum Mechanics Quantum Mechanics is presently

More information

Observational and modeling techniques in microlensing planet searches

Observational and modeling techniques in microlensing planet searches Observational and modeling techniques in microlensing planet searches Dijana Dominis Prester 7.8.2007, Belgrade Simulating synthetic data Fitting Optimizing q = 0.3 i = d R * ( x ( x = 1R 1 2 = 10R, 45,

More information