Wave Modeling and Langmuir Mixing

Size: px
Start display at page:

Download "Wave Modeling and Langmuir Mixing"

Transcription

1 Wave Modeling and Langmuir Mixing Adrean Webb Baylor Fox-Kemper University of Colorado December 5, 2008 In Collaboration with: Research funded by: Erik Baldwin-Stevens, Greg Chini, Gokhan Danabasoglu, Ben Hamlington, Keith Julien, Edgar Knobloch, William Large, Synte Peacock NASA NNX09AF38G & CIRES IRP08

2 Inverse Turbulent Langmuir Mixing Number The inverse turbulent Langmuir mixing number accounts for nonaligned wind and wave fields. It is defined as ( Ustokes u ) 1/2 u La i = 2, θ < π/2; 0, θ π/2. where θ is the difference in wind and wave directions

3 bal Models: Does Langmuir Mixin Webb of Applied Math colorado.edu Previous Work: A SimpleKeith Climatology Julien Erik Baldwin-Stevens Student: Dept. of Aerospace Eng. erik.baldwinstevens@colorado.edu Dept. of Applied Math keith.julien@colorado.edu Greg U. New Dept. o Used output from stract to estimate IV. Estimating a Climatology ofnww3 Langmuir Number eanalysis, lationship ett (1997), ions show improved areasin of Langmuir One potential reason for the mismatch of Langmuir circulation observations is the diverse character of forcing. Sullivan (pers. comm.) finds in LES that Langmuir mixing isapresent mixing and derive when wind and waves are misaligned. Circulation may even persist after wind has abated simple climatology (Sullivan et al., 2008). Thus, we define a directional inverse turbulent Langmuir number: Mixing ning cells at form in nd waves me direcwind and y increase er. Obserells are not disordered turbulent Langmuir us u 1/2, θ < π/2; u 2 La 1 = 0, θ π/2. Figure 3: Climatology of (La 1)2 (black) with scattered data (red) and test alternatives to take into account when θ, the difference in wind and wave directions, was not zero. As an example of the spatial variability of Langmuir number, see the following figure.

4 A Simple Scaling for Langmuir Depth/Entrainment: (Li & Garrett, 1997) CAM related to CAM u* by WW3 Climatology The Algorithm Use Fr to determine H If H is deeper than KPP Boundary Layer depth, use H Large came up with clever choices for N, H that lead to a robust implementation in KPP With these choices, H and BLD converge over time.

5 Previous Work: Shown Sensitivity to Inclusion (a) CFC in CCSM 3.5 & P14S WOCE obs (b) August mixed layer depths

6 Problem 1: Calculating the Surface Friction Velocity Installed WW3 on bluefire (details later) Obtained similar calculations of La i using WW3 s u with COREv2 forcings

7 Problem 2: Estimating Stokes Drift For monochromatic waves, it can be shown that at the surface U stokes = π3 Hs 2 gtm 3 where Hs = 4 m 0 and m 0 is the zeroth moment of the variance. However, this is not true for anything other than monochromatic waves.

8 Problem 3: Different Definitions of Mean Wave Period WaveWatch: Tm 0 = (f 1 ) ERA40: Tm 1 = 1 / (f ) / TOPEX: Tm 2 = 1 (f 2 ) m n = 2π 0 0 f n S(f, θ) df dθ Tm 0 = m 1 m 0, Tm 1 = m 0 m 1, Tm 2 = ( ) 1/2 m0 m 2

9 A Quick Example Pierson-Moskowitz Spectrum S(f, θ) = S(f ) = αg 2 (2π) 4 f 5 [ Exp 5 4 ( fp f ) 4 ] where α is the Phillips constant and f p the peak frequency (Tm 0 /Tm 1 ) 3 = 1.37, (Tm 0 /Tm 2 ) 3 = 1.76 (Tm 1 /Tm 2 ) 3 = 1.28

10 Calculating Stokes Drift Using 2-D Spectrum From previous work by Kenyon (1969) and McWilliams & Restrepo (1999), we can reformulate Stokes drift using the 2-D spectrum as U stokes = 16π3 g 2π 0 = 16π3 g m 3 ê d 0 f 3 S(f, θ) df dθ ê d where ê d is the dominant direction of wave propagation. As a result, we no longer need the previous U stokes approximation!

11 Refining our Stokes Drift Approximation Would still like to be able to estimate Stokes drift using satellite and buoy data for comparison Currently examining if there is an empirical or mathematical relationship that we can use such as U stokes a(f ) π3 Hs 2 gtm 3 êd

12 Current Estimate of La 2 i

13 Problem 4: Numerical Cost 3 rd generation wave model Solves the spectral action density balance equation sec per time step (1 hr) for one processor ( hr/yr) Plan on scaling back the number of bins significantly and turning off some interactions Aternative 2 nd generation model developed by George Mellor (Princeton) worth exploring

14 Applications of Coupling a Wave Model Calculate Langmuir Mixing forcing prognostically A coupled wave model will allow use of more sophisticated and validated parameterizations (e.g., Smyth et al, 04; Harcourt & D Asaro, 08; Grant & Belcher, 09) Improve the air-sea momentum flux Improve the air-sea tracer flux Conduct climate change studies like erosion Others?

15 Some Properties of a(f )

Demonstrated Sensitivity to Langmuir Mixing in a Global Climate Model (CCSM)

Demonstrated Sensitivity to Langmuir Mixing in a Global Climate Model (CCSM) Demonstrated Sensitivity to Langmuir Mixing in a Global Climate Model (CCSM) Adrean Webb Baylor Fox-Kemper University of Colorado February 23, 2010 In Collaboration with: Research funded by: William Large,

More information

Assessing the Influence of Surface Wind Waves to the Global Climate by Incorporating WAVEWATCH III in CESM! Phase I: Langmuir Mixing in KPP

Assessing the Influence of Surface Wind Waves to the Global Climate by Incorporating WAVEWATCH III in CESM! Phase I: Langmuir Mixing in KPP Assessing the Influence of Surface Wind Waves to the Global Climate by Incorporating WAVEWATCH III in CESM Phase I: Langmuir Mixing in KPP Image: NPR.org, Deep Water Horizon Spill Qing Li Baylor Fox-Kemper,

More information

Parameterizations with and without Climate Process Teams

Parameterizations with and without Climate Process Teams Parameterizations with and without Climate Process Teams Baylor Fox-Kemper Brown University, DEEP Sciences Mixed Layer Eddy Sponsors: NSF OCE-0612143, OCE-0612059, OCE-0825376, DMS-0855010, and OCE-0934737

More information

From Climate to Kolmogorov - Simulations Spanning Upper Ocean Scales

From Climate to Kolmogorov - Simulations Spanning Upper Ocean Scales From Climate to Kolmogorov - Simulations Spanning Upper Ocean Scales Baylor Fox-Kemper (CU-Boulder & CIRES) with Peter Hamlington (CU), Sean Haney (ATOC), Adrean Webb (APPM), Scott Bachman (ATOC), Katie

More information

Atmosphere-ocean boundary layers and fluxes

Atmosphere-ocean boundary layers and fluxes Atmosphere-ocean boundary layers and fluxes Baylor Fox-Kemper (Brown DEEP Sci.) with Qing Li & Nobu Suzuki (Brown), Scott Reckinger (Montana), and Sean Haney & Peter Hamlington (CU-Boulder), Luke Van Roekel

More information

Langmuir Parameterizations

Langmuir Parameterizations Langmuir Parameterizations Baylor Fox-Kemper and Adrean Webb CIRES/University of Colorado at Boulder In preparation for continued research with Keith Julien, CU-Boulder; Greg Chini, UNH; E. Knobloch, UCB

More information

by ERIK CHARLES BALDWIN STEVENS B.S., University of Colorado at Boulder, 2009

by ERIK CHARLES BALDWIN STEVENS B.S., University of Colorado at Boulder, 2009 REMOTE SENSING, MODELING, AND SYNTHESIS: ON THE DEVELOPMENT OF A GLOBAL OCEAN WIND/WAVE CLIMATOLOGY AND ITS APPLICATION TO SENSITIVE CLIMATE PARAMETERS by ERIK CHARLES BALDWIN STEVENS B.S., University

More information

Ocean physics from 4m to 400km: Parameterizations and biases

Ocean physics from 4m to 400km: Parameterizations and biases Ocean physics from 4m to 400km: Parameterizations and biases Baylor Fox-Kemper (CU-Boulder & CIRES) with Luke Van Roekel (CIRES), Peter Hamlington (CU), Scott Bachman (CIRES/ATOC), Sean Haney (CIRES/ATOC),

More information

Impact of Typhoons on the Western Pacific Ocean (ITOP) DRI: Numerical Modeling of Ocean Mixed Layer Turbulence and Entrainment at High Winds

Impact of Typhoons on the Western Pacific Ocean (ITOP) DRI: Numerical Modeling of Ocean Mixed Layer Turbulence and Entrainment at High Winds DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Impact of Typhoons on the Western Pacific Ocean (ITOP) DRI: Numerical Modeling of Ocean Mixed Layer Turbulence and Entrainment

More information

High Wind Upper Ocean Mixing with Explicit Surface Wave Processes

High Wind Upper Ocean Mixing with Explicit Surface Wave Processes DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. High Wind Upper Ocean Mixing with Explicit Surface Wave Processes Peter P. Sullivan National Center for Atmospheric Research

More information

Fully-Coupled and Forced Ocean Sea-Ice Simulations Towards CESM2 (since mini-breck) Defining the Ocean Component of CESM2

Fully-Coupled and Forced Ocean Sea-Ice Simulations Towards CESM2 (since mini-breck) Defining the Ocean Component of CESM2 Fully-Coupled and Forced Ocean Sea-Ice Simulations Towards CESM2 (since mini-breck) Defining the Ocean Component of CESM2 OMWG PLAN FOR DEFINING THE CESM2 OCEAN COMPONENT Timeline 01 March 2016 22 April

More information

A global perspective on Langmuir turbulence in the ocean surface boundary layer

A global perspective on Langmuir turbulence in the ocean surface boundary layer GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl052932, 2012 A global perspective on Langmuir turbulence in the ocean surface boundary layer Stephen E. Belcher, 1,2 Alan L. M. Grant, 1 Kirsty

More information

B. Fox-Kemper, G. Chini, K. Julien, E. Knobloch 1

B. Fox-Kemper, G. Chini, K. Julien, E. Knobloch 1 B. Fox-Kemper, G. Chini, K. Julien, E. Knobloch 1 Langmuir Circulations: Observing and Modeling on a Global Scale B. Fox-Kemper, G. Chini, K. Julien, E. Knobloch A NASA ROSES08: Physical Oceanography Research

More information

Analysis of Near-Surface Oceanic Measurements Obtained During CBLAST-Low

Analysis of Near-Surface Oceanic Measurements Obtained During CBLAST-Low Analysis of Near-Surface Oceanic Measurements Obtained During CBLAST-Low John H. Trowbridge Woods Hole Oceanographic Institution, MS#12, Woods Hole, MA 02543 phone: (508) 289-2296 fax: (508) 457-2194 email:

More information

Quantifying upper ocean turbulence driven by surface waves

Quantifying upper ocean turbulence driven by surface waves GEOPHYSICAL RESEARCH LETTERS, VOL. 41, 1 6, doi:10.1002/2013gl058193, 2014 Quantifying upper ocean turbulence driven by surface waves E. A. D Asaro, 1,2 J. Thomson, 1,3 A. Y. Shcherbina, 1 R. R. Harcourt,

More information

Lagrangian Statistics in Nonhydrostatic and QG turbulence Baylor Fox-Kemper (Brown)

Lagrangian Statistics in Nonhydrostatic and QG turbulence Baylor Fox-Kemper (Brown) Lagrangian Statistics in Nonhydrostatic and QG turbulence Baylor Fox-Kemper (Brown) LAPCOD, Schoodic Pt., ME 7/28/15 Sponsor: GoMRI/CARTHE P. E. Hamlington, L. P. Van Roekel, BFK, K. Julien, and G. P.

More information

Capabilities of Ocean Mixed Layer Models

Capabilities of Ocean Mixed Layer Models Capabilities of Ocean Mixed Layer Models W.G. Large National Center for Atmospheric Research Boulder Co, USA 1. Introduction The capabilities expected in today s state of the art models of the ocean s

More information

Next Generation HWRF. HYCOM coupling. National Centers for Environmental Prediction. HWRF & HYCOM modeling team. Environmental Modeling Center

Next Generation HWRF. HYCOM coupling. National Centers for Environmental Prediction. HWRF & HYCOM modeling team. Environmental Modeling Center HWRF tutorial 1 Next Generation HWRF HYCOM coupling Hyun-Sook Kim HWRF & HYCOM modeling team 2018 HWRF Tutorial Environmental Modeling Center National Centers for Environmental Prediction US National Weather

More information

Parameterizing the Effects of Upper-Ocean Large Eddies on Air-Sea Interaction

Parameterizing the Effects of Upper-Ocean Large Eddies on Air-Sea Interaction Parameterizing the Effects of Upper-Ocean Large Eddies on Air-Sea Interaction Ming Li Horn Point Laboratory University of Maryland Center for Environmental Science 2020 Horn Point Road, Cambridge, MD 21613

More information

Surface Wave Effects on High-Frequency Currents over a Shelf Edge Bank

Surface Wave Effects on High-Frequency Currents over a Shelf Edge Bank AUGUST 2013 W I J E S E K E R A E T A L. 1627 Surface Wave Effects on High-Frequency Currents over a Shelf Edge Bank H. W. WIJESEKERA, D.W.WANG, W.J.TEAGUE, E.JAROSZ, AND W. E. ROGERS Naval Research Laboratory,

More information

Northern Arabian Sea Circulation Autonomous Research (NASCar) DRI: A Study of Vertical Mixing Processes in the Northern Arabian Sea

Northern Arabian Sea Circulation Autonomous Research (NASCar) DRI: A Study of Vertical Mixing Processes in the Northern Arabian Sea DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Northern Arabian Sea Circulation Autonomous Research (NASCar) DRI: A Study of Vertical Mixing Processes in the Northern

More information

Atmosphere-Ocean Interaction in Tropical Cyclones

Atmosphere-Ocean Interaction in Tropical Cyclones Atmosphere-Ocean Interaction in Tropical Cyclones Isaac Ginis University of Rhode Island Collaborators: T. Hara, Y.Fan, I-J Moon, R. Yablonsky. ECMWF, November 10-12, 12, 2008 Air-Sea Interaction in Tropical

More information

Impact of Typhoons on the Western Pacific Ocean DRI: Numerical Modeling of Ocean Mixed Layer Turbulence and Entrainment at High Winds

Impact of Typhoons on the Western Pacific Ocean DRI: Numerical Modeling of Ocean Mixed Layer Turbulence and Entrainment at High Winds Impact of Typhoons on the Western Pacific Ocean DRI: Numerical Modeling of Ocean Mixed Layer Turbulence and Entrainment at High Winds Ramsey R. Harcourt Applied Physics Laboratory, University of Washington,

More information

HYCOM Overview. By George Halliwell, 13 February 2002

HYCOM Overview. By George Halliwell, 13 February 2002 HYCOM Overview By George Halliwell, 13 February 2002 General Remarks The HYbrid Coordinate Ocean Model (HYCOM; (Halliwell et al., 1998; 2000; Bleck, 2001) is a primitive equation ocean general circulation

More information

PUBLICATIONS. Journal of Geophysical Research: Oceans. Upper-ocean mixing due to surface gravity waves RESEARCH ARTICLE 10.

PUBLICATIONS. Journal of Geophysical Research: Oceans. Upper-ocean mixing due to surface gravity waves RESEARCH ARTICLE 10. PUBLICATIONS Journal of Geophysical Research: Oceans RESEARCH ARTICLE Key Points: Nonbreaking waves and Langmuir turbulence are the most important terms from waves on ocean mixing 2-D wave spectrum should

More information

PUBLICATIONS. Journal of Geophysical Research: Oceans

PUBLICATIONS. Journal of Geophysical Research: Oceans PUBLICATIONS Journal of Geophysical Research: Oceans RESEARCH ARTICLE Key Points: Langmuir (and not breaking wave) turbulence deeply submerges buoyant tracers For young seas, breaking waves critically

More information

What governs the location of the Southern Ocean deep winter mixing in CESM

What governs the location of the Southern Ocean deep winter mixing in CESM NSF NCAR WYOMING SUPERCOMPUTER CENTER DOE SCIDAC FUNDED PROJECT What governs the location of the Southern Ocean deep winter mixing in CESM Justin Small Dan Whitt Alice DuVivier Matt Long Acknowledging:

More information

Characteristics of Langmuir Turbulence in the Ocean Mixed Layer

Characteristics of Langmuir Turbulence in the Ocean Mixed Layer Characteristics of Langmuir Turbulence in the Ocean Mixed Layer Article Published Version Grant, A. L. M. and Belcher, S. E. (2009) Characteristics of Langmuir Turbulence in the Ocean Mixed Layer. Journal

More information

Susan Bates Ocean Model Working Group Science Liaison

Susan Bates Ocean Model Working Group Science Liaison Susan Bates Ocean Model Working Group Science Liaison Climate Simulation Laboratory (CSL) Accelerated Scientific Discovery (ASD) NCAR Strategic Capability (NSC) Climate Process Teams (CPTs) NSF Earth System

More information

Dynamics of Upper-Ocean Submesoscale and Langmuir Turbulence

Dynamics of Upper-Ocean Submesoscale and Langmuir Turbulence DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited. DISTRIBUTION STATEMENT A: for public release; distribution is unlimited. Dynamics of Upper-Ocean Submesoscale and Langmuir

More information

HWRF Ocean: The Princeton Ocean Model. HWRF Tutorial NCWCP, College Park, MD January 2018

HWRF Ocean: The Princeton Ocean Model. HWRF Tutorial NCWCP, College Park, MD January 2018 HWRF Ocean: The Princeton Ocean Model Isaac Ginis Graduate School of Oceanography University of Rhode Island HWRF Tutorial NCWCP, College Park, MD 23-25 January 2018 1 1 Why Couple a 3-D Ocean Model to

More information

Tracer Based Ages, Transit Time Distributions, and Water Mass Composition: Observational and Computational Examples

Tracer Based Ages, Transit Time Distributions, and Water Mass Composition: Observational and Computational Examples Tracer Based Ages, Transit Time Distributions, and Water Mass Composition: Observational and Computational Examples Frank Bryan Climate and Global Dynamics Division National Center for Atmospheric Research

More information

Results from CAM-SE AMIP and coupled simulations

Results from CAM-SE AMIP and coupled simulations Results from CAM-SE AMIP and coupled simulations Cécile Hannay (AMP) Rich Neale, Peter Lauritzen, Mark Taylor, Julio Bacmeister, Joe Tribbia, Sungsu Park, Andy Mai, Gokhan Danabasoglu, and many others.

More information

Effect of wave directional spread on the radiation stress: Comparing theory and observations

Effect of wave directional spread on the radiation stress: Comparing theory and observations 1 Effect of wave directional spread on the radiation stress: Comparing theory and observations Falk Feddersen Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, California,

More information

OCEAN MODELING II. Parameterizations

OCEAN MODELING II. Parameterizations OCEAN MODELING II Parameterizations Gokhan Danabasoglu Oceanography Section Climate and Global Dynamics Division National Center for Atmospheric Research NCAR is sponsored by the National Science Foundation

More information

Changes in the Ventilation of the Southern Oceans, and links to Stratospheric Ozone Depletion

Changes in the Ventilation of the Southern Oceans, and links to Stratospheric Ozone Depletion Changes in the Ventilation of the Southern Oceans, and links to Stratospheric Ozone Depletion Darryn W. Waugh Dept of Earth and Planetary Sciences, Johns Hopkins University Collaborators: Francois Primeau,

More information

CESM1-WACCM: Comparison with CCSM4/ CESM CMIP5 simulations

CESM1-WACCM: Comparison with CCSM4/ CESM CMIP5 simulations CESM1-WACCM: Comparison with CCSM4/ CESM CMIP5 simulations Dan Marsh, Mike Mills, Natalia Calvo, Marika Holland, Cécile Hannay WAWG meeting, Boulder, February 2011 NCAR is sponsored by the National Science

More information

P1M.4 COUPLED ATMOSPHERE, LAND-SURFACE, HYDROLOGY, OCEAN-WAVE, AND OCEAN-CURRENT MODELS FOR MESOSCALE WATER AND ENERGY CIRCULATIONS

P1M.4 COUPLED ATMOSPHERE, LAND-SURFACE, HYDROLOGY, OCEAN-WAVE, AND OCEAN-CURRENT MODELS FOR MESOSCALE WATER AND ENERGY CIRCULATIONS P1M.4 COUPLED ATMOSPHERE, LAND-SURFACE, HYDROLOGY, OCEAN-WAVE, AND OCEAN-CURRENT MODELS FOR MESOSCALE WATER AND ENERGY CIRCULATIONS Haruyasu NAGAI *, Takuya KOBAYASHI, Katsunori TSUDUKI, and Kyeongok KIM

More information

Surface waves and oceanic mixing: Insights from numerical simulations with stochastic surface forcing

Surface waves and oceanic mixing: Insights from numerical simulations with stochastic surface forcing Surface waves and oceanic mixing: Insights from numerical simulations with stochastic surface forcing P. P. Sullivan National Center for Atmospheric Research, Boulder, CO, USA J. C. McWilliams Department

More information

Comparison between vertical shear mixing and surface wave-induced mixing in the global ocean

Comparison between vertical shear mixing and surface wave-induced mixing in the global ocean Comparison between vertical shear mixing and surface wave-induced mixing in the global ocean Fangli Qiao and Chuanjiang Huang Key Laboratory of Marine Science and Numerical Modeling First Institute of

More information

Community Ocean Vertical Mixing (CVMix) Parameterizations

Community Ocean Vertical Mixing (CVMix) Parameterizations Community Ocean Vertical Mixing (CVMix) Parameterizations M. Levy 1, G. Danabasoglu 1, S. Griffies 2, T. Ringler 3, A. Adcroft 2, R. Hallberg 2, and D. Jacobsen 3 1 National Center for Atmospheric Research

More information

Identifying Drifter Deployment Values

Identifying Drifter Deployment Values Identifying Drifter Deployment Values Presented by: Shaun Dolk Produced in Collaboration with: Dr. Rick Lumpkin NOAA/AOML/GDP Miami, Florida DBCP-29 - September 23-27, 2013 Paris, France Objectives & Direction

More information

Uncertainty in Ocean General Circulation Model Mixing Tensors

Uncertainty in Ocean General Circulation Model Mixing Tensors Uncertainty in Ocean General Circulation Model Mixing Tensors Baylor Fox-Kemper, University of Colorado Boulder, Brown U. (>Jan. 2013) Cooperative Insititute for Research in Environmental Sciences and

More information

Improved Fields of Satellite-Derived Ocean Surface Turbulent Fluxes of Energy and Moisture

Improved Fields of Satellite-Derived Ocean Surface Turbulent Fluxes of Energy and Moisture Improved Fields of Satellite-Derived Ocean Surface Turbulent Fluxes of Energy and Moisture First year report on NASA grant NNX09AJ49G PI: Mark A. Bourassa Co-Is: Carol Anne Clayson, Shawn Smith, and Gary

More information

EFFECT OF WIND AND WAVE-DRIVEN MIXING ON SUBSURFACE PLASTIC MARINE DEBRIS CONCENTRATION. Kelsey Brunner

EFFECT OF WIND AND WAVE-DRIVEN MIXING ON SUBSURFACE PLASTIC MARINE DEBRIS CONCENTRATION. Kelsey Brunner EFFECT OF WIND AND WAVE-DRIVEN MIXING ON SUBSURFACE PLASTIC MARINE DEBRIS CONCENTRATION by Kelsey Brunner A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements

More information

Tracer transport and meridional overturn in the equatorial ocean

Tracer transport and meridional overturn in the equatorial ocean OFES workshops, February 2006 Tracer transport and meridional overturn in the equatorial ocean Akio Ishida with Yoshikazu Sasai, Yasuhiro Yamanaka, Hideharu Sasaki, and the OFES members Chlorofluorocarbon

More information

Community Ocean Vertical Mixing (CVMix) Parameterizations

Community Ocean Vertical Mixing (CVMix) Parameterizations Community Ocean Vertical Mixing (CVMix) Parameterizations M. Levy 1, G. Danabasoglu 1, S. Griffies 2, T. Ringler 3, A. Adcroft 2, R. Hallberg 2, D. Jacobsen 3, and W. Large 1 1 National Center for Atmospheric

More information

NSF 2005 CPT Report. Jeffrey T. Kiehl & Cecile Hannay

NSF 2005 CPT Report. Jeffrey T. Kiehl & Cecile Hannay NSF 2005 CPT Report Jeffrey T. Kiehl & Cecile Hannay Introduction: The focus of our research is on the role of low tropical clouds in affecting climate sensitivity. Comparison of climate simulations between

More information

O.M Smedstad 1, E.J. Metzger 2, R.A. Allard 2, R. Broome 1, D.S. Franklin 1 and A.J. Wallcraft 2. QinetiQ North America 2. Naval Research Laboratory

O.M Smedstad 1, E.J. Metzger 2, R.A. Allard 2, R. Broome 1, D.S. Franklin 1 and A.J. Wallcraft 2. QinetiQ North America 2. Naval Research Laboratory An eddy-resolving ocean reanalysis using the 1/12 global HYbrid Coordinate Ocean Model (HYCOM) and the Navy Coupled Ocean Data Assimilation (NCODA) scheme O.M Smedstad 1, E.J. Metzger 2, R.A. Allard 2,

More information

Rapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface mixed-layer

Rapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface mixed-layer GEOPHYSICAL RESEARCH LETTERS, VOL.???, XXXX, DOI:1.129/, Rapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface mixed-layer Jeff A. Polton, 1 Jerome A. Smith,

More information

SIO 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes

SIO 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes NAME: SIO 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes Closed book; one sheet of your own notes is allowed. A calculator is allowed. (100 total points.)

More information

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr):

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr): AdOc 4060/5060 Spring 2013 Chris Jenkins Eddy viscosity Turbulence (video 1hr): http://cosee.umaine.edu/programs/webinars/turbulence/?cfid=8452711&cftoken=36780601 Part B Surface wind stress Wind stress

More information

The Details of Detailed Balance. Don Resio University of North Florida Chuck Long Retired Will Perrie Bedford Institute of Oceanography

The Details of Detailed Balance. Don Resio University of North Florida Chuck Long Retired Will Perrie Bedford Institute of Oceanography The Details of Detailed Balance Don Resio University of North Florida Chuck Long Retired Will Perrie Bedford Institute of Oceanography MOTIVATION Spectral shape provides critical information for understanding

More information

Abyssal Ocean Circulation. Raffaele Ferrari Earth, Atmospheric and Planetary Sciences, MIT Les Houches, August 2017

Abyssal Ocean Circulation. Raffaele Ferrari Earth, Atmospheric and Planetary Sciences, MIT Les Houches, August 2017 Abyssal Ocean Circulation Raffaele Ferrari Earth, Atmospheric and Planetary Sciences, MIT Les Houches, August 2017 Outline The deep ocean The deep circulation The sinking branch: deep convection The upwelling

More information

An Integrative Wave model for the Marginal Ice Zone based on a Rheological Parameterization

An Integrative Wave model for the Marginal Ice Zone based on a Rheological Parameterization DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. An Integrative Wave model for the Marginal Ice Zone based on a Rheological Parameterization Hayley H. Shen Civil and Environmental

More information

Scaling Kinetic Energy in the Wind-Driven Mixed Layer

Scaling Kinetic Energy in the Wind-Driven Mixed Layer Scaling Kinetic Energy in the Wind-Driven Mixed Layer E. A. D Asaro and R. R. Harcourt Applied Physics Laboratory, University of Washington, Seattle, WA Abstract. An improved understanding of the ocean

More information

A Refined Life at High Resolution: Subgrid Modelling in the Eddy-Rich Regime

A Refined Life at High Resolution: Subgrid Modelling in the Eddy-Rich Regime A Refined Life at High Resolution: Subgrid Modelling in the Eddy-Rich Regime Baylor Fox-Kemper (Brown University, USA) Major Contributions from Scott D. Bachman (CU-PhD, now Cambridge, UK), Thanks for

More information

Wave-tide-circulation coupled model: To improve the forecasting ability for FUTURE

Wave-tide-circulation coupled model: To improve the forecasting ability for FUTURE Wave-tide-circulation coupled model: To improve the forecasting ability for FUTURE Fangli QIAO Zhenya Song, Changshui Xia and Yeli Yuan The First Institute of Oceanography (FIO), SOA, CHINA Key Lab. Marine

More information

New Development in Coastal Ocean Analysis and Prediction. Peter C. Chu Naval Postgraduate School Monterey, CA 93943, USA

New Development in Coastal Ocean Analysis and Prediction. Peter C. Chu Naval Postgraduate School Monterey, CA 93943, USA New Development in Coastal Ocean Analysis and Prediction Peter C. Chu Naval Postgraduate School Monterey, CA 93943, USA Coastal Model Major Problems in Coastal Modeling (1) Discretization (2) Sigma Error

More information

A diurnally corrected highresolution

A diurnally corrected highresolution A diurnally corrected highresolution SST analysis Andy Harris 1, Jonathan Mittaz 1,4, Gary Wick 3, Prabhat Koner 1, Eileen Maturi 2 1 NOAA-CICS, University of Maryland 2 NOAA/NESDIS/STAR 3 NOAA/OAR/ESRL

More information

GFDL, NCEP, & SODA Upper Ocean Assimilation Systems

GFDL, NCEP, & SODA Upper Ocean Assimilation Systems GFDL, NCEP, & SODA Upper Ocean Assimilation Systems Jim Carton (UMD) With help from Gennady Chepurin, Ben Giese (TAMU), David Behringer (NCEP), Matt Harrison & Tony Rosati (GFDL) Description Goals Products

More information

MERIDIONAL OVERTURNING CIRCULATION: SOME BASICS AND ITS MULTI-DECADAL VARIABILITY

MERIDIONAL OVERTURNING CIRCULATION: SOME BASICS AND ITS MULTI-DECADAL VARIABILITY MERIDIONAL OVERTURNING CIRCULATION: SOME BASICS AND ITS MULTI-DECADAL VARIABILITY Gokhan Danabasoglu National Center for Atmospheric Research OUTLINE: - Describe thermohaline and meridional overturning

More information

Evaluating the results of Hormuz strait wave simulations using WAVEWATCH-III and MIKE21-SW

Evaluating the results of Hormuz strait wave simulations using WAVEWATCH-III and MIKE21-SW Int. J. Mar. Sci. Eng., 2 (2), 163-170, Spring 2012 ISSN 2251-6743 IAU Evaluating the results of Hormuz strait wave simulations using WAVEWATCH-III and MIKE21-SW *F. S. Sharifi; M. Ezam; A. Karami Khaniki

More information

PUBLICATIONS. Journal of Geophysical Research: Oceans

PUBLICATIONS. Journal of Geophysical Research: Oceans PUBLICATIONS Journal of Geophysical Research: Oceans RESEARCH ARTICLE Key Points: Langmuir turbulence deeply submerges microplastic marine debris Microplastic marine debris content is underestimated by

More information

Supplementary Figure 1. Summer mesoscale convective systems rainfall climatology and trends. Mesoscale convective system (MCS) (a) mean total

Supplementary Figure 1. Summer mesoscale convective systems rainfall climatology and trends. Mesoscale convective system (MCS) (a) mean total Supplementary Figure 1. Summer mesoscale convective systems rainfall climatology and trends. Mesoscale convective system (MCS) (a) mean total rainfall and (b) total rainfall trend from 1979-2014. Total

More information

A Second-Moment Closure Model of Langmuir Turbulence

A Second-Moment Closure Model of Langmuir Turbulence VOLUME 43 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y APRIL 2013 A Second-Moment Closure Model of Langmuir Turbulence RAMSEY R. HARCOURT Applied Physics Laboratory, University of Washington,

More information

THE HIGH-FREQUENCY PORTION OF WIND WAVE SPECTRA AND ITS IMPLICATIONS Don Resio & Chuck Long ERDC-CHL Vicksburg, MS

THE HIGH-FREQUENCY PORTION OF WIND WAVE SPECTRA AND ITS IMPLICATIONS Don Resio & Chuck Long ERDC-CHL Vicksburg, MS THE HIGH-FREQUENCY PORTION OF WIND WAVE SPECTRA AND ITS IMPLICATIONS Don Resio & Chuck Long ERDC-CHL Vicksburg, MS MOTIVATION Spectral shape provides critical information for understanding source term

More information

Atmospheric Processes

Atmospheric Processes Atmospheric Processes Atmospheric prognostic variables Wind Temperature Humidity Cloud Water/Ice Atmospheric processes Mixing Radiation Condensation/ Evaporation Precipitation Surface exchanges Friction

More information

A 32-Year Run of 1/12 o HYCOM in the Gulf of Mexico

A 32-Year Run of 1/12 o HYCOM in the Gulf of Mexico A 32-Year Run of 1/12 o HYCOM in the Gulf of Mexico W. Wang ExxonMobil Company 3319 Mercer St., URC-GW3-752A Houston, TX 77027 Tel: 713 431 7439 Fax: 713 431 7272 Email: wensu.wang@exxonmobil.com 1 4/30/2007

More information

An Introduction to Coupled Models of the Atmosphere Ocean System

An Introduction to Coupled Models of the Atmosphere Ocean System An Introduction to Coupled Models of the Atmosphere Ocean System Jonathon S. Wright jswright@tsinghua.edu.cn Atmosphere Ocean Coupling 1. Important to climate on a wide range of time scales Diurnal to

More information

Subsidence Monitoring in Hampton Roads Using Satellites

Subsidence Monitoring in Hampton Roads Using Satellites ODU Digital Commons July 29, 2016: The Latest in Sea Level Rise Science Hampton Roads Sea Level Rise/Flooding Adaptation Forum 7-29-2016 Subsidence Monitoring in Hampton Roads Using Satellites Ben Hamlington

More information

OpenFOAM simulations of irregular waves and free surface effects around a monopile offshore wind turbine

OpenFOAM simulations of irregular waves and free surface effects around a monopile offshore wind turbine OpenFOAM simulations of irregular waves and free surface effects around a monopile offshore wind turbine Ariel J. Edesess 1 4 th Year PhD Candidate Supervisors: Dr. Denis Kelliher 1, Dr. Gareth Thomas

More information

1/12 Pacific HYCOM: The End Of A Long Simulation

1/12 Pacific HYCOM: The End Of A Long Simulation 1/12 Pacific HYCOM: The End Of A Long Simulation E. Joseph Metzger,, Harley E. Hurlburt and Alan J. Wallcraft Naval Research Laboratory, Stennis Space Center, MS HYCOM NOPP GODAE Meeting 27-29 29 October

More information

Comparison of Convection Characteristics at the Tropical Western Pacific Darwin Site Between Observation and Global Climate Models Simulations

Comparison of Convection Characteristics at the Tropical Western Pacific Darwin Site Between Observation and Global Climate Models Simulations Comparison of Convection Characteristics at the Tropical Western Pacific Darwin Site Between Observation and Global Climate Models Simulations G.J. Zhang Center for Atmospheric Sciences Scripps Institution

More information

Ocean Modeling II. Parameterized Physics. Peter Gent. Oceanography Section NCAR

Ocean Modeling II. Parameterized Physics. Peter Gent. Oceanography Section NCAR Ocean Modeling II Parameterized Physics Peter Gent Oceanography Section NCAR Ocean Modelling Challenges LO-RES (3 o ) O(100+ years/day) WORKHORSE (1 o ) O(10-100 years/day) HI-RES (0.1 o ) O(1 year/day)

More information

Ocean Model Intercomparison Project (OMIP)

Ocean Model Intercomparison Project (OMIP) Ocean Model Intercomparison Project (OMIP) Co Chairs Gokhan Danabasoglu (NCAR, USA) Stephen Griffies (NOAA/GFDL, USA) James Orr (IPSL, France) Scientific Steering Committee Physical Processes (CLIVAR Ocean

More information

ESCI 110: 2 s.h. Introduction to Earth Sciences Programs ESCI 322: 3 s.h. Environmental Hydrology ESCI 241: 4 s.h. Meteorology (G2, L)

ESCI 110: 2 s.h. Introduction to Earth Sciences Programs ESCI 322: 3 s.h. Environmental Hydrology ESCI 241: 4 s.h. Meteorology (G2, L) ESCI 110: 2 s.h. Introduction to Earth Sciences Programs General introduction to each of the earth sciences disciplines and to college life. 2 hrs. lec. Offered in fall. Restricted to earth sciences majors.

More information

Impact of wind waves on the air-sea momentum fluxes for different wind and sea state conditions and oceanic response

Impact of wind waves on the air-sea momentum fluxes for different wind and sea state conditions and oceanic response Impact of wind waves on the air-sea momentum fluxes for different wind and sea state conditions and oceanic response Joanna Staneva, Heinz Günther, A. Behrens, O. Krüger, Corinna Schrum, (HZG, Germany)

More information

Numerical Simulations and Observations of Surface Wave Fields under an Extreme Tropical Cyclone

Numerical Simulations and Observations of Surface Wave Fields under an Extreme Tropical Cyclone SEPTEMBER 2009 F A N E T A L. 2097 Numerical Simulations and Observations of Surface Wave Fields under an Extreme Tropical Cyclone YALIN FAN, ISAAC GINIS, AND TETSU HARA Graduate School of Oceanography,

More information

Importance of air-sea interaction on the coupled typhoon-wave-ocean modeling

Importance of air-sea interaction on the coupled typhoon-wave-ocean modeling Importance of air-sea interaction on the coupled typhoon-wave-ocean modeling Collaborators: I. Ginis (GSO/URI) T. Hara (GSO/URI) B. Thomas (GSO/URI) H. Tolman (NCEP/NOAA) IL-JU MOON ( 文一柱 ) Cheju National

More information

The KPP boundary layer scheme: revisiting its formulation and benchmarking one-dimensional ocean simulations relative to LES

The KPP boundary layer scheme: revisiting its formulation and benchmarking one-dimensional ocean simulations relative to LES The KPP boundary layer scheme: revisiting its formulation and benchmarking one-dimensional ocean simulations relative to LES Luke Van Roekel a, Alistair J. Adcroft b, Gokhan Danabasoglu c, Stephen M. Griffies

More information

WIzARd Wave Ocean Sea Ice interactions in the Arctic

WIzARd Wave Ocean Sea Ice interactions in the Arctic WIzARd Wave Ocean Sea Ice interactions in the Arctic Fabrice Ardhuin, Camille Lique Laboratoire d Océanographie Physique et Spatiale Pierre Rampal, Timothy Williams, EinarÓlason NERSC Laurent Brodeau Ocean

More information

Applications of the SMC Grid in Ocean Surface Wave Models

Applications of the SMC Grid in Ocean Surface Wave Models Applications of the SMC Grid in Ocean Surface Wave Models Jian-Guo Li & Andrew Saulter 13 September 2017 Contents This presentation covers the following areas Introduction of SMC grid Propagation on a

More information

Assessing the impact of gravity waves on the tropical middle atmosphere in a General Circulation Model

Assessing the impact of gravity waves on the tropical middle atmosphere in a General Circulation Model Assessing the impact of gravity waves on the tropical middle atmosphere in a General Circulation Model AGU Chapman Conference on Atmospheric Gravity Waves Andrew C Bushell, David R Jackson, Glenn J Shutts,

More information

Wave forecasting from R/V Sikuliaq cruise Sep 30 Nov 10

Wave forecasting from R/V Sikuliaq cruise Sep 30 Nov 10 Wave forecasting from R/V Sikuliaq cruise Sep 30 Nov 10 Erick Rogers Naval Research Laboratory, Oceanography Division, Stennis Space Center, MS SeaState Modeling/Forecasting Workshop 1 WAM, WAVEWATCH III

More information

Wind driven mixing below the oceanic mixed layer

Wind driven mixing below the oceanic mixed layer Wind driven mixing below the oceanic mixed layer Article Published Version Grant, A. L. M. and Belcher, S. (2011) Wind driven mixing below the oceanic mixed layer. Journal of Physical Oceanography, 41

More information

Wave simulation using SWAN in nested and unnested mode applications

Wave simulation using SWAN in nested and unnested mode applications www.ec.gc.ca Wave simulation using SWAN in nested and unnested mode applications Roop Lalbeharry 1 and Hal Ritchie 2 Environment Canada, Science and Technology Branch 1 Meteorological Research Division,

More information

Richard M. Yablonsky University of Rhode Island. WRF for Hurricanes Tutorial Boulder, CO 25 February 2010

Richard M. Yablonsky University of Rhode Island. WRF for Hurricanes Tutorial Boulder, CO 25 February 2010 Richard M. Yablonsky University of Rhode Island WRF for Hurricanes Tutorial Boulder, CO 25 February 2010 1 What is the Princeton Ocean Model? Three dimensional, primitive equation, numerical ocean model

More information

Momentum Flux Budget Across Air-sea Interface under Uniform and Tropical Cyclone Winds

Momentum Flux Budget Across Air-sea Interface under Uniform and Tropical Cyclone Winds Momentum Flux Budget Across Air-sea Interface under Uniform and Tropical Cyclone Winds Yalin Fan 1, Isaac Ginis 2, Tetsu Hara 2 1. AOS, Princeton University / GFDL, NOAA, Princeton, New Jersey 2. Graduate

More information

Recent Developments in the Navy Coastal Ocean Model and its application as the ocean component in regional coupled forecast models

Recent Developments in the Navy Coastal Ocean Model and its application as the ocean component in regional coupled forecast models Recent Developments in the Navy Coastal Ocean Model and its application as the ocean component in regional coupled forecast models Tommy Jensen, Paul Martin, Clark Rowley, Tim Campbell, Richard Allard,

More information

The impact of polar mesoscale storms on northeast Atlantic Ocean circulation

The impact of polar mesoscale storms on northeast Atlantic Ocean circulation The impact of polar mesoscale storms on northeast Atlantic Ocean circulation Influence of polar mesoscale storms on ocean circulation in the Nordic Seas Supplementary Methods and Discussion Atmospheric

More information

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling Eric D. Skyllingstad

More information

Observations and Modeling of SST Influence on Surface Winds

Observations and Modeling of SST Influence on Surface Winds Observations and Modeling of SST Influence on Surface Winds Dudley B. Chelton and Qingtao Song College of Oceanic and Atmospheric Sciences Oregon State University, Corvallis, OR 97331-5503 chelton@coas.oregonstate.edu,

More information

An evaluation of ocean wave model performances with linear and nonlinear dissipation source terms in Lake Erie

An evaluation of ocean wave model performances with linear and nonlinear dissipation source terms in Lake Erie An evaluation of ocean wave model performances with linear and nonlinear dissipation source terms in Lake Erie Roop Lalbeharry 1, Arno Behrens 2, Heinz Guenther 2 and Laurie Wilson 1 1 Meteorological Service

More information

CHAPTER 6 : LITERATURE REVIEW

CHAPTER 6 : LITERATURE REVIEW CHAPTER 6 : LITERATURE REVIEW Chapter : LITERATURE REVIEW 77 M E A S U R I N G T H E E F F I C I E N C Y O F D E C I S I O N M A K I N G U N I T S A B S T R A C T A n o n l i n e a r ( n o n c o n v e

More information

P E R E N C O - C H R I S T M A S P A R T Y

P E R E N C O - C H R I S T M A S P A R T Y L E T T I C E L E T T I C E I S A F A M I L Y R U N C O M P A N Y S P A N N I N G T W O G E N E R A T I O N S A N D T H R E E D E C A D E S. B A S E D I N L O N D O N, W E H A V E T H E P E R F E C T R

More information

Resonant Wind-Driven Mixing in the Ocean Boundary Layer

Resonant Wind-Driven Mixing in the Ocean Boundary Layer 1866 JOURNAL OF PHYSICAL OCEANOGRAPHY Resonant Wind-Driven Mixing in the Ocean Boundary Layer ERIC D. SKYLLINGSTAD AND W. D. SMYTH College of Oceanic and Atmospheric Sciences, Oregon State University,

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Pubic reporaing burdcn for ths collection of information is estimated to average 1 hour per response, including the time for rev* instructons,

More information

Chapter 6: Modeling the Atmosphere-Ocean System

Chapter 6: Modeling the Atmosphere-Ocean System Chapter 6: Modeling the Atmosphere-Ocean System -So far in this class, we ve mostly discussed conceptual models models that qualitatively describe the system example: Daisyworld examined stable and unstable

More information

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan 耶鲁 - 南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation

More information