Uncertainty in Ocean General Circulation Model Mixing Tensors

Size: px
Start display at page:

Download "Uncertainty in Ocean General Circulation Model Mixing Tensors"

Transcription

1 Uncertainty in Ocean General Circulation Model Mixing Tensors Baylor Fox-Kemper, University of Colorado Boulder, Brown U. (>Jan. 2013) Cooperative Insititute for Research in Environmental Sciences and Dept. of Atmospheric and Oceanic Sciences with Frank Bryan (NCAR), John Dennis (NCAR), Scott Bachman (CIRES/ATOC), Jim McWilliams (UCLA), NCAR Oceanography Section Bayesian Confab 13:30 -??, Aug. 9, 2012; Boulder, Colorado Sponsors: NSF ; NASA NNX09AF38G TeraGRID, IBM, NCAR CISL

2 Mesoscale Parameterizations Researchers have already cast much darkness on this subject and if they continue their investigations we shall soon know nothing at all about it. --Mark Twain

3 Ocean Equations*: Boussinesq Fluid on Tangent Plane to a Rotating Sphere Buoyancy (or S, T): Re, Pe for an affordable gridscale are 10 6 to Numerics require O(1) *From Grooms, Julien, & F-K, 11

4 What is a parameterization? Express the coarse-grain averages of quantities (including the subgrid effects), e.g.: As a function of the resolved coarse-grain fields Note that nonlinear terms require special treatment And Couple different scales, small talks to large!

5 The Character of the Mesoscale 100 km (NASA GSFC Gallery) (Capet et al., 2008) Boundary Currents Eddies Ro=O(0.1) Ri=O(1000) Full Depth Eddies strain to produce Fronts 100km, months Eddy processes mainly baroclinic & barotropic instability. Parameterizations of baroclinic instability (GM, Visbeck...). Surface Temp. 200m Temp. Temp x-z Section

6 Mesoscale Eddy Parameterizations all have the form: u τ = M τ u τ v τ = M xx M xy M xz M yx M yy M yz τ x τ y w τ M zx M zy M zz τ z Count Degrees of Freedom: 3 tracer flux components 3 tracer gradient components 9 tensor elements!

7 Does this cover all the degrees of freedom? More tracers does provide a just-determined or overdetermined (Moore-Penrose/least squares) problem for M with a unique answer, but... Different tracers will have different fluxes as they feel the subgrid nooks and crannies of the mesoscale eddies!

8 Mesoscale Eddy Parameterizations all have the form: u τ = M τ u τ v τ = M xx M xy M xz M yx M yy M yz τ x τ y w τ M zx M zy M zz τ z With John Dennis & Frank Bryan, we took a POP0.1 Normal-Year forced model (yrs 16-20) Added 9 Passive tracers--restored 3 rates Kept all the eddy fluxes for passive & active Coarse-grained to 2, transient eddies, tracers to M

9 u τ = M τ Sym Part=Anisotropic* Redi u τ v τ w τ = K xx K xy ˆx K z K yx K yy ŷ K K z ˆx K z ŷ K K z z K K z K K τ x τ y AntiSym Part=Anisotropic* GM τ z u τ v τ = 0 0 ˆx K K z 0 0 ŷ K K z τ x τ y w τ ˆx K K z ŷ K K z 0 τ z Yellow K are horizontal stirring & mixing

10 Underdetermined uτ 1 ū τ 1 vτ 1 v τ 1 = M xx M xy M xz M yx M yy M yz τ 1,x τ 1,y wτ 1 w τ 1 M zx M zy M zz τ 1,z uτ 1 ū τ 1 uτ 2 ū τ 2 uτ 3 ū τ 3 vτ 1 v τ 1 vτ 2 v τ 2 vτ 3 v τ 3 wτ 1 w τ 1 wτ 2 w τ 2 wτ 3 w τ 3 Just-determined = M xx M xy M xz M yx M yy M yz M zx M zy M zz τ 1,x τ 2,x τ 3,x τ 1,y τ 2,y τ 3,y τ 1,z τ 2,z τ 3,z uτ 1 ū τ 1 uτ N ū τ N vτ 1 v τ 1... vτ N v τ N wτ 1 w τ 1 wτ N w τ N Overdetermined = M xx M xy M xz M yx M yy M yz M zx M zy M zz τ 1,x τ N,x τ 1,y... τ N,y τ 1,z τ N,z

11 Is Lagrangian Transport Unique? Taylor 1921/1953 says yes, in a decorrelation timescale sense If non-conservative tracers, then no Nearly conservative tracers--probably something that becomes identical in limit Active vs. passive tracers?

12 What does mean mean? Temporal averaging -> 8yr average by season or overall Must preserve covariances... 20x increase in variables Spatial coarse-graining 10km->200km 20x20 gridpoints per coarse-gridpoint 400x reduction of variables Collect slow,coarse; slow,fine; fast,coarse; fast,fine

13 K M Could you have guessed it?

14 Result: Strong Anisotropy Along/Across Isopycnals Mixing direction Mixing: Stirring:

15 Are Diffusivity Values Resonable? u τ v τ = K xx K xy ˆx K z K K yx K yy ŷ K K z τ x τ y w τ ˆx K z ŷ K K z z K K z K τ z Trace(M) Histogram Hor. Diffusivity is roughly Trace(M)/2 Peak of Diffusivity near 250 m 2 /s Median Diffusivity near 1000m 2 /s <6% negative

16 But, how well does it work? Suppose we only plot values where different tracer sets agree... Not so many trustworthy values! Can t reject params!

17 dτ dt = λ ( τ τ ) 0 v b rec = M b!"#$#!!%&!'()*&'+,-!!.//!0!123!!4//!0!123!!5//!0!123!!.///!0!123! time (days) In idealized runs, can see the effect of restoring. Whatever we do, we need to get buoyancy right!

18 In idealized setting, can do better Reconstruction of eddy buoyancy fluxes Original fluxes Reconstructed fluxes v'b' w'b' Using specially-tailored non-restored tracers improves estimate (error is now < 10%) but not feasible in realistic diagnosis. In realistic diagnosis, we can improve the estimate a bit by approximating restoring effect

19 Uncertainty... How many tracers needed? Distribution?

20 Underdetermined uτ 1 ū τ 1 vτ 1 v τ 1 = M xx M xy M xz M yx M yy M yz τ 1,x τ 1,y wτ 1 w τ 1 M zx M zy M zz τ 1,z uτ 1 ū τ 1 uτ 2 ū τ 2 uτ 3 ū τ 3 vτ 1 v τ 1 vτ 2 v τ 2 vτ 3 v τ 3 wτ 1 w τ 1 wτ 2 w τ 2 wτ 3 w τ 3 Just-determined = M xx M xy M xz M yx M yy M yz M zx M zy M zz τ 1,x τ 2,x τ 3,x τ 1,y τ 2,y τ 3,y τ 1,z τ 2,z τ 3,z uτ 1 ū τ 1 uτ N ū τ N vτ 1 v τ 1... vτ N v τ N wτ 1 w τ 1 wτ N w τ N Overdetermined = M xx M xy M xz M yx M yy M yz M zx M zy M zz τ 1,x τ N,x τ 1,y... τ N,y τ 1,z τ N,z

21 Uncertainty... Coarse-grain? What is the mean & eddy? Flierl & McWilliams 77: ~30 yrs of Eulerian obs. needed for variances & co-variances Single snapshots are huge at Global 10km (> gridpoints, 5 state variables, 9 tensor elements, 3N fluxes, N tracers, N variances, etc) Spatial coarse-graining desirable to improve averaging and condense dataset

22 Underdetermined uτ 1 ū τ 1 vτ 1 v τ 1 = M xx M xy M xz M yx M yy M yz τ 1,x τ 1,y wτ 1 w τ 1 M zx M zy M zz τ 1,z uτ 1 ū τ 1 uτ 2 ū τ 2 uτ 3 ū τ 3 vτ 1 v τ 1 vτ 2 v τ 2 vτ 3 v τ 3 wτ 1 w τ 1 wτ 2 w τ 2 wτ 3 w τ 3 Just-determined = M xx M xy M xz M yx M yy M yz M zx M zy M zz τ 1,x τ 2,x τ 3,x τ 1,y τ 2,y τ 3,y τ 1,z τ 2,z τ 3,z uτ 1 ū τ 1 uτ N ū τ N vτ 1 v τ 1... vτ N v τ N wτ 1 w τ 1 wτ N w τ N Overdetermined = M xx M xy M xz M yx M yy M yz M zx M zy M zz τ 1,x τ N,x τ 1,y... τ N,y τ 1,z τ N,z Could INCLUDE AVERAGING in linear model: Then get distribution pre-coarse graining & time avg

23 Conclusions: None Prospects: Can we make a better measure of the uncertainty profile? Can we use the distribution in stochastic, rather than deterministic, parameterizations? Can we detect times when the flux-gradient relationship itself fails? Can we specify better averaging kernels? uτ u τ = M τ +

24 Result: Strong Anisotropy Along/Across PV Grads. Mixing direction Either along PV contours or across cosine between 1rst eigenvector and PV gradient x 104 cosine between 2nd eigenvector and PV gradient 3 2nd Eigenvector Across PV contours rst Eigenvector

Parameterizations with and without Climate Process Teams

Parameterizations with and without Climate Process Teams Parameterizations with and without Climate Process Teams Baylor Fox-Kemper Brown University, DEEP Sciences Mixed Layer Eddy Sponsors: NSF OCE-0612143, OCE-0612059, OCE-0825376, DMS-0855010, and OCE-0934737

More information

From Climate to Kolmogorov - Simulations Spanning Upper Ocean Scales

From Climate to Kolmogorov - Simulations Spanning Upper Ocean Scales From Climate to Kolmogorov - Simulations Spanning Upper Ocean Scales Baylor Fox-Kemper (CU-Boulder & CIRES) with Peter Hamlington (CU), Sean Haney (ATOC), Adrean Webb (APPM), Scott Bachman (ATOC), Katie

More information

Ocean physics from 4m to 400km: Parameterizations and biases

Ocean physics from 4m to 400km: Parameterizations and biases Ocean physics from 4m to 400km: Parameterizations and biases Baylor Fox-Kemper (CU-Boulder & CIRES) with Luke Van Roekel (CIRES), Peter Hamlington (CU), Scott Bachman (CIRES/ATOC), Sean Haney (CIRES/ATOC),

More information

A Refined Life at High Resolution: Subgrid Modelling in the Eddy-Rich Regime

A Refined Life at High Resolution: Subgrid Modelling in the Eddy-Rich Regime A Refined Life at High Resolution: Subgrid Modelling in the Eddy-Rich Regime Baylor Fox-Kemper (Brown University, USA) Major Contributions from Scott D. Bachman (CU-PhD, now Cambridge, UK), Thanks for

More information

The problem Mixing in isopycnal coordinates Summary Discussion questions References. buoyancy fluxes

The problem Mixing in isopycnal coordinates Summary Discussion questions References. buoyancy fluxes The Gent-McWilliams parameterization of eddy buoyancy fluxes (as told by Cesar) slides at tinyurl.com/potheory-gm Gent & McWilliams, JPO, 1990 Griffies, JPO, 1998 (The most cited JPO paper ) Climate models

More information

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»

More information

Modeling and Parameterizing Mixed Layer Eddies

Modeling and Parameterizing Mixed Layer Eddies Modeling and Parameterizing Mixed Layer Eddies Baylor Fox-Kemper (MIT) with Raffaele Ferrari (MIT), Robert Hallberg (GFDL) Los Alamos National Laboratory Wednesday 3/8/06 Mixed Layer Eddies Part I: Baroclinic

More information

Lagrangian Statistics in Nonhydrostatic and QG turbulence Baylor Fox-Kemper (Brown)

Lagrangian Statistics in Nonhydrostatic and QG turbulence Baylor Fox-Kemper (Brown) Lagrangian Statistics in Nonhydrostatic and QG turbulence Baylor Fox-Kemper (Brown) LAPCOD, Schoodic Pt., ME 7/28/15 Sponsor: GoMRI/CARTHE P. E. Hamlington, L. P. Van Roekel, BFK, K. Julien, and G. P.

More information

8 3D transport formulation

8 3D transport formulation 8 3D transport formulation 8.1 The QG case We consider the average (x; y; z; t) of a 3D, QG system 1. The important distinction from the zonal mean case is that the mean now varies with x, or (more generally)

More information

Turbulence in the Atmosphere and Oceans

Turbulence in the Atmosphere and Oceans Turbulence in the Atmosphere and Oceans Instructors: Raffaele Ferrari and Glenn Flierl Course description The course will present the phenomena, theory, and modeling of turbulence in the Earth s oceans

More information

Transformed Eulerian Mean

Transformed Eulerian Mean Chapter 15 Transformed Eulerian Mean In the last few lectures we introduced some fundamental ideas on 1) the properties of turbulent flows in rotating stratified environments, like the ocean and the atmosphere,

More information

Tensor Visualization. CSC 7443: Scientific Information Visualization

Tensor Visualization. CSC 7443: Scientific Information Visualization Tensor Visualization Tensor data A tensor is a multivariate quantity Scalar is a tensor of rank zero s = s(x,y,z) Vector is a tensor of rank one v = (v x,v y,v z ) For a symmetric tensor of rank 2, its

More information

Getting started: CFD notation

Getting started: CFD notation PDE of p-th order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =

More information

OCEAN MODELING II. Parameterizations

OCEAN MODELING II. Parameterizations OCEAN MODELING II Parameterizations Gokhan Danabasoglu Oceanography Section Climate and Global Dynamics Division National Center for Atmospheric Research NCAR is sponsored by the National Science Foundation

More information

What governs the location of the Southern Ocean deep winter mixing in CESM

What governs the location of the Southern Ocean deep winter mixing in CESM NSF NCAR WYOMING SUPERCOMPUTER CENTER DOE SCIDAC FUNDED PROJECT What governs the location of the Southern Ocean deep winter mixing in CESM Justin Small Dan Whitt Alice DuVivier Matt Long Acknowledging:

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 15-Convective Heat Transfer Fausto Arpino f.arpino@unicas.it Introduction In conduction problems the convection entered the analysis

More information

Atmosphere-ocean boundary layers and fluxes

Atmosphere-ocean boundary layers and fluxes Atmosphere-ocean boundary layers and fluxes Baylor Fox-Kemper (Brown DEEP Sci.) with Qing Li & Nobu Suzuki (Brown), Scott Reckinger (Montana), and Sean Haney & Peter Hamlington (CU-Boulder), Luke Van Roekel

More information

M E 320 Professor John M. Cimbala Lecture 10

M E 320 Professor John M. Cimbala Lecture 10 M E 320 Professor John M. Cimbala Lecture 10 Today, we will: Finish our example problem rates of motion and deformation of fluid particles Discuss the Reynolds Transport Theorem (RTT) Show how the RTT

More information

Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI

Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI Lecture 8 Analyzing the diffusion weighted signal Room CSB 272 this week! Please install AFNI http://afni.nimh.nih.gov/afni/ Next lecture, DTI For this lecture, think in terms of a single voxel We re still

More information

Ocean Modeling II. Parameterized Physics. Peter Gent. Oceanography Section NCAR

Ocean Modeling II. Parameterized Physics. Peter Gent. Oceanography Section NCAR Ocean Modeling II Parameterized Physics Peter Gent Oceanography Section NCAR Ocean Modelling Challenges LO-RES (3 o ) O(100+ years/day) WORKHORSE (1 o ) O(10-100 years/day) HI-RES (0.1 o ) O(1 year/day)

More information

Applications of Eigenvalues & Eigenvectors

Applications of Eigenvalues & Eigenvectors Applications of Eigenvalues & Eigenvectors Louie L. Yaw Walla Walla University Engineering Department For Linear Algebra Class November 17, 214 Outline 1 The eigenvalue/eigenvector problem 2 Principal

More information

A Diagnostic Suite of Models for the Evaluation of Oceanic Mesoscale Eddy Parameterizations

A Diagnostic Suite of Models for the Evaluation of Oceanic Mesoscale Eddy Parameterizations A Diagnostic Suite of Models for the Evaluation of Oceanic Mesoscale Eddy Parameterizations by S. D. Bachman B.S., California State University, Long Beach, 2006 M.S., University of Colorado, 2008 M.S.,

More information

Chapter 4: Fluid Kinematics

Chapter 4: Fluid Kinematics Overview Fluid kinematics deals with the motion of fluids without considering the forces and moments which create the motion. Items discussed in this Chapter. Material derivative and its relationship to

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y -» $ 5 Y 7 Y Y -Y- Q x Q» 75»»/ q } # ]»\ - - $ { Q» / X x»»- 3 q $ 9 ) Y q - 5 5 3 3 3 7 Q q - - Q _»»/Q Y - 9 - - - )- [ X 7» -» - )»? / /? Q Y»» # X Q» - -?» Q ) Q \ Q - - - 3? 7» -? #»»» 7 - / Q

More information

Preferred spatio-temporal patterns as non-equilibrium currents

Preferred spatio-temporal patterns as non-equilibrium currents Preferred spatio-temporal patterns as non-equilibrium currents Escher Jeffrey B. Weiss Atmospheric and Oceanic Sciences University of Colorado, Boulder Arin Nelson, CU Baylor Fox-Kemper, Brown U Royce

More information

Eddy-mixed layer interactions in the ocean

Eddy-mixed layer interactions in the ocean Eddy-mixed layer interactions in the ocean Raffaele Ferrari 1 Massachusetts Institute of Technology, Cambridge, MA 02139, USA Numerical models have become essential tools in the study and prediction of

More information

Donald Slinn, Murray D. Levine

Donald Slinn, Murray D. Levine 2 Donald Slinn, Murray D. Levine 2 Department of Civil and Coastal Engineering, University of Florida, Gainesville, Florida College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis,

More information

OCEANIC SUBMESOSCALE SAMPLING WITH WIDE-SWATH ALTIMETRY. James C. McWilliams

OCEANIC SUBMESOSCALE SAMPLING WITH WIDE-SWATH ALTIMETRY. James C. McWilliams . OCEANIC SUBMESOSCALE SAMPLING WITH WIDE-SWATH ALTIMETRY James C. McWilliams Department of Atmospheric & Oceanic Sciences Institute of Geophysics & Planetary Physics U.C.L.A. Recall the long-standing

More information

Tracer Based Ages, Transit Time Distributions, and Water Mass Composition: Observational and Computational Examples

Tracer Based Ages, Transit Time Distributions, and Water Mass Composition: Observational and Computational Examples Tracer Based Ages, Transit Time Distributions, and Water Mass Composition: Observational and Computational Examples Frank Bryan Climate and Global Dynamics Division National Center for Atmospheric Research

More information

The role of the midlatitude ocean in sub-seasonal prediction

The role of the midlatitude ocean in sub-seasonal prediction The role of the midlatitude ocean in sub-seasonal prediction R. Saravanan Xiaohui Ma, Xue Liu, J. Steinweg-Woods J. Kurian, R. Montuoro, P. Chang, I. Szunyogh Yinglai Jia, Ocean University of China J.

More information

Module 2: Governing Equations and Hypersonic Relations

Module 2: Governing Equations and Hypersonic Relations Module 2: Governing Equations and Hypersonic Relations Lecture -2: Mass Conservation Equation 2.1 The Differential Equation for mass conservation: Let consider an infinitely small elemental control volume

More information

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles. » ~ $ ) 7 x X ) / ( 8 2 X 39 ««x» ««! «! / x? \» «({? «» q «(? (?? x! «? 8? ( z x x q? ) «q q q ) x z x 69 7( X X ( 3»«! ( ~«x ««x ) (» «8 4 X «4 «4 «8 X «x «(» X) ()»» «X «97 X X X 4 ( 86) x) ( ) z z

More information

Hydraulic properties of porous media

Hydraulic properties of porous media PART 5 Hydraulic properties of porous media Porosity Definition: Void space: n V void /V total total porosity e V void /V solid Primary porosity - between grains Secondary porosity - fracture or solution

More information

The Lagrangian-Averaged Navier-Stokes alpha (LANS-α) Turbulence Model in Primitive Equation Ocean Modeling

The Lagrangian-Averaged Navier-Stokes alpha (LANS-α) Turbulence Model in Primitive Equation Ocean Modeling The Lagrangian-Averaged Navier-Stokes alpha (LANS-α) Turbulence Model in Primitive Equation Ocean Modeling Mark R. Petersen with Matthew W. Hecht, Darryl D. Holm, and Beth A. Wingate Los Alamos National

More information

GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS

GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS I Main Topics A Why deal with tensors? B Order of scalars, vectors, and tensors C Linear transformation of scalars and vectors (and tensors) II Why

More information

Parameterization of Mixed Layer Eddies. Part I: Theory and Diagnosis

Parameterization of Mixed Layer Eddies. Part I: Theory and Diagnosis VOLUME 38 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y JUNE 2008 Parameterization of Mixed Layer Eddies. Part I: Theory and Diagnosis BAYLOR FOX-KEMPER* AND RAFFAELE FERRARI Department of

More information

Influence of forced near-inertial motion on the kinetic energy of a nearly-geostrophic flow

Influence of forced near-inertial motion on the kinetic energy of a nearly-geostrophic flow Abstract Influence of forced near-inertial motion on the kinetic energy of a nearly-geostrophic flow Stephanne Taylor and David Straub McGill University stephanne.taylor@mail.mcgill.ca The effect of forced

More information

Unit IV State of stress in Three Dimensions

Unit IV State of stress in Three Dimensions Unit IV State of stress in Three Dimensions State of stress in Three Dimensions References Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength

More information

2. Baroclinic Instability and Midlatitude Dynamics

2. Baroclinic Instability and Midlatitude Dynamics 2. Baroclinic Instability and Midlatitude Dynamics Midlatitude Jet Stream Climatology (Atlantic and Pacific) Copyright 26 Emily Shuckburgh, University of Cambridge. Not to be quoted or reproduced without

More information

2.1 NUMERICAL SOLUTION OF SIMULTANEOUS FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS. differential equations with the initial values y(x 0. ; l.

2.1 NUMERICAL SOLUTION OF SIMULTANEOUS FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS. differential equations with the initial values y(x 0. ; l. Numerical Methods II UNIT.1 NUMERICAL SOLUTION OF SIMULTANEOUS FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS.1.1 Runge-Kutta Method of Fourth Order 1. Let = f x,y,z, = gx,y,z be the simultaneous first order

More information

MATH 19520/51 Class 5

MATH 19520/51 Class 5 MATH 19520/51 Class 5 Minh-Tam Trinh University of Chicago 2017-10-04 1 Definition of partial derivatives. 2 Geometry of partial derivatives. 3 Higher derivatives. 4 Definition of a partial differential

More information

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort - 7 7 Z 8 q ) V x - X > q - < Y Y X V - z - - - - V - V - q \ - q q < -- V - - - x - - V q > x - x q - x q - x - - - 7 -» - - - - 6 q x - > - - x - - - x- - - q q - V - x - - ( Y q Y7 - >»> - x Y - ] [

More information

3.5: Lateral transport in the ocean interior

3.5: Lateral transport in the ocean interior 1 3.5: Lateral transport in the ocean interior 2 3 4 5 6 7 8 B. Fox-Kemper Cooperative Institute for Research in Environmental Sciences (CIRES) and Dept. of Atmospheric and Oceanic Sciences (ATOC), University

More information

CLIVAR WGOMD Mesoscale Eddy Workshop

CLIVAR WGOMD Mesoscale Eddy Workshop CLIVAR WGOMD Mesoscale Eddy Workshop UK Met Office, Hadley Centre 27-29 April 2009 27-29 April 2009 (Hadley Centre, UK) Griffies Intro to Mesoscale Eddy Workshop 27-29 April 2009 1 / 12 Motivation for

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

ELECTROMAGNETIC WAVES

ELECTROMAGNETIC WAVES Physics 4D ELECTROMAGNETIC WAVE Hans P. Paar 26 January 2006 i Chapter 1 Vector Calculus 1.1 Introduction Vector calculus is a branch of mathematics that allows differentiation and integration of (scalar)

More information

Specification of Eddy Transfer Coefficients in Coarse-Resolution Ocean Circulation Models*

Specification of Eddy Transfer Coefficients in Coarse-Resolution Ocean Circulation Models* VOLUME 27 JOURNAL OF PHYSICAL OCEANOGRAPHY MARCH 1997 Specification of Eddy Transfer Coefficients in Coarse-Resolution Ocean Circulation Models* MARTIN VISBECK, JOHN MARSHALL, AND TOM HAINE Center for

More information

Eddies, Waves, and Friction: Understanding the Mean Circulation in a Barotropic Ocean Model

Eddies, Waves, and Friction: Understanding the Mean Circulation in a Barotropic Ocean Model Eddies, Waves, and Friction: Understanding the Mean Circulation in a Barotropic Ocean Model Baylor Fox-Kemper Atmospheric and Oceanic Sciences Program, Princeton University and NOAA Climate and Global

More information

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction OCN/ATM/ESS 587 The wind-driven ocean circulation. Friction and stress The Ekman layer, top and bottom Ekman pumping, Ekman suction Westward intensification The wind-driven ocean. The major ocean gyres

More information

Chapter 5. The Differential Forms of the Fundamental Laws

Chapter 5. The Differential Forms of the Fundamental Laws Chapter 5 The Differential Forms of the Fundamental Laws 1 5.1 Introduction Two primary methods in deriving the differential forms of fundamental laws: Gauss s Theorem: Allows area integrals of the equations

More information

Modeling the Earth: Physics, Dynamics, and Numerics

Modeling the Earth: Physics, Dynamics, and Numerics Modeling the Earth: Physics, Dynamics, and Numerics Baylor Fox-Kemper (Brown Geological Sciences) Brown Physics Department Colloquium, 9/16/13, 16:00-17:00 Sponsors: NSF 1258907, 1245944, 0934737, 0855010,

More information

Diagnostics of Eddy Mixing in a Circumpolar Channel

Diagnostics of Eddy Mixing in a Circumpolar Channel Diagnostics of Eddy Mixing in a Circumpolar Channel Ryan Abernathey a, David Ferreira b, Andreas Klocker c a Scripps Institution of Oceanography b Massachusetts Institute of Technology c The Australian

More information

A Perturbation Approach to Understanding the E ects of Turbulence on Frontogenesis

A Perturbation Approach to Understanding the E ects of Turbulence on Frontogenesis Page 1 of 33 This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1 A Perturbation Approach to Understanding the E ects of Turbulence on Frontogenesis Abigail

More information

Chapter 3. Stability theory for zonal flows :formulation

Chapter 3. Stability theory for zonal flows :formulation Chapter 3. Stability theory for zonal flows :formulation 3.1 Introduction Although flows in the atmosphere and ocean are never strictly zonal major currents are nearly so and the simplifications springing

More information

Dynamically Consistent Parameterization of Mesoscale Eddies Part II: Eddy Fluxes and Diffusivity from Transient Impulses

Dynamically Consistent Parameterization of Mesoscale Eddies Part II: Eddy Fluxes and Diffusivity from Transient Impulses fluids Article Dynamically Consistent Parameterization of Mesoscale Eddies Part II: Eddy Fluxes and Diffusivity from Transient Impulses Pavel Berloff Imperial College London, Department of Mathematics,

More information

Lagrange Multipliers

Lagrange Multipliers Optimization with Constraints As long as algebra and geometry have been separated, their progress have been slow and their uses limited; but when these two sciences have been united, they have lent each

More information

Quasi-3D Multiscale Modeling Framework as a Physics Option in CAM-SE

Quasi-3D Multiscale Modeling Framework as a Physics Option in CAM-SE Quasi-3D Multiscale Modeling Framework as a Physics Option in CAM-SE Joon-Hee Jung, Celal S. Konor, Don Dazlich, David A. Randall, Department of Atmospheric Sciences, Colorado State University, USA Peter

More information

Stratification of the Ocean Boundary Surface Layer - year-long observations with gliders

Stratification of the Ocean Boundary Surface Layer - year-long observations with gliders Stratification of the Ocean Boundary Surface Layer - year-long observations with gliders Ayah Lazar 1,2 Andrew Thompson 2 Gillian Damerell 3 Karen Heywood 3 Christian Buckingham 4 Alberto Naveira Garabato

More information

19. Principal Stresses

19. Principal Stresses 19. Principal Stresses I Main Topics A Cauchy s formula B Principal stresses (eigenvectors and eigenvalues) C Example 10/24/18 GG303 1 19. Principal Stresses hkp://hvo.wr.usgs.gov/kilauea/update/images.html

More information

that individual/local amplitudes of Ro can reach O(1).

that individual/local amplitudes of Ro can reach O(1). Supplementary Figure. (a)-(b) As Figures c-d but for Rossby number Ro at the surface, defined as the relative vorticity ζ divided by the Coriolis frequency f. The equatorial band (os-on) is not shown due

More information

Computer Applications in Engineering and Construction Programming Assignment #9 Principle Stresses and Flow Nets in Geotechnical Design

Computer Applications in Engineering and Construction Programming Assignment #9 Principle Stresses and Flow Nets in Geotechnical Design CVEN 302-501 Computer Applications in Engineering and Construction Programming Assignment #9 Principle Stresses and Flow Nets in Geotechnical Design Date distributed : 12/2/2015 Date due : 12/9/2015 at

More information

12. Stresses and Strains

12. Stresses and Strains 12. Stresses and Strains Finite Element Method Differential Equation Weak Formulation Approximating Functions Weighted Residuals FEM - Formulation Classification of Problems Scalar Vector 1-D T(x) u(x)

More information

Dynamics of Downwelling in an Eddy-Resolving Convective Basin

Dynamics of Downwelling in an Eddy-Resolving Convective Basin OCTOBER 2010 S P A L L 2341 Dynamics of Downwelling in an Eddy-Resolving Convective Basin MICHAEL A. SPALL Woods Hole Oceanographic Institution, Woods Hole, Massachusetts (Manuscript received 11 March

More information

Topics. GG612 Structural Geology Sec3on Steve Martel POST 805 Lecture 4 Mechanics: Stress and Elas3city Theory

Topics. GG612 Structural Geology Sec3on Steve Martel POST 805 Lecture 4 Mechanics: Stress and Elas3city Theory GG612 Structural Geology Sec3on Steve Martel POST 805 smartel@hawaii.edu Lecture 4 Mechanics: Stress and Elas3city Theory 11/6/15 GG611 1 Topics 1. Stress vectors (trac3ons) 2. Stress at a point 3. Cauchy

More information

' Liberty and Umou Ono and Inseparablo "

' Liberty and Umou Ono and Inseparablo 3 5? #< q 8 2 / / ) 9 ) 2 ) > < _ / ] > ) 2 ) ) 5 > x > [ < > < ) > _ ] ]? <

More information

Numerical Simulations of Vortical Mode Stirring: Effects of Large-Scale Shear and Strain

Numerical Simulations of Vortical Mode Stirring: Effects of Large-Scale Shear and Strain DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Numerical Simulations of Vortical Mode Stirring: Effects of Large-Scale Shear and Strain M.-Pascale Lelong NorthWest Research

More information

Empirical climate models of coupled tropical atmosphere-ocean dynamics!

Empirical climate models of coupled tropical atmosphere-ocean dynamics! Empirical climate models of coupled tropical atmosphere-ocean dynamics! Matt Newman CIRES/CDC and NOAA/ESRL/PSD Work done by Prashant Sardeshmukh, Cécile Penland, Mike Alexander, Jamie Scott, and me Outline

More information

Numerical Modelling in Geosciences. Lecture 6 Deformation

Numerical Modelling in Geosciences. Lecture 6 Deformation Numerical Modelling in Geosciences Lecture 6 Deformation Tensor Second-rank tensor stress ), strain ), strain rate ) Invariants quantities independent of the coordinate system): - First invariant trace:!!

More information

Nonlinear Scale Interactions and Energy Pathways in the Ocean

Nonlinear Scale Interactions and Energy Pathways in the Ocean Nonlinear Scale Interactions and Energy Pathways in the Ocean 1,2 Hussein Aluie, 1 Matthew Hecht & 3 Geoff Vallis 1 LANL, the 2 New Mexico Consortium and 3 U of Exeter with support from LANL s Institute

More information

Stress, Strain, Mohr s Circle

Stress, Strain, Mohr s Circle Stress, Strain, Mohr s Circle The fundamental quantities in solid mechanics are stresses and strains. In accordance with the continuum mechanics assumption, the molecular structure of materials is neglected

More information

Idealized Models of Slantwise Convection in a Baroclinic Flow

Idealized Models of Slantwise Convection in a Baroclinic Flow 558 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 3 Idealized Models of Slantwise Convection in a Baroclinic Flow FIAMMETTA STRANEO,* MITSUHIRO KAWASE, AND STEPHEN C. RISER School of Oceanography, University

More information

Atm S 547 Boundary Layer Meteorology

Atm S 547 Boundary Layer Meteorology Lecture 8. Parameterization of BL Turbulence I In this lecture Fundamental challenges and grid resolution constraints for BL parameterization Turbulence closure (e. g. first-order closure and TKE) parameterizations

More information

Predictability & Variability of the Ocean Circulation: A non-normal perspective

Predictability & Variability of the Ocean Circulation: A non-normal perspective Predictability & Variability of the Ocean Circulation: A non-normal perspective Laure Zanna University of Oxford Eli Tziperman (Harvard University) Patrick Heimbach (MIT) Andrew M. Moore (UC Santa Cruz)

More information

Anisotropic Gent McWilliams Parameterization for Ocean Models

Anisotropic Gent McWilliams Parameterization for Ocean Models NOVEMBER 2004 SMITH AND GENT 2541 Anisotropic Gent McWilliams Parameterization for Ocean Models RICHARD D. SMITH Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico PETER R. GENT

More information

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1 AE/ME 339 Professor of Aerospace Engineering 12/21/01 topic7_ns_equations 1 Continuity equation Governing equation summary Non-conservation form D Dt. V 0.(2.29) Conservation form ( V ) 0...(2.33) t 12/21/01

More information

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy Chemistry 43 Lecture 7 Vibrational Spectroscopy NC State University The Dipole Moment Expansion The permanent dipole moment of a molecule oscillates about an equilibrium value as the molecule vibrates.

More information

Two-dimensional flow in a porous medium with general anisotropy

Two-dimensional flow in a porous medium with general anisotropy Two-dimensional flow in a porous medium with general anisotropy P.A. Tyvand & A.R.F. Storhaug Norwegian University of Life Sciences 143 Ås Norway peder.tyvand@umb.no 1 Darcy s law for flow in an isotropic

More information

Review for Exam 1. (a) Find an equation of the line through the point ( 2, 4, 10) and parallel to the vector

Review for Exam 1. (a) Find an equation of the line through the point ( 2, 4, 10) and parallel to the vector Calculus 3 Lia Vas Review for Exam 1 1. Surfaces. Describe the following surfaces. (a) x + y = 9 (b) x + y + z = 4 (c) z = 1 (d) x + 3y + z = 6 (e) z = x + y (f) z = x + y. Review of Vectors. (a) Let a

More information

MANY BILLS OF CONCERN TO PUBLIC

MANY BILLS OF CONCERN TO PUBLIC - 6 8 9-6 8 9 6 9 XXX 4 > -? - 8 9 x 4 z ) - -! x - x - - X - - - - - x 00 - - - - - x z - - - x x - x - - - - - ) x - - - - - - 0 > - 000-90 - - 4 0 x 00 - -? z 8 & x - - 8? > 9 - - - - 64 49 9 x - -

More information

Scalable Lateral Mixing and Coherent Turbulence

Scalable Lateral Mixing and Coherent Turbulence Scalable Lateral Mixing and Coherent Turbulence ONR Physical Oceanography, Code 32 DRI Workshop May 28-30, 2008 Participants: Terri Paluszkiewicz (ONR), Scott Harper (ONR); Ayal Anis (TAMU), Burkard Baschek

More information

How Sensitive Are Coarse General Circulation Models to Fundamental Approximations in the Equations of Motion?

How Sensitive Are Coarse General Circulation Models to Fundamental Approximations in the Equations of Motion? 306 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 34 How Sensitive Are Coarse General Circulation Models to Fundamental Approximations in the Equations of Motion? MARTIN LOSCH, ALISTAIR ADCROFT, AND JEAN-MICHEL

More information

AE/ME 339. Computational Fluid Dynamics (CFD) K. M. Isaac. Momentum equation. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.

AE/ME 339. Computational Fluid Dynamics (CFD) K. M. Isaac. Momentum equation. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept. AE/ME 339 Computational Fluid Dynamics (CFD) 9//005 Topic7_NS_ F0 1 Momentum equation 9//005 Topic7_NS_ F0 1 Consider the moving fluid element model shown in Figure.b Basis is Newton s nd Law which says

More information

SIO 211B, Rudnick, adapted from Davis 1

SIO 211B, Rudnick, adapted from Davis 1 SIO 211B, Rudnick, adapted from Davis 1 XVII.Empirical orthogonal functions Often in oceanography we collect large data sets that are time series at a group of locations. Moored current meter arrays do

More information

AB-267 DYNAMICS & CONTROL OF FLEXIBLE AIRCRAFT

AB-267 DYNAMICS & CONTROL OF FLEXIBLE AIRCRAFT FLÁIO SILESTRE DYNAMICS & CONTROL OF FLEXIBLE AIRCRAFT LECTURE NOTES LAGRANGIAN MECHANICS APPLIED TO RIGID-BODY DYNAMICS IMAGE CREDITS: BOEING FLÁIO SILESTRE Introduction Lagrangian Mechanics shall be

More information

Downscaling Global Warming with a Regional Ocean- Atmosphere Model over the Tropical Atlantic

Downscaling Global Warming with a Regional Ocean- Atmosphere Model over the Tropical Atlantic Downscaling Global Warming with a Regional Ocean- Atmosphere Model over the Tropical Atlantic Role of equatorial ocean dynamics: equatorial upwelling and ocean mesoscale variability Hyodae Seo and Shang-Ping

More information

Continuum mechanism: Stress and strain

Continuum mechanism: Stress and strain Continuum mechanics deals with the relation between forces (stress, σ) and deformation (strain, ε), or deformation rate (strain rate, ε). Solid materials, rigid, usually deform elastically, that is the

More information

Submesoscale Routes to Lateral Mixing in the Ocean

Submesoscale Routes to Lateral Mixing in the Ocean DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Submesoscale Routes to Lateral Mixing in the Ocean Amit Tandon Physics Department, UMass Dartmouth 285 Old Westport Rd

More information

GG612 Lecture 3. Outline

GG612 Lecture 3. Outline GG61 Lecture 3 Strain and Stress Should complete infinitesimal strain by adding rota>on. Outline Matrix Opera+ons Strain 1 General concepts Homogeneous strain 3 Matrix representa>ons 4 Squares of line

More information

Reduction of the usable wind work on the general circulation by forced symmetric instability

Reduction of the usable wind work on the general circulation by forced symmetric instability GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl044680, 2010 Reduction of the usable wind work on the general circulation by forced symmetric instability L. N. Thomas 1 and J. R. Taylor 2 Received

More information

Demonstrated Sensitivity to Langmuir Mixing in a Global Climate Model (CCSM)

Demonstrated Sensitivity to Langmuir Mixing in a Global Climate Model (CCSM) Demonstrated Sensitivity to Langmuir Mixing in a Global Climate Model (CCSM) Adrean Webb Baylor Fox-Kemper University of Colorado February 23, 2010 In Collaboration with: Research funded by: William Large,

More information

Stress equilibrium in southern California from Maxwell stress function models fit to both earthquake data and a quasi-static dynamic simulation

Stress equilibrium in southern California from Maxwell stress function models fit to both earthquake data and a quasi-static dynamic simulation Stress equilibrium in southern California from Maxwell stress function models fit to both earthquake data and a quasi-static dynamic simulation Peter Bird Dept. of Earth, Planetary, and Space Sciences

More information

No.65 (Vol 19 No.2) July 2014 Special Issue: High Resolution Ocean Climate Modelling

No.65 (Vol 19 No.2) July 2014 Special Issue: High Resolution Ocean Climate Modelling No.65 (Vol 19 No.2) July 2014 Special Issue: High Resolution Ocean Climate Modelling CLIVAR Ocean & Climate: Variability, Predictability and Change is the World Climate Research Programme s (WCRP) project

More information

Lecture Administration. 7.2 Continuity equation. 7.3 Boussinesq approximation

Lecture Administration. 7.2 Continuity equation. 7.3 Boussinesq approximation Lecture 7 7.1 Administration Hand back Q3, PS3. No class next Tuesday (October 7th). Class a week from Thursday (October 9th) will be a guest lecturer. Last question in PS4: Only take body force to τ stage.

More information

On the Fluctuating Buoyancy Fluxes Simulated in a 1 /108 OGCM

On the Fluctuating Buoyancy Fluxes Simulated in a 1 /108 OGCM 1270 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 43 On the Fluctuating Buoyancy Fluxes Simulated in a 1 /108 OGCM HONGMEI LI AND JIN-SONG VON STORCH Max Planck Institute for Meteorology,

More information

OWELL WEEKLY JOURNAL

OWELL WEEKLY JOURNAL Y \»< - } Y Y Y & #»»» q ] q»»»>) & - - - } ) x ( - { Y» & ( x - (» & )< - Y X - & Q Q» 3 - x Q Y 6 \Y > Y Y X 3 3-9 33 x - - / - -»- --

More information

LETTERS. Influence of the Thermohaline Circulation on Projected Sea Level Rise

LETTERS. Influence of the Thermohaline Circulation on Projected Sea Level Rise VOLUME 13 JOURNAL OF CLIMATE 15 JUNE 2000 LETTERS Influence of the Thermohaline Circulation on Projected Sea Level Rise RETO KNUTTI AND THOMAS F. STOCKER Climate and Environmental Physics, Physics Institute,

More information

Simplified Analytical Model of a Six-Degree-of-Freedom Large-Gap Magnetic Suspension System

Simplified Analytical Model of a Six-Degree-of-Freedom Large-Gap Magnetic Suspension System NASA Technical Memorandum 112868 Simplified Analytical Model of a Six-Degree-of-Freedom Large-Gap Magnetic Suspension System Nelson J. Groom Langley Research Center, Hampton, Virginia June 1997 National

More information

EKC314: TRANSPORT PHENOMENA Core Course for B.Eng.(Chemical Engineering) Semester II (2008/2009)

EKC314: TRANSPORT PHENOMENA Core Course for B.Eng.(Chemical Engineering) Semester II (2008/2009) EKC314: TRANSPORT PHENOMENA Core Course for B.Eng.(Chemical Engineering) Semester II (2008/2009) Dr. Mohamad Hekarl Uzir-chhekarl@eng.usm.my School of Chemical Engineering Engineering Campus, Universiti

More information

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1 Problem Set 2 Due Tuesday, September 27, 211 Problems from Carter: Chapter 2: 2a-d,g,h,j 2.6, 2.9; Chapter 3: 1a-d,f,g 3.3, 3.6, 3.7 Additional problems: (1) Consider the D 4 point group and use a coordinate

More information