Community Ocean Vertical Mixing (CVMix) Parameterizations

Size: px
Start display at page:

Download "Community Ocean Vertical Mixing (CVMix) Parameterizations"

Transcription

1 Community Ocean Vertical Mixing (CVMix) Parameterizations M. Levy 1, G. Danabasoglu 1, S. Griffies 2, T. Ringler 3, A. Adcroft 2, R. Hallberg 2, and D. Jacobsen 3 1 National Center for Atmospheric Research Boulder, CO 2 Geophysical Fluid Dynamics Laboratory Princeton, NJ 3 Los Alamos National Laboratory Los Alamos, NM OMWG Meeting Breckenridge, CO June 18, 2013 M. Levy (mlevy@ucar.edu) Vertical Mixing June 18, / 15

2 Outline 1 Vertical Mixing Overview Current State of Mixing What CVMix Brings to the Table Types of Mixing 2 Results (CVMix in Stand-alone Mode) 3 Final Remarks Progress / Timeline Summary References M. Levy (mlevy@ucar.edu) Vertical Mixing June 18, / 15

3 Why is Vertical Mixing Important to Ocean Models? Basics (Oct 14, 2012) Sea surface temperature (SST) has a major role in atmosphere ocean energy exchange Vertical mixing is one of many processes affecting SST Occurs on scales that are not resolved by current ocean models, need to use parameterization instead Other physical quantities (tracers, salinity, etc) also affected by mixing M. Levy (mlevy@ucar.edu) Vertical Mixing June 18, / 15

4 Mixing in Ocean Models Current State Numerous techniques for parameterizing the mixing process Currently, model developers choose their favorite parameterization(s) and code them up as part of the ocean model CVMix Project Our goal: produce an easy-to-use library containing a range of parameterizations Secondary goal: provide a stand-alone driver to test the library on its own M. Levy (mlevy@ucar.edu) Vertical Mixing June 18, / 15

5 Why CVMix? Driving Force MPAS-O does not have a KPP module yet and MOM5 is using an outdated implementation. CVMix will be used by MPAS-O and MOM6. Other Benefits 1 Reduce duplicate code for example, static mixing occurs as a step in many parameterizations 2 CSEG is working to include non-pop / non-data ocean models in CESM Vertical mixing library allows [some] physics to stay the same even if dynamics change Allow more detailed model inter-comparisons M. Levy (mlevy@ucar.edu) Vertical Mixing June 18, / 15

6 Vertical Mixing Overview kw=1 z=η(x, y, t) Divide column into nlevs levels dzw(kw=1) kt=1 dzt(kt=1) Data on cell centers and interfaces Center index kt = 1... nlevs z dzw(kw=2) dzw(kw=3) kw=2 kt=2 kw=3 dzt(kt=2) zw(kw=4) zt(kt=3) Interface index kw = 1... nlevs+1 Depth z η at surface 0 at average sea level H(x,y) at bottom (positive up!) kt,kw dzw(kw=4) dzw(kw=5) kt=3 kw=4 kt=4 dzt(kt=3) dzt(kt=4) zw(kw=nlevs+1) kw=5 z= H(x, y) What Does a Vertical Mixing Parameterization Look Like? Inputs: combination of parameters and physical values in column Outputs: viscosity (ν) and tracer diffusivity (κ) coefficients on cell interfaces M. Levy (mlevy@ucar.edu) Vertical Mixing June 18, / 15

7 Blue indicates method is already in package. M. Levy Vertical Mixing June 18, / 15 [Some] Mixing Parameterizations 1 Static background mixing Constant mixing Bryan-Lewis (1979) Henyey et al. (1986) 2 Shear-induced mixing ( Richardson number mixing ) Pacanowski and Philander (1981) Large et al. (1994) Jackson et al. (2008) 3 Tidal mixing Simmons et al Polzin (2009) / Melet et al. (2013) 4 Double diffusion mixing (Schmitt, 1994 / Large et al., 1994 / Danabasoglu et al., 2006) 5 K-profile parameterization (KPP; Large et al., 1994) 6 Vertical convective mixing

8 Bryan-Lewis Profile Want diffusivity to increase towards bottom of ocean. At right: diffusivity profile of two columns representing columns in different latitudes. Diffusivity and Viscosity Depend on Depth κ = c 0 + c 1 π tan 1 ν = Prκ ( ) c 2 ( z c 3 ) M. Levy (mlevy@ucar.edu) Vertical Mixing June 18, / 15

9 Shear Mixing Want diffusivity to decrease as Richardson number (Ri) increases; κ = 0 if Ri Ri 0 = 0.7. At right: The stand-alone driver produces the shear mixing diffusivity profile plot from Fig. 3 of Large, et al. (1994). Diffusivity and Viscosity Depend on Richardson Number κ = ν = Prκ κ 0 Ri 0 κ 0 [1 (Ri/Ri 0 ) p 1 ] p 2 0 < Ri < Ri 0 0 Ri Ri 0 M. Levy (mlevy@ucar.edu) Vertical Mixing June 18, / 15

10 Double Diffusion Mixing Two regimes Determine which regime we are in via stratification parameter R ρ = α ( ) Θ/ z, β S/ z where α is the thermal expansion coefficient and β is the haline contraction coefficient 1 Salt Fingering ( S/ z > 0 and 1 < R ρ < R 0 ρ ): salt water above fresher water salt water will sink 2 Diffusive Convective Instability ( Θ/ z < 0 and 0 < R ρ < 1): cold water above warm water cold water will sink M. Levy (mlevy@ucar.edu) Vertical Mixing June 18, / 15

11 Double Diffusion Mixing The stand-alone driver produces the double diffusivity profile plots from Fig. 4 of Large, et al. (1994). Salt-Fingering Regime Diffusive Convective Regime ( ) p1 ] p2 ( [ ]) R ρ 1 1 R ρ κ = κ 0 [1 κ = ν mol c 1 exp c 2 exp c 3 R 0 ρ 1 R ρ M. Levy (mlevy@ucar.edu) Vertical Mixing June 18, / 15

12 Tidal Mixing Tidal Energy Flux Map Diffusivity North of Madagascar Diffusivity Depends on Tidal Energy Flux, Depth, Density, and Buoyancy F(x,y,z) = κ = qγe(x,y)f(x,y,z) ρn 2 e z/ζ ζ(e H(x,y)/ζ e η(x,y)/ζ ) M. Levy (mlevy@ucar.edu) Vertical Mixing June 18, / 15

13 What s Been Done and What s Coming Progress Finished / tested modules from previous slide Built much of the needed infrastructure for stand-alone drivers (building, IO, etc) Working on a POP branch that can use CVMix modules Timeline Still need to add KPP module as well as a few other modules MOM & MPAS-O need to test CVMix interfaces Need to release code for public use Not release-quality yet (pressing issue: need to document APIs) If you re interested in helping pre-release testing, come talk to me! Goal: have KPP (including standalone driver) ready ASAP M. Levy (mlevy@ucar.edu) Vertical Mixing June 18, / 15

14 Summary Multi-lab collaboration to build vertical mixing library No change in POP interface, but changes under the hood Ability to run stand-alone / single-column mixing Should be available by end of summer M. Levy (mlevy@ucar.edu) Vertical Mixing June 18, / 15

15 References 1 Bryan, K. and L. J. Lewis, 1979: A water mass model of the world ocean. Journal of Geophysical Research, 84, Danabasoglu, G., W. G. Large, J. J. Tribbia, P. R. Gent, B. P. Briegleb, and J. C. McWilliams, 2006: Diurnal coupling in the tropical oceans of CCSM3. Journal of Climate, 19, Henyey, F., J. Wright, and S. M. Flatte, 1986: Energy and action flow through the internal wave field: an eikonal approach. Journal of Geophysical Research, 91, Jackson, L., R. Hallberg, and S. Legg, 2008: A parameterization of shear-driven turbulence for ocean climate models. Journal of Physical Oceanography, 38, Large, W., J. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32, Melet, A., R. Hallberg, S. Legg, and K. Polzin, 2013: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. Journal of Physical Oceanography, 43, Pacanowksi, R. C. and G. Philander, 1981: Parameterization of vertical mixing in munerical models of the tropical ocean. Journal of Physical Oceanography, 11, Polzin, K. L., 2009: An abyssal recipe. Ocean Modelling, 30, Schmitt, R. W., 1994: Double diffusion in oceanography. Annual Review of Fluid Mechanics, 26, Simmons, H. L., S. R. Jayne, L. C. St. Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modelling, 6, M. Levy (mlevy@ucar.edu) Vertical Mixing June 18, / 15

Community Ocean Vertical Mixing (CVMix) Parameterizations

Community Ocean Vertical Mixing (CVMix) Parameterizations Community Ocean Vertical Mixing (CVMix) Parameterizations M. Levy 1, G. Danabasoglu 1, S. Griffies 2, T. Ringler 3, A. Adcroft 2, R. Hallberg 2, D. Jacobsen 3, and W. Large 1 1 National Center for Atmospheric

More information

Community Ocean Vertical Mixing (CVMix) Status Update

Community Ocean Vertical Mixing (CVMix) Status Update Community Ocean Vertical Mixing (CVMix) Status Update M. Levy 1,G.Danabasoglu 1, S. Griffies 2,T.Ringler 3, A. Adcroft 2, R. Hallberg 2,D.Jacobsen 3, and W. Large 1 1 National Center for Atmospheric Research

More information

ICTP Ocean Modelling Summer School Lab CVMix Vertical Mixing Library

ICTP Ocean Modelling Summer School Lab CVMix Vertical Mixing Library ICTP Ocean Modelling Summer School Lab CVMix Vertical Mixing Library CVMix Team: M. Levy 1, G. Danabasoglu 1, S. Griffies 2, T. Ringler 3, A. Adcroft 2, R. Hallberg 2, D. Jacobsen 3, and W. Large 1 1 National

More information

Fully-Coupled and Forced Ocean Sea-Ice Simulations Towards CESM2 (since mini-breck) Defining the Ocean Component of CESM2

Fully-Coupled and Forced Ocean Sea-Ice Simulations Towards CESM2 (since mini-breck) Defining the Ocean Component of CESM2 Fully-Coupled and Forced Ocean Sea-Ice Simulations Towards CESM2 (since mini-breck) Defining the Ocean Component of CESM2 OMWG PLAN FOR DEFINING THE CESM2 OCEAN COMPONENT Timeline 01 March 2016 22 April

More information

Ocean Code Development at GFDL 2013

Ocean Code Development at GFDL 2013 Ocean Code Development at GFDL 2013 Stephen.Griffies@noaa.gov Alistair Adcroft Robert Hallberg Presentation to the CLIVAR WGOMD Hobart, Australia February 21, 2013 Stephen Griffies (NOAA/GFDL) GFDL Ocean

More information

A process study of tidal mixing over rough topography

A process study of tidal mixing over rough topography Abstract A process study of tidal mixing over rough topography Young Ro Yi, Sonya Legg and Robert Nazarian Geosciences Department, Atmospheric and Oceanice Sciences Program, Princeton University yryi@princeton.edu

More information

OCEAN MODELING II. Parameterizations

OCEAN MODELING II. Parameterizations OCEAN MODELING II Parameterizations Gokhan Danabasoglu Oceanography Section Climate and Global Dynamics Division National Center for Atmospheric Research NCAR is sponsored by the National Science Foundation

More information

Capabilities of Ocean Mixed Layer Models

Capabilities of Ocean Mixed Layer Models Capabilities of Ocean Mixed Layer Models W.G. Large National Center for Atmospheric Research Boulder Co, USA 1. Introduction The capabilities expected in today s state of the art models of the ocean s

More information

Ocean Modeling II. Parameterized Physics. Peter Gent. Oceanography Section NCAR

Ocean Modeling II. Parameterized Physics. Peter Gent. Oceanography Section NCAR Ocean Modeling II Parameterized Physics Peter Gent Oceanography Section NCAR Ocean Modelling Challenges LO-RES (3 o ) O(100+ years/day) WORKHORSE (1 o ) O(10-100 years/day) HI-RES (0.1 o ) O(1 year/day)

More information

HYCOM Overview. By George Halliwell, 13 February 2002

HYCOM Overview. By George Halliwell, 13 February 2002 HYCOM Overview By George Halliwell, 13 February 2002 General Remarks The HYbrid Coordinate Ocean Model (HYCOM; (Halliwell et al., 1998; 2000; Bleck, 2001) is a primitive equation ocean general circulation

More information

R. Hallberg, A. Adcroft, J. P. Dunne, J. P. Krasting and R. J. Stouffer NOAA/GFDL & Princeton University

R. Hallberg, A. Adcroft, J. P. Dunne, J. P. Krasting and R. J. Stouffer NOAA/GFDL & Princeton University Sensitivity of 21st Century Steric Sea Level Rise to Ocean Model Formulation R. Hallberg, A. Adcroft, J. P. Dunne, J. P. Krasting and R. J. Stouffer NOAA/GFDL & Princeton University Hallberg, R., A. Adcroft,

More information

Susan Bates Ocean Model Working Group Science Liaison

Susan Bates Ocean Model Working Group Science Liaison Susan Bates Ocean Model Working Group Science Liaison Climate Simulation Laboratory (CSL) Accelerated Scientific Discovery (ASD) NCAR Strategic Capability (NSC) Climate Process Teams (CPTs) NSF Earth System

More information

The Impact of Topographic Steepness on Tidal Dissipation at Bumpy Topography

The Impact of Topographic Steepness on Tidal Dissipation at Bumpy Topography fluids Article The Impact of Topographic Steepness on Tidal Dissipation at Bumpy Topography Young R. Yi 1, Sonya Legg 2, * and Robert H. Nazarian 2 ID 1 Department of Geosciences, Princeton University,

More information

How we think about sea level in ocean climate models circa 2012: (a brief version)

How we think about sea level in ocean climate models circa 2012: (a brief version) How we think about sea level in ocean climate models circa 2012: (a brief version) Stephen.Griffies@noaa.gov NOAA/GFDL Princeton USA Presentation at the CESM workshop Breckenridge, Colorado 19 June 2012

More information

The KPP boundary layer scheme: revisiting its formulation and benchmarking one-dimensional ocean simulations relative to LES

The KPP boundary layer scheme: revisiting its formulation and benchmarking one-dimensional ocean simulations relative to LES The KPP boundary layer scheme: revisiting its formulation and benchmarking one-dimensional ocean simulations relative to LES Luke Van Roekel a, Alistair J. Adcroft b, Gokhan Danabasoglu c, Stephen M. Griffies

More information

Assessing the Influence of Surface Wind Waves to the Global Climate by Incorporating WAVEWATCH III in CESM! Phase I: Langmuir Mixing in KPP

Assessing the Influence of Surface Wind Waves to the Global Climate by Incorporating WAVEWATCH III in CESM! Phase I: Langmuir Mixing in KPP Assessing the Influence of Surface Wind Waves to the Global Climate by Incorporating WAVEWATCH III in CESM Phase I: Langmuir Mixing in KPP Image: NPR.org, Deep Water Horizon Spill Qing Li Baylor Fox-Kemper,

More information

Vertical mixing and the ocean circulation. Chris Brierley, Postdoc Luncheon, 14 th April 2010

Vertical mixing and the ocean circulation. Chris Brierley, Postdoc Luncheon, 14 th April 2010 Vertical mixing and the ocean circulation Chris Brierley, Postdoc Luncheon, 14 th April 2010 Vertical mixing what and why What is its global impact? Mean climate Climate change Changing sources of mixing

More information

MERIDIONAL OVERTURNING CIRCULATION: SOME BASICS AND ITS MULTI-DECADAL VARIABILITY

MERIDIONAL OVERTURNING CIRCULATION: SOME BASICS AND ITS MULTI-DECADAL VARIABILITY MERIDIONAL OVERTURNING CIRCULATION: SOME BASICS AND ITS MULTI-DECADAL VARIABILITY Gokhan Danabasoglu National Center for Atmospheric Research OUTLINE: - Describe thermohaline and meridional overturning

More information

The problem Mixing in isopycnal coordinates Summary Discussion questions References. buoyancy fluxes

The problem Mixing in isopycnal coordinates Summary Discussion questions References. buoyancy fluxes The Gent-McWilliams parameterization of eddy buoyancy fluxes (as told by Cesar) slides at tinyurl.com/potheory-gm Gent & McWilliams, JPO, 1990 Griffies, JPO, 1998 (The most cited JPO paper ) Climate models

More information

Tracer Based Ages, Transit Time Distributions, and Water Mass Composition: Observational and Computational Examples

Tracer Based Ages, Transit Time Distributions, and Water Mass Composition: Observational and Computational Examples Tracer Based Ages, Transit Time Distributions, and Water Mass Composition: Observational and Computational Examples Frank Bryan Climate and Global Dynamics Division National Center for Atmospheric Research

More information

Ocean Mixing and Climate Change

Ocean Mixing and Climate Change Ocean Mixing and Climate Change Factors inducing seawater mixing Different densities Wind stirring Internal waves breaking Tidal Bottom topography Biogenic Mixing (??) In general, any motion favoring turbulent

More information

Buoyancy Fluxes in a Stratified Fluid

Buoyancy Fluxes in a Stratified Fluid 27 Buoyancy Fluxes in a Stratified Fluid G. N. Ivey, J. Imberger and J. R. Koseff Abstract Direct numerical simulations of the time evolution of homogeneous stably stratified shear flows have been performed

More information

Sensitivity of the Ocean State to the Vertical Distribution of Internal-Tide-Driven Mixing

Sensitivity of the Ocean State to the Vertical Distribution of Internal-Tide-Driven Mixing 602 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 43 Sensitivity of the Ocean State to the Vertical Distribution of Internal-Tide-Driven Mixing ANGELIQUE MELET Geophysical Fluid Dynamics

More information

SMS 303: Integrative Marine

SMS 303: Integrative Marine SMS 303: Integrative Marine Sciences III Instructor: E. Boss, TA: A. Palacz emmanuel.boss@maine.edu, 581-4378 5 weeks & topics: diffusion, mixing, tides, Coriolis, and waves. Pre-class quiz. Mixing: What

More information

For example, for values of A x = 0 m /s, f 0 s, and L = 0 km, then E h = 0. and the motion may be influenced by horizontal friction if Corioli

For example, for values of A x = 0 m /s, f 0 s, and L = 0 km, then E h = 0. and the motion may be influenced by horizontal friction if Corioli Lecture. Equations of Motion Scaling, Non-dimensional Numbers, Stability and Mixing We have learned how to express the forces per unit mass that cause acceleration in the ocean, except for the tidal forces

More information

Parameterizations with and without Climate Process Teams

Parameterizations with and without Climate Process Teams Parameterizations with and without Climate Process Teams Baylor Fox-Kemper Brown University, DEEP Sciences Mixed Layer Eddy Sponsors: NSF OCE-0612143, OCE-0612059, OCE-0825376, DMS-0855010, and OCE-0934737

More information

CESM OMWG Development Timeline Path Towards CESM2

CESM OMWG Development Timeline Path Towards CESM2 CESM OMWG Development Timeline Path Towards CESM2 Focus Topics Algorithmic Developments z*; Robert filter; Natural boundary conditions New horizontal and vertical grids Diabatic Processes CVMix in POP2

More information

Abyssal Ocean Circulation. Raffaele Ferrari Earth, Atmospheric and Planetary Sciences, MIT Les Houches, August 2017

Abyssal Ocean Circulation. Raffaele Ferrari Earth, Atmospheric and Planetary Sciences, MIT Les Houches, August 2017 Abyssal Ocean Circulation Raffaele Ferrari Earth, Atmospheric and Planetary Sciences, MIT Les Houches, August 2017 Outline The deep ocean The deep circulation The sinking branch: deep convection The upwelling

More information

SENSITIVITY OF AN OCEAN GENERAL CIRCULATION MODEL TO A PARAMETERIZATION OF NEAR-SURFACE EDDY FLUXES. Gokhan Danabasoglu

SENSITIVITY OF AN OCEAN GENERAL CIRCULATION MODEL TO A PARAMETERIZATION OF NEAR-SURFACE EDDY FLUXES. Gokhan Danabasoglu SENSITIVITY OF AN OCEAN GENERAL CIRCULATION MODEL TO A PARAMETERIZATION OF NEAR-SURFACE EDDY FLUXES Gokhan Danabasoglu National Center for Atmospheric Research, Boulder, CO Raffaele Ferrari Massachusetts

More information

Impact of atmospheric CO 2 doubling on the North Pacific Subtropical Mode Water

Impact of atmospheric CO 2 doubling on the North Pacific Subtropical Mode Water GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L06602, doi:10.1029/2008gl037075, 2009 Impact of atmospheric CO 2 doubling on the North Pacific Subtropical Mode Water Hyun-Chul Lee 1,2 Received 19 December 2008;

More information

Understanding and modeling dense overflows. Sonya Legg Princeton University AOMIP/FAMOS school for young scientists 2012

Understanding and modeling dense overflows. Sonya Legg Princeton University AOMIP/FAMOS school for young scientists 2012 Understanding and modeling dense overflows Sonya Legg Princeton University AOMIP/FAMOS school for young scientists 2012 What is an overflow? Dense water formation on shelf or marginal sea Dense water accelerates

More information

Analysis of Mixing and Dynamics Associated with the Dissolution of Hurricane-Induced Cold Wakes

Analysis of Mixing and Dynamics Associated with the Dissolution of Hurricane-Induced Cold Wakes DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Analysis of Mixing and Dynamics Associated with the Dissolution of Hurricane-Induced Cold Wakes Carol Anne Clayson Dept.

More information

Thermodynamics of Atmospheres and Oceans

Thermodynamics of Atmospheres and Oceans Thermodynamics of Atmospheres and Oceans Judith A. Curry and Peter J. Webster PROGRAM IN ATMOSPHERIC AND OCEANIC SCIENCES DEPARTMENT OF AEROSPACE ENGINEERING UNIVERSITY OF COLORADO BOULDER, COLORADO USA

More information

Upper-Ocean Processes and Air-Sea Interaction in the Indonesian Seas

Upper-Ocean Processes and Air-Sea Interaction in the Indonesian Seas Upper-Ocean Processes and Air-Sea Interaction in the Indonesian Seas Janet Sprintall, Scripps Institution of Oceanography, USA Arnold L. Gordon, Asmi M. Napitu, LDEO, USA Ariane Koch-Larrouy, LEGOS, France

More information

τ xz = τ measured close to the the surface (often at z=5m) these three scales represent inner unit or near wall normalization

τ xz = τ measured close to the the surface (often at z=5m) these three scales represent inner unit or near wall normalization τ xz = τ measured close to the the surface (often at z=5m) these three scales represent inner unit or near wall normalization Note that w *3 /z i is used to normalized the TKE equation in case of free

More information

OCEAN MODELING. Joseph K. Ansong. (University of Ghana/Michigan)

OCEAN MODELING. Joseph K. Ansong.   (University of Ghana/Michigan) OCEAN MODELING Joseph K. Ansong Email: jkansong@umich.edu (University of Ghana/Michigan) OUTLINE INTRODUCTION MOTIVATION EQUATIONS OF MOTION INTRODUCTION TO ROMS (Regional Ocean Modeling System) EXAMPLES

More information

Climate of an Earth- like Aquaplanet: the high- obliquity case and the <dally- locked case

Climate of an Earth- like Aquaplanet: the high- obliquity case and the <dally- locked case Climate of an Earth- like Aquaplanet: the high- obliquity case and the

More information

Modeling and Parameterizing Mixed Layer Eddies

Modeling and Parameterizing Mixed Layer Eddies Modeling and Parameterizing Mixed Layer Eddies Baylor Fox-Kemper (MIT) with Raffaele Ferrari (MIT), Robert Hallberg (GFDL) Los Alamos National Laboratory Wednesday 3/8/06 Mixed Layer Eddies Part I: Baroclinic

More information

Effects of tidally driven mixing on the general circulation in the ocean model MPIOM

Effects of tidally driven mixing on the general circulation in the ocean model MPIOM Effects of tidally driven mixing on the general circulation in the ocean model MPIOM E. Exarchou a,b,, J.-S. von Storch b, J. Jungclaus b, a International Max Planck Research School on Earth System Modeling,

More information

Salinity Processes in the Upper. Ocean Regional Study (SPURS) Ray Schmitt, WHOI

Salinity Processes in the Upper. Ocean Regional Study (SPURS) Ray Schmitt, WHOI Salinity Processes in the Upper Outgrowth of: Ocean Regional Study (SPURS) Ray Schmitt, WHOI CLIVAR Salinity Working Group (May 06 meeting and 07 report) Salinity issue of Oceanography (Mar. 08) NASA Workshop

More information

Turbulent mixing of stratified flows

Turbulent mixing of stratified flows Turbulent mixing of stratified flows Esteban G. Tabak Fabio A. Tal Courant Institute of Mathematical Sciences New York University Abstract A mathematical model for turbulent mixing of stratified, sheared

More information

1. Oceans. Example 2. oxygen.

1. Oceans. Example 2. oxygen. 1. Oceans a) Basic facts: There are five oceans on earth, making up about 72% of the planet s surface and holding 97% of the hydrosphere. Oceans supply the planet with most of its oxygen, play a vital

More information

OCN/ATM/ESS 587. Ocean circulation, dynamics and thermodynamics.

OCN/ATM/ESS 587. Ocean circulation, dynamics and thermodynamics. OCN/ATM/ESS 587 Ocean circulation, dynamics and thermodynamics. Equation of state for seawater General T/S properties of the upper ocean Heat balance of the upper ocean Upper ocean circulation Deep circulation

More information

Lecture 1. Amplitude of the seasonal cycle in temperature

Lecture 1. Amplitude of the seasonal cycle in temperature Lecture 6 Lecture 1 Ocean circulation Forcing and large-scale features Amplitude of the seasonal cycle in temperature 1 Atmosphere and ocean heat transport Trenberth and Caron (2001) False-colour satellite

More information

Tropical Pacific responses to Neogene Andean uplift and highlatitude. Ran Feng and Chris Poulsen University of Michigan

Tropical Pacific responses to Neogene Andean uplift and highlatitude. Ran Feng and Chris Poulsen University of Michigan Tropical Pacific responses to Neogene Andean uplift and highlatitude sea ice expansion Ran Feng and Chris Poulsen University of Michigan Reconstructions of Neogene equatorial Pacific SSTs SST difference

More information

Tracer transport and meridional overturn in the equatorial ocean

Tracer transport and meridional overturn in the equatorial ocean OFES workshops, February 2006 Tracer transport and meridional overturn in the equatorial ocean Akio Ishida with Yoshikazu Sasai, Yasuhiro Yamanaka, Hideharu Sasaki, and the OFES members Chlorofluorocarbon

More information

The similarity solution for turbulent mixing of two-layer stratified fluid

The similarity solution for turbulent mixing of two-layer stratified fluid Environ Fluid Mech (28) 8:551 56 DOI 1.17/s1652-8-976-5 ORIGINAL ARTICLE The similarity solution for turbulent mixing of two-layer stratified fluid J. A. Whitehead Received: 1 March 28 / Accepted: 29 May

More information

Internal Wave Modeling in Oceanic General Circulation Models

Internal Wave Modeling in Oceanic General Circulation Models Internal Wave Modeling in Oceanic General Circulation Models Flavien Gouillon, Eric P. Chassignet Center for Ocean - Atmospheric Prediction Studies The Florida State University Introduction One of the

More information

Internal Tide Generation Over a Continental Shelf: Analytical and Numerical Calculations

Internal Tide Generation Over a Continental Shelf: Analytical and Numerical Calculations Internal Tide Generation Over a Continental Shelf: Analytical and Numerical Calculations Gaëlle Faivre Final report of the nd year engineering degree at the MATMECA School Advisors Pr. Eric Chassignet,

More information

Comparison between vertical shear mixing and surface wave-induced mixing in the global ocean

Comparison between vertical shear mixing and surface wave-induced mixing in the global ocean Comparison between vertical shear mixing and surface wave-induced mixing in the global ocean Fangli Qiao and Chuanjiang Huang Key Laboratory of Marine Science and Numerical Modeling First Institute of

More information

Ocean Mixing with Lead-Dependent Subgrid Scale Brine Rejection Parameterization in a Climate Model

Ocean Mixing with Lead-Dependent Subgrid Scale Brine Rejection Parameterization in a Climate Model J. Ocean Univ. China (Oceanic and Coastal Sea Research) DOI 10.1007/s11802-012-2094-4 ISSN 1672-5182, 2012 11 (4): 473-480 http://www.ouc.edu.cn/xbywb/ E-mail:xbywb@ouc.edu.cn Ocean Mixing with Lead-Dependent

More information

Frictional boundary layers

Frictional boundary layers Chapter 12 Frictional boundary layers Turbulent convective boundary layers were an example of boundary layers generated by buoyancy forcing at a boundary. Another example of anisotropic, inhomogeneous

More information

Ocean Dynamics. The Great Wave off Kanagawa Hokusai

Ocean Dynamics. The Great Wave off Kanagawa Hokusai Ocean Dynamics The Great Wave off Kanagawa Hokusai LO: integrate relevant oceanographic processes with factors influencing survival and growth of fish larvae Physics Determining Ocean Dynamics 1. Conservation

More information

Eddy-mixed layer interactions in the ocean

Eddy-mixed layer interactions in the ocean Eddy-mixed layer interactions in the ocean Raffaele Ferrari 1 Massachusetts Institute of Technology, Cambridge, MA 02139, USA Numerical models have become essential tools in the study and prediction of

More information

WQMAP (Water Quality Mapping and Analysis Program) is a proprietary. modeling system developed by Applied Science Associates, Inc.

WQMAP (Water Quality Mapping and Analysis Program) is a proprietary. modeling system developed by Applied Science Associates, Inc. Appendix A. ASA s WQMAP WQMAP (Water Quality Mapping and Analysis Program) is a proprietary modeling system developed by Applied Science Associates, Inc. and the University of Rhode Island for water quality

More information

Geophysical Research Letters

Geophysical Research Letters Geophysical Research Letters RESEARCH LETTER 10.1002/2016GL070058 Key Points: SouthernOceansurfaceforcing controls the global deep ocean density stratification over a larger depth range than previously

More information

Estimates of Diapycnal Mixing Using LADCP and CTD data from I8S

Estimates of Diapycnal Mixing Using LADCP and CTD data from I8S Estimates of Diapycnal Mixing Using LADCP and CTD data from I8S Kurt L. Polzin, Woods Hole Oceanographic Institute, Woods Hole, MA 02543 and Eric Firing, School of Ocean and Earth Sciences and Technology,

More information

Parameterization Improvements in an Eddy-Permitting Ocean Model for Climate

Parameterization Improvements in an Eddy-Permitting Ocean Model for Climate 1447 Parameterization Improvements in an Eddy-Permitting Ocean Model for Climate PETER R. GENT AND ANTHONY P. CRAIG National Center for Atmospheric Research, Boulder, Colorado CECILIA M. BITZ Polar Science

More information

NW Atlantic warming under climate change: new simulations with high-resolution CESM

NW Atlantic warming under climate change: new simulations with high-resolution CESM NW Atlantic warming under climate change: new simulations with high-resolution CESM Justin Small John Truesdale, Susan Bates, Gary Strand, Jerry Meehl, Don Wuebbles Acknowledging: Mike Alexander, Andrew

More information

Supporting Information for Nonlinear Response of Iceberg Side Melting to Ocean Currents

Supporting Information for Nonlinear Response of Iceberg Side Melting to Ocean Currents GEOPHYSICAL RESEARCH LETTERS Supporting Information for Nonlinear Response of Iceberg Side Melting to Ocean Currents A. FitzMaurice 1, C. Cenedese 2, and F. Straneo 2 Contents of this file 1. Text S1 to

More information

Thermohaline and wind-driven circulation

Thermohaline and wind-driven circulation Thermohaline and wind-driven circulation Annalisa Bracco Georgia Institute of Technology School of Earth and Atmospheric Sciences NCAR ASP Colloquium: Carbon climate connections in the Earth System Tracer

More information

Léo Siqueira Ph.D. Meteorology and Physical Oceanography

Léo Siqueira Ph.D. Meteorology and Physical Oceanography Léo Siqueira Ph.D. Meteorology and Physical Oceanography Modular Ocean Model (Griffies 2009) from GFDL version MOM4p1: Includes the Sea Ice Simulator (SIS) built-in ice model (Winton 2000). Includes TOPAZ

More information

Coordinated Ocean-ice Reference Experiments phase II (CORE-II)

Coordinated Ocean-ice Reference Experiments phase II (CORE-II) Coordinated Ocean-ice Reference Experiments phase II (CORE-II) Gokhan Danabasoglu, Stephen G. Yeager, William G. Large National Center for Atmospheric Research, Boulder, CO, USA Stephen M. Griffies NOAA

More information

Improved Fields of Satellite-Derived Ocean Surface Turbulent Fluxes of Energy and Moisture

Improved Fields of Satellite-Derived Ocean Surface Turbulent Fluxes of Energy and Moisture Improved Fields of Satellite-Derived Ocean Surface Turbulent Fluxes of Energy and Moisture First year report on NASA grant NNX09AJ49G PI: Mark A. Bourassa Co-Is: Carol Anne Clayson, Shawn Smith, and Gary

More information

Ocean Circulation. In partnership with Dr. Zafer Top

Ocean Circulation. In partnership with Dr. Zafer Top Ocean Circulation In partnership with Dr. Zafer Top Samantha Hampton Honors Science December 15, 2014 Ocean Circulation is the large scale movement of waters in the ocean basins. Dr. Zafer Top studies

More information

Comparing QBO and ENSO impacts on stratospheric transport in WACCM-SD and -FR

Comparing QBO and ENSO impacts on stratospheric transport in WACCM-SD and -FR Comparing QBO and ENSO impacts on stratospheric transport in WACCM-SD and -FR Multivariate ENSO Index + QBO shear index based on Singapore wind U50-U25 CESM Chemistry WG Meeting Boulder, CO February 10,

More information

Atmospheric Sciences 321. Science of Climate. Lecture 13: Surface Energy Balance Chapter 4

Atmospheric Sciences 321. Science of Climate. Lecture 13: Surface Energy Balance Chapter 4 Atmospheric Sciences 321 Science of Climate Lecture 13: Surface Energy Balance Chapter 4 Community Business Check the assignments HW #4 due Wednesday Quiz #2 Wednesday Mid Term is Wednesday May 6 Practice

More information

meters, we can re-arrange this expression to give

meters, we can re-arrange this expression to give Turbulence When the Reynolds number becomes sufficiently large, the non-linear term (u ) u in the momentum equation inevitably becomes comparable to other important terms and the flow becomes more complicated.

More information

Concurrent simulation of the eddying general circulation and tides in a global ocean model

Concurrent simulation of the eddying general circulation and tides in a global ocean model Concurrent simulation of the eddying general circulation and tides in a global ocean model Brian K. Arbic 1 E. Joseph Metzger 2 Alan J. Wallcraft 2 1 Department of Oceanography and Center for Ocean-Atmospheric

More information

A Comparison of Two Vertical-Mixing Schemes in a Pacific Ocean General Circulation Model

A Comparison of Two Vertical-Mixing Schemes in a Pacific Ocean General Circulation Model 1APRIL 2001 LI ET AL. 1377 A Comparison of Two Vertical-Mixing Schemes in a Pacific Ocean General Circulation Model XIANJIN LI ANDYI CHAO Jet Propulsion Laboratory, California Institute of Technology,

More information

PHYS 432 Physics of Fluids: Instabilities

PHYS 432 Physics of Fluids: Instabilities PHYS 432 Physics of Fluids: Instabilities 1. Internal gravity waves Background state being perturbed: A stratified fluid in hydrostatic balance. It can be constant density like the ocean or compressible

More information

2 Observing the Ocean Ships Navigation The Electronics Era 16

2 Observing the Ocean Ships Navigation The Electronics Era 16 Contents Preface xiii 1 Introduction 1 2 Observing the Ocean 4 2.1 Ships 5 2.2 Navigation 6 2.3 The Preelectronics Era 6 2.4 The Electronics Era 16 2.5 The Rise of Satellites 27 2.6 Intermediate- and Long-Duration

More information

The atmospheric boundary layer: Where the atmosphere meets the surface. The atmospheric boundary layer:

The atmospheric boundary layer: Where the atmosphere meets the surface. The atmospheric boundary layer: The atmospheric boundary layer: Utrecht Summer School on Physics of the Climate System Carleen Tijm-Reijmer IMAU The atmospheric boundary layer: Where the atmosphere meets the surface Photo: Mark Wolvenne:

More information

Direct numerical simulation of salt sheets and turbulence in a double-diffusive shear layer

Direct numerical simulation of salt sheets and turbulence in a double-diffusive shear layer Direct numerical simulation of salt sheets and turbulence in a double-diffusive shear layer Satoshi Kimura, William Smyth July 3, 00 Abstract We describe three-dimensional direct numerical simulations

More information

NSF 2005 CPT Report. Jeffrey T. Kiehl & Cecile Hannay

NSF 2005 CPT Report. Jeffrey T. Kiehl & Cecile Hannay NSF 2005 CPT Report Jeffrey T. Kiehl & Cecile Hannay Introduction: The focus of our research is on the role of low tropical clouds in affecting climate sensitivity. Comparison of climate simulations between

More information

Equilibrium Climate Sensitivity: is it accurate to use a slab ocean model? Gokhan Danabasoglu and Peter R. Gent

Equilibrium Climate Sensitivity: is it accurate to use a slab ocean model? Gokhan Danabasoglu and Peter R. Gent Equilibrium Climate Sensitivity: is it accurate to use a slab ocean model? by Gokhan Danabasoglu and Peter R. Gent National Center for Atmospheric Research Boulder, Colorado 80307 Abstract The equilibrium

More information

Chapter 7: Thermodynamics

Chapter 7: Thermodynamics Chapter 7: Thermodynamics 7.1 Sea surface heat budget In Chapter 5, we have introduced the oceanic planetary boundary layer-the Ekman layer. The observed T and S in this layer are almost uniform vertically,

More information

An Introduction to Coupled Models of the Atmosphere Ocean System

An Introduction to Coupled Models of the Atmosphere Ocean System An Introduction to Coupled Models of the Atmosphere Ocean System Jonathon S. Wright jswright@tsinghua.edu.cn Atmosphere Ocean Coupling 1. Important to climate on a wide range of time scales Diurnal to

More information

2013 Annual Report for Project on Isopycnal Transport and Mixing of Tracers by Submesoscale Flows Formed at Wind-Driven Ocean Fronts

2013 Annual Report for Project on Isopycnal Transport and Mixing of Tracers by Submesoscale Flows Formed at Wind-Driven Ocean Fronts DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 2013 Annual Report for Project on Isopycnal Transport and Mixing of Tracers by Submesoscale Flows Formed at Wind-Driven

More information

Reconciling theories of a mechanically-driven meridional overturning circulation with thermohaline forcing and multiple equilibria

Reconciling theories of a mechanically-driven meridional overturning circulation with thermohaline forcing and multiple equilibria Reconciling theories of a mechanically-driven meridional overturning circulation with thermohaline forcing and multiple equilibria HELEN L. JOHNSON 1, DAVID P. MARSHALL 2 AND DAVID A. J. SPROSON 3 Department

More information

Sea Surface Temperature impact on the Sea Level Changes Over North Pacific

Sea Surface Temperature impact on the Sea Level Changes Over North Pacific Sea Surface Temperature impact on the Sea Level Changes Over North Pacific Xichen Li; Jiang Zhu; Shang-Ping Xier; Shan Li Institute of Atmospheric Physics I. Tropical Polar Teleconnections Observed Changes

More information

Non-hydrostatic pressure in σ-coordinate ocean models

Non-hydrostatic pressure in σ-coordinate ocean models Non-hydrostatic pressure in σ-coordinate ocean models Eirik Keilegavlen and Jarle Berntsen May, 7 Abstract In many numerical ocean models, the hydrostatic approximation is made. This approximation causes

More information

Sensitivity Analysis of Sea Level Rise Simulation To the Ocean Open Boundary Specification Using the 2017 CH3D-ICM

Sensitivity Analysis of Sea Level Rise Simulation To the Ocean Open Boundary Specification Using the 2017 CH3D-ICM Sensitivity Analysis of Sea Level Rise Simulation To the Ocean Open Boundary Specification Using the 2017 CH3D-ICM STAC WQSTM Peer Review July 7, 2017 Lew Linker, Ping Wang, Richard Tian, and the CBPO

More information

Analysis of Mixing and Dynamics Associated with the Dissolution of Hurricane-Induced Cold Wakes

Analysis of Mixing and Dynamics Associated with the Dissolution of Hurricane-Induced Cold Wakes DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Analysis of Mixing and Dynamics Associated with the Dissolution of Hurricane-Induced Cold Wakes Carol Anne Clayson Dept.

More information

ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Lecture 19. Learning objectives: develop a physical understanding of ocean thermodynamic processes

ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Lecture 19. Learning objectives: develop a physical understanding of ocean thermodynamic processes ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY Lecture 19 Learning objectives: develop a physical understanding of ocean thermodynamic processes 1. Ocean surface heat fluxes; 2. Mixed layer temperature

More information

What governs the location of the Southern Ocean deep winter mixing in CESM

What governs the location of the Southern Ocean deep winter mixing in CESM NSF NCAR WYOMING SUPERCOMPUTER CENTER DOE SCIDAC FUNDED PROJECT What governs the location of the Southern Ocean deep winter mixing in CESM Justin Small Dan Whitt Alice DuVivier Matt Long Acknowledging:

More information

Donald Slinn, Murray D. Levine

Donald Slinn, Murray D. Levine 2 Donald Slinn, Murray D. Levine 2 Department of Civil and Coastal Engineering, University of Florida, Gainesville, Florida College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis,

More information

The Circulation of the Atmosphere:

The Circulation of the Atmosphere: The Circulation of the Atmosphere: Laboratory Experiments (see next slide) Fluid held in an annular container is at rest and is subjected to a temperature gradient. The less dense fluid near the warm wall

More information

Prototype Instabilities

Prototype Instabilities Prototype Instabilities David Randall Introduction Broadly speaking, a growing atmospheric disturbance can draw its kinetic energy from two possible sources: the kinetic and available potential energies

More information

Heat Uptake and the Thermohaline Circulation in the Community Climate System Model, Version 2

Heat Uptake and the Thermohaline Circulation in the Community Climate System Model, Version 2 4058 JOURNAL OF CLIMATE VOLUME 17 Heat Uptake and the Thermohaline Circulation in the Community Climate System Model, Version 2 PETER R. GENT AND GOKHAN DANABASOGLU National Center for Atmospheric Research,*

More information

Geodynamics Lecture 10 The forces driving plate tectonics

Geodynamics Lecture 10 The forces driving plate tectonics Geodynamics Lecture 10 The forces driving plate tectonics Lecturer: David Whipp! david.whipp@helsinki.fi!! 2.10.2014 Geodynamics www.helsinki.fi/yliopisto 1 Goals of this lecture Describe how thermal convection

More information

GFD-2 Spring 2007 P.B. Rhines Lecture notes: MOCs (meridional overturning circulations), part I. 15v2007

GFD-2 Spring 2007 P.B. Rhines Lecture notes: MOCs (meridional overturning circulations), part I. 15v2007 1 GFD-2 Spring 2007 P.B. Rhines Lecture notes: MOCs (meridional overturning circulations), part I. 15v2007 Introduction. These are informal notes on the overturning circulations. We think of oceans and

More information

Water mass formation, subduction, and the oceanic heat budget

Water mass formation, subduction, and the oceanic heat budget Chapter 5 Water mass formation, subduction, and the oceanic heat budget In the first four chapters we developed the concept of Ekman pumping, Rossby wave propagation, and the Sverdrup circulation as the

More information

Progress in embedding global tides into HYCOM simulations. Brian K. Arbic Institute for Geophysics The University of Texas at Austin

Progress in embedding global tides into HYCOM simulations. Brian K. Arbic Institute for Geophysics The University of Texas at Austin Progress in embedding global tides into HYCOM simulations Brian K. Arbic Institute for Geophysics The University of Texas at Austin Am working closely with Alan on global forward tide modeling with HYCOM.

More information

Transformed Eulerian Mean

Transformed Eulerian Mean Chapter 15 Transformed Eulerian Mean In the last few lectures we introduced some fundamental ideas on 1) the properties of turbulent flows in rotating stratified environments, like the ocean and the atmosphere,

More information

Atmosphere-ocean boundary layers and fluxes

Atmosphere-ocean boundary layers and fluxes Atmosphere-ocean boundary layers and fluxes Baylor Fox-Kemper (Brown DEEP Sci.) with Qing Li & Nobu Suzuki (Brown), Scott Reckinger (Montana), and Sean Haney & Peter Hamlington (CU-Boulder), Luke Van Roekel

More information

Destruction of Potential Vorticity by Winds

Destruction of Potential Vorticity by Winds DECEMBER 2005 THOMAS 2457 Destruction of Potential Vorticity by Winds LEIF N. THOMAS* School of Oceanography, University of Washington, Seattle, Washington (Manuscript received 10 January 2005, in final

More information

Numerical and laboratory generation of internal waves from turbulence

Numerical and laboratory generation of internal waves from turbulence Dynamics of Atmospheres and Oceans 40 (2005) 43 56 Numerical and laboratory generation of internal waves from turbulence K. Dohan, B.R. Sutherland Department of Mathematical and Statistical Sciences, University

More information

CESM1-WACCM: Comparison with CCSM4/ CESM CMIP5 simulations

CESM1-WACCM: Comparison with CCSM4/ CESM CMIP5 simulations CESM1-WACCM: Comparison with CCSM4/ CESM CMIP5 simulations Dan Marsh, Mike Mills, Natalia Calvo, Marika Holland, Cécile Hannay WAWG meeting, Boulder, February 2011 NCAR is sponsored by the National Science

More information

Part 2: Survey of parameterizations

Part 2: Survey of parameterizations Part 2: Survey of parameterizations Vertical (diapycnal) mixing Bottom boundary layers and topographic effects Lateral (isopycnal) mixing Eddy induced velocities and other dynamical effects of eddies MERSEA

More information