τ xz = τ measured close to the the surface (often at z=5m) these three scales represent inner unit or near wall normalization

Size: px
Start display at page:

Download "τ xz = τ measured close to the the surface (often at z=5m) these three scales represent inner unit or near wall normalization"

Transcription

1 τ xz = τ measured close to the the surface (often at z=5m) these three scales represent inner unit or near wall normalization

2 Note that w *3 /z i is used to normalized the TKE equation in case of free convection (pp.156) Remember : for i =3, with weak wind and strong thermals we have: w2 t ~ g θ v (w θ v ): we can derive w*!

3 u * DAY DAY u * w * w * u DAY DAY * u * w * w * note that the peak of thermal activity in a clear sky day is quite consistent (14:00), while u* is expected to vary more with the wind magnitude (u* ~O(0.1)m/s, weak wind conditions)

4 Now we need to find an objective way to define if the turbulence is mostly generated by thermal and free convection or by wind shear TKE is not sustainable shear dominates thermals dominate Since the <w θ > term is a source or sink or turbulence in the TKE equation depending on the thermal stability, we note that: laminar flow in the stable BL will remain laminar while turbulent flow in the unstable BL will remain turbulent.

5 Static stability: in the absence of wind, air motion depends on the occurrence of thermals and convective motions. Note that to actually form thermals, a perturbation is required (such as in any unstable system). In the atmosphere thermal convection is triggered by radiative heating or surface roughness heterogeneity Statically stable air implies that denser air stays on the ground and no motion is induced. Mean shear is the driving force, but TKE is damped. Statically unstable air implies that warmer and less dense air on the ground tends to move up because of buoyancy, until locally neutral conditions are restored. Mean shear is the driving force, TKE is enhanced.

6 KH Instabilities : how in stable air, shear is able to induce turbulence(dynamical not static process) lighter fluid shear denser fluid KH instability developing into waves that roll and brakes leading to a diffuse (non sharp) interface and a reduced shear Typical forcing, i.e. strong sources of shear: nocturnal jet/catabatic winds jet stream large scale vortex shedding may give rise to detached regions of decaying turbulence Timeea Vinerean

7 the static stability is defined based on the local air density gradient. Is it correct? Fig 1b: based on the local stability we would classify the center part of the mixed layer (daytime BL) as neutral However it depends on the occurrence of thermals or any other vertical motion able to perturb the conditions at which an air parcel would move from a certain vertical location. adiabatic lapse rate vs neutral stability according to the unsaturated or dry adiabatic lapse rate, the temperature of an air parcel decreases as it is moving upward (towards lower pressure regions) adiabatically (with its temperature decreasing due to expansion (change in ambient pressure eq. of state, not due to heat exchange ). So air temperature properties in static equilibrium depend on the vertical location (in the absence of other vertical motion) However if thermals form and grow below the local (z) layer I am considering, I do not have anymore a correct measure of static stability neutral stability requires an adiabatic lapse rate and the absence of buoyancy or convective motions. So we have two ways to assess local thermal stability correctly: 1) knowing the stability conditions of the whole air column 2) measuring directly the buoyancy term to quantify convective motions Figure 1

8 More ambiguities: in the convective mixed layer the rise of thermals is responsible for the constant θ v profile. Thermals keep rising and mix the air column due to excess buoyancy and inertia (in the vertical direction). Constant θ v thus is not a sufficient condition to define the neutral state the local lapse rate, therefore does not allow for a univocal definition of thermal stability. The sign of <w θ v > estimated at the surface provides a better measure of thermal stability in a static sense

9 Correct dynamic quantification of thermal stability u w <0, w θ <0 w θ =0 u w <0, w θ >0 Note : in the ASL Reynolds is high enough, so the question is on sustaining of turbulence originally proposed by Richardson R f > 1 implies that buoyancy is dampening turbulence more, as compared to how much the shear is sustaining it

10 this is an anticipation of the closure strategy, replacing turbulent fluxes e.g. <u w > with a mean flow gradient, e.g. du/dz you may remember; 1) the definition of turbulent or eddy viscosity 2) the physical understanding that strong eddies (uw correlated) form in regions of strong gradients same criterion for the flux Richardson number low Ri shear production is high high Ri temp. is stably strat (increase with z) critical value for the onset of KH waves, Rc suggests a minimum shear to destabilize a given density profile through interface perturbation

11 Bulk Richardson number R b = g θ v z θ v U 2 + V 2 usually it is defined using the two layers delimiting the air column of interest, e.g. from the ground to a given height it is a bulk or integral measure of the thermal stability regime When Bulk Richardson could be used?

12 Obukhov length scale this is a parameterized near wall TKE production to make the equation dimensionless du/dz=u * /kz, uw=u * 2 for z=l in the stable boundary layer, =1, so the destruction of TKE by buoyancy is matched by near wall TKE production. for 0 < z < L shear production sustain turbulence

13 day: L<0 L = u 3 θ v kg ( w θ v ) surf night: L>0 night: L>0 note that while L varies due to thermal conditions, z varies in the vertical direction: if z ~0, i.e. at the ground, z/l will be small no matter what. Therefore, indication for neutral conditions z/l <0.1 are matched very close to the ground where turbulence is mostly generated by shear the discontinuity is due to the change in the sign of the heat flux when the sun starts heating the ground. As <w θ > (small value during the transition) is at the denominator, the magnitude of L increases drastically (but z/l 0 near neutral) generally z/l is estimated by a sonic anemometer at a given location. That location is important

14 Experiments in the near neutral ASL Metzger et al km fetch, Predominant wind from north U(z=5m) 5 m/s δ m δ+= δu τ /ν O(10 6 ) Simultaneous hotwire measurements: 31 log-spaced wall-normal locations 5kHz sample frequency Tmax 210 s u* estimated from Sonic anemometers During evening, nearly neutral period, friction velocity, heat and momentum fluxes from sonic anemometer array SLTEST University of Utah Metzger, Klewicki Mean and fluctuating velocity profiles

15 L = u 3 θ v kg ( w θ v ) surf Stability in the convective boundary layer given the definition of convective velocity scale we can rewrite : z/l = k z w 3 z i u 3 in unstable conditions z/l is negative z/l > 1 when w * >>u * Note that the more z z i (inversion layer) the less strong w* has to be to establish dominant thermal effects over mechanical effects. normalized TKE terms during daytime E.g. for w * ~ 2u * z/l~ -8 kz/z i =-1 at z ~ z i / 4. Even for such a weak convection scale, ¾ of the mixed layer (z> z i /4 ) are dominated by buoyancy

16 Ri, Rf, z/l are essentially interchangeable, but be careful about the use of 1) surface or 2) z-dependent heat flux

17

18 Mean velocity profile in the Atmospheric Boundary layer Experimentally it was found that the velocity profile exhibit significant difference depending on the thermal stability Note: In log scale the mean velocity (log law) is a line

19 Thermal control in the SAFL atmospheric boundary layer neutral convective stable (Howard K.B., Chamorro L.P., Guala M. BLM 2016) Top tip stable neutral convective Bottom tip o Neutral - Stable - Convective

20 Convective Stable U/U hub

21 The shape of the mean velocity profile depends thus on thermal stability, which means that its gradient can be parameterized as a function of z/l Note that for z/l 0 (thermally neutral regime) we got back: u*/kz=du/dz leading to the log law... OK

The Stable Boundary layer

The Stable Boundary layer The Stable Boundary layer the statistically stable or stratified regime occurs when surface is cooler than the air The stable BL forms at night over land (Nocturnal Boundary Layer) or when warm air travels

More information

Logarithmic velocity profile in the atmospheric (rough wall) boundary layer

Logarithmic velocity profile in the atmospheric (rough wall) boundary layer Logarithmic velocity profile in the atmospheric (rough wall) boundary layer P =< u w > U z = u 2 U z ~ ε = u 3 /kz Mean velocity profile in the Atmospheric Boundary layer Experimentally it was found that

More information

The atmospheric boundary layer: Where the atmosphere meets the surface. The atmospheric boundary layer:

The atmospheric boundary layer: Where the atmosphere meets the surface. The atmospheric boundary layer: The atmospheric boundary layer: Utrecht Summer School on Physics of the Climate System Carleen Tijm-Reijmer IMAU The atmospheric boundary layer: Where the atmosphere meets the surface Photo: Mark Wolvenne:

More information

Convective Fluxes: Sensible and Latent Heat Convective Fluxes Convective fluxes require Vertical gradient of temperature / water AND Turbulence ( mixing ) Vertical gradient, but no turbulence: only very

More information

Chapter (3) TURBULENCE KINETIC ENERGY

Chapter (3) TURBULENCE KINETIC ENERGY Chapter (3) TURBULENCE KINETIC ENERGY 3.1 The TKE budget Derivation : The definition of TKE presented is TKE/m= e = 0.5 ( u 2 + v 2 + w 2 ). we recognize immediately that TKE/m is nothing more than the

More information

1 The Richardson Number 1 1a Flux Richardson Number b Gradient Richardson Number c Bulk Richardson Number The Obukhov Length 3

1 The Richardson Number 1 1a Flux Richardson Number b Gradient Richardson Number c Bulk Richardson Number The Obukhov Length 3 Contents 1 The Richardson Number 1 1a Flux Richardson Number...................... 1 1b Gradient Richardson Number.................... 2 1c Bulk Richardson Number...................... 3 2 The Obukhov

More information

Atm S 547 Boundary Layer Meteorology

Atm S 547 Boundary Layer Meteorology Lecture 5. The logarithmic sublayer and surface roughness In this lecture Similarity theory for the logarithmic sublayer. Characterization of different land and water surfaces for surface flux parameterization

More information

For example, for values of A x = 0 m /s, f 0 s, and L = 0 km, then E h = 0. and the motion may be influenced by horizontal friction if Corioli

For example, for values of A x = 0 m /s, f 0 s, and L = 0 km, then E h = 0. and the motion may be influenced by horizontal friction if Corioli Lecture. Equations of Motion Scaling, Non-dimensional Numbers, Stability and Mixing We have learned how to express the forces per unit mass that cause acceleration in the ocean, except for the tidal forces

More information

Atmospheric Boundary Layers

Atmospheric Boundary Layers Lecture for International Summer School on the Atmospheric Boundary Layer, Les Houches, France, June 17, 2008 Atmospheric Boundary Layers Bert Holtslag Introducing the latest developments in theoretical

More information

1 Introduction to Governing Equations 2 1a Methodology... 2

1 Introduction to Governing Equations 2 1a Methodology... 2 Contents 1 Introduction to Governing Equations 2 1a Methodology............................ 2 2 Equation of State 2 2a Mean and Turbulent Parts...................... 3 2b Reynolds Averaging.........................

More information

(Wind profile) Chapter five. 5.1 The Nature of Airflow over the surface:

(Wind profile) Chapter five. 5.1 The Nature of Airflow over the surface: Chapter five (Wind profile) 5.1 The Nature of Airflow over the surface: The fluid moving over a level surface exerts a horizontal force on the surface in the direction of motion of the fluid, such a drag

More information

Anomalous solar heating dependence of Venus s cloud-level convection

Anomalous solar heating dependence of Venus s cloud-level convection Anomalous solar heating dependence of Venus s cloud-level convection T. Higuchi (Univ. Tokyo), T. Imamura (JAXA), Y. Maejima (MRI, JMA), M. Takagi (Kyoto Sangyo Univ.), N. Sugimoto (Keio Univ.), K. Ikeda

More information

Spring Semester 2011 March 1, 2011

Spring Semester 2011 March 1, 2011 METR 130: Lecture 3 - Atmospheric Surface Layer (SL - Neutral Stratification (Log-law wind profile - Stable/Unstable Stratification (Monin-Obukhov Similarity Theory Spring Semester 011 March 1, 011 Reading

More information

Prototype Instabilities

Prototype Instabilities Prototype Instabilities David Randall Introduction Broadly speaking, a growing atmospheric disturbance can draw its kinetic energy from two possible sources: the kinetic and available potential energies

More information

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan 耶鲁 - 南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation

More information

PHYS 432 Physics of Fluids: Instabilities

PHYS 432 Physics of Fluids: Instabilities PHYS 432 Physics of Fluids: Instabilities 1. Internal gravity waves Background state being perturbed: A stratified fluid in hydrostatic balance. It can be constant density like the ocean or compressible

More information

Project 3 Convection and Atmospheric Thermodynamics

Project 3 Convection and Atmospheric Thermodynamics 12.818 Project 3 Convection and Atmospheric Thermodynamics Lodovica Illari 1 Background The Earth is bathed in radiation from the Sun whose intensity peaks in the visible. In order to maintain energy balance

More information

The Atmospheric Boundary Layer. The Surface Energy Balance (9.2)

The Atmospheric Boundary Layer. The Surface Energy Balance (9.2) The Atmospheric Boundary Layer Turbulence (9.1) The Surface Energy Balance (9.2) Vertical Structure (9.3) Evolution (9.4) Special Effects (9.5) The Boundary Layer in Context (9.6) Fair Weather over Land

More information

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds. Convection The convection heat transfer mode is comprised of two mechanisms. In addition to energy transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or macroscopic,

More information

DAY 19: Boundary Layer

DAY 19: Boundary Layer DAY 19: Boundary Layer flat plate : let us neglect the shape of the leading edge for now flat plate boundary layer: in blue we highlight the region of the flow where velocity is influenced by the presence

More information

Collapse of turbulence in atmospheric flows turbulent potential energy budgets in a stably stratified couette flow

Collapse of turbulence in atmospheric flows turbulent potential energy budgets in a stably stratified couette flow Eindhoven University of Technology BACHELOR Collapse of turbulence in atmospheric flows turbulent potential energy budgets in a stably stratified couette flow de Haas, A.W. Award date: 2015 Link to publication

More information

Boundary-Layer Theory

Boundary-Layer Theory Hermann Schlichting Klaus Gersten Boundary-Layer Theory With contributions from Egon Krause and Herbert Oertel Jr. Translated by Katherine Mayes 8th Revised and Enlarged Edition With 287 Figures and 22

More information

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) The ABL, though turbulent, is not homogeneous, and a critical role of turbulence is transport and mixing of air properties, especially in the

More information

Atmospheric stability parameters and sea storm severity

Atmospheric stability parameters and sea storm severity Coastal Engineering 81 Atmospheric stability parameters and sea storm severity G. Benassai & L. Zuzolo Institute of Meteorology & Oceanography, Parthenope University, Naples, Italy Abstract The preliminary

More information

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr):

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr): AdOc 4060/5060 Spring 2013 Chris Jenkins Eddy viscosity Turbulence (video 1hr): http://cosee.umaine.edu/programs/webinars/turbulence/?cfid=8452711&cftoken=36780601 Part B Surface wind stress Wind stress

More information

A Simple Turbulence Closure Model

A Simple Turbulence Closure Model A Simple Turbulence Closure Model Atmospheric Sciences 6150 1 Cartesian Tensor Notation Reynolds decomposition of velocity: Mean velocity: Turbulent velocity: Gradient operator: Advection operator: V =

More information

A Simple Turbulence Closure Model. Atmospheric Sciences 6150

A Simple Turbulence Closure Model. Atmospheric Sciences 6150 A Simple Turbulence Closure Model Atmospheric Sciences 6150 1 Cartesian Tensor Notation Reynolds decomposition of velocity: V = V + v V = U i + u i Mean velocity: V = Ui + V j + W k =(U, V, W ) U i =(U

More information

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer Forced Convection Outlines To examine the methods of calculating convection heat transfer (particularly, the ways of predicting the value of convection heat transfer coefficient, h) Convection heat transfer

More information

Atmospheric Sciences 321. Science of Climate. Lecture 13: Surface Energy Balance Chapter 4

Atmospheric Sciences 321. Science of Climate. Lecture 13: Surface Energy Balance Chapter 4 Atmospheric Sciences 321 Science of Climate Lecture 13: Surface Energy Balance Chapter 4 Community Business Check the assignments HW #4 due Wednesday Quiz #2 Wednesday Mid Term is Wednesday May 6 Practice

More information

Fluid: Air and water are fluids that exert forces on the human body.

Fluid: Air and water are fluids that exert forces on the human body. Fluid: Air and water are fluids that exert forces on the human body. term fluid is often used interchangeably with the term liquid, from a mechanical perspective, Fluid: substance that flows when subjected

More information

The applicability of Monin Obukhov scaling for sloped cooled flows in the context of Boundary Layer parameterization

The applicability of Monin Obukhov scaling for sloped cooled flows in the context of Boundary Layer parameterization Julia Palamarchuk Odessa State Environmental University, Ukraine The applicability of Monin Obukhov scaling for sloped cooled flows in the context of Boundary Layer parameterization The low-level katabatic

More information

Direct and Large Eddy Simulation of stably stratified turbulent Ekman layers

Direct and Large Eddy Simulation of stably stratified turbulent Ekman layers Direct and Large Eddy Simulation of stably stratified turbulent Ekman layers Stimit Shah, Elie Bou-Zeid Princeton University 64 th APS DFD Baltimore, Maryland Nov 21, 211 Effect of Stability on Atmospheric

More information

Effects of transfer processes on marine atmospheric boundary layer or Effects of boundary layer processes on air-sea exchange

Effects of transfer processes on marine atmospheric boundary layer or Effects of boundary layer processes on air-sea exchange Effects of transfer processes on marine atmospheric boundary layer or Effects of boundary layer processes on air-sea exchange Ann-Sofi Smedman Uppsala University Uppsala, Sweden Effect of transfer process

More information

LECTURE 28. The Planetary Boundary Layer

LECTURE 28. The Planetary Boundary Layer LECTURE 28 The Planetary Boundary Layer The planetary boundary layer (PBL) [also known as atmospheric boundary layer (ABL)] is the lower part of the atmosphere in which the flow is strongly influenced

More information

Time and length scales based on the Brunt Vasala frequency N BV. (buoyancy) length scale l B = σ w / N BV

Time and length scales based on the Brunt Vasala frequency N BV. (buoyancy) length scale l B = σ w / N BV Time and length scales based on the Brunt Vasala frequency N BV time scale: t BV = 1/N BV (buoyancy) length scale l B = σ w / N BV period of oscillation of a parcel in a statistically stable environment:

More information

The parametrization of the planetary boundary layer May 1992

The parametrization of the planetary boundary layer May 1992 The parametrization of the planetary boundary layer May 99 By Anton Beljaars European Centre for Medium-Range Weather Forecasts Table of contents. Introduction. The planetary boundary layer. Importance

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

Convection. If luminosity is transported by radiation, then it must obey

Convection. If luminosity is transported by radiation, then it must obey Convection If luminosity is transported by radiation, then it must obey L r = 16πacr 2 T 3 3ρκ R In a steady state, the energy transported per time at radius r must be equal to the energy generation rate

More information

Needs work : define boundary conditions and fluxes before, change slides Useful definitions and conservation equations

Needs work : define boundary conditions and fluxes before, change slides Useful definitions and conservation equations Needs work : define boundary conditions and fluxes before, change slides 1-2-3 Useful definitions and conservation equations Turbulent Kinetic energy The fluxes are crucial to define our boundary conditions,

More information

Mixing and Turbulence

Mixing and Turbulence Mixing and Turbulence November 3, 2012 This section introduces some elementary concepts associated with mixing and turbulence in the environment. 1 Conserved Variables Studies of mixing of different airmasses

More information

The mean velocity profile in the smooth wall turbulent boundary layer : 1) viscous sublayer

The mean velocity profile in the smooth wall turbulent boundary layer : 1) viscous sublayer The mean velocity profile in the smooth wall turbulent boundary layer : 1) viscous sublayer u = τ 0 y μ τ = μ du dy the velocity varies linearly, as a Couette flow (moving upper wall). Thus, the shear

More information

PENETRATIVE TURBULENCE ASSOCIATED WITH MESOSCALE SURFACE HEAT FLUX VARIATIONS

PENETRATIVE TURBULENCE ASSOCIATED WITH MESOSCALE SURFACE HEAT FLUX VARIATIONS PENETRATIVE TURBULENCE ASSOCIATED WITH MESOSCALE SURFACE HEAT FLUX VARIATIONS Jahrul M. Alam and M. Alamgir Hossain Department of Mathematics and Statistics, Memorial University of Newfoundland, Prince

More information

COMMENTS ON "FLUX-GRADIENT RELATIONSHIP, SELF-CORRELATION AND INTERMITTENCY IN THE STABLE BOUNDARY LAYER" Zbigniew Sorbjan

COMMENTS ON FLUX-GRADIENT RELATIONSHIP, SELF-CORRELATION AND INTERMITTENCY IN THE STABLE BOUNDARY LAYER Zbigniew Sorbjan COMMENTS ON "FLUX-GRADIENT RELATIONSHIP, SELF-CORRELATION AND INTERMITTENCY IN THE STABLE BOUNDARY LAYER" Zbigniew Sorbjan Department of Physics, Marquette University, Milwaukee, WI 5301, U.S.A. A comment

More information

Ocean Dynamics. Stability in the water column

Ocean Dynamics. Stability in the water column Physical oceanography, MSCI 3001 Oceanographic Processes, MSCI 5004 Dr. Katrin Meissner k.meissner@unsw.edu.au Week 4 Ocean Dynamics Stability in the water column Gravity acts on vertical density gradients

More information

BOUNDARY LAYER STRUCTURE SPECIFICATION

BOUNDARY LAYER STRUCTURE SPECIFICATION August 2017 P09/01X/17 BOUNDARY LAYER STRUCTURE SPECIFICATION CERC In this document ADMS refers to ADMS 5.2, ADMS-Roads 4.1, ADMS-Urban 4.1 and ADMS-Airport 4.1. Where information refers to a subset of

More information

Introduction to Turbulence AEEM Why study turbulent flows?

Introduction to Turbulence AEEM Why study turbulent flows? Introduction to Turbulence AEEM 7063-003 Dr. Peter J. Disimile UC-FEST Department of Aerospace Engineering Peter.disimile@uc.edu Intro to Turbulence: C1A Why 1 Most flows encountered in engineering and

More information

Roughness Sub Layers John Finnigan, Roger Shaw, Ned Patton, Ian Harman

Roughness Sub Layers John Finnigan, Roger Shaw, Ned Patton, Ian Harman Roughness Sub Layers John Finnigan, Roger Shaw, Ned Patton, Ian Harman 1. Characteristics of the Roughness Sub layer With well understood caveats, the time averaged statistics of flow in the atmospheric

More information

Turbulent boundary layer

Turbulent boundary layer Turbulent boundary layer 0. Are they so different from laminar flows? 1. Three main effects of a solid wall 2. Statistical description: equations & results 3. Mean velocity field: classical asymptotic

More information

Atm S 547 Boundary Layer Meteorology

Atm S 547 Boundary Layer Meteorology Lecture 8. Parameterization of BL Turbulence I In this lecture Fundamental challenges and grid resolution constraints for BL parameterization Turbulence closure (e. g. first-order closure and TKE) parameterizations

More information

CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 5 NATURAL CONVECTION HEAT TRANSFER BASIC CONCEPTS MECHANISM OF NATURAL

More information

Boundary Layer Meteorology. Chapter 2

Boundary Layer Meteorology. Chapter 2 Boundary Layer Meteorology Chapter 2 Contents Some mathematical tools: Statistics The turbulence spectrum Energy cascade, The spectral gap Mean and turbulent parts of the flow Some basic statistical methods

More information

2.3 The Turbulent Flat Plate Boundary Layer

2.3 The Turbulent Flat Plate Boundary Layer Canonical Turbulent Flows 19 2.3 The Turbulent Flat Plate Boundary Layer The turbulent flat plate boundary layer (BL) is a particular case of the general class of flows known as boundary layer flows. The

More information

Lecture 1. Equations of motion - Newton s second law in three dimensions. Pressure gradient + force force

Lecture 1. Equations of motion - Newton s second law in three dimensions. Pressure gradient + force force Lecture 3 Lecture 1 Basic dynamics Equations of motion - Newton s second law in three dimensions Acceleration = Pressure Coriolis + gravity + friction gradient + force force This set of equations is the

More information

A R C T E X Results of the Arctic Turbulence Experiments Long-term Monitoring of Heat Fluxes at a high Arctic Permafrost Site in Svalbard

A R C T E X Results of the Arctic Turbulence Experiments Long-term Monitoring of Heat Fluxes at a high Arctic Permafrost Site in Svalbard A R C T E X Results of the Arctic Turbulence Experiments www.arctex.uni-bayreuth.de Long-term Monitoring of Heat Fluxes at a high Arctic Permafrost Site in Svalbard 1 A R C T E X Results of the Arctic

More information

Investigation of different wall profiles on energy consumption and baking time in domestic ovens

Investigation of different wall profiles on energy consumption and baking time in domestic ovens EPJ Web of Conferences 45, 01044 (2013) DOI: 10.1051/ epjconf/ 20134501044 C Owned by the authors, published by EDP Sciences, 2013 Investigation of different wall profiles on energy consumption and baking

More information

Lecture 12. The diurnal cycle and the nocturnal BL

Lecture 12. The diurnal cycle and the nocturnal BL Lecture 12. The diurnal cycle and the nocturnal BL Over flat land, under clear skies and with weak thermal advection, the atmospheric boundary layer undergoes a pronounced diurnal cycle. A schematic and

More information

Grid-generated turbulence, drag, internal waves and mixing in stratified fluids

Grid-generated turbulence, drag, internal waves and mixing in stratified fluids Grid-generated turbulence, drag, internal waves and mixing in stratified fluids Not all mixing is the same! Stuart Dalziel, Roland Higginson* & Joanne Holford Introduction DAMTP, University of Cambridge

More information

centrifugal acceleration, whose magnitude is r cos, is zero at the poles and maximum at the equator. This distribution of the centrifugal acceleration

centrifugal acceleration, whose magnitude is r cos, is zero at the poles and maximum at the equator. This distribution of the centrifugal acceleration Lecture 10. Equations of Motion Centripetal Acceleration, Gravitation and Gravity The centripetal acceleration of a body located on the Earth's surface at a distance from the center is the force (per unit

More information

ESS Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1

ESS Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1 ESS5203.03 - Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1 Text: J.R.Garratt, The Atmospheric Boundary Layer, 1994. Cambridge Also some material from J.C. Kaimal and

More information

Hurricanes are intense vortical (rotational) storms that develop over the tropical oceans in regions of very warm surface water.

Hurricanes are intense vortical (rotational) storms that develop over the tropical oceans in regions of very warm surface water. Hurricanes: Observations and Dynamics Houze Section 10.1. Holton Section 9.7. Emanuel, K. A., 1988: Toward a general theory of hurricanes. American Scientist, 76, 371-379 (web link). http://ww2010.atmos.uiuc.edu/(gh)/guides/mtr/hurr/home.rxml

More information

NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS

NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS June - July, 5 Melbourne, Australia 9 7B- NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS Werner M.J. Lazeroms () Linné FLOW Centre, Department of Mechanics SE-44

More information

Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI

Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI + Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI + OUTLINE u Introduction and Dimensionless Numbers u Heat Transfer Coefficient for Laminar Flow inside a Pipe u Heat Transfer Coefficient for Turbulent

More information

Donald Slinn, Murray D. Levine

Donald Slinn, Murray D. Levine 2 Donald Slinn, Murray D. Levine 2 Department of Civil and Coastal Engineering, University of Florida, Gainesville, Florida College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis,

More information

Convection and buoyancy oscillation

Convection and buoyancy oscillation Convection and buoyancy oscillation Recap: We analyzed the static stability of a vertical profile by the "parcel method"; For a given environmental profile (of T 0, p 0, θ 0, etc.), if the density of an

More information

Sergej S. Zilitinkevich 1,2,3. Division of Atmospheric Sciences, University of Helsinki, Finland

Sergej S. Zilitinkevich 1,2,3. Division of Atmospheric Sciences, University of Helsinki, Finland Atmospheric Planetary Boundary Layers (ABLs / PBLs) in stable, neural and unstable stratification: scaling, data, analytical models and surface-flux algorithms Sergej S. Zilitinkevich 1,,3 1 Division of

More information

Table of Contents. Foreword... xiii. Preface... xv

Table of Contents. Foreword... xiii. Preface... xv Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

More information

Vertical resolution of numerical models. Atm S 547 Lecture 8, Slide 1

Vertical resolution of numerical models. Atm S 547 Lecture 8, Slide 1 Vertical resolution of numerical models Atm S 547 Lecture 8, Slide 1 M-O and Galperin stability factors Atm S 547 Lecture 8, Slide 2 Profile vs. forcing-driven turbulence parameterization Mellor-Yamada

More information

Lecture 10a: The Hadley Cell

Lecture 10a: The Hadley Cell Lecture 10a: The Hadley Cell Geoff Vallis; notes by Jim Thomas and Geoff J. Stanley June 27 In this short lecture we take a look at the general circulation of the atmosphere, and in particular the Hadley

More information

Characteristics of the night and day time atmospheric boundary layer at Dome C, Antarctica

Characteristics of the night and day time atmospheric boundary layer at Dome C, Antarctica Characteristics of the night and day time atmospheric boundary layer at Dome C, Antarctica S. Argentini, I. Pietroni,G. Mastrantonio, A. Viola, S. Zilitinchevich ISAC-CNR Via del Fosso del Cavaliere 100,

More information

Highly resolved turbulence budgets over a desert playa

Highly resolved turbulence budgets over a desert playa Highly resolved turbulence budgets over a desert playa Vigneshwaran Kulandaivelu Derek Jenson & Eric Pardyjak Department of Mechanical Engineering University of Utah Gilad Arwatz & Marcus Hultmark Princeton

More information

ROLE OF THE VERTICAL PRESSURE GRADIENT IN WAVE BOUNDARY LAYERS

ROLE OF THE VERTICAL PRESSURE GRADIENT IN WAVE BOUNDARY LAYERS ROLE OF THE VERTICAL PRESSURE GRADIENT IN WAVE BOUNDARY LAYERS Karsten Lindegård Jensen 1, B. Mutlu Sumer 1, Giovanna Vittori 2 and Paolo Blondeaux 2 The pressure field in an oscillatory boundary layer

More information

Shear instabilities. Chapter Energetics of shear instabilities

Shear instabilities. Chapter Energetics of shear instabilities Chapter 7 Shear instabilities In this final Chapter, we continue our study of the stability of fluid flows by looking at another very common source of instability, shear. By definition, shear occurs whenever

More information

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O Formulas/Constants, Physics/Oceanography 4510/5510 B Atmospheric Physics II N A = 6.02 10 23 molecules/mole (Avogadro s number) 1 mb = 100 Pa 1 Pa = 1 N/m 2 Γ d = 9.8 o C/km (dry adiabatic lapse rate)

More information

Lecture 3: Convective Heat Transfer I

Lecture 3: Convective Heat Transfer I Lecture 3: Convective Heat Transfer I Kerry Emanuel; notes by Paige Martin and Daniel Mukiibi June 18 1 Introduction In the first lecture, we discussed radiative transfer in the climate system. Here, we

More information

Sungsu Park, Chris Bretherton, and Phil Rasch

Sungsu Park, Chris Bretherton, and Phil Rasch Improvements in CAM5 : Moist Turbulence, Shallow Convection, and Cloud Macrophysics AMWG Meeting Feb. 10. 2010 Sungsu Park, Chris Bretherton, and Phil Rasch CGD.NCAR University of Washington, Seattle,

More information

Turbulence. 2. Reynolds number is an indicator for turbulence in a fluid stream

Turbulence. 2. Reynolds number is an indicator for turbulence in a fluid stream Turbulence injection of a water jet into a water tank Reynolds number EF$ 1. There is no clear definition and range of turbulence (multi-scale phenomena) 2. Reynolds number is an indicator for turbulence

More information

Day 24: Flow around objects

Day 24: Flow around objects Day 24: Flow around objects case 1) fluid flowing around a fixed object (e.g. bridge pier) case 2) object travelling within a fluid (cars, ships planes) two forces are exerted between the fluid and the

More information

CHAPTER 19. Fluid Instabilities. In this Chapter we discuss the following instabilities:

CHAPTER 19. Fluid Instabilities. In this Chapter we discuss the following instabilities: CHAPTER 19 Fluid Instabilities In this Chapter we discuss the following instabilities: convective instability (Schwarzschild criterion) interface instabilities (Rayleight Taylor & Kelvin-Helmholtz) gravitational

More information

Turbulent eddies in the RANS/LES transition region

Turbulent eddies in the RANS/LES transition region Turbulent eddies in the RANS/LES transition region Ugo Piomelli Senthil Radhakrishnan Giuseppe De Prisco University of Maryland College Park, MD, USA Research sponsored by the ONR and AFOSR Outline Motivation

More information

meters, we can re-arrange this expression to give

meters, we can re-arrange this expression to give Turbulence When the Reynolds number becomes sufficiently large, the non-linear term (u ) u in the momentum equation inevitably becomes comparable to other important terms and the flow becomes more complicated.

More information

A Note on the Estimation of Eddy Diffusivity and Dissipation Length in Low Winds over a Tropical Urban Terrain

A Note on the Estimation of Eddy Diffusivity and Dissipation Length in Low Winds over a Tropical Urban Terrain Pure appl. geophys. 160 (2003) 395 404 0033 4553/03/020395 10 Ó Birkhäuser Verlag, Basel, 2003 Pure and Applied Geophysics A Note on the Estimation of Eddy Diffusivity and Dissipation Length in Low Winds

More information

Large eddy simulation studies on convective atmospheric boundary layer

Large eddy simulation studies on convective atmospheric boundary layer Large eddy simulation studies on convective atmospheric boundary layer Antti Hellsten & Sergej Zilitinkevich Finnish Meteorological Institute Outline Short introduction to atmospheric boundary layer (ABL)

More information

Environmental Fluid Dynamics

Environmental Fluid Dynamics Environmental Fluid Dynamics ME EN 7710 Spring 2015 Instructor: E.R. Pardyjak University of Utah Department of Mechanical Engineering Definitions Environmental Fluid Mechanics principles that govern transport,

More information

Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size

Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size L Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size 0.01L or smaller are subject to substantial viscous

More information

Fall Colloquium on the Physics of Weather and Climate: Regional Weather Predictability and Modelling. 29 September - 10 October, 2008

Fall Colloquium on the Physics of Weather and Climate: Regional Weather Predictability and Modelling. 29 September - 10 October, 2008 1966-10 Fall Colloquium on the Physics of Weather and Climate: Regional Weather Predictability and Modelling 9 September - 10 October, 008 Physic of stable ABL and PBL? Possible improvements of their parameterizations

More information

Convection When the radial flux of energy is carried by radiation, we derived an expression for the temperature gradient: dt dr = - 3

Convection When the radial flux of energy is carried by radiation, we derived an expression for the temperature gradient: dt dr = - 3 Convection When the radial flux of energy is carried by radiation, we derived an expression for the temperature gradient: dt dr = - 3 4ac kr L T 3 4pr 2 Large luminosity and / or a large opacity k implies

More information

Energy transport: convection

Energy transport: convection Outline Introduction: Modern astronomy and the power of quantitative spectroscopy Basic assumptions for classic stellar atmospheres: geometry, hydrostatic equilibrium, conservation of momentum-mass-energy,

More information

Clouds and turbulent moist convection

Clouds and turbulent moist convection Clouds and turbulent moist convection Lecture 2: Cloud formation and Physics Caroline Muller Les Houches summer school Lectures Outline : Cloud fundamentals - global distribution, types, visualization

More information

The Atmospheric Boundary Layer. The Surface Energy Balance (9.2)

The Atmospheric Boundary Layer. The Surface Energy Balance (9.2) The Atmospheric Boundary Layer Turbulence (9.1) The Surface Energy Balance (9.2) Vertical Structure (9.3) Evolution (9.4) Special Effects (9.5) The Boundary Layer in Context (9.6) Atm S 547 Lecture 4,

More information

Transactions on Ecology and the Environment vol 13, 1997 WIT Press, ISSN

Transactions on Ecology and the Environment vol 13, 1997 WIT Press,   ISSN A Study of the Evolution of the Nocturnal Boundary-Layer Height at the Central Nuclear de Almaraz (Spain): Diagnostic Relationships Jose A Garcia*, M L Cancillo', J L Cano\ G Maqueda^, L Cana^, C Yagiie^

More information

Coherent structures in stably stratified plane Couette flow

Coherent structures in stably stratified plane Couette flow Coherent structures in stably stratified plane Couette flow D. Olvera * & R. R. Kerswell School of Mathematics, University of Bristol, Bristol, UK. * do2542@bristol.ac.uk Abstract A large body of recent

More information

Wind driven mixing below the oceanic mixed layer

Wind driven mixing below the oceanic mixed layer Wind driven mixing below the oceanic mixed layer Article Published Version Grant, A. L. M. and Belcher, S. (2011) Wind driven mixing below the oceanic mixed layer. Journal of Physical Oceanography, 41

More information

The Forcing of Wind Turbine Rotors by True Weather Events as a Function of Atmospheric Stability State*

The Forcing of Wind Turbine Rotors by True Weather Events as a Function of Atmospheric Stability State* NAWEA 2015 Symposium 11 June 2015 Virginia Tech, Blacksburg, VA The Forcing of Wind Turbine Rotors by True Weather Events as a Function of Atmospheric Stability State* Balaji Jayaraman 1 and James G. Brasseur

More information

Boundary layer processes. Bjorn Stevens Max Planck Institute for Meteorology, Hamburg

Boundary layer processes. Bjorn Stevens Max Planck Institute for Meteorology, Hamburg Boundary layer processes Bjorn Stevens Max Planck Institute for Meteorology, Hamburg The Atmospheric Boundary Layer (ABL) An Abstraction (Wippermann 76) The bottom 100-3000 m of the Troposphere (Stull

More information

UNIT II CONVECTION HEAT TRANSFER

UNIT II CONVECTION HEAT TRANSFER UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid

More information

Today s Lecture: Atmosphere finish primitive equations, mostly thermodynamics

Today s Lecture: Atmosphere finish primitive equations, mostly thermodynamics Today s Lecture: Atmosphere finish primitive equations, mostly thermodynamics Reference Peixoto and Oort, Sec. 3.1, 3.2, 3.4, 3.5 (but skip the discussion of oceans until next week); Ch. 10 Thermodynamic

More information

and Meteorology Amir A. Aliabadi July 16, 2017 The 2017 Connaught Summer Institute in Arctic Science: Atmosphere, Cryosphere, and Climate

and Meteorology Amir A. Aliabadi July 16, 2017 The 2017 Connaught Summer Institute in Arctic Science: Atmosphere, Cryosphere, and Climate The 2017 Connaught Summer Institute in Science: Atmosphere, Cryosphere, and Climate July 16, 2017 Modelling Outline Modelling Modelling A zonal-mean flow field is said to be hydro-dynamically unstable

More information

TURBULENT KINETIC ENERGY

TURBULENT KINETIC ENERGY TURBULENT KINETIC ENERGY THE CLOSURE PROBLEM Prognostic Moment Equation Number Number of Ea. fg[i Q! Ilial.!.IokoQlI!!ol Ui au. First = at au.'u.' '_J_ ax j 3 6 ui'u/ au.'u.' a u.'u.'u k ' Second ' J =

More information

Heat Transfer Convection

Heat Transfer Convection Heat ransfer Convection Previous lectures conduction: heat transfer without fluid motion oday (textbook nearly 00 pages) Convection: heat transfer with fluid motion Research methods different Natural Convection

More information

Chapter 4. Gravity Waves in Shear. 4.1 Non-rotating shear flow

Chapter 4. Gravity Waves in Shear. 4.1 Non-rotating shear flow Chapter 4 Gravity Waves in Shear 4.1 Non-rotating shear flow We now study the special case of gravity waves in a non-rotating, sheared environment. Rotation introduces additional complexities in the already

More information