The Exponentiated Gamma Distribution Based On Ordered Random Variable

Size: px
Start display at page:

Download "The Exponentiated Gamma Distribution Based On Ordered Random Variable"

Transcription

1 Applied Mthemtics E-Notes, , c ISSN Ailble free t mirror sites of men/ The Exponentited Gmm Distribtion Bsed On Ordered Rom Vrible Deendr Kmr Receied 15 October 2014 Abstrct In this pper, e ge some ne explicit expressions recrrence reltions for mrginl joint moment generting fnctions of dl generlized order sttistics from exponentited gmm distribtion. The reslts for order sttistics loer record les re dedced from the reltion deried. Frther, chrcterizing reslt of this distribtion on sing recrrence reltion for mrginl moment generting fnctions dl generlized order sttistics is discssed. 1 Introdction The concept of generlized order sttistics gos s introdced by Kmps [1] s generl frmeork for models of ordered rom ribles. Moreoer, mny other models of ordered rom ribles, sch s, order sttistics, k-th pper record les, pper record les, progressiely Type II censoring order sttistics, Pfeifer records seqentil order sttistics re seen to be prticlr cses of gos. These models cn be effectiely pplied, e.g., in relibility theory. Hoeer, rom ribles tht re decresingly ordered cnnot be integrted into this frmeork. Conseqently, this model is inpproprite to stdy, e.g. reersed ordered order sttistic loer record les models. Brkscht et l. [2] introdced the concept of dl generlized order sttistics dgos. The dgos models enble s to stdy decresingly ordered rom ribles like reersed order sttistics, loer k record les loer Pfeirfer records, throgh common pproch belo: Sppose X d 1, n, m, k,..., X d n, n, m, k, k 1, m is rel nmber, re n dgos from n bsoltely continos cmltie distribtion fnction cdf F x ith probbility density fnction pdf fx, if their joint pdf is of the form n 1 n 1 k [F x i ] m fx i [F x n ] k 1 fx n, 1 j1 γ j i1 for F 1 1 > x 1 x 2... x n > F 1 0, here γ j k + n jm + 1 > 0 for ll j, 1 j n, k is positie integer m 1. If m 0 k 1, then this model redces to the n r + 1-th order sttistic, from the smple X 1, X 2,..., X n 1 Mthemtics Sbject Clssifictions: 62G30, 62E10. Deprtment of Sttistics, Amity Institte of Applied Sciences Amity Uniersity, Noid , Indi. 105

2 106 The Exponentited Gmm Distribtion ill be the joint pdf of n order sttistics. If k 1 m 1, then 1 ill be the joint pdf of the first n record les of the identiclly independently distribted iid rom ribles ith cdf F x corresponding pdf fx. In ie of 1, the mrginl pdf of the r-th dgos, is gien by f Xd r,n,m,kx The joint pdf of r-th s-th dgos, is C r 1 r 1! [F x]γ r 1 fxg r 1 m F x. 2 f Xd r,n,m,k,x d s,n,m,kx, y C s 1 r 1!s r 1! [F x]m fxgm r 1 F x [h m F y h m F x] s r 1 [F y] γ s 1 fy, 3 here C r 1 r γ i, h m x i1 { 1 m+1 xm+1 for m 1, lnx for m 1, g m x h m x h m 1, for x [0, 1. Ahsnllh Rqb [3], Rqb Ahsnllh [4, 5] he estblished recrrence reltions for moment generting fnctions mgf of record les from Preto Gmble, poer fnction extreme le distribtions. Recrrence reltions for mrginl joint mgf of gos from poer fnction distribtion, Erlng-trncted exponentil distribtion extended type II generlized logistic distribtion re deried by Srn Singh [6], Klshresth et l. [7] Kmr [8] respectiely. Kmr [9, 10, 11] he estblished recrrence reltions for mrginl joint mgf of dgos from generlized logistic, Mrshll-Olkin extended logistic type I generlized logistic distribtion respectiely. Al-Hssini et l. [12, 13] he estblished recrrence reltions for conditionl joint mgf of gos bsed on mixed popltion. Kmr [14] he estblished explicit expressions some recrrence reltions for mgf of record les from generlized logistic distribtion. Recrrence reltions for single prodct moments of dgos from the inerse Weibll distribtion re deried by Pls Szynl [15]. Ahsnllh [16] Mbh Ahsnllh [17] chrcterized the niform poer fnction distribtions bsed on distribtionl properties of dgos respectiely. Chrcteriztions bsed on gos he been stdied by some thors, Keseling [18] chrcterized some continos distribtions bsed on conditionl distribtions of gos. Bieniek Szynl [19] chrcterized some distribtions i linerity of regression of gos. Crmer et l. [20] ge nifying pproch on chrcteriztion i liner regression of ordered rom ribles. Rest of the pper is orgnized s follos: In Section 2 exct expressions recrrence reltions for mrginl joint mgf of dgos from exponentited Gmm distribtion EGD re presented, hile in Section 3, the exct expressions recrrence

3 D. Kmr 107 reltions for joint mgf for dgos from EGD re discssed In Section 4, chrcteriztion of EGD is obtined by sing the recrrence reltion for mrginl mgf of dgos. Some finl comments in Section 5 conclde the pper. Gpt et l. [21] introdced the EGD. This model is flexible enogh to ccommodte both monotonic s ell s nonmonotonic filre rtes. The cdf pdf of EGD re gien, respectiely by Note tht for F GD, F x [1 e x x + 1] α, x > 0, α > 0, 4 fx αxe x [1 e x x + 1] α 1, x > 0, α > 0. 5 αxf x [e x x + 1]fx. 6 For α 1, the boe distribtion corresponds to the gmm distribtion G1, 2. 2 Reltions for Mrginl Moments Generting Fnctions In this Section the exct expressions recrrence reltions for mrginl mgf of dgos from EGD re considered. For the EGD hen m 1, M Xd r,n,m,kt e tx fxdx C r 1 r 1! e tx [F x] γ r 1 fxgm r 1 F xdx. On sing 4 5 in 6 simplifiction of the reslting eqtion e get M Xd r,n,m,kt for m 1 αc r 1 r 1 r 1!m + 1 r 1 αγr 1 p p q M Xd r,n, 1,kt αkr r 1! p0 0 0 r p 0 p0 q0 r 1++p p 1 +p r 1 7 Γq + 2, 8 p + 1 t q+2 1 φ p r 1 αk 1 Γ + 2, 9 r + + p t +2 here φ p r 1 is the coeffi cient of e r 1+px x + 1 r 1+p in the expnsion of see Blkrishnn Cohn [22]. r 1 e px x + 1 p, p p1

4 108 The Exponentited Gmm Distribtion Differentiting both sides of 8 9 ith respect to t, j times e get M j X d r,n,m,k t αc r 1 r 1!m + 1 r 1 αγr 1 p M j αkr X d r,n, 1,kt r 1! p0 0 r p r 1 0 p0 q0 p q r 1++p 0 p 1 +p r 1 Γj + q + 2 p + 1 t j+q φ p r 1 If α is positie integer, the reltions then gie r 1 M j X d r,n,m,k t αc r 1 r 1!m + 1 r 1 αγr 1 p p q M j αkr X d r,n, 1,kt r 1! αk 1 p0 0 0 r 1++p 0 r P αk 1 Γj r + + p t j++2 αγ r 1 p 1 +p r 1 p0 q0 Γj + q + 2 p + 1 t j+q φ p r 1 αk 1 Γj r + + p t j++2 By differentiting both sides of eqtion ith respect to t then setting t 0, e obtin the explicit expression for single moments of dgos k record les from EGD in the form r 1 αγ E[X j d r, n, m, k] αc r 1 r 1 p r 1!m + 1 r 1 1 +p r 1 0 p0 q0 αγr 1 p Γj + q + 2 p q p + 1 j+q+2 14 E[X j αkr d r, n, 1, k] r 1! Specil Cses: αk 1 p0 0 r 1++p 0 1 φ p r 1 r p Γj αk r + + p j++2

5 D. Kmr 109 i Ptting m 0, k 1 in 12 14, reltions for order sttistics cn be obtined s M j X r:n t αc r:n n r 0 αr+ 1 p0 αr + 1 p p 1 +p n r q0 p Γj + q + 2 q p + 1 t j+q+2 here n r E[Xr;n] j αc r:n 0 αr+ 1 p0 αr + 1 p C r:n n! r 1!n r!. p 1 +p n r q0 p Γj + q + 2 q p + 1 j+q+2, ii Ptting k 1 in 13 15, reltions for record les cn be obtined s M j X Lr t α r α 1 r 1++p r 1! p0 0 r p 0 1 φ p r 1 Γj r + + p t j++2 α 1 E[X j Lr ] α r α 1 r 1! p0 0 r P r 1++p 0 1 φ p r 1 Γj r + + p j++2. α 1 A recrrence reltion for mgf of dgos from cdf 4 cn be obtined in the folloing theorem. THEOREM 1. For 2 r n n 2 k 1, 2,..., 1 t M j αγ X d r,n,m,k t r M j X d r 1,n,m,k t + 1 αγ r j αγ r M j 1 X d r,n,m,k t { te[φx d r, n, m, k] + E[ψX d r, n, m, k], 16

6 110 The Exponentited Gmm Distribtion here φx x j 1 e t+1x e tx ψx x j 2 e t+1x e tx. here PROOF. Integrting by prts of 7 sing 6, e get M Xd r,n,m,kt M Xd r 1,n,m,kt + j αγ r { MXd r,n,m,kt E[hX d r, n, m, k], 17 e t+1x hx x etx. x Differentiting both the sides of 17 j times ith respect to t, e get the reslt gien in 16. By differentiting both sides of eqtion 17 ith respect to t then setting t 0, e obtin the recrrence reltions for moments of dgos from EGD in the form E[X j d r, n, m, k] j E[Xj d r 1, n, m, k] + E[X j 1 d r, n, m, k] αγ r + j { E[X j 2 d r, n, m, k] E[ξX d r, n, m, k], 18 αγ r here ξx x j 2 e x. REMARK 2.1. Ptting m 0, k 1 in 16 18, reltions for order sttistics cn be obtined s M j X r:n t t 1 M j j X αr 1 r 1:n t αr 1 M j 1 X r 1:n t 1 + αr 1 {te[φx r 1:n] + je[ψx r 1:n ] EX j r:n EX j r 1:n j { EX j 1 r 1:n αr 1 + EXj 2 r 1:n EξX r 1;n. REMARK 2.2. Ptting k 1 in 16 18, reltions for k record les cn be obtined s 1 t M j X αk Lr t M j X Lr 1 t + j αk M j 1 X Lr t 1 { te[φxlr ] + je[ψx Lr ] αk E[X j Lr ] E[Xj Lr 1 ] + j { E[X j 1 αk Lr ] + E[Xj 2 Lr ] E[ξX Lr].

7 D. Kmr Reltions for Joint Moment Generting Fnctions In this Section exct moments recrrence reltions for joint mgf of dgos from EGD re considered. For the EGD hen m 1, M Xd r,n,m,k,x d s,n,m,kt 1, t 2 x C s 1 r 1!s r 1! e t1x+t2y f Xd r,n,m,kx d s,n,m,kx, ydxdy. x e t1x+t2y [F x] m fxgm r 1 F x [h m F y h m F x] s r 1 [F y] γ s 1 fydydx. 19 On sing 4 5 in 19 simplifiction of the reslting eqtion e get M Xd r,n,m,k,x d s,n,m,kt 1, t 2 α 2 C s 1 r 1!s r 1!m + 1 s 2 s r 1 0 l0 0 p0 s r 1 r 1 0 b0 0 l l++ αγs 1 r 1 b αs r + m l l Γ + 2Γp p!l + 1 t 2 +2 p l + 2 t 1 t 2 p++2 For m 1, M Xd r,n, 1,k,X d s,n, 1,kt 1, t 2 αk s s r 1 r 1!s r 1! c+1 0 +q+ d0 p0 q0 0 0 s r 1 b0 s+b+p 2 c0 1 s r 1++ φ p s 2φ q s + b + p 2 c αk 1 + q + Γc + 2Γ + d + 2 d!s + b + p 1 t 2 c d s + b + p + q + t 1 t 2 +d+2

8 112 The Exponentited Gmm Distribtion Differentiting both side of i times ith respect to t 1 then j times ith respect to t 2, e get M i,j X d r,n,m,k,x d s,n,m,k t 1, t 2 α 2 C s 1 r 1!s r 1!m + 1 s 2 s r 1 0 l0 0 s r 1 r 1 0 b0 0 l i l++ αγs 1 r 1 b p0 αs r + m l l Γi + + 2Γj + p p!l + 1 t 2 i++2 p + l + 2 t 1 t 2 j+p M i,j X d r,n, 1,k,X d s,n, 1,k t 1, t 2 αk s s r 1 r 1!s r 1! i+c+1 0 +q+ d0 p0 q0 0 0 s r 1 b0 s+b+p 2 c0 1 s r 1++ φ p s 2φ q s + b + p 2 c αk 1 + q + Γi + c + 2Γj + + d + 2 d!s + b + p 1 t 2 i+c d s + b + p + q + t 1 t 2 j++d+2 If α is positie integer, the reltions then gie M i,j X d r,n,m,k,x d s,n,m,k t 1, t 2 α 2 αγ s 1 C s 1 r 1!s r 1!m + 1 s 2 s r 1 0 r 1 αs r +m+1 1 l0 s r 1 0 r 1 b0 0 l i l++ αγs 1 b 0 p0 αs r + m l l Γi + + 2Γj + p p!l + 1 t 2 i++2 p + l + 2 t 1 t 2 j+p++2 24

9 D. Kmr 113 M i,j X d r,n, 1,k,X d s,n, 1,k t 1, t 2 αk s s r 1 r 1!s r 1! i+c+1 αk 1 d0 p0 q0 0 s r 1 0 +q+ 0 b0 s+b+p 2 c0 1 s r 1++ φ p s 2φ q s + b + p 2 c αk 1 + q + Γi + c + 2Γj + + d + 2 d!s + b + p 1 t 2 i+c d s + b + p + q + t 1 t 2 j++d+2 By differentiting both sides of eqtion ith respect to t 1, t 2 then setting t 1 t 2 0, e obtin the explicit expression for prodct moments of dgos k record les from EGD in the form E[Xdr, i n, m, k, X j d s, n, m, k] α 2 αγ s 1 C s 1 r 1 r 1!s r 1!m + 1 s 2 s r 1 0 r 1 αs r +m+1 1 l0 s r 1 0 b0 0 l i l++ αγs 1 b 0 p0 αs r + m l l Γi + + 2Γj + p p!l + 1 i++2 p + l + 2 j+p E[Xdr, i n, 1, k, X j d s, n, 1, k] αk s s r 1 r 1!s r 1! i+c+1 αk 1 d0 p0 q0 0 s r 1 0 +q+ 0 b0 s+b+p 2 c0 1 s r 1++ φ p s 2φ q s + b + p 2 c αk 1 + q + Γi + c + 2Γj + + d + 2 d!s + b + p 1 i+c d s + b + p + q + j++d+2 Specil Cses:

10 114 The Exponentited Gmm Distribtion i Ptting m 0, k 1 in 24 26, reltions for order sttistics cn be obtined s M i,j X r:n,x s:n t 1, t 2 αr+ 1 α 2 C r,s:n 0 n s b0 0 s r 1 0 αs r + 1 l0 l i l++ αr + 1 b 0 p0 n s s r 1 αs r + 1 l Γi + + 2Γj + p p!l + 1 t 2 i++2 p + l + 2 t 1 t 2 j+p++2 l αr+ 1 E[Xr:n, i Xs:n] j α 2 C r,s:n 0 b0 s r 1 0 αs r + 1 l0 i++1 p0 n s 0 l 1 +l++ αr + 1 n s b 0 s r 1 αs r + 1 l l Γi + + 2Γj + p p!l + 1 i++2 p + l + 2 j+p++2, here C r,s;n n! r 1!s r 1!n s!. ii Ptting k 1 in 25 27, reltions for record les in the form M i,j X Lr,X Ls t 1, t 2 α s s r 1 r 1!s r 1! i+c+1 d0 α 1 p0 q0 0 s r 1 0 +q+ 0 b0 s+b+p 2 c0 1 s r 1++ φ p s 2φ q s + b + p 2 c α 1 + q + Γi + c + 2Γj + + d + 2 d!s + b + p 1 t 2 i+c d+2 s + b + p + q + t 1 t 2 j++d+2

11 D. Kmr 115 E[X i Lr, Xj Ls ] α s s r 1 r 1!s r 1! i+c+1 d0 α 1 p0 q0 0 s r 1 0 +q+ 0 b0 s+b+p 2 c0 1 s r 1++ φ p s 2φ q s + b + p 2 c α 1 Γi + c + 2Γj + + d + 2 d!s + b + p 1 i+c d+2 s + b + p + q + j++d+2. + q + Mking se of 6, e cn derie recrrence reltions for joint mgf of dgos. THEOREM 2. For 1 r < s n n 2 k 1, 2,..., 1 t 2 M i,j αγ X d r,n,m,kx d s,n,m,k t 1, t 2 s M i,j X d r,n,m,kx d s 1,n,m,k t 1, t 2 + j M i,j 1 αγ X d r,n,m,kx d s,n,m,k t 1, t 2 s { t 2 E[φX d r, n, m, kx d s, n, m, k] +je[ψx d r, n, m, kx d s, n, m, k], 28 1 αγ s here φx, y x i y j 1 e t1x+t2+1y e t1x+t2y ψx x i y j 2 e t1x+t2+1y e t1x+t2y. PROOF. Integrting by prts of 19 sing 6, e get M Xd r,n,m,kx d s,n,m,kt 1, t 2 M Xd r,n,m,kx d s 1,n,m,kt 1, t 2 + t { 2 M Xd r,n,m,kx αγ d s,n,m,kt 1, t 2 s E[hX d r, n, m, kx d s, n, m, k] 29 e t 1x+t 2+1y hx, y y et1x+t2y. y

12 116 The Exponentited Gmm Distribtion Differentiting both the sides of boe eqtion i times ith respect to t 1 then j times ith respect to t 2 simplifying the reslting expression, e get the reslt gien in 28. By differentiting both sides of eqtion 28 ith respect to t 1, t 2 then setting t 1 t 2 0, e obtin the recrrence reltions for prodct moments of dgos from EGD in the form E[Xdr, i n, m, kx j d s, n, m, k] E[Xdr, i n, m, kx j d s 1, n, m, k] + j { E[X i αγ dr, n, m, kx j 1 d s, n, m, k] + E[Xdr, i n, m, kx j 2 d s, n, m, k] s j αγ s E[ξX d r, n, m, kx d s, n, m, k], 30 here ξx, y x i y j 2 e y. REMARK 3.1. Ptting m 0, k 1 in 28 30, e obtin reltions for order sttistics M i,j X r:nx s:n t 1, t 2 1 t t1 αr αr 1 M i,j X r 1:nX s:n t 1, t 2 i αr 1 M i,j { t 1 E[φX r 1:n X s:n ] + je[ψx r 1:n X s:n ] X r 1:nX s:n t 1, t 2 EXr:nX i s:n j { EXr 1:nX i s:n j i EXr 1:n i 1 αr 1 s:n + EXr 1:n i 2 s:n EφX r 1;n X s;n. REMARK 3.2. Ptting m 1 k 1in 28 30, e obtin reltions for k record les in the form 1 t 2 M i,j αγ X d r,n, 1,kX d s,n, 1,k t 1, t 2 s M i,j X d r,n, 1,kX d s 1,n, 1,k t 1, t 2 + j M i,j 1 αγ X d r,n, 1,kX d s,n, 1,k t 1, t 2 s { t 2 E[φX d r, n, 1, kx d s, n, 1, k] +je[ψx d r, n, 1, kx d s, n, 1, k] 1 αγ s

13 D. Kmr 117 E[Xdr, i n, 1, kx j d s, n, 1, k] E[Xdr, i n, 1, kx j d s 1, n, 1, k] + j { E[X i αγ dr, n, 1, kx j 1 d s, n, 1, k] + E[Xdr, i n, 1, kx j 2 d s, n, 1, k] s j αγ s E[ξX d r, n, 1, kx d s, n, 1, k]. 4 Chrcteriztion This Section contins chrcteriztion of EGD by sing the recrrence reltion for mgf of dgos. Let L, b st for the spce of ll integrble fnctions on, b. A seqence f n L, b is clled complete on L, b if for ll fnctions g L, b the condition b gxf n xdx 0, n N, implies gx 0.e. on, b. We strt ith the folloing reslt of Lin [23]. PROPOSITION 1. Let n 0 be ny fixed non-negtie integer, < b gx 0 n bsoltely continos fnction ith g x 0.e. on, b. Then the seqence of fnctions {gx n e gx, n n 0 is complete in L, b iff gx is strictly monotone on, b. Using the boe Proposition e get stronger ersion of Theorem 1. THEOREM 3. A necessry sffi cient conditions for rom rible X to be distribted ith pdf gien by 5 is tht M j X d r,n,m,k t M j X d r 1,n,m,k t + j { M j 1 αγ X d r,n,m,k t E[hX dr, n, m, k]. 31 r PROOF. The necessry prt follos immeditely from eqtion 17. On the other h if the recrrence reltion in eqtion 31 is stisfied, then on sing eqtion 2, e he C r 1 r 1! 0 C r 1 γ r r 2! tc r 1 0 αγ r r 1! + tc r 1 αγ r r 1! e tx [F x] γ r 1 fxgm r 1 F xdx e tx [F x] γ r +m fxgm r 2 F xdx e t+1x 0 0 x [F x] γ r 1 fxgm r 1 F xdx x j 1 [F x] γ r 1 fxgm r 1 F xdx

14 118 The Exponentited Gmm Distribtion tc 1 r 1 e tx αγ r r 1! 0 x [F x]γ r 1 fxgm r 1 F xdx. 32 Integrting the first integrl on the right-h side of the boe eqtion by prts simplifying the reslting expression, e get tc { r 1 e tx [F x] γ r 1 gm r 1 F x F x etx x + 1 fx dx r 1! αx 0 It no follos from Proposition 1, tht hich proes tht fx hs the form 4. 5 Conclding Remrks αxf x [e tx x + 1]fx i In this pper, e proposed ne explicit expressions recrrence reltions for mrginl joint moment generting fnctions of dgos from EGD. Frther, chrcteriztion of this distribtion hs lso been obtined on sing recrrence reltion for mrginl moment generting fnctions of dgos. Specil cses re lso dedced. ii The recrrence reltions for moments of ordered rom ribles re importnt becse they redce the mont of direct compttions for moments, elte the higher moments in terms of the loer moments they cn be sed to chrcterize distribtions. iii The recrrence reltions of higher joint moments enble s to derie single, prodct, triple qdrple moments hich cn be sed in Edgeorth pproximte inference. Acknoledgments. The thor is grtefl to nonymos referees the Editor for ery sefl comments sggestions. References [1] U. Kmps, A Concept of Generlized Order Sttistics. Tebner Skripten zr Mthemtischen Stochstik. [Tebner Texts on Mthemticl Stochstics] B. G. Tebner, Stttgrt, [2] M. Brkscht, E. Crmer U. Kmps, Dl generlized order sttistics, Metron, , [3] M. Ahsnllh M. Z. Rqb, Recrrence reltions for the moment generting fnctions of record les from Preto Gmble distribtions, Stoch. Model. Appl., 21999,

15 D. Kmr 119 [4] M. Z. Rqb M. Ahsnllh, Reltions for mrginl joint moment generting fnctions of record les from poer fnction distribtion, J. Appl. Sttist. Sci., , [5] M. Z. Rqb M. Ahsnllh, On moment generting fnction of records from extreme le distribtion, Pkistn J. Sttist., , [6] J. Srn A. Singh, Recrrence reltions for mrginl joint moment generting fnctions of generlized order sttistics from poer fnction distribtion, Metron, 2003, [7] A. Klshresth, R. U. Khn D. Kmr, On moment generting fnction of generlized order sttistics from Erlng-trncted exponentil distribtion, Open J. Stt., 22012, [8] D. Kmr, On moment generting fnctions of generlized order sttistics from extended type II generlized logistic distribtion, J. Sttist. Theory Appl., , [9] D. Kmr, Moment generting fnctions of loer generlized order sttistics from generlized logistic distribtion its chrcteriztion, Pcific Jornl of Applied Mthemtics, 52013, [10] D. Kmr, Reltions for mrginl joint moment generting fnctions of Mrshll-Olkin extended logistic distribtion bsed on loer generlized order sttistics chrcteriztion, Americn Jornl of Mthemticl Mngement Sciences, , [11] D. Kmr, Reltions for mrginl Joint moments generting fnctions of extended type I generlized logistic distribtion bsed on loer generlized order sttistics chrcteriztion, Tmsi Oxford Jornl of Mthemticl Science, , [12] E. K. Al-Hssini, A. A. Ahmd M. A. Al-Kshif, Recrrence reltions for joint moment generting fnctions of generlized order sttistics bsed on mixed popltion, J. Sttist. Theory Appl., 62005, [13] E. K. Al-Hssini, A. A. Ahmd M. A. Al-Kshif, Recrrence reltions for moment conditionl moment generting fnctions of generlized order sttistics, Metrik, , [14] D. Kmr, Recrrence reltions for mrginl joint moment generting fnctions of generlized logistic distribtion bsed on loer record les its chrcteriztion, ProbStt Form, 52012, [15] P. Pls D. Szynl, Recrrence reltions for single prodct moments of loer generlized order sttistics from the inerse Weibll distribtion, Demonstrtio Mthemtic, 22001,

16 120 The Exponentited Gmm Distribtion [16] M. Ahsnllh, A chrcteriztion of the niform distribtion by dl generlized order sttistics, Comm. Sttist. Theory Methods, , [17] A. K. Mbh M. Ahsnllh, Some chrcteriztion of the poer fnction distribtion bsed on loer generlized order sttistics, Pkistn J. Sttist., , [18] C. Keseling, Conditionl distribtions of generlized order sttistics some chrcteriztions, Metrik, , [19] M. Bieniek D. Szynl, Chrcteriztions of distribtions i linerity of regression of generlized order sttistics, Metrik, , [20] E. Crmer, U. Kmps C. Keseling, Chrcteriztion i liner regression of ordered rom ribles: nifying pproch, Comm. Sttist. Theory Methods, , [21] R. C. Gpt, R. D. Gpt P. L. Gpt, Modelling filre time dt by Lehmn lternties. Comm. Sttist. Theory Methods, , [22] N. Blkrishnn A. C. Cohn, Order Sttistics Inference: Estimtion Methods, Acdemic Press, Sn Diego, [23] G. D. Lin, On moment problem, Tohok Mth. Jornl, ,

Recurrence Relations for Moments of Dual Generalized Order Statistics from Weibull Gamma Distribution and Its Characterizations

Recurrence Relations for Moments of Dual Generalized Order Statistics from Weibull Gamma Distribution and Its Characterizations J. Stt. Appl. Pro. 3, No. 2, 189-199 214 189 Jornl of Sttistics Applictions & Probbility An Interntionl Jornl http://dx.doi.org/1.12785/jsp/329 Recrrence Reltions for Moments of Dl Generlized Order Sttistics

More information

Tamsui Oxford Journal of Information and Mathematical Sciences 29(2) (2013) Aletheia University

Tamsui Oxford Journal of Information and Mathematical Sciences 29(2) (2013) Aletheia University Tamsui Oxford Journal of Information and Mathematical Sciences 292 2013 219-238 Aletheia University Relations for Marginal and Joint Moment Generating Functions of Extended Type I Generalized Logistic

More information

Moment Generating Functions of Exponential-Truncated Negative Binomial Distribution based on Ordered Random Variables

Moment Generating Functions of Exponential-Truncated Negative Binomial Distribution based on Ordered Random Variables J. Stat. Appl. Pro. 3, No. 3, 413-423 2015 413 Jornal of Statistics Applications & Probability An International Jornal http://d.doi.org/10.12785/jsap/030312 oment Generating Fnctions of Eponential-Trncated

More information

A basic logarithmic inequality, and the logarithmic mean

A basic logarithmic inequality, and the logarithmic mean Notes on Number Theory nd Discrete Mthemtics ISSN 30 532 Vol. 2, 205, No., 3 35 A bsic logrithmic inequlity, nd the logrithmic men József Sándor Deprtment of Mthemtics, Bbeş-Bolyi University Str. Koglnicenu

More information

CHAPTER 2 FUZZY NUMBER AND FUZZY ARITHMETIC

CHAPTER 2 FUZZY NUMBER AND FUZZY ARITHMETIC CHPTER FUZZY NUMBER ND FUZZY RITHMETIC 1 Introdction Fzzy rithmetic or rithmetic of fzzy nmbers is generlistion of intervl rithmetic, where rther thn considering intervls t one constnt level only, severl

More information

The Complementary Exponential-Geometric Distribution Based On Generalized Order Statistics

The Complementary Exponential-Geometric Distribution Based On Generalized Order Statistics Applied Mathematics E-Notes, 152015, 287-303 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ The Complementary Exponential-Geometric Distribution Based On Generalized

More information

We are looking for ways to compute the integral of a function f(x), f(x)dx.

We are looking for ways to compute the integral of a function f(x), f(x)dx. INTEGRATION TECHNIQUES Introdction We re looking for wys to compte the integrl of fnction f(x), f(x)dx. To pt it simply, wht we need to do is find fnction F (x) sch tht F (x) = f(x). Then if the integrl

More information

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b)

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b) GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS KUEI-LIN TSENG, GOU-SHENG YANG, AND SEVER S. DRAGOMIR Abstrct. In this pper, we estblish some generliztions

More information

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions Annls of University of Criov, Mth. Comp. Sci. Ser. Volume 3, 7, Pges 8 87 ISSN: 13-693 Some estimtes on the Hermite-Hdmrd inequlity through qusi-convex functions Dniel Alexndru Ion Abstrct. In this pper

More information

Continuous Random Variables

Continuous Random Variables STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is rel-vlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht

More information

Definite integral. Mathematics FRDIS MENDELU

Definite integral. Mathematics FRDIS MENDELU Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the

More information

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30 Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function

More information

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs Applied Mthemticl Sciences, Vol. 2, 2008, no. 8, 353-362 New Integrl Inequlities for n-time Differentible Functions with Applictions for pdfs Aristides I. Kechriniotis Technologicl Eductionl Institute

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

Lorenz Curve and Gini Coefficient in Right Truncated Pareto s Income Distribution

Lorenz Curve and Gini Coefficient in Right Truncated Pareto s Income Distribution EUROPEAN ACADEMIC RESEARCH Vol. VI, Issue 2/ Mrch 29 ISSN 2286-4822 www.eucdemic.org Impct Fctor: 3.4546 (UIF) DRJI Vlue: 5.9 (B+) Lorenz Cure nd Gini Coefficient in Right Truncted Preto s Income Distribution

More information

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula. Generliztions of the Ostrowski s inequlity K. S. Anstsiou Aristides I. Kechriniotis B. A. Kotsos Technologicl Eductionl Institute T.E.I.) of Lmi 3rd Km. O.N.R. Lmi-Athens Lmi 3500 Greece Abstrct Using

More information

Math 554 Integration

Math 554 Integration Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we

More information

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones.

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones. Mth 20B Integrl Clculus Lecture Review on Integrtion (Secs. 5. - 5.3) Remrks on the course. Slide Review: Sec. 5.-5.3 Origins of Clculus. Riemnn Sums. New functions from old ones. A mthemticl description

More information

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION Applied Mthemtics E-Notes, 5(005), 53-60 c ISSN 1607-510 Avilble free t mirror sites of http://www.mth.nthu.edu.tw/ men/ AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

More information

The Riemann Integral

The Riemann Integral Deprtment of Mthemtics King Sud University 2017-2018 Tble of contents 1 Anti-derivtive Function nd Indefinite Integrls 2 3 4 5 Indefinite Integrls & Anti-derivtive Function Definition Let f : I R be function

More information

A SHORT NOTE ON THE MONOTONICITY OF THE ERLANG C FORMULA IN THE HALFIN-WHITT REGIME. Bernardo D Auria 1

A SHORT NOTE ON THE MONOTONICITY OF THE ERLANG C FORMULA IN THE HALFIN-WHITT REGIME. Bernardo D Auria 1 Working Pper 11-42 (31) Sttistics nd Econometrics Series December, 2011 Deprtmento de Estdístic Universidd Crlos III de Mdrid Clle Mdrid, 126 28903 Getfe (Spin) Fx (34) 91 624-98-49 A SHORT NOTE ON THE

More information

Joint Distribution of any Record Value and an Order Statistics

Joint Distribution of any Record Value and an Order Statistics Interntionl Mthemticl Forum, 4, 2009, no. 22, 09-03 Joint Distribution of ny Record Vlue nd n Order Sttistics Cihn Aksop Gzi University, Deprtment of Sttistics 06500 Teknikokullr, Ankr, Turkey entelpi@yhoo.com

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

Characterizations of the Weibull-X and Burr XII Negative Binomial Families of Distributions

Characterizations of the Weibull-X and Burr XII Negative Binomial Families of Distributions Interntionl Journl of Sttistics nd Probbility; Vol. 4, No. 2; 2015 ISSN 1927-7032 E-ISSN 1927-7040 Published by Cndin Center of Science nd Eduction Chrcteriztions of the Weibull-X nd Burr XII Negtive Binomil

More information

Chapter 5 : Continuous Random Variables

Chapter 5 : Continuous Random Variables STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 216 Néhémy Lim Chpter 5 : Continuous Rndom Vribles Nottions. N {, 1, 2,...}, set of nturl numbers (i.e. ll nonnegtive integers); N {1, 2,...}, set of ll

More information

Joint distribution. Joint distribution. Marginal distributions. Joint distribution

Joint distribution. Joint distribution. Marginal distributions. Joint distribution Joint distribution To specify the joint distribution of n rndom vribles X 1,...,X n tht tke vlues in the smple spces E 1,...,E n we need probbility mesure, P, on E 1... E n = {(x 1,...,x n ) x i E i, i

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journl of Inequlities in Pure nd Applied Mthemtics MOMENTS INEQUALITIES OF A RANDOM VARIABLE DEFINED OVER A FINITE INTERVAL PRANESH KUMAR Deprtment of Mthemtics & Computer Science University of Northern

More information

POWER GENERALIZED WEIBULL DISTRIBUTION BASED ON GENERALISED ORDER STATISTICS

POWER GENERALIZED WEIBULL DISTRIBUTION BASED ON GENERALISED ORDER STATISTICS Jornal of Data Science 621-646, DOI: 1.6339/JDS.2187_16(3).1 POWER GENERALIZED WEIBULL DISTRIBUTION BASED ON GENERALISED ORDER STATISTICS Devendra Kmar 1 and Neet Jain 2 1 Department of Statistics, Central

More information

Characterizations of probability distributions via bivariate regression of record values

Characterizations of probability distributions via bivariate regression of record values Metrika (2008) 68:51 64 DOI 10.1007/s00184-007-0142-7 Characterizations of probability distribtions via bivariate regression of record vales George P. Yanev M. Ahsanllah M. I. Beg Received: 4 October 2006

More information

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCK-KURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When rel-vlued

More information

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

8 Laplace s Method and Local Limit Theorems

8 Laplace s Method and Local Limit Theorems 8 Lplce s Method nd Locl Limit Theorems 8. Fourier Anlysis in Higher DImensions Most of the theorems of Fourier nlysis tht we hve proved hve nturl generliztions to higher dimensions, nd these cn be proved

More information

RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROXIMATION OF CSISZAR S f DIVERGENCE

RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROXIMATION OF CSISZAR S f DIVERGENCE SARAJEVO JOURNAL OF MATHEMATICS Vol.5 (17 (2009, 3 12 RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROIMATION OF CSISZAR S f DIVERGENCE GEORGE A. ANASTASSIOU Abstrct. Here re estblished vrious tight probbilistic

More information

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE 1. Pointwise Convergence of Sequence Let E be set nd Y be metric spce. Consider functions f n : E Y for n = 1, 2,.... We sy tht the sequence

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

International Jour. of Diff. Eq. and Appl., 3, N1, (2001),

International Jour. of Diff. Eq. and Appl., 3, N1, (2001), Interntionl Jour. of Diff. Eq. nd Appl., 3, N1, (2001), 31-37. 1 New proof of Weyl s theorem A.G. Rmm Mthemtics Deprtment, Knss Stte University, Mnhttn, KS 66506-2602, USA rmm@mth.ksu.edu http://www.mth.ksu.edu/

More information

Elementary Linear Algebra

Elementary Linear Algebra Elementry Liner Algebr Anton & Rorres, 9 th Edition Lectre Set Chpter : Vectors in -Spce nd -Spce Chpter Content Introdction to Vectors (Geometric Norm of Vector; Vector Arithmetic Dot Prodct; Projections

More information

Ostrowski Grüss Čebyšev type inequalities for functions whose modulus of second derivatives are convex 1

Ostrowski Grüss Čebyšev type inequalities for functions whose modulus of second derivatives are convex 1 Generl Mthemtics Vol. 6, No. (28), 7 97 Ostrowski Grüss Čebyšev type inequlities for functions whose modulus of second derivtives re convex Nzir Ahmd Mir, Arif Rfiq nd Muhmmd Rizwn Abstrct In this pper,

More information

Common Fixed Point Theorem for Two Mappings In 2-Banach Spaces

Common Fixed Point Theorem for Two Mappings In 2-Banach Spaces Int. Jornl of Mth. Anlsis Vol. 009 no. 8 889-89 Common Fied Point heorem for wo Mppings In -Bnch pces bhknt Dwivedi * Rmknt Bhrdwj ** Rjesh hrivstv * * Deprtment of Mthemtics rb Institte of Engg. & I..

More information

1.9 C 2 inner variations

1.9 C 2 inner variations 46 CHAPTER 1. INDIRECT METHODS 1.9 C 2 inner vritions So fr, we hve restricted ttention to liner vritions. These re vritions of the form vx; ǫ = ux + ǫφx where φ is in some liner perturbtion clss P, for

More information

Review of Riemann Integral

Review of Riemann Integral 1 Review of Riemnn Integrl In this chpter we review the definition of Riemnn integrl of bounded function f : [, b] R, nd point out its limittions so s to be convinced of the necessity of more generl integrl.

More information

CS667 Lecture 6: Monte Carlo Integration 02/10/05

CS667 Lecture 6: Monte Carlo Integration 02/10/05 CS667 Lecture 6: Monte Crlo Integrtion 02/10/05 Venkt Krishnrj Lecturer: Steve Mrschner 1 Ide The min ide of Monte Crlo Integrtion is tht we cn estimte the vlue of n integrl by looking t lrge number of

More information

Orthogonal Polynomials and Least-Squares Approximations to Functions

Orthogonal Polynomials and Least-Squares Approximations to Functions Chpter Orthogonl Polynomils nd Lest-Squres Approximtions to Functions **4/5/3 ET. Discrete Lest-Squres Approximtions Given set of dt points (x,y ), (x,y ),..., (x m,y m ), norml nd useful prctice in mny

More information

A MEAN VALUE THEOREM FOR GENERALIZED RIEMANN DERIVATIVES. 1. Introduction Throughout this article, will denote the following functional difference:

A MEAN VALUE THEOREM FOR GENERALIZED RIEMANN DERIVATIVES. 1. Introduction Throughout this article, will denote the following functional difference: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volme 136, Nmber 2, Febrry 200, Pges 569 576 S 0002-9939(07)0976-9 Article electroniclly pblished on November 6, 2007 A MEAN VALUE THEOREM FOR GENERALIZED

More information

Discrete Least-squares Approximations

Discrete Least-squares Approximations Discrete Lest-squres Approximtions Given set of dt points (x, y ), (x, y ),, (x m, y m ), norml nd useful prctice in mny pplictions in sttistics, engineering nd other pplied sciences is to construct curve

More information

Math 360: A primitive integral and elementary functions

Math 360: A primitive integral and elementary functions Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth 360 001 2017C: Integrl/functions 1 / 32 Setup for the integrl prtitions Definition:

More information

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation 1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

More information

Time Truncated Two Stage Group Sampling Plan For Various Distributions

Time Truncated Two Stage Group Sampling Plan For Various Distributions Time Truncted Two Stge Group Smpling Pln For Vrious Distributions Dr. A. R. Sudmni Rmswmy, S.Jysri Associte Professor, Deprtment of Mthemtics, Avinshilingm University, Coimbtore Assistnt professor, Deprtment

More information

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir RGMIA Reserch Report Collection, Vol., No., 999 http://sci.vu.edu.u/ rgmi AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS I. Fedotov nd S. S. Drgomir Astrct. An

More information

Problem set 5: Solutions Math 207B, Winter r(x)u(x)v(x) dx.

Problem set 5: Solutions Math 207B, Winter r(x)u(x)v(x) dx. Problem set 5: Soltions Mth 7B, Winter 6. Sppose tht p : [, b] R is continosly differentible fnction sch tht p >, nd q, r : [, b] R re continos fnctions sch tht r >, q. Define weighted inner prodct on

More information

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), ) Euler, Iochimescu nd the trpezium rule G.J.O. Jmeson (Mth. Gzette 96 (0), 36 4) The following results were estblished in recent Gzette rticle [, Theorems, 3, 4]. Given > 0 nd 0 < s

More information

1 The Riemann Integral

1 The Riemann Integral The Riemnn Integrl. An exmple leding to the notion of integrl (res) We know how to find (i.e. define) the re of rectngle (bse height), tringle ( (sum of res of tringles). But how do we find/define n re

More information

Expected Value of Function of Uncertain Variables

Expected Value of Function of Uncertain Variables Journl of Uncertin Systems Vol.4, No.3, pp.8-86, 2 Online t: www.jus.org.uk Expected Vlue of Function of Uncertin Vribles Yuhn Liu, Minghu H College of Mthemtics nd Computer Sciences, Hebei University,

More information

INTRODUCTION TO INTEGRATION

INTRODUCTION TO INTEGRATION INTRODUCTION TO INTEGRATION 5.1 Ares nd Distnces Assume f(x) 0 on the intervl [, b]. Let A be the re under the grph of f(x). b We will obtin n pproximtion of A in the following three steps. STEP 1: Divide

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex Stud. Univ. Beş-Bolyi Mth. 6005, No. 4, 57 534 Some Hermite-Hdmrd type inequlities for functions whose exponentils re convex Silvestru Sever Drgomir nd In Gomm Astrct. Some inequlities of Hermite-Hdmrd

More information

THE EXISTENCE OF NEGATIVE MCMENTS OF CONTINUOUS DISTRIBUTIONS WALTER W. PIEGORSCH AND GEORGE CASELLA. Biometrics Unit, Cornell University, Ithaca, NY

THE EXISTENCE OF NEGATIVE MCMENTS OF CONTINUOUS DISTRIBUTIONS WALTER W. PIEGORSCH AND GEORGE CASELLA. Biometrics Unit, Cornell University, Ithaca, NY THE EXISTENCE OF NEGATIVE MCMENTS OF CONTINUOUS DISTRIBUTIONS WALTER W. PIEGORSCH AND GEORGE CASELLA. Biometrics Unit, Cornell University, Ithc, NY 14853 BU-771-M * December 1982 Abstrct The question of

More information

Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015

Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015 Advnced Clculus: MATH 410 Uniform Convergence of Functions Professor Dvid Levermore 11 December 2015 12. Sequences of Functions We now explore two notions of wht it mens for sequence of functions {f n

More information

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS MOHAMMAD ALOMARI A MASLINA DARUS A AND SEVER S DRAGOMIR B Abstrct In terms of the first derivtive some ineulities of Simpson

More information

A Compound of Geeta Distribution with Generalized Beta Distribution

A Compound of Geeta Distribution with Generalized Beta Distribution Journl of Modern Applied Sttisticl Methods Volume 3 Issue Article 8 5--204 A Compound of Geet Distribution ith Generlized Bet Distribution Adil Rshid University of Kshmir, Sringr, Indi, dilstt@gmil.com

More information

Best Approximation in the 2-norm

Best Approximation in the 2-norm Jim Lmbers MAT 77 Fll Semester 1-11 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the -norm Suppose tht we wish to obtin function f n (x) tht is liner combintion

More information

Hybrid Group Acceptance Sampling Plan Based on Size Biased Lomax Model

Hybrid Group Acceptance Sampling Plan Based on Size Biased Lomax Model Mthemtics nd Sttistics 2(3): 137-141, 2014 DOI: 10.13189/ms.2014.020305 http://www.hrpub.org Hybrid Group Acceptnce Smpling Pln Bsed on Size Bised Lomx Model R. Subb Ro 1,*, A. Ng Durgmmb 2, R.R.L. Kntm

More information

1 The Lagrange interpolation formula

1 The Lagrange interpolation formula Notes on Qudrture 1 The Lgrnge interpoltion formul We briefly recll the Lgrnge interpoltion formul. The strting point is collection of N + 1 rel points (x 0, y 0 ), (x 1, y 1 ),..., (x N, y N ), with x

More information

The Hadamard s inequality for quasi-convex functions via fractional integrals

The Hadamard s inequality for quasi-convex functions via fractional integrals Annls of the University of Criov, Mthemtics nd Computer Science Series Volume (), 3, Pges 67 73 ISSN: 5-563 The Hdmrd s ineulity for usi-convex functions vi frctionl integrls M E Özdemir nd Çetin Yildiz

More information

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all 3 Definite Integrl 3.1 Introduction In school one comes cross the definition of the integrl of rel vlued function defined on closed nd bounded intervl [, b] between the limits nd b, i.e., f(x)dx s the

More information

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004 Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when

More information

arxiv: v1 [math.co] 25 Sep 2016

arxiv: v1 [math.co] 25 Sep 2016 arxi:1609.077891 [math.co] 25 Sep 2016 Total domination polynomial of graphs from primary sbgraphs Saeid Alikhani and Nasrin Jafari September 27, 2016 Department of Mathematics, Yazd Uniersity, 89195-741,

More information

Set Integral Equations in Metric Spaces

Set Integral Equations in Metric Spaces Mthemtic Morvic Vol. 13-1 2009, 95 102 Set Integrl Equtions in Metric Spces Ion Tişe Abstrct. Let P cp,cvr n be the fmily of ll nonempty compct, convex subsets of R n. We consider the following set integrl

More information

THIELE CENTRE. Linear stochastic differential equations with anticipating initial conditions

THIELE CENTRE. Linear stochastic differential equations with anticipating initial conditions THIELE CENTRE for pplied mthemtics in nturl science Liner stochstic differentil equtions with nticipting initil conditions Nrjess Khlif, Hui-Hsiung Kuo, Hbib Ouerdine nd Benedykt Szozd Reserch Report No.

More information

FUNCTIONS OF α-slow INCREASE

FUNCTIONS OF α-slow INCREASE Bulletin of Mthemticl Anlysis nd Applictions ISSN: 1821-1291, URL: http://www.bmth.org Volume 4 Issue 1 (2012), Pges 226-230. FUNCTIONS OF α-slow INCREASE (COMMUNICATED BY HÜSEYIN BOR) YILUN SHANG Abstrct.

More information

HW3 : Moment functions Solutions

HW3 : Moment functions Solutions STAT/MATH 395 A - PROBABILITY II UW Spring Qurter 6 Néhémy Lim HW3 : Moment functions Solutions Problem. Let X be rel-vlued rndom vrible on probbility spce (Ω, A, P) with moment generting function M X.

More information

MAT612-REAL ANALYSIS RIEMANN STIELTJES INTEGRAL

MAT612-REAL ANALYSIS RIEMANN STIELTJES INTEGRAL MAT612-REAL ANALYSIS RIEMANN STIELTJES INTEGRAL DR. RITU AGARWAL MALVIYA NATIONAL INSTITUTE OF TECHNOLOGY, JAIPUR, INDIA-302017 Tble of Contents Contents Tble of Contents 1 1. Introduction 1 2. Prtition

More information

Revista Colombiana de Matemáticas Volumen 41 (2007), páginas 1 13

Revista Colombiana de Matemáticas Volumen 41 (2007), páginas 1 13 Revist Colombin de Mtemátics Volumen 4 7, págins 3 Ostrowski, Grüss, Čebyšev type inequlities for functions whose second derivtives belong to Lp,b nd whose modulus of second derivtives re convex Arif Rfiq

More information

Hadamard-Type Inequalities for s Convex Functions I

Hadamard-Type Inequalities for s Convex Functions I Punjb University Journl of Mthemtics ISSN 6-56) Vol. ). 5-6 Hdmrd-Tye Ineulities for s Convex Functions I S. Hussin Dertment of Mthemtics Institute Of Sce Technology, Ner Rwt Toll Plz Islmbd Highwy, Islmbd

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journl of Inequlities in Pure nd Applied Mthemtics GENERALIZATIONS OF THE TRAPEZOID INEQUALITIES BASED ON A NEW MEAN VALUE THEOREM FOR THE REMAINDER IN TAYLOR S FORMULA volume 7, issue 3, rticle 90, 006.

More information

INEQUALITIES FOR GENERALIZED WEIGHTED MEAN VALUES OF CONVEX FUNCTION

INEQUALITIES FOR GENERALIZED WEIGHTED MEAN VALUES OF CONVEX FUNCTION INEQUALITIES FOR GENERALIZED WEIGHTED MEAN VALUES OF CONVEX FUNCTION BAI-NI GUO AND FENG QI Abstrct. In the rticle, using the Tchebycheff s integrl inequlity, the suitble properties of double integrl nd

More information

Taylor Polynomial Inequalities

Taylor Polynomial Inequalities Tylor Polynomil Inequlities Ben Glin September 17, 24 Abstrct There re instnces where we my wish to pproximte the vlue of complicted function round given point by constructing simpler function such s polynomil

More information

Some inequalities of Hermite-Hadamard type for n times differentiable (ρ, m) geometrically convex functions

Some inequalities of Hermite-Hadamard type for n times differentiable (ρ, m) geometrically convex functions Avilble online t www.tjns.com J. Nonliner Sci. Appl. 8 5, 7 Reserch Article Some ineulities of Hermite-Hdmrd type for n times differentible ρ, m geometriclly convex functions Fiz Zfr,, Humir Klsoom, Nwb

More information

7.2 The Definite Integral

7.2 The Definite Integral 7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where

More information

Optimizing LTS-Simulation Algorithm

Optimizing LTS-Simulation Algorithm Optimizing LTS-ltion Algorithm MEMICS 09 Lkáš Holík 1, Jiří Šimáček 1,2 emil: {holik,isimcek}@fit.tbr.cz, simcek@img.fr 1 FIT BUT, Božetěcho 2, 61266 Brno, Czech Repblic 2 VERIMAG, UJF, 2.. de Vignte,

More information

7 - Continuous random variables

7 - Continuous random variables 7-1 Continuous rndom vribles S. Lll, Stnford 2011.01.25.01 7 - Continuous rndom vribles Continuous rndom vribles The cumultive distribution function The uniform rndom vrible Gussin rndom vribles The Gussin

More information

Composite Mendeleev s Quadratures for Solving a Linear Fredholm Integral Equation of The Second Kind

Composite Mendeleev s Quadratures for Solving a Linear Fredholm Integral Equation of The Second Kind Globl Journl of Pure nd Applied Mthemtics. ISSN 0973-1768 Volume 12, Number (2016), pp. 393 398 Reserch Indi Publictions http://www.ripubliction.com/gjpm.htm Composite Mendeleev s Qudrtures for Solving

More information

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics - A Peirce UBC Lecture 6: Singulr Integrls, Open Qudrture rules, nd Guss Qudrture (Compiled 6 August 7) In this lecture we discuss the

More information

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity Punjb University Journl of Mthemtics (ISSN 116-56) Vol. 45 (13) pp. 33-38 New Integrl Inequlities of the Type of Hermite-Hdmrd Through Qusi Convexity S. Hussin Deprtment of Mthemtics, College of Science,

More information

Math 426: Probability Final Exam Practice

Math 426: Probability Final Exam Practice Mth 46: Probbility Finl Exm Prctice. Computtionl problems 4. Let T k (n) denote the number of prtitions of the set {,..., n} into k nonempty subsets, where k n. Argue tht T k (n) kt k (n ) + T k (n ) by

More information

4.5.0 BANACH AND HILBERT SPACES

4.5.0 BANACH AND HILBERT SPACES . Normed Spce Norm is mp :V sch tht for ll,v V nd c. 0 0 if nd only if 0. c c 3. + v + v (tringle ineqlity) Exmple: in spce C[, ] of ll continos fnctions in [, ] norm cn e defined s f mx f ( x) C x [,].

More information

Linear measure functional differential equations with infinite delay

Linear measure functional differential equations with infinite delay Mthemtische Nchrichten, 27 Jnry 2014 Liner mesre fnctionl differentil eqtions with infinite dely Giselle Antnes Monteiro 1, nd Antonín Slvík 2, 1 Mthemticl Institte, Acdemy of Sciences of the Czech Repblic,

More information

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

Homework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer.

Homework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer. Homework 4 (1) If f R[, b], show tht f 3 R[, b]. If f + (x) = mx{f(x), 0}, is f + R[, b]? Justify your nswer. (2) Let f be continuous function on [, b] tht is strictly positive except finitely mny points

More information

Lecture notes. Fundamental inequalities: techniques and applications

Lecture notes. Fundamental inequalities: techniques and applications Lecture notes Fundmentl inequlities: techniques nd pplictions Mnh Hong Duong Mthemtics Institute, University of Wrwick Emil: m.h.duong@wrwick.c.uk Februry 8, 207 2 Abstrct Inequlities re ubiquitous in

More information

Extended tan-cot method for the solitons solutions to the (3+1)-dimensional Kadomtsev-Petviashvili equation

Extended tan-cot method for the solitons solutions to the (3+1)-dimensional Kadomtsev-Petviashvili equation Interntionl Jornl of Mthemticl Anlysis nd Applictions ; (): 9-9 Plished online Mrch, (http://www.scit.org/jornl/ijm) Extended tn-cot method for the solitons soltions to the (+)-dimensionl Kdomtsev-Petvishvili

More information

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b. Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn

More information

Handout I - Mathematics II

Handout I - Mathematics II Hndout I - Mthemtics II The im of this hndout is to briefly summrize the most importnt definitions nd theorems, nd to provide some smple exercises. The topics re discussed in detil t the lectures nd seminrs.

More information

Songklanakarin Journal of Science and Technology SJST R1 Thongchan. A Modified Hyperbolic Secant Distribution

Songklanakarin Journal of Science and Technology SJST R1 Thongchan. A Modified Hyperbolic Secant Distribution A Modified Hyperbolic Secnt Distribution Journl: Songklnkrin Journl of Science nd Technology Mnuscript ID SJST-0-0.R Mnuscript Type: Originl Article Dte Submitted by the Author: 0-Mr-0 Complete List of

More information

Approximation of functions belonging to the class L p (ω) β by linear operators

Approximation of functions belonging to the class L p (ω) β by linear operators ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 3, 9, Approximtion of functions belonging to the clss L p ω) β by liner opertors W lodzimierz Lenski nd Bogdn Szl Abstrct. We prove

More information

4181H Problem Set 11 Selected Solutions. Chapter 19. n(log x) n 1 1 x x dx,

4181H Problem Set 11 Selected Solutions. Chapter 19. n(log x) n 1 1 x x dx, 48H Problem Set Selected Solutions Chpter 9 # () Tke f(x) = x n, g (x) = e x, nd use integrtion by prts; this gives reduction formul: x n e x dx = x n e x n x n e x dx. (b) Tke f(x) = (log x) n, g (x)

More information

ON A CONVEXITY PROPERTY. 1. Introduction Most general class of convex functions is defined by the inequality

ON A CONVEXITY PROPERTY. 1. Introduction Most general class of convex functions is defined by the inequality Krgujevc Journl of Mthemtics Volume 40( (016, Pges 166 171. ON A CONVEXITY PROPERTY SLAVKO SIMIĆ Abstrct. In this rticle we proved n interesting property of the clss of continuous convex functions. This

More information

MATH 409 Advanced Calculus I Lecture 19: Riemann sums. Properties of integrals.

MATH 409 Advanced Calculus I Lecture 19: Riemann sums. Properties of integrals. MATH 409 Advnced Clculus I Lecture 19: Riemnn sums. Properties of integrls. Drboux sums Let P = {x 0,x 1,...,x n } be prtition of n intervl [,b], where x 0 = < x 1 < < x n = b. Let f : [,b] R be bounded

More information